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Dynamo action in cellular convection
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The dynamo properties of square patterns in Boussinesq Rayleigh-Bénard convection
in a plane horizontal layer are studied numerically. Cases without rotation and with
weak rotation about a vertical axis are considered, particular attention being paid to
the relation between dynamo action and the kinetic helicity of the flow. While the fluid
layer is symmetric with respect to up-down reflections, the square-pattern solutions may
or may not possess this vertical symmetry. Vertically symmetric solutions, appearing
in the form of checkerboard patterns, do not possess a net kinetic helicity and we find
them to be incapable of dynamo action at least up to magnetic Reynolds numbers of
2 12000. Vertically asymmetric squares, a secondary convection pattern appearing via
the skewed varicose instability of rolls and being characterized by rising (descending)
motion in the centers and descending (rising) motion near the boundaries, can in turn be
devided into such that possess full horizontal square symmetry and others lacking also this
symmetry. The flows lacking both the vertical and horizontal symmetries are particularly
interesting in that they possess kinetic helicity and show kinematic dynamo action even
without rotation. The generated magnetic fields are concentrated in vertically oriented
filamentary structures near cell boundaries. The dynamos found in the nonrotating
case are, however, always only kinematic, never nonlinear dynamos. Nonlinearly the
back-reaction of the magnetic field then forces the flow into the basin of attraction of
a roll-pattern solution incapable of dynamo action. But with rotation added parameter
regions are found where a subtle balance between the Coriolis and Lorentz forces enables
nonlinear dynamo action of stationary asymmetric squares. In some parameter regions
this balance leads to nonlinear dynamos with flows in the form of oscillating squares or
stationary modulated rolls.

Introduction Studies of convection-driven dynamos have concentrated ei-
ther on turbulent convection [1] or on convection near onset, where simple steady
flows can be obtained [2, 3, 4, 5]. In this paper we report on the dynamo properties
of convection in the simple form of squares (see also [6, 7, 8]).

The typical convective patterns are different for convection with up-down
reflection symmetry and such lacking this symmetry, where symmetry of the con-
vection means symmetry of the governing equations and boundary conditions for
the deviations of the physical quantities from their values in the nonconvective
state. Rayleigh-Bénard Boussinesq convection with symmetric top and bottom
boundary conditions possesses the up-down reflection symmetry, and its preferred
convection pattern near onset is rolls, i.e. the convective pattern is also up-down
symmetric. However, recently it was found both experimentally and theoretically
that other, vertically asymmetric states, namely convection in the form of squares
or hexagons, can coexist with the roll states in a parameter range where only rolls
were previously known to be stable [6, 9, 10, 11]. These asymmetric squares and
hexagons, with rising or with descending motion in the center (and descending
or rising motion near the boundary) are usually observed in convection lacking
up-down reflection symmetry, namely in compressible convection [12, 13], in flu-
ids with strongly temperature dependent viscosity [14] or in Bénard-Marangoni
convection [15, 16]. The vertically asymmetric square pattern represents the dom-



inating pattern over a wide range of the control parameters both in vertically
symmetric and nonsymmetric convection. Details about this type of convection
are found in [6, 11, 17]. In the present paper we deal with squares in Boussinesq,
i.e. vertically symmetric convection. Here besides the vertically asymmtric square
patterns also vertically symmetric ones are found, which appear in the form of
checkerboard patterns. However, with respect to the dynamo effect the asymmet-
ric squares turn out to be much more interesting than the symmetric ones.

It is well known that a nonvanishing kinetic helicity, for a given volume V
defined by H = fV v-V x v d3x, where v denotes the fluid velocity and h = v-V xv
is the helicity density, is favorable at least for the large-scale dynamo action of
small-scale velocity fields [18]. We pay particular attention to the relation between
dynamo action and the kinetic helicity of the underlying flows.

1. Equations and parameters We consider buoyancy-driven rotating
convection in an electrically conducting plane fluid layer heated from below. Using
the Oberbeck-Boussinesq approximation, the governing system of partial differen-
tial equations reads as follows:

Vv = 0 (1)
ov 9
E—F(V-V)v = —Vp+ PV*v+ PRfe,
+(VxB)xB+PVTv xe, (2)
V-B = 0 (3)
oB —1g2
E—F(V-V)B = PP,V B+(B-V)v (4)
%+v-v0 = v, + V7. (5)

Equations (1)—(5) are given in usual dimensionless form. B is the magnetic field
and p and 0 represent the deviations of pressure and temperature from their values
in the pure conduction state. We use Cartesian coordinates z, y and z with the
z axis in the vertical direction antiparallel to the gravitational force. e, is the
unit vector in the vertical direction. There are four dimensionless parameters, the
Prandt]l number P, the magnetic Prandtl number P,,, the Rayleigh number R and
the Taylor number T, defined by
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where v is the kinematic viscosity, £ the thermal diffusivity, 5 the magnetic dif-
fusivity, a the volumetric expansion coeflicient, g the gravitational acceleration, d
the thickness of the fluid layer, §T the temperature difference between the upper
and lower boundaries and 2 the angular velocity of the rotation. R measures the
strength of the buoyancy forces and T the rotation rate. We apply periodic bound-
ary conditions with spatial period L in the horizontal directions  and y. The top
and bottom planes are assumed to be stress-free, isothermal and impenetrable for
matter and electromagnetic energy:
Ovg _ Ovy _e_an_aBy_
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As in [6, 19, 20] we restrict ourselves to the case of a vanishing mean hori-
zontal flow since such a flow can be removed by a Galilean transformation. In our
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Figure 1: Shadowgraph images of the vertical velocity component v, in the hori-
zontal midplane for T = 0. Bright areas refer to positive values where the motion
of the fluid is upwards. (a) Unstable checkerboard pattern for R = 1000, (b) stable
asymmetric square pattern for R = 7000.

numerics we used a pseudospectral method with a spatial resolution of 323 points
for simulations and 16 points for non-simulative eigenvalue and eigenvector calcu-
lations. The main results were checked by additional simulations at a resolution of
64 x 64 x 16. The aspect ratio is kept fixed at L = 4 for the dynamo calculations;
but in preceding purely hydrodynamic calculations of the underlying convective
patterns also L was varied. The Prandt]l number is 6.8 and the Taylor number is
restricted to values below the critical one for the Kiippers-Lortz [21] instability,
i.e. the instability of convection rolls with respect to other rolls rotated by a cer-
tain angle relative to the original rolls, which results in a dynamics dominated by
heteroclinic cycles formed by unstable roll states and connections between them
[20, 22]); dynamo action in rapidly rotating convection is studied in [23, 24].

2. Convection in the form of squares Without rotation, flows in the
form of vertically symmetric squares or checkerboard patterns could only be ob-
served as transient phenomena (but see Sec. 3.1 for the case with rotation). By
contrast, vertically asymmetric squares were found as stable stationary attrac-
tors. Examples of convection in the form of vertically symmetric and asymmetric
squares in the absence of rotation are shown in Fig. 1. The asymmetric squares
[Fig. 1(b)] are a secondary convection pattern and appear via the skewed-varicose
instability [25] of primary convection rolls. Results of a stability analysis are shown
in Fig. 2; for more details we refer to [6].

Depending on the initial conditions, cells with rising or descending motion
in the center appear. The spectrum of the excited Fourier modes shows that the
vertically asymmetric squares can be represented to lowest order by

(Aleiklx + A2eik2x) + (Blez'(k1+k2)x + B2ei(k1—k2)x) +ece. (8)

where ky and ko are horizontal wave vectors given by k1 = (0, k) and ko = (k,0).
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Figure 2: The region of stable squares in the L-R plane. The dashed line specifies
the skewed varicose instability for rolls and indicates the transition from a roll
pattern to a square pattern for increasing Rayleigh number. The back transition
from the squares to the rolls for decreasing R is shown by the solid line, with +
signs marking the calculated points. The dashed-dotted line indicates instability
of the squares for increasing R, diamonds denoting a double Hopf bifurcation and
triangles a single Hopf bifurcation. For reference, the linear stability boundary of
the nonconvective ground state to rolls is shown by the dotted line.

k is the fundamental wave number of the asymmetric squares. A4; exp(ikix) and
A exp(ikax) represent two rolls with the same wave number k, one parallel to the
x axis and the other parallel to the y axis, while the two terms with coefficients By
and Bs, respectively, correspond to rolls parallel to the diagonals of the periodicity
square, perpendicular to each other and with the same wave number ¢ = kg +
ka| = 2k, which is the wave number of the skewed-varicose unstable rolls (the
instability thus leads to a pattern with a smaller wave number). For asymmetric
squares as shown in Fig. 1(b) to appear it is essential that all four wave vectors
ki1, k2, k1 + k2 and k; — ko are excited [i.e. all four coefficients A4;, A3, B; and
B; in Eq. (8) must be different from zero]. The wave numbers k and ¢ are in
resonance through triadic interactions of these wave vectors [26]. A representation
like Eq. (8) was used in [17] to study square cells in non-Boussinesq convection
near onset and is contained in a more general Galerkin ansatz used in [11] to study
asymmetric squares in Boussinesq convection. Asymmetric squares were also found
numerically in compressible magnetoconvection near onset [12]. A major difference
between the checkerboard and vertically asymmetric square solutions is that the
latter ones require the excitation of two different wave numbers (k and ¢) and
their nonlinear resonance, while the checkerboards are “linear” squares with only
one wave number excited.

Without rotation, the checkerboard-pattern solutions are symmetric to reflec-
tions in vertical planes parallel to one of the sides or diagonals of a square. The
symmetry to reflections in vertical planes implies zero net helicity (since helicity is
a pseudoscalar and thus changes sign under reflections). We find the checkerboard-
pattern solutions to be always unstable in the nonrotating case. In the same case,
i.e. for T = 0, the vertically asymmetric square solutions may or may not pos-
sess horizontal Dy symmetry; the dihedral group D4 contains all rotations and
reflections which transform a square in a plane into itself. We find that these
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Figure 3: The helicity of an upflow square as a function of the Rayleigh number
for (a) T =0 and (b) T = 100.

symmetries are either all present (for the D, symmetric solutions) or all broken
(for the solutions without the D, symmetry). For the D4 symmetric solutions one
has A; = Ay and B; = B in Eq. (8). Like for the checkerboard-pattern solutions,
the symmetry to reflections in vertical planes then implies zero net helicity.

For the vertically asymmetric solutions lacking the horizontal Dy symmetry
at T = 0, there is no reflection symmetry that would prohibit a nonzero net
helicity, and such a net helicity is indeed found: Fig. 3(a) shows the helicity of a
nonrotating upflow square as a function of the Rayleigh number in the range where
the flow is stationary. The solutions possess a net helicity even in the absence of
rotation. If rotation at low rates about the vertical axis is added, the pattern
is modified but still corresponds to asymmetric squares. Compared to the case
without rotation, the stability boundary towards higher values of R, where the
pattern loses stability to oscillatory solutions [6], is shifted upwards. In Fig. 3(b)
the helicity as a function of the Rayleigh number for a case with rotation (7" = 100)
is shown. The helicity due to rotation is significantly larger than the “self-helicity”
of the nonrotating squares already for very low rotation rates. In addition, stable
rotating squares can be traced to higher values of the Rayleigh number where the
helicity is by several orders of magnitude larger than for the nonrotating squares.

3. Dynamo action in square convection

3.1. Kinematic dynamo Our primary convection solutions are stationary
and correspond either to rolls or to checkerboard patterns. Checkerboard pat-
terns are observed for Taylor numbers around 225 [20]. The primary roll and
checkerboard-pattern solutions were checked for kinematic dynamo action in the
(small) Rayleigh number interval close to the onset of convection where they are
stable (R = 1000...2000). The checkerboard-pattern solutions were additionally
checked in the regions close to the onset of convection where they are unstable
but the roll solutions are stable — they were then constructed as superpositions
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Figure 4: Stability boundary for the kinematic dynamo instability in the P,-R
plane. The dashed line corresponds to the nonrotating case and the continuous
line to T' = 100.

of two solutions corresponding to rolls with the same wave number and axes per-
pendicular to each other. The net helicity in the periodic box vanishes for both
types of solutions, even if T' # 0 [although for T' # 0 each single roll or square
(vertical upflow or downflow column with square cross section) has a nonvanishing
helicity]. We always find the two primary convection states to be incapable of
kinematic dynamo action. The kinematic dynamo properties of the two flows were
determined up to magnetic Prandtl numbers P,,, = 5000; the associated magnetic
Reynolds numbers then increase to values R, ~ 12000. No kinematic dynamo ac-
tion was found. Similarly, we find the vertically asymmetric-square solutions with
horizontal D4 symmetry (existing only in the absence of rotation) to be incapable
of kinematic dynamo action. This was tested for magnetic Reynolds numbers up
to Ry, ~ 13000 (at R = 8000 we have a flow for which R,, ~ 13000 if P,, ~ 100).

The convection flows in the form of vertically asymmetric squares without
horizontal D4 symmetry, however, can act as kinematic dynamos even without
rotation. In Fig. 4 results for the nonrotating case and for T = 100 are given.
The two curves in the P,,-R plane are stability boundaries where a single real
eigenvalue becomes positive and the kinematic dynamo starts. The magnitude
of the helicity does not seem to be the most crucial factor for the onset of the
kinematic dynamo, though after onset the dynamo growth rates increase much
faster with R if rotation is present. For small Rayleigh numbers, R <z 5000, the
dynamo sets in at lower values for the magnetic Prandtl number without rotation
than with rotation. This can be explained by the fact that with rotation the
convection is still very weak here since rotation increases the critical Rayleigh
number for the onset of convection.

An example of the magnetic field generated by kinematic dynamo action is
depicted in Fig. 5. The field is concentrated in filamentary structures which are
aligned along the vertical axis and situated close to cell boundaries of the velocity
field.

3.2. Nonlinear dynamo Fig. 6(a) shows the time evolutions of magnetic
and kinetic energies starting from a square pattern velocity field and a small seed
magnetic field for the case without rotation. Initially the magnetic field grows
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Figure 5: Unstable magnetic eigenmode for the velocity field shown in Fig. 1(b)
and P, = 5.5. (a) Isosurface of the magnetic field strength at 50% of the peak
field. (b) Shadowgraph image of the vertical component B, in the horizontal
midplane, bright areas indicating positive values; in addition the null line of the
vertical velocity component v, in the midplane is shown.
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Figure 6: Time evolutions of kinetic and magnetic energies for (a) 7' = 0, R = 5000
and P, =6 and (b) T = 10, R = 7000 and P,, = 4.65. Time is measured in units
of the thermal diffusion time.



exponentially with a well defined growth rate. In this kinematic phase the Lorentz
force is negligible and the square pattern remains undisturbed. However, after
the magnetic perturbation has reached a strength suffcient to influence the flow,
it forces the solution into the basin of attraction of the two-dimensional roll state
with wave number k. The roll solution is incapable of dynamo action and the
magnetic field decays to zero. This effect of self-extinguishing of the dynamo by
the back-reaction of the magnetic field was recently also observed for flow in triply
periodic Cartesian geometry driven by an explicit forcing [27], spherical dynamo
models with rotation and explicit forcing [28] and two-dimensional convection rolls
in a plane layer rotating about an oblique axis [5].

That is to say, in the nonrotating case the asymmetric squares are only kine-
matic, not nonlinear dynamos. Nonlinear dynamo action is only possible if ad-
ditional effects are included that counteract the self-extinguishing of the dynamo
by the Lorentz force. We add background rotation at very low rates, namely
0 < T < 150. For these small Taylor numbers the asymmetric square solutions are
hydrodynamically stable, that is to say, the nonrotating squares can be continued
on a stable solution branch towards higher Taylor numbers. Although the mecha-
nism behind the self-extinguishing is still acting, there are parameter ranges where
a nonlinear dynamo is found. Time evolutions of kinetic and magnetic energies in
such a case, with T' = 10, R = 7000 and P,, = 4.65, are given in Fig. 6(b). After
the initial kinematic phase, a back reaction of the magnetic field is clearly visible.
But though the velocity field is modified, it still corresponds to an asymmetric
square pattern. The magnetic field saturates and is maintained for all time.

It seems that for our system and in the parameter range studied, nonlinear
dynamo action requires a subtle balance between the Coriolis and Lorentz forces.
A similar balance between these two forces characterizes the weak-field limit of the
Childress-Soward dynamo [2, 29], which however works in a rapidly rotating con-
vective layer. Plus symbols (+) in Fig. 7 mark the parameter range in the T-P,,
plane where we observe nonlinear dynamos with underlying stationary asymmetric
square patterns. The Rayleigh number is fixed at R = 7000. By simultaneously
varying T (i.e the strength of the Coriolis force) and P, (i.e. the strength of the
Lorentz force) we also find magnetic attractors which differ from the stationary
squares. The additional types of magnetic attractors are oscillating squares [indi-
cated by diamonds (Q) in Fig. 7] and stationary rolls [indicated by triangles (A)
in Fig. 7]. The stationary magnetic rolls show a modulation along the roll axis
and disappear if the magnetic field is switched off. The solution then falls back
on the simple roll state (without modulation) with wave number %k, which is not
capable of kinematic dynamo action. In the non-marked regions of the P,,-T" plane
self-extinguishing leads to nonmagnetic final states.

Our investigations were focused on small Taylor numbers 7" < 150. For higher
Taylor numbers the convection is governed by alternating rolls [20] and we observe
dynamo properties similar to those found in [24].

An interesting question is whether there exist nonvanishing horizontal aver-
ages By, of the dynamo-generated magnetic fields since these correspond to large-
scale fields. We find that always

Bi(z) = / Bdzdy #0. (9)
periodicity box

This indicates that our small-scale dynamos are mean-field or large-scale dynamos
as well.
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Figure 7: Parameter range of nonlinear dynamo action in the T-P,, plane for
R = 7000. Plus symbols (+) refer to dynamos with flows in the form of stationary
asymmetric squares. Dynamos in oscillating squares are denoted by diamonds (¢)
and such in stationary rolls by triangles (A).

4. Conclusion We have studied the dynamo properties of square pat-
terns in nonrotating and weakly rotating Boussinesq Rayleigh-Benard convection
in a plane horizontal layer. Vertically symmetric solutions appear in the form of
checkerboard patterns. They do not possess a net kinetic helicity and we find them
to be incabable of dynamo action (at least up to magnetic Reynolds numbers of
a2 12000). Square-pattern solutions lacking the vertical symmetry are character-
ized by rising (descending) motions in the centers and descending (rising) motion
near the boundaries of the squares. As a secondary convection pattern they appear
via the skewed varicose instability of rolls and can in turn be divided into solu-
tions with the full horizontal D, symmetry of a square and others lacking also this
symmetry (with rotation added the horizontal D, symmetry is always broken).
The solutions lacking both the vertical and the D4 symmetries possess kinetic he-
licity and show kinematic dynamo action even without rotation. The generated
magnetic fields are concentrated in vertically oriented filamentary structures near
cell boundaries. The dynamos found in the nonrotating case are, however, always
only kinematic, never nonlinear dynamos. Nonlinearly the back-reaction of the
magnetic field then forces the flow into the basin of attraction of a roll-pattern
solution incapable of dynamo action. But with rotation added parameter regions
are found where stationary asymmetric squares are also nonlinear dynamos. These
nonlinear dynamos are seemingly characterized by a subtle balance between the
Coriolis and Lorentz forces. In some parameter regions this balance also leads
to nonlinear dynamos with flows in the form of oscillating squares or stationary
modulated rolls.
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