The Quintuplet cluster
III. Hertzsprung-Russell diagram and cluster age

A. Liermann, W.-R. Hamann, and L. M. Oskinova

The Quintuplet, one of three massive stellar clusters in the Galactic center (GC), is located about 30 pc in projection from Sagittarius A*. We aim at the construction of the Hertzsprung-Russell diagram (HRD) of the cluster to study its evolution and to constrain its star-formation history. For this purpose we use the most complete spectral catalog of the Quintuplet stars. Based on the K-band spectra we determine stellar temperatures and luminosities for all stars in the catalog under the assumption of a uniform reddening towards the cluster. We find two groups in the resulting HRD: early-type OB stars and late-type KM stars, well separated from each other. By comparison with Geneva stellar evolution models we derive initial masses exceeding 8 M_sun for the OB stars. In the HRD these stars are located along an isochrone corresponding to an age of about 4 Myr. This confirms previous considerations, where a similar age estimate was based on the presence of evolved Wolf-Rayet stars in the cluster. We derive number ratios for the various spectral subtype groups (e.g. NWR/NO, NWC/NWN) and compare them with predictions of population synthesis models. We find that an instantaneous burst of star formation at about 3.3 to 3.6 Myr ago is the most likely scenario to form the Quintuplet cluster. Furthermore, we apply a mass-luminosity relation to construct the initial mass function (IMF) of the cluster. We find indications for a slightly top-heavy IMF. The late-type stars in the LHO catalog are red giant branch (RGB) stars or red supergiants (RSGs) according to their spectral signatures. Under the assumption that they are located at about the distance of the Galactic center we can derive their luminosities. The comparison with stellar evolution models reveals that the initial masses of these stars are lower than 15 M_sun implying that they needed about 15 Myr (RSG) or even more than 30 Myr (RGB) to evolve into their present stage. It might be suspected that these late-type stars do not physically belong to the Quintuplet cluster. Indeed, most of them disqualify as cluster members because their radial velocities differ too much from the cluster average. Nevertheless, five of the brightest RGB/RSG stars from the LHO catalog share the mean radial velocity of the Quintuplet, and thus remain highly suspect for being gravitationally bound members. If so, this would challenge the cluster formation and evolution scenario.

Fetch Pdf-File (liermann-aa-2012.pdf, 0.5MB)

Corrigendum (liermann-aa-2012-corrigendum.pdf, 0.5MB)

Back to publication list