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Abstract.

Filaments are a global phenomenon and their formation, structure

and dynamics are determined by magnetic �elds. So they are an im-

portant signature of the solar magnetism. The central mechanism in

traditional mean-�eld dynamo theory is the alpha e�ect and it is a major

result of this theory that the presence of kinetic or magnetic helicities is

at least favourable for the e�ect. Recent studies of the magnetohydrody-

namic equations by means of numerical bifurcation-analysis techniques

have con�rmed the decisive role of helicity for a dynamo e�ect. The

alpha e�ect corresponds to the simultaneous generation of magnetic he-

licities in the mean �eld and in the 
uctuations, the generation rates

being equal in magnitude and opposite in sign. In the case of statistically

stationary and homogeneous 
uctuations, in particular, the alpha e�ect

can increase the energy in the mean magnetic �eld only under the con-

dition that also magnetic helicity is accumulated there. Generally, the

two helicities generated by the alpha e�ect, that in the mean �eld and

that in the 
uctuations, have either to be dissipated in the generation

region or to be transported out of this region. The latter may lead to the

appearance of helicity in the atmosphere, in particular in �laments, and

thus provide valuable information on dynamo processes inaccessible to in

situ measurements.

1. Introduction

The dynamo for the global solar magnetic �eld is assumed to operate in the

convection zone and to consist of the cyclic generation of a toroidal (azimuthal)

�eld from a poloidal one (whose �eld lines lie in planes containing the rotational

axis of the Sun) and the regeneration of a poloidal �eld from a toroidal one.

If there exists a poloidal �eld, then a toroidal �eld is generated very e�ectively

by di�erential rotation. But the regeneration of the poloidal �eld represents a

problem. For this reason the theory of the turbulent dynamo has been developed

(Krause & R�adler 1980). The central mechanism in this theory is the generation

of a mean, or large-scale, electromotive force E by turbulently 
uctuating, or

small-scale, parts of velocity and magnetic �eld, and it is a major result of the

theory that the presence of kinetic and magnetic helicities is favourable for a
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so-called alpha e�ect, i.e., a non-vanishing component E

k

= �hBi of E along the

mean magnetic �eld hBi. The densities per unit volume of kinetic, magnetic

and current helicity are de�ned by

H

K

= v � (r� v); H

M

= A �B; H

C

= B � (r�B); (1)

where v, B and A denote 
uid velocity, magnetic �eld and a magnetic vector

potential. H

M

and H

C

are closely related (cf., e.g., Seehafer 1990).

The usually quoted estimate for the alpha-e�ect parameter � is (Krause &

R�adler 1980, Eq. (3.31))

� � �

�

3

hv

0

� r � v

0

i; (2)

where � is the correlation time of the velocity 
uctuations v

0

(angular brackets

denote averages and primes the corresponding residuals). This estimate, which

relates � to the kinetic helicity of the 
uctuations, is derived under the following

approximations and assumptions:

1) The �rst order smoothing approximation (FOSA), which consists of neglecting

the unpleasant term r � (v

0

� B

0

� hv

0

� B

0

i) in the equation for the time

evolution of the magnetic 
uctuations. This approximation is valid for, e.g.,

wave turbulence, where a disturbance does not lead to the onset of convection

but only to a wave. It is, however, rather doubtful in the case of conventional,

convective turbulence, i.e., in the solar convection zone.

2) hvi = 0.

3) hBi = constant (in space and time).

4) Statistically stationary and homogeneous 
uctuations.

5) � (magnetic di�usivity) ! 0.

The alpha e�ect is more directly related to current helicity than to kinetic

helicity, namely (see Sec. 3. and Keinigs 1983, Matthaeus et al. 1986, R�adler &

Seehafer 1990, Seehafer 1994b, Seehafer 1996),

�

def

=

E � hBi

hBi

2

= �

�

hBi

2

hB

0

� (r�B

0

)i: (3)

For deriving this relation, of the above �ve conditions only the fourth one is

needed. On the other hand, the traditional estimate, Eq. (2), gives an informa-

tion on which type of 
uid motion can produce an alpha e�ect.

The majority of dynamo studies, in particular those in the frame of mean-

�eld theory, has been kinematic. Kinematic dynamo theory studies the condi-

tions under which a prescribed velocity �eld can amplify, or at least prevent

from decaying, some seed magnetic �eld, completely disregarding the equations

governing the motion of the 
uid. A step towards a self-consistent, nonlinear

theory is taken by models containing, mainly on the base of physically plau-

sible assumptions, a back reaction of a generated mean magnetic �eld on the

generating turbulent 
uid motions. Here in particular models with the so-called

�-quenching are studied, in which the alpha-e�ect parameter � is a function of

the mean magnetic �eld (e.g., R�adler et al. 1990).

In principle totally self-consistent are numerical simulations of the com-

plete system of the nonlinear magnetohydrodynamic (MHD) equations (e.g.,

Meneguzzi et al. 1981, Meneguzzi & Pouquet 1989, Glatzmaier 1984, 1985). In
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some sense still a step further goes a bifurcation, or qualitative, analysis, by

which one tries to get an overview of the attractor structure of the system, i.e.,

of the set of the possible time-asymptotic states. In Sec. 2. an example of a

numerical bifurcation analysis is presented. The Reynolds numbers reachable

here presently are by many orders of magnitude smaller than those at the Sun.

Therefore the statistical mean-�eld approach remains indispensible. In Sec. 3.

it is demonstrated that the alpha e�ect generates simultaneously and at equal

rates 
uctuating (turbulent) and mean-�eld magnetic helicities of opposite signs.

Section 4. then gives a �nal discussion.

2. Bifurcation Analysis of a Magneto
uid with Helical Forcing

Simple examples of strongly helical 
ows are provided by the so-called ABC


ows (see, e.g., Dombre et al. 1986), given by

v = v

ABC

= (A sin z + C cos y; B sinx+A cos z; C sin y +B cos x); (4)

where A, B and C denote constant coe�cients. The ABC 
ows are steady

solutions of the incompressible Navier{Stokes equation [Eq. (6) below with the

magnetic �eld dropped] if an external body force

f = ��v

ABC

= v

ABC

(5)

| in the following called ABC forcing | just compensating for viscous losses

is applied. Here we report results of numerical studies of the complete system

of the incompressible MHD equations with this kind of forcing as well as with

a generalized ABC forcing with a variable degree of helicity. Comprehensive

accounts of the corresponding studies may be found in Seehafer et al. (1996),

Feudel et al. (1995,1996), and Schmidtmann et al. (1997).

We use the incompressible MHD equations in the nondimensional form

@v

@t

+ (v � r)v = �v �rp�

1

2

rB

2

+ (B � r)B+ f ; (6)

@B

@t

+ (v � r)B = P

�1

m

�B+ (B � r)v; (7)

r � v = 0; r �B = 0; (8)

where p is the thermal pressure and P

m

the magnetic Prandtl number (the

ratio between magnetic di�usivity and kinematic viscosity). Periodic boundary

conditions are applied and the spatial means of v and B, and consequently also

of f are assumed to vanish. The ABC forcing, given by Eqs. (5) and (4), is used

with with

A = B = C = R (9)

where R is referred to as Reynolds number. For this forcing the MHD equations

are equivariant with respect to a discrete symmetry group which is isomorphic

to the octahedral group O (the rotation group of the cube).

Besides the pure ABC forcing also a generalized ABC forcing is applied,

given by

f = (1� �)v

ABC

+ �v

�

ABC

; (10)
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Figure 1. Schematic bifurcation diagram for pure ABC forcing.

where

v

�

ABC

= (A cos z + C sin y; B cos x+A sin z; C cos y +B sinx) (11)

and � is a parameter varying between 0 and 0.5. v

�

ABC

satis�es r � v

�

ABC

=

�v

�

ABC

, and for � = 0:5 its addition in the forcing term \kills" the helicity on

average in the volume, while � = 0 corresponds to the original ABC forcing.

We restrict ourselves to the case of P

m

= 1 and R and � are our bifurcation

parameters.

An overview of the bifurcation structure for pure ABC forcing is depicted

in Fig. 1. For weak forcing (small R), there exists a stable stationary solution,

namely the ABC 
ow [given by Eq. (4)] with vanishing magnetic �eld, and all

system trajectories are attracted by this solution. If R is raised, the steady

state loses stability in a Hopf bifurcation, leading to a periodic solution with a

magnetic �eld as the only time-asymptotic state. The periodic magnetic solution

is at �rst symmetric to the full group O, but for further raised R it bifurcates

into four new periodic solutions, which can be be transformed into each other by

certain elements of O. Besides that another periodic magnetic branch appears,

consisting of three solutions which can be transformed into each other. Both

branches undergo secondary Hopf bifurcations leading to quasiperiodic or torus

solutions, which in turn eventually decay to chaotic states.

The volume-averaged magnetic helicity [cf. Eq. (1)] is negative, thus oppo-

site in sign to the kinetic helicity, as also found by Galanti et al. (1992).

For the case of the generalized ABC forcing given by Eq. (10), the locations

of primary and secondary bifurcations in the parameter plane are shown in Fig. 2.
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Figure 2. Locations of primary and secondary bifurcations of the

original stationary solution in the �-R plane. Solid line and dashed-

dotted line: a single pair of complex conjugate eigenvalues crosses the

imaginary axis; dashed line: two real eigenvalues pass through zero;

dotted line: two pairs of complex conjugate eigenvalues cross the imag-

inary axis. Asterisks indicate points at which, by means of simulations,

non-magnetic chaotic time-asymptotic states have been found, while

circles correspond to magnetic periodic attractors.

For weak forcing (small R), there always exists a stable stationary, nonmagnetic,

globally attracting solution (which coincides with the the original ABC 
ow

only in the special case of � = 0). Keeping �xed � and raising R, this steady-

solution branch has been traced. Thick solid and dashed lines, respectively,

indicate the primary bifurcation of the original steady state. For � < 0:4 the

steady state loses stability in a Hopf bifurcation, but at � = 0:4 the type of the

�rst bifurcation, as well as the character of the time-asymptotic states after this

bifurcation, change. While for � < 0:4 a magnetic periodic state is the (only) new

attractor, for � between 0.4 and 0.5 new non-magnetic states emerge. Only if the

helicity exceeds a certain threshold value, a Hopf bifurcation leads to a magnetic

periodic state (i.e., to a dynamo e�ect). For helicities below the threshold value

the transition is more complex, but always the ensuing time-dependent states,

including chaotic ones, are non-magnetic (which does not exclude, of course, a

dynamo e�ect for higher Reynolds numbers).

5



3. Alpha E�ect and the Generation of Magnetic Helicity

The mean value of the magnetic helicity can be written as the sum of two con-

tributions resulting from the mean and 
uctuating magnetic �elds, respectively,

namely

hH

M

i = H

MEAN

M

+H

FLUC

M

; (12)

with

H

MEAN

M

= hAi � hBi; H

FLUC

M

= hA

0

�B

0

i: (13)

For the time evolutions of H

MEAN

M

and H

FLUC

M

one �nds (Seehafer 1996)

@H

MEAN

M

@t

= �2�r� hBi � hBi+ 2E � hBi

+

 

@H

MEAN

M

@t

!

transport

(14)

and

@H

FLUC

M

@t

= �2�hr �B

0

�B

0

i � 2E � hBi

+

 

@H

FLUC

M

@t

!

transport

: (15)

These equations show that the alpha e�ect (the terms �2E � hBi on the right-

hand sides) corresponds to the simultaneous generation of magnetic helicities

in the mean �eld and in the 
uctuations, the generation rates being equal in

magnitude and opposite in sign. The mean total magnetic helicity, which is an

invariant of ideal magnetohydrodynamics, is not in
uenced by the alpha e�ect.

This may equally be considered as a transfer of magnetic helicity between the


uctuating (or small-scale) and the mean (or large-scale) �elds, mediated by the

alpha e�ect, or as a helicity cascade (cf. Frisch et al. 1975, Pouquet et al. 1976,

Stribling & Matthaeus 1990, 1991).

Consider now a situation in which the magnetic 
uctuations are statistically

stationary. Actually it is assumed throughout traditional turbulent-dynamo the-

ory that the magnetic 
uctuations have settled down to a statistically stationary

state. If then, furthermore, the 
uctuations are spatially homogeneous, Eq. (15)

implies that the alpha-e�ect parameter � is connected to the mean current he-

licity of the 
uctuations by Eq. (3).

Let us, next, examine under which conditions there is a turbulent dynamo

e�ect, i.e., under which conditions the turbulent emf increases the energy in

the mean magnetic �eld. For that purpose we assume hvi = 0, since we are

not interested in the dynamo action of the mean 
ow. For the change of the

mean-�eld magnetic energy density one then �nds

@

@t

hBi

2

2

= ��(r� hBi)

2

+ E � (r� hBi) +r � (Poynting 
ux); (16)

which shows that the alpha e�ect contributes to the growth of the mean magnetic

�eld if �(r� hBi � hBi) > 0 or, equivalently (see the de�nition of � in Eq. (3),
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E � hBi(r�hBi � hBi) > 0. For E � hBi(r�hBi � hBi) < 0 the alpha e�ect lowers

the mean-�eld energy.

Consider again the case of statistically stationary and homogeneous 
uctu-

ations. The condition for a dynamo action of the alpha e�ect, E � hBi(r� hBi �

hBi) > 0, then becomes �hr�B

0

�B

0

i(r�hBi � hBi) < 0, i.e., as �rst noted by

Keinigs & Gerwin (1986), the current helicities in the 
uctuating and the mean

magnetic �elds must have opposite signs.

Assume now that the alpha e�ect really overcomes the dissipative term in

Eq. (16), i.e., E � (r� hBi) > �(r� hBi)

2

. By using Eq. (3) and the Schwarz

inequality (r � hBi)

2

hBi

2

� (r � hBi � hBi)

2

one then �nds as a necessary

condition for the growth of hBi

2

�hr�B

0

�B

0

i(r� hBi � hBi) > (r� hBi � hBi)

2

: (17)

That is, the current helicity of the 
uctuations must exceed that of the mean

�eld by modulus.

Condition (17) has an implication for the evolution of the mean-�eld mag-

netic helicity: Since j�hr �B

0

�B

0

ij = jE � hBij due to the assumed stationarity

and homogeneity of the 
uctuations, j�r�hBi �hBij < jE �hBij. Then according

to Eq. (14) helicity is accumulated in the mean magnetic �eld, with sign given

by the sign of E � hBi, i.e., by the sign of �.

4. Discussion: The Helicity-Sign Puzzle

The two helicities generated by the alpha e�ect, that in the mean �eld and that

in the 
uctuations, have either to be dissipated in the generation region or to be

transported out of this region. The latter may lead to the appearance of helicity

in the atmosphere, e.g., in �laments (Martin 1997), and through solar eruptions

even in interplanetary space. There has been accumulated strong evidence that

the atmospheric and interplanetary magnetic helicity is predominantly negative

in the northern and positive in the southern hemisphere (Seehafer 1990, Rust

1994, Rust & Kumar 1994, Pevtsov et al. 1995, Abramenko 1996). It is not

clear yet, however, whether the �elds observed in the atmosphere, e.g., in active

regions, can be interpreted as mean �elds or 
uctuations in the sense of mean-

�eld theory.

Assume that the observed �elds are either mainly mean �elds or mainly


uctuations. The magnetic helicity accumulated in the mean �eld has the same

sign as the alpha-e�ect parameter �. So � should be negative in the northern

hemisphere if the observed �elds are mean �elds. Vice versa, � should be posi-

tive in the northern hemisphere if the atmospheric �elds have to be interpreted

as 
uctuations. For a proper propagation of the dynamo waves (from the poles

to the equator), a negative (positive) � requires a decrease (an increase) of the

angular velocity of the solar rotation with depth in the convection zone. He-

lioseismological measurements (Christensen-Dalsgaard & Schou 1988) indicate

near the equator a decrease with depth (the decrease occurs rather low in the

convection zone). Consequently, � < 0 in the northern hemisphere and the

�elds observed in active regions are mean �elds. It will be interesting to carry

out improved helicity measurements in the solar atmosphere as well as in the

solar wind and to analyze them with respect to signatures of the two helicities.
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