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We consider an incompressible fluid in a sperical shell with outer radius R, and
inner radius R;, rotating with constant angular velocity € = Qe, about the z axis
(e, is the unit vector in the z direction). The temperature T is fixed to the value T,
at radius R, and to the value T, + 0T at radius R;. Using the Oberbeck-Boussinesq
approximation, the governing equations for the fluid velocity v and temperature in
the co-rotating frame read as follows:
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r is the position vector, p, the homogeneous mass density at temperature 7, *
p the pressure, v the kinematic viscosity, a the thermal expansion coefficient, g
the gravitational acceleration, and s the thermal diffusivity. The first and second
terms on the right-hand side of Eq. (1) give the Coriolis and centrifugal accelerations,
respectively. Here, in particular, the effect of a temperature dependent mass density
on the centrifugal force has been neglected. Employing the fact that for constant €2
the centrifugal acceleration is a gradient,
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the centrifugal term in Eq. (1) will be included in the pressure term in the following.
Furthermore, as g is always a potential field, (1 + aT,) g may be included in the

T, is the reference temperature and p, the associated reference mass density for the Oberbeck-
Boussinesq approximation; T, and p, may be, but need not be the values of temperature and mass
desity at radius R,



pressure term as well, so that Eq. (1) becomes
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Let the fluid shell be part of a full sphere with homogeneous mass density p,.

Then
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where 7y is the gravitational constant. Eq. (6) may also be written as
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where g, is the absolute value of the gravitational acceleration at radius R,.
We now normalize as follows:
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where D = R, — R; is the gap size. The resulting non-dimensional equations read
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is a modified Rayleigh number, and
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is the Prandtl number. Normalizations of this kind were, e.g., used by Olson and
Glatzmaier (1995), Christensen et al. (1998), and Christensen et al. (2001). A dis-
cussion of different definitions of the Rayleigh number, in the context of geodynamo
simulation, was given by Kono and Roberts (2001).

Alternative non-dimensional form of the equations with ho-
mogeneous boundary conditions for the temperature

In the time-independent conductive basic state with the fluid at rest, Egs. (9) and
(10) become
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where p. and T, denote pressure and temperature in the conductive state. The
solution to Eq. (16) satisfying the boundary conditions
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With T, as given by Eq. (18), Vp, is fixed by Eq. (15) (and thus p. is fixed up to
an irrelevant constant). With the additional variable transformations
p—p.—p, T—-T.—0, (19)

and using Eqs. (9), (10), (15), (16), and (18), the Navier-Stokes and heat-conduction
equations take the forms
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Appendices

A Transition to a more commonly used normal-
ization

On dividing Eq. (9) by E and re-normalizing the pressure according to
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(so that pgr?/D? becomes the pressure unit), we obtain
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is the Taylor number as most commonly defined (i.e., with a factor of 2 included in

v/Ta) and
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is the conventional Rayleigh number.

B Taking into account centrifugal buoyancy

Allowing for a temperature dependence of the mass density in the centrifugal term
in the same way as already done in the gravitational term, the dimensional Navier-
Stokes equation takes the form

0 1

8_175)+(U'V)v =20 xv+aTQx (Qx7r) ——Vp—}—yVQ'quaTgoR;, (26)
pO (]

where the gradient part —(1+ a7,)Q x (2 x r) of the centrifugal term —[1 — (T —

T,)]$2 x (€2 x r) has been included in the pressure term. On normalizing as given

by Eq. (8), the non-dimensional Navier-Stokes equation becomes
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is the (rotational) Froude number.



