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Abstract

The usage of nonlinear Galerkin methods for the numerical solution of partial di�eren-

tial equations is demonstrated by treating an example. We desribe the implementation of a

nonlinear Galerkin method based on an approximate inertial manifold for the 3D magneto-

hydrodynamic equations and compare its e�ciency with the linear Galerkin approximation.

Special bifurcation points, time-averaged values of energy and enstrophy as well as Kaplan{

Yorke dimensions are calculated for both schemes in order to estimate the number of modes

necessary to correctly describe the behavior of the exact solutions.

1 Introduction

Nonlinear Galerkin methods are new numerical methods which have been introduced recently by

Temam and Marion in connection with the theory of inertial manifolds (IMs) and approximate

inertial manifolds (AIMs) to study the long-term behavior of dissipative partial di�erential

equations (PDEs) (see e.g., Marion & Temam [1989]).

The essential aim when using these methods is to characterize nonlinear equations of high

(in�nite) dimension by low-dimensional equations without loosing the qualitative properties,

that means the long-term behavior of solutions, of the original high-dimensional system. It

is important to �nd such low-dimensional approximations, since the numerical computation of

the high-dimensional problem is impossible in many cases with currently available computer

capacities. We have developed such low-dimensional approximations to investigate numerically

the long-term behavior of solutions to the magnetohydrodynamic (MHD) equations.

The investigation of in�nite-dimensional systems by estimating the dimensions of their global

attractors has led to a progress in understanding the long-term behavior of solutions of a broad

class of PDEs, including the 2D Navier{Stokes equations (NSE) [Temam, 1988]. For the 2D NSE

and in case of some assumptions on the regularity of solutions for the 3D NSE it is shown that

the global attractor has a �nite fractal dimension [Constantin & Foias, 1985; Constantin et al.,

1985; Temam, 1995]. However, the �niteness of the fractal dimension of the global attractor does

not imply the existence of a �nite set of ordinary di�erential equations (ODEs) which capture

the qualitative behavior of solutions to the original in�nite-dimensional problem. The existence

of such a �nite set of ODEs is more relevant for numerical investigations than the existence of

a �nite-dimensional attractor.

In numerical investigations of problems described by PDEs, the original in�nite-dimensional

system is often approximated by a �nite dimensional systems of ODEs. For instance in the

case of a Fourier decomposition, the solutions are expanded with respect to eigenfunctions of

the linearized operator providing a system of in�nitely many ODEs for the Fourier coe�cients.

Although the resulting state space for the solution is still in�nite-dimensional, one has to approx-

imate this system by a truncation to a �nite-dimensional one for practically calculating solutions
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of the equation on a computer. Unfortunately there are no general criteria to decide whether

the qualitative behavior of solutions to the in�nite-dimensional problem is captured by a �nite

number of ODEs. In practice, one increases the number of ODEs gradually up to a number of

equations for which certain quantitative characteristics of the solution reach a saturation.

An important property of dissipative systems is that after a transient period the system

converges to an attractor. The number of independent Fourier modes is drastically reduced

during this process. That means that in order to describe the long-term behavior of solutions a

a small number of essential variables are su�cient, in general less than in order to describe the

initial state. From this observation one is inspired to look for a function which gives a correlation

between Fourier modes such that the number of independent Fourier modes on the attractor is

reduced.

The point of view developed by Kolmogorov [1941] is that the phenomena underlying for

example turbulence are essentially �nite-dimensional, although the dimension can be very large.

The idea is that there is some �nite set of essential modes or degrees of freedom which e�ectivelly

govern the behavior while the remaining in�netely many degrees of freedom simply respond

passively [Swinney & Gollub, 1985; Manneville, 1990]. This point of view is justi�ed by the

following observations. The in�nite-dimensionality of the state space arises from the possibility

of exciting disturbances of arbitrarily small spatial dimensions. On the other hand the frictional

mechanism becomes very strong as the size of the disturbances becomes very small, so that they

are damped out. A problem which attracts much attention is to characterize the \essential"

modes and to �nd the slaving function which expresses, asymptotically in time, the \remaining"

modes in terms of the \essential" modes.

The principle of slaving has been introduced in 1975 in the theory of synergetics by Haken

(see Haken [1983]). It states that in the neighborhood of bifurcation points, where the system

can change from one state to another, its behavior is characterized by a small number of Fourier

modes. The slaving principle results from a hierarchy of time scales generated by the system near

the instability. The time scales are derived from a linearization of the system in a neighborhood

of the attractor. On the basis of the linearized problem, the set of Fourier modes is split up into

a set of stable and a set of unstable modes. The time-scales of the stable modes are very small

compared to those of the unstable modes. The very fast damping of the stable modes leads to

a slaving of stable modes to unstable ones.

As a generalization of the slaving principle in the theory of synergetics, the theory of inertial

manifolds and approximate inertial manifolds has been developed (see e.g., Temam [1988]). But

while synergetics seeks a slaving function in the vicinity of a reference state, the theory of inertial

manifolds tries to do so without a priori knowledge of a reference state.

Nonlinear Galerkin methods are new discretization methods to realize such approximations.

A number of publications [Foias et al., 1988b; Jauberteau et al., 1989/90; Temam, 1991; Dubois

et al., 1991] suggest that they are more e�cient than traditional, or linear, Galerkin methods.

The theory of inertial manifolds has been developed with the aim to provide a function

that expresses high Fourier modes in terms of low ones, asymptotically in time [Temam, 1988;

Temam, 1990; Foias et al., 1988a; Foias et al., 1988c; Foias et al., 1988]. An IM M � H,

where H is an appropriate Hilbert space, for a dissipative PDE is a �nite-dimensional smooth

(Lipschitz) manifold which is positively invariant under the solution operator and uniformly

attracts all trajectories at an exponential rate. It contains the global attractor, whenever it

exists. However, for PDEs like the NSE and the MHD equations the existence of IMs is still an

open problem.
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Many PDEs, including the NSE and the MHD equations, can be written as abstract evolution

equations in the Hilbert space H,

du

dt

+ Au + B(u) = f ; (1)

where f 2 H, A is a linear, self-adjoint, positive operator in H and B a nonlinear operator in

H. We assume that the initial-value problem for Eq. (1) is well-posed, i.e. that for all u

0

2 H

there exists a unique solution of Eq. (1), satisfying the initial condition u(t = 0) = u

0

. In most

applications A

�1

is self-adjoint and compact and, therefore, there exists a complete orthonormal

system of eigenvectors fv

j

g

1

j=1

of A in H:

Av

j

= �

j

v

j

; j 2 IN ;

0 < �

1

� �

2

; : : : ; �

j

!1 as j !1 :

Every solution u = u(t) to the initial value problem de�ned by Eq. (1) can be decomposed in

this orthonormal basis,

u(t) =

1

X

j=1




j

(t)v

j

: (2)

For a given m 2 IN we denote by P

m

the projector in H onto the �nite-dimensional subspace

spanned by the eigenvectors v

1

; v

2

: : : v

m

(the lower modes) and by Q

m

= Id � P

m

the projec-

tor onto the in�nite-dimensional subspace spanned by the remaining eigenvectors (the higher

modes). An IM is searched as the graph of a Lipschitz-continuous function �

IM

: P

m

H ! Q

m

H

such that for every solution u to Eq. (1) with initial value on the IM there holds

Q

m

u(t) = �

IM

(P

m

u(t)) 8t � 0 : (3)

Since Q

m

u(t) corresponds to small lenghtscales, one can then say that the small scales are slaved

to the large ones.

According to a de�nition introduced by Foias and Prodi [1967], m is called number of deter-

mining modes if for any two solutions u

1

, u

2

to Eq. (1)

lim

t!1

jp

1

� p

2

j = 0 implies lim

t!1

jq

1

� q

2

j = 0;

where p

i

= P

m

u

i

, q

i

= Q

m

u

i

and u

i

= p

i

+ q

i

(i = 1; 2). This criterion is clearly satis�ed for

solutions on an IM, since in this case

lim

t!1

jq

1

� q

2

j = lim

t!1

j�

IM

(p

1

)� �

IM

(p

2

)j � l lim

t!1

jp

1

� p

2

j;

with l denoting a Lipschitz constant of �

IM

. Because of the exponential rate of attraction of an

IM, the PDE can be approximated by a �nite system of ODEs to calculate the solutions in the

in�nite-time limit.

For several PDEs, as for example the Kuramoto{Sivashinsky, Cahn{Hillard and Ginzburg{

Landau equations, the existence of an IM has been proven [Temam, 1988; Foias et al. 1988c;

Foias et al. 1988]. But even if an IM exists, it is not necessarily found in a closed form as

the graph of an explicit function �

IM

. Therefore the concept of approximate inertial manifolds

(AIMs) has been introduced [Foias et al., 1988b; Jolly et al. 1990; Titi, 1990]. An AIM is
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actually an approximation of the solutions of a PDE for su�ciently large time and applicable

regardless of the existence of an IM. Foias et al. [1988b] have used the smallness of the higher

modes in the limit of large time to construct an AIM for the 2D NSE in the following way:

Eq. (1) can be written as a coupled system of equations for p = P

m

u and q = Q

m

u,

dp

dt

+ Ap + P

m

B(p+ q) = P

m

f ; (4)

dq

dt

+ Aq + Q

m

B(p+ q) = Q

m

f : (5)

Foias et al. [1988b] could show that, since jqj and jdq=dtj remain small for large time, a reasonable

approximation to Eq. (5) is given by

Aq + Q

m

B(p) = Q

m

f : (6)

This led them to introduce a nonlinear function �

AIM

: P

m

H ! Q

m

H by

�

AIM

(p) := A

�1

(Q

m

f � Q

m

B(p)) ; (7)

which de�nes an AIM

M := f~p+�

AIM

(~p) : ~p 2 P

m

Hg :

It represents the small-scale components q in an approximative way as a function of the large-

scale components p of the solution. Any solution u = p+ q to the 2D NSE satis�es

lim

t!1

sup j q(t)� �

AIM

(p(t)) j � "

m

;

where the constants "

m

tend to zero much faster than lim sup

t!1

jq(t)j. In a similar way an

AIM for the 2D and 3D MHD equations has been constructed [Schmidtmann, 1996a,b].

The linear Galerkin method projects Eq. (1) onto a �nite-dimensional linear subspace P

m

H.

All terms in the orthogonal subspace Q

m

H are small and are therefore neglected. One then

looks for solutions u

m

(t) 2 P

m

H to the following system of m ODEs:

du

m

dt

(t) +Au

m

(t) + P

m

B(u

m

(t)) = P

m

f : (8)

In nonlinear Galerkin methods the in
uence of small-scale structures of the 
ow on large-scale

structures is captured by means of the AIM. Since the range of the nonlinear function �

AIM

is

in�nite-dimensional, it is necessary to truncate it for numerical calculations. This can be done

by using P

n

� P

m

, n > m, instead of Q

m

. The AIM given by �

AIM

(see Eq. (7)) leads to

du

m

dt

(t) +Au

m

(t) + P

m

B(u

m

(t) + z

m

(t)) = P

m

f ; (9)

where u

m

(t) 2 P

m

H and z

m

(t) 2 (P

n

� P

m

)H, n > m, solves the truncated form of Eq. (6),

Az

m

(t) + (P

n

� P

m

)B(u

m

(t)) = (P

n

� P

m

)f ; (10)

which models the small scales z

m

(t) as a function of the large scales u

m

(t) [Jones & Titi,

1994; Jauberteau et al., 1989/90]. z

m

(t) = 0 corresponds to the linear Galerkin scheme given

by Eq. (8). Theoretical studies have indicated that nonlinear Galerkin methods improve the
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approximation of the exact solutions compared with simple linear truncations [Goubet, 1993;

Jones et al. 1995; Devulder & Marion, 1992; Devulder et al., 1993; Graham et al., 1993].

In Sec. 2 we introduce the MHD equations and describe the implementation of Galerkin ap-

proximations. Then in Sec. 3 we present our numerical results and compare critical parameter

values for bifurcations, convergence rates and computational e�ciency, as well as energies, en-

strophies and Kaplan{Yorke dimensions in the chaotic regime, for linear and nonlinear Galerkin

methods. Sec. 4, �nally, gives a short conclusion.

2 MHD Equations and Implementation of Galerkin Methods

The equations we are interested in are given in a domain 
 � IR

3

, occupied by a non-relativistic,

incompressible, viscous 
uid with �nite electrical conductivity. The unknown functions are the


uid velocity u, the magnetic �eld B and the thermal pressure p. The density is supposed to

be homogeneous and for simplicity set equal to unity. Then the equations can be written as

[Roberts, 1967; Sermange & Temam, 1983]

@u

@t

+ (u � r)u� � ��u+ grad p+

1

2

gradB

2

� (B � r)B = f in 
; (11)

@B

@t

+ (u � r)B� (B � r)u� � ��B = 0 in 
; (12)

divu = 0 in 
; divB = 0 in 
 ; (13)

where � and � denote kinematic viscosity and magnetic di�usivity (both assumed constant), and

f is an externally applied volume force. Eqs. (11){(13) are completed by initial and boundary

conditions upon u and B. We restrict ourselves to the case of periodic boundary conditions,

u(x+ 2�e

i

; t) = u(x; t) ; B(x+ 2�e

i

; t) = B(x; t) x 2 [0; 2�]

3

;

@u

j

@x

k

(x+ 2�e

i

; t) =

@u

j

@x

k

(x; t) ;

@B

j

@x

k

(x+ 2�e

i

; t) =

@B

j

@x

k

(x; t) x 2 [0; 2�]

3

;

9

>

=

>

;

(14)

where (e

i

)

3

i=1

is an orthonormal basis of IR

3

, j; k = 1 : : : 3.

The mean values of u and B, and consequently also of f, are assumed to vanish,

Z

[0;2�]

3

ud

3

x = 0;

Z

[0;2�]

3

Bd

3

x = 0;

Z

[0;2�]

3

f d

3

x = 0: (15)

The periodicity assumption implies that

exp(ik � x) ; k 2 ZZ

3

is a complete orthonormal system of eigenvectors of the Laplacian with eigenvalues

�

k

= k

2

; k 2 ZZ

3

;

and that the Fourier representations of u, B, p, and f ,

u(x; t) =

X

k2ZZ

3

;k 6=0

u

k

(t) exp(ik � x) ; B(x; t) =

X

k2ZZ

3

;k 6=0

B

k

(t) exp(ik � x) ; (16)

5



p(x; t) =

X

k2ZZ

3

;k 6=0

p

k

(t) exp(ik � x) ; f(x) =

X

k2ZZ

3

;k 6=0

f

k

exp(ik � x) ; (17)

can be di�erentiated term by term with respect to the spatial coordinates. In Fourier space

Eq. (13) takes the form

u

k

� k = 0 ; B

k

� k = 0 (18)

and is automatically satis�ed if we write

u

k

= u

(1)

k

e

k

(1)

+ u

(2)

k

e

(2)

k

; B

k

= B

(1)

k

e

k

(1)

+B

(2)

k

e

(2)

k

for k 6= 0; (19)

with real \polarisation" unit vectors e

k

(1)

, e

k

(2)

perpendicular to k,

e

k

(i)

� k = 0; e

k

(1)

� e

k

(2)

= 0; e

k

(i)

� e

k

(i)

= 1; e

�k

(i)

= e

k

(i)

; i = 1; 2: (20)

The last condition in Eq. (20) ensures that

u

�k

= u

k

�

; B

�k

= B

k

�

(21)

for real u(x) and B(x); an asterisk indicates the complex conjugate. By using these repre-

sentations for u

k

and B

k

we furtheremore get rid of both the thermal, grad p, and magnetic,

gradB

2

=2, pressure terms in Eq. (11) and arrive at the following in�nite-dimensional system of

ODEs:

du

(j)

k

dt

= ��k

2

u

(j)

k

� i

X

p2ZZ

3

p6=0;k

2

X

�;�=1

(e

(�)

p

� e

(j)

k

)(e

(�)

k�p

� k)

h

u

(�)

p

u

(�)

k�p

�B

(�)

p

B

(�)

k�p

i

+ f

(j)

k

(22)

dB

(j)

k

dt

= ��k

2

B

(j)

k

� i

X

p2ZZ

3

p6=0;k

2

X

�;�=1

(e

(�)

p

� e

(j)

k

)(e

(�)

k�p

� k)

h

B

(�)

p

u

(�)

k�p

� u

(�)

p

B

(�)

k�p

i

: (23)

f

j

k

on the right of Eq. (22) is de�ned by

f

j

k

= f

k

� e

(j)

k

; j = 1; 2: (24)

Because of the condition (21) we can restrict ourselves to k vectors in a subset IK of ZZ

3

, de�ned

by

IK := f(k

1

; k

2

; k

3

) 2 ZZ

3

: k

3

> 0g [ f(k

1

; k

2

; 0) 2 ZZ

3

: k

1

> 0g [ f(0; k

2

; 0) 2 ZZ

3

: k

2

> 0g :

It has been useful for our calculations to segment IK into successive shells of k vectors

IK

i

:= fk 2 IK : k

2

= ig i = 1; 2 : : :

IK =

1

[

i=1

IK

i

; IK

i

\ IK

j

= ; ; i; j 2 IN; i 6= j:

An overview of the segmentation is given in the Appendix.
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For linear Galerkin methods LGM(m) we restrict Eqs. (22){(23) to a �nite set of k vectors

such that k , p and k � p belong to shells 1 : : : m. To implement nonlinear Galerkin methods

NLGM(m;n) we represent coe�cients of wave vectors in shells m+ 1 : : : n ; 1 < m < n in terms

of coe�cients of wave vectors in shells 1 : : : m according to the de�nition of �

AIM

(see Eq. (7))

by

u

(j)

k

:=

�i

�k

2

X

p 2 [

m

i=1

IK

i

p 6=0;k

2

X

�;�=1

(e

(�)

p

� e

(j)

k

)(e

(�)

k�p

� k)

h

u

(�)

p

u

(�)

k�p

�B

(�)

p

B

(�)

k�p

i

+

f

(j)

k

�k

2

and

B

(j)

k

:=

�i

�k

2

X

p 2 [

m

i=1

IK

i

p 6=0;k

2

X

�;�=1

(e

(�)

p

� e

(j)

k

)(e

(�)

k�p

� k)

h

B

(�)

p

u

(�)

k�p

� u

(�)

p

B

(�)

k�p

i

:

If we take p and k such that p

2

� m and (k� p)

2

�m we get

k

2

= ((k� p) + p)

2

= (k� p)

2

+ 2 (k� p) � p + p

2

� 4m

and therefore we always choose n � 4m. Solutions to LGM(m) and NLGM(m;n) are denoted

by u

m

;B

m

, while the correction terms for nonlinear Galerkin methods are z

m

for the velocity

and Z

m

for the magnetic �eld ((z

m

;Z

m

) = �

AIM

(u

m

;B

m

)).

We have used the forcing

f = �u

ABC

; (25)

where u

ABC

is an ABC 
ow (named after Arnold, Beltrami and Childress),

u

ABC

(x; y; z) = (A sin k

0

z + C cos k

0

y;B sin k

0

x+A cos k

0

z; C sin k

0

y +B cos k

0

x);

with A, B, C and k

0

denoting constants (for a rather comprehensive account of the ABC 
ows

see Dombre et al. [1986]). The ABC 
ows are Beltrami �elds, namely, curlu

ABC

� u

ABC

= 0;

thus they are strongly helical. In general (if ABC 6= 0), there are domains in the 
ow where

the streamlines are chaotic. Mainly for these two reasons, the ABC 
ows have received much

interest in the context of kinematic dynamo theory (e.g., Galloway & Frisch [1986]).

The ABC 
ows are steady solutions of the incompressible Euler equation. They are also

steady solutions of the incompressible NSE (Eq. (11) with the magnetic �eld dropped) if an

external forcing as given by Eq. (25) is applied to compensate for viscous losses. The bifurcation

properties of the NSE with ABC forcing have been investigated by Podvigina & Pouquet [1994],

while studies of the MHD equations with this kind of forcing are due to Galanti et al. [1992],

Feudel et al. [1995, 1996a,b] and Seehafer et al. [1996].

Throughout our calculations we have used a forcing according to Eq. (25) with

k

0

= 1; A = B = C = f

and have, following Galanti et al. [1992], de�ned kinetic and magnetic Reynolds numbers R and

Rm by

R =

f

�

; Rm =

f

�

:

While restricting ourselves to the case � = � (magnetic Prandtl number equal to unity), R has

been our bifurcation parameter.
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3 Numerical Results

3.1 Stationary solutions

For su�ciently weak forcing (small R) the ABC 
ow with no magnetic �eld is the only attracting

state. For varying R we have calculated the eigenvalues of the Jacobian in order to detect

bifurcation points. If R is increased, the ABC 
ow loses stability in a Hopf bifurcation.

The steady state to LGM(m) loses stability in a Hopf bifurcation if m � 3, leading to a

periodic solution with a nonvanishing magnetic �eld. As is seen in Fig. 1, the critical Reynolds

number for the Hopf bifurcation, R

c

, changes with increasing m as long as m � 37. For

larger values of m the bifurcation point, R

c

= 8:7, does not depend on m. This value of R

c

coincides approximately with the critical Reynolds number for the magnetic instability in the

corresponding kinematic dynamo problem, for which a value of R

c

= 8:9 has been found (cf.

Galloway & Frisch [1986]).

Figure 1: Hopf-bifurcation value of Reynolds

number for LGM(m) versus number of shells

m.

Figure 2: Hopf-bifurcation value of Reynolds

number for NLGM(m; 2m) versus number of

active shells m.

For NLGM(m; 2m) we observe a similar bifurcation behavior. However, the number of active

shells necessary to obtain R

c

= 8:7 is smaller than for LGM(m). While we need 37 active shells

for LGM(m), this number is reduced to 20 shells for NLGM(m; 2m) (see Fig. 2). We interpret

the modes in shells 1 � m � 20 as determining modes and those in shells 20 < m � 37 as slaved

modes.

3.2 Accuracy and computational e�ciency of nonlinear Galerkin methods

Next we have studied, for a periodic orbit, the in
uence of the degree of truncation on the quality

of the approximation, both for the LGM and the NLGM. We have �xed the Reynolds number at

R = 10, where a periodic attractor exists if m � 21, and have varied the number of shells taken
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into account. The solution u

37

;B

37

obtained using LGM(37) has been taken as the \exact"

solution (see Sec. 3.1) and the distance of other approximate trajectories from this reference

solution has been measured. Starting from initial values u

0

= P

7

u

37

(0) and B

0

= P

7

B

37

(0), we

de�ne the error "

LGM(m)

for a given number of shells (m � 21) by

"

LGM(m)

= max

t2[T

1

;T

2

]

�

ku

37

(t)� u

m

(t)k

2

L

2

+ kB

37

(t)�B

m

(t)k

2

L

2

�

; (26)

where [T

1

; T

2

] is one period of u

37

, B

37

; "

LGM(m)

is a measure for the distance between the

nearly exact periodic orbit (m = 37) and the corresponding approximate m-shell solution (21 �

m � 37).

Similarly the nonlinear Galerkin method NLGM(m; 2m) (m = 7 : : : 17) has been used to ap-

proximate the same periodic orbit. As above, the initial values have been taken near the \exact"

periodic solution calculated with LGM(37). The corresponding error is de�ned analogously to

Eq. (26) by

"

NLGM(m;2m)

= max

[T

1

;T

2

]

�

ku

37

(t)� (u

m

(t) + z

m

(t))k

2

L

2

+ kB

37

(t)� (B

m

(t) +Z

m

(t))k

2

L

2

�

: (27)

We have measured both the accuracy of the approximation and the CPU time needed, so

that each method corresponds to a point in the plane spanned by CPU time and accuracy. In

Fig. 3 the accuracies � are drawn versus the CPU time needed. For larger m, m > 15, the

use of the nonlinear Galerkin methods allows a reduction of CPU time by approximately 30%

compared to the linear methods.

3.3 Energy, enstrophy and Kaplan{Yorke dimension for the chaotic regime

To estimate the number of modes needed to describe the behavior of the exact solutions in the

chaotic regime qualitatively correctly, we have furthermore calculated the energy of the 
ow,

1

2

kuk

2

L

2

+

1

2

kBk

2

L

2

=

1

2

(2�)

3

X

k2ZZ

3

(ju

k

j

2

+ jB

k

j

2

);

as well as its enstrophy,

kcurluk

2

L

2

+ k curlBk

2

L

2

;

which, because of periodic boundary conditions, satis�es (cf. Doering & Gibbon [1995])

kruk

2

L

2

+ krBk

2

L

2

= (2�)

3

X

k2ZZ

3

k

2

(ju

k

j

2

+ jB

k

j

2

) :

In Schmidtmann [1996] the number of determining modes for the MHD equations has been

estimated. m

0

is number of determining modes if

�

m

0

+1

> c

0

�

M

�

�

2

; (28)

where

M := lim

t!1

sup

1

t

t

Z

0

kru(�)k

2

L

2

+ krB(�)k

2

L

2

d� and c

0

= const > 0 ;
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21
22

24

25 26

27 29

30
32 33

(11,22)
(12,24)

(14,28)

(15,30)

(16,32)
(17,34)

_____ LGM(m)

...........NLGM(m,2m)

Figure 3: CPU time to approximate u

37

;B

37

with accuracy � for linear Galerkin methods

LGM(m) and nonlinear Galerkin methods NLGM(m; 2m) (R = 10).

what shows that enstrophy decisively in
uences the number of determining modes.

The following numerical experiments have been done for a Reynolds number of 20, for which

the solutions are chaotic. Their chaotic character has been veri�ed by calculating the Lyapunov

exponents.

In Figs. 4 and 5 energy and enstrophy of the 
ow are given as functions of the numbers of

shells. As can be seen from Figs. 4 and 5, for LGM(m) m

�

= 35 is a saturation point with

respest to the calculation of both energy and enstrophy, in the sense that for further increasing

m both quantities do not change signi�cantly. If the constant c

0

in Eq. (28) would be known

(actually it is unknown), the saturation value of the enstrophy could be used to estimate the

number of determining modes. As can be seen in Figs. 6 and 7, by applying NLGM(l; 35) the

saturation point is shifted to a smaller number, l, of (active) shells.

By using an algorithm of Shimada and Nagashima [1979], for R = 20 the largest Lyapunov

exponents have been computed and used to calculate the Kaplan{Yorke dimension D

KY

of the

attractor, which provides a good approximation of its Hausdor� dimension [Kaplan & Yorke,

1979].

If the Lyapunov exponents �

i

are ordered descendingly and j is the largest index satisfying

j

X

i=1

�

i

� 0 ;
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Figure 4: Time average of energy versus

number of shells m containing the active

modes for LGM(m) (R = 20).

Figure 5: Time average of enstrophy ver-

sus number of shells m containing the active

modes for LGM(m) (R = 20).

Figure 6: Time average of energy versus

number of shells m containing the active

modes for NLGM(m; 35) (R = 20).

Figure 7: Time average of enstrophy ver-

sus number of shells m containing the active

modes for NLGM(m; 35) (R = 20).

then

D

KY

= j �

P

j

i=1

�

i

j�

j+1

j

:
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Fig. 8 gives the Kaplan{Yorke dimensions calculated by means of LGM and NLGM versus the

number of active shells. With LGM a saturation is reached at m = 14 (while the saturation

with respect to energy and enstrophy is reached at m = 35). With nonlinear Galerkin method

NLGM(l; 14) the plateau value of the Kaplan{Yorke dimension is reasonably approximated al-

ready for l = 10. This again suggest that the constructed map �

AIM

provides an acceptable

approximation of the small-scale structures of the 
ow. By means of NLGM(10; 14) we can

reduce the CPU time needed to calculate the dimension of the attractor compared to LGM(14)

by 25%.

_____ LGM(m)

...........NLGM(m,14)

Figure 8: Kaplan{Yorke dimension versus number of active shells for LGM(m) and

NLGM(m; 14) (R = 20).

4 Conclusion

In this paper we have investigated the problem of approximating the long-term behavior of

solutions to the 3D MHD equations by both linear and nonlinear Galerkin methods. Since

there exists a �nite number of determining modes for the equations, one expects to be able to

enslave higher modes by some nonlinear function. We have constructed such a nonlinear function

�

AIM

, an approximate inertial manifold, for the MHD case similar to the one introduced by

Foias, Manley and Temam [1988b] for the NSE and have implemented a nonlinear Galerkin

method based on the approximate inertial manifold. Special bifurcation points, averaged values

of energy and enstrophy as well as the Kaplan{Yorke dimension have been calculated for both

linear and nonlinear Galerkin methods in order to estimate the number of modes necessary to

12



correctly describe the behavior of the exact solutions. Compared to the linear methods, the

nonlinear methods admit a reduction of the number of active modes and saves additionally

computational costs (CPU time).
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Appendix

Table 1 gives an overview of the partition of k space into successive disjoint shells of k vectors.
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Number m of shell

in k space

Number of k vectors

in shell IK

m

Number of k vectors

in [

m

j=1

IK

j

Number of ODEs for

LGM(m)

1 3 3 24

2 6 9 72

3 4 13 104

4 3 16 128

5 12 28 224

6 12 40 320

7 0 40 320

8 6 46 368

9 15 61 488

10 12 73 584

11 12 85 680

12 4 89 712

13 12 101 808

14 24 125 1000

15 0 125 1000

16 3 128 1024

17 24 152 1216

18 18 170 1360

19 12 182 1456

20 12 194 1552

21 24 218 1744

22 12 230 1840

23 0 230 1840

24 12 242 1936

25 15 257 2056

26 36 293 2344

27 16 309 2472

28 0 309 2472

29 36 345 2760

30 24 369 2952

31 0 369 2952

32 6 375 3000

33 24 399 3192

34 24 423 3384

35 24 447 3576

36 15 462 3696

37 12 474 3792

38 36 510 4080

39 0 510 4080

40 12 522 4176

Table 1: Partition of k space.
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