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We consider an incompressible fluid in a sperical shell with outer radius Ro and
inner radius Ri, rotating with constant angular velocity Ω = Ωez about the z axis
(ez is the unit vector in the z direction). The temperature T is fixed to the value To

at radius Ro and to the value To + δT at radius Ri. Using the Oberbeck-Boussinesq
approximation, the governing equations for the fluid velocity v and temperature in
the co-rotating frame read as follows:

∂v

∂t
+ (v · ∇)v = −2Ω ez × v − Ω2ez × (ez × r)− 1

ρo
∇p+ ν∇2v

+ [1− α(T − To)] g (1)

∂T

∂t
+ v · ∇T = κ∇2T (2)

∇ · v = 0 (3)

r is the position vector, ρo the homogeneous mass density at temperature To,
1

p the pressure, ν the kinematic viscosity, α the thermal expansion coefficient, g
the gravitational acceleration, and κ the thermal diffusivity. The first and second
terms on the right-hand side of Eq. (1) give the Coriolis and centrifugal accelerations,
respectively. Here, in particular, the effect of a temperature dependent mass density
on the centrifugal force has been neglected. Employing the fact that for constant Ω
the centrifugal acceleration is a gradient,

−Ω× (Ω× r) = ∇
(
1

2
(Ω× r)2

)
= ∇

(
1

2
Ω2r2

⊥

)
, r⊥ = r −

(
r · Ω

Ω

)
Ω

Ω
, (4)

the centrifugal term in Eq. (1) will be included in the pressure term in the following.
Furthermore, as g is always a potential field, (1 + αTo) g may be included in the

1To is the reference temperature and ρo the associated reference mass density for the Oberbeck-
Boussinesq approximation; To and ρo may be, but need not be the values of temperature and mass
desity at radius Ro
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pressure term as well, so that Eq. (1) becomes

∂v

∂t
+ (v · ∇)v = −2Ω ez × v − 1

ρo
∇p+ ν∇2v − αTg . (5)

Let the fluid shell be part of a full sphere with homogeneous mass density ρo.
Then

g = −4

3
πγρor , (6)

where γ is the gravitational constant. Eq. (6) may also be written as

g = − go
Ro

r , (7)

where go is the absolute value of the gravitational acceleration at radius Ro.
We now normalize as follows:

r /D → r , t

/
D2

ν
→ t , v

/ ν

D
→ v , p /ρoνΩ → p , T /δT → T , (8)

where D = Ro −Ri is the gap size. The resulting non-dimensional equations read

E

(
∂v

∂t
+ (v · ∇)v −∇2v

)
= −2 ez × v −∇p+RaT

r

Ro

, (9)

∂T

∂t
+ v · ∇T =

1

Pr
∇2T , (10)

∇ · v = 0 , (11)

where
E =

ν

D2Ω
(12)

is the Ekman number,

Ra =
α δTgo D

Ων
(13)

is a modified Rayleigh number, and

Pr =
ν

κ
(14)

is the Prandtl number. Normalizations of this kind were, e.g., used by Olson and
Glatzmaier (1995), Christensen et al. (1998), and Christensen et al. (2001). A dis-
cussion of different definitions of the Rayleigh number, in the context of geodynamo
simulation, was given by Kono and Roberts (2001).

Alternative non-dimensional form of the equations with ho-
mogeneous boundary conditions for the temperature

In the time-independent conductive basic state with the fluid at rest, Eqs. (9) and
(10) become

0 = −∇pc +RaTc
r

Ro

, (15)
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0 = ∇2Tc , (16)

where pc and Tc denote pressure and temperature in the conductive state. The
solution to Eq. (16) satisfying the boundary conditions

Tc(Ro) = To , Tc(Ro − 1) = To + 1 (17)

is

Tc =
Ro(Ro − 1)

r
+ To −Ro + 1 . (18)

With Tc as given by Eq. (18), ∇pc is fixed by Eq. (15) (and thus pc is fixed up to
an irrelevant constant). With the additional variable transformations

p− pc → p , T − Tc → Θ , (19)

and using Eqs. (9), (10), (15), (16), and (18), the Navier-Stokes and heat-conduction
equations take the forms

E

(
∂v

∂t
+ (v · ∇)v −∇2v

)
= −2 ez × v −∇p+RaΘ

r

Ro

, (20)

∂Θ

∂t
+ v · ∇Θ =

1

Pr
∇2Θ+

Ro(Ro − 1)

r2
vr . (21)
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Appendices

A Transition to a more commonly used normal-

ization

On dividing Eq. (9) by E and re-normalizing the pressure according to

p

E
→ p (22)
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(so that ρ0ν
2/D2 becomes the pressure unit), we obtain

∂v

∂t
+ (v · ∇)v −∇2v = −

√
Ta ez × v −∇p+

1

Pr
R̃aT

r

Ro

, (23)

where

Ta =
4

E2
(24)

is the Taylor number as most commonly defined (i.e., with a factor of 2 included in√
Ta) and

R̃a =
α δT go D

3

κ ν
=

Pr

E
Ra (25)

is the conventional Rayleigh number.

B Taking into account centrifugal buoyancy

Allowing for a temperature dependence of the mass density in the centrifugal term
in the same way as already done in the gravitational term, the dimensional Navier-
Stokes equation takes the form

∂v

∂t
+ (v · ∇)v = −2Ω× v + αT Ω× (Ω× r)− 1

ρo
∇p+ ν∇2v + αT go

r

Ro

, (26)

where the gradient part −(1+αTo)Ω× (Ω×r) of the centrifugal term −[1−α(T −
To)]Ω × (Ω × r) has been included in the pressure term. On normalizing as given
by Eq. (8), the non-dimensional Navier-Stokes equation becomes

E

(
∂v

∂t
+ (v · ∇)v −∇2v

)
= −2 ez×v+RaFrT ez×(ez×r)−∇p+RaT

r

Ro

, (27)

where

Fr =
DΩ2

go
(28)

is the (rotational) Froude number.
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