Radiative waves in stellar winds with line scattering

Thomas, Timon; Feldmeier, Achim

Photospheric radiation can drive winds from hot, massive stars by direct momentum transfer through scattering in bound-bound transitions of atmospheric ions. The line radiation force should cause a new radiative wave mode. The dispersion relation from perturbations of the line force was analysed so far either in Sobolev approximation or for pure line absorption. The former does not include the line-driven instability, and the latter cannot account for upstream propagating, radiative waves. We consider a non-Sobolev line force that includes scattering in a simplified way, accounting however for the important line-drag effect. We derive a new dispersion relation for radiative waves, and analyse wave propagation using Fourier methods, and by numerical solution of an integro-differential equation. The existence of an upstream propagating, dispersive radiative wave mode is demonstrated.

ADS link: http://adsabs.harvard.edu/abs/2016MNRAS.460.1923T

Back to publication list