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Force-free magnetic fields in the solar atmosphere
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Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century
attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the
corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superpho-
tospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the
magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free
fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained
from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on
magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear
force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison
of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data.
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1 Introduction

Magnetic fields play a key role in solar physics and in solar

activity in particular. To understand the physical mechanism

of any of the activity phenomena observable in the solar at-

mosphere one needs to know the underlying magnetic field.

The magnetic field also provides the link between different

manifestations of solar activity like, for instance, sunspots,

flares, or coronal mass ejections. Therefore, there is a strong

need for information about the magnetic vector throughout

the atmosphere. Unfortunately, reliable magnetic field mea-

surements are still restricted to the level of the photosphere,

where the inverse Zeeman effect in Fraunhofer lines is ob-

servable. The situation here is improving only very slowly

due to elementary difficulties in unambiguously deriving the

magnetic field from polarimetric measurements in chromo-

spheric or coronal spectral lines. As an alternative to mea-

surements in these superphotospheric layers, for about half

a century attempts have been made to calculate the field

there from the measured photospheric field using physically

plausible assumptions. The procedure is known as magnetic

field extrapolation.

For typical plasma parameters in the superphotospheric

parts of active regions, except for times of explosive events,

the magnetic energy density dominates over the thermal, ki-

netic and gravitational energy densities. This implies that, if

appreciable currents are present, these must be aligned with

the magnetic field, since otherwise the resulting Lorentz

forces could not be balanced by the nonmagnetic forces.

⋆ Corresponding author: seehafer@uni-potsdam.de

Thus, the magnetic field must be approximately force-free,

characterized by the equations

∇× B = α(r)B , (1)

∇ · B = 0 , (2)

where α(r) denotes a scalar function of position r which,

because of Eq. (2), is constant along the magnetic field lines.

The approximation of force-freeness is presumably valid

from the upper chromosphere up to heights of ∼1R⊙ above

the level of the photosphere in the corona (see Gary 2001,

for a careful study of the height variation of the plasma β,

i.e. the ratio between the thermal and magnetic pressures or

energy densities). Extrapolation methods have been devel-

oped for different types of force-free fields:

– Potential fields. These correspond to the case α = 0.

The magnetic field B above the photosphere is consid-

ered as a vacuum or current-free or potential field, satis-

fying ∇× B = 0. Potential field models were devised

both for the field above limited photospheric areas, in

particular active regions (Schmidt 1964; Teuber et al.

1977), and for the global field above the spherical pho-

tosphere (Altschuler & Newkirk 1969; Schatten et al.

1969).

– Linear force-free fields. These correspond to the case of

a spatially constant (in general non-vanishing) α. Their

determination leads to boundary value problems for a

linear partial differential equation. Solutions were given

by Nakagawa & Raadu (1972), Chiu & Hilton (1977),

Seehafer (1978), Alissandrakis (1981), Semel (1988);

see also reviews by Seehafer & Staude (1983), Gary

(1989) and Sakurai (1989).
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– Nonlinear force-free fields. Here α is allowed to vary

spatially. Unlike the extrapolation methods for current-

free and constant-α force-free fields, which require only

line-of-sight magnetograms, the non-constant-α force-

free fields are calculated from photospheric vector mag-

netograms. Presently great efforts are made to refine the

methods used here and to improve their applicability.

Discussions and comparisons of the nonlinear extrapo-

lation methods are found in Aly (1989), Sakurai (1989),

McClymont et al. (1997), Schrijver et al. (2006) and

Metcalf et al. (2007).

2 Helicity

The extrapolations with constant-α force-free fields, as well

as those with current-free fields, have provided new insights

into the physics of the activity phenomena. Some justifica-

tion for the use of constant-α force-free fields comes from

the hypothesis of Taylor (1974, 1986) relaxation. According

to this hypothesis, a plasma with a high (but finite) electri-

cal conductivity in which the internal energy is negligible

compared to the magnetic energy relaxes from an arbitrary

turbulent initial state to a force-free state with a spatially

constant α, which follows from the assumption that the to-

tal magnetic helicity

H =

∫
V

A · B dV, (3)

where A is a magnetic vector potential, is conserved dur-

ing relaxation to a state of minimum magnetic energy. This

refers to the case where there is no flow of magnetic helicity

through the boundary of the considered volume V . In solar

active regions, there will be a competition between the in-

jection of magnetic helicity through the photosphere and the

Taylor relaxation towards constant-α force-free states.

The densities of magnetic and current helicity are de-

fined by

hm = A · B = A · (∇× A), hc = B · (∇× B) , (4)

where hc is related to the factor α of the force-free field by

α = hc/B
2 . (5)

It is one of the results of extrapolations using constant-α
force-free fields that α and hc are predominantly negative in

the northern and positive in the southern hemisphere of the

Sun (Seehafer 1990). Furthermore, if α is spatially constant,

hm and hc have the same sign. This can be expected to be

still approximately valid if α has a predominant sign within

individual active regions, as indicated by the observations.

Thus, the magnetic helicity density hm is presumably also

predominantly negative in the northern and positive in the

southern hemisphere.

The observation of current helicity in the solar atmo-

sphere opens a window to the interior of the Sun. Namely,

in the dynamo region in the solar convection zone magnetic

and velocity fluctuations are believed to lead to a mean elec-

tromotive force

E = 〈u × b〉 = α
(dyn)
ij 〈B〉j + βijk

∂〈B〉j
∂xk

+ . . . , (6)

where the first term on the right corresponds to the α-effect

of mean-field dynamo theory (Krause & Rädler 1980); here

angular brackets denote averages and u and b are the fluc-

tuating or turbulent parts of the velocity and magnetic field.

The α-effect is connected with the current helicity of the

fluctuations by the relation∑
i,j

α
(dyn)
ij 〈Bi〉〈Bj〉 = −η〈b · (∇× b)〉 (7)

(e.g., Rädler & Seehafer 1990; Seehafer 1994, 1996), valid

if the magnetic fluctuations are statistically homogeneous in

space and time; η is the magnetic diffusivity. In the isotropic

case, α(dyn) is then a scalar given by

α(dyn) = −
η

〈B〉2
〈b · (∇× b)〉 , (8)

while Eq. (7) reduces to the approximate relation

αϕϕ〈Bϕ〉
2 ≈ −η〈b · (∇× b)〉 (9)

if the toroidal component 〈Bϕ〉 of the mean magnetic field

is large compared to the other components, as is presum-

ably the case for the Sun. According to Eq. (9), αϕϕ and

〈hc〉 are opposite in sign, which is confirmed by realistic

model calculations for these two quantities in the convec-

tion zone (Kuzanyan et al. 2006). A direct comparison with

observations is possible if active regions are considered as

fluctuations in the sense of mean-field dynamo theory.

3 Bald patches

The extrapolations with constant-α force-free fields have

also provided new insights into the physics of the explo-

sive phenomena in active regions. For instance, results were

obtained on magnetic topologies favourable for flares. One

example is the potential role of separatrix surfaces made up

of magnetic field lines touching the photospheric bound-

ary from above, see Fig. 1, for the formation of electric

current sheets and the fast release of stored magnetic en-

ergy by magnetic reconnection (Seehafer 1986). The field

lines of closed magnetic structures above the photosphere

define a mapping from the photosphere to itself. This map-

ping is discontinuous if field lines end in a magnetic neutral

point (where the field vanishes) – traditionally considered

as a favourable site for magnetic reconnection – or touch

the photosphere from above as illustrated in Fig. 1. These

latter topological elements have been termed bald patches

(Bungey et al. 1996; Titov & Démoulin 1999; Titov et al.

1993) because if field lines starting from photospheric grid

points are displayed in an overview, the areas around seg-

ments of the neutral line of the photospheric normal compo-

nent where the field lines touch the photosphere from above

are apparently free of field lines – similarly as bald patches

on a head are free of hairs.
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Fig. 1 Critical field line touching the photosphere from above.

Discontinuities of B, for instance in the form of current sheets,

may arise at the separatrix surfaces where the mapping from the

photosphere to itself defined by the field lines is discontinuous.

4 Linear versus nonlinear extrapolation

Extrapolations with constant-α force free fields are

– able to give an overview of the field topology, also to

identify important topological elements as, for example,

bald patches,

– relatively simple,

but on the other hand

– they are not suitable for problems like strong localized

currents and for detailed studies of the energy and helic-

ity budgets of active regions,

– the calculated magnetic fields perhaps do not contain

free energy, as needed, for instance, as the energy source

for flares, since if they have come about by Taylor relax-

ation, they may represent states of minimum magnetic

energy.

In the following we present a comparison of a linear

with a nonlinear extrapolation applied to the same photo-

spheric field values (in the linear case only the photospheric

normal component was used). The boundary values were

taken from a known force-free field constructed by Titov

& Démoulin (1999) as a model for the field of an active

region containing a current-carrying, i.e. twisted magnetic

flux tube. The same field was used by Wiegelmann et al.

(2006a) for testing a nonlinear force-free magnetic field ex-

trapolation method different from the one used here, and we

refer to their Table 1 for the parameters chosen for the field.

Field lines corresponding to the twisted loop of the Titov

& Démoulin field are shown in the upper left panel of Fig. 2,

along with their projections on the bottom and side faces of

the rectangular box in which the solution was calculated.

Red and green colour distinguish between field lines traced

from the two photospheric areas where the loop ends. As

is seen in the upper right panel of Fig. 2, these areas corre-

spond to maxima of the modulus of α(r), which measures

the field line twist, in the photospheric plane.

For our nonlinear extrapolation we used the method of

Valori et al. (2005) (see also Valori et al. 2007). This be-

longs to the category of the relaxation methods. The mag-

netohydrodynamic equations are simulated in a simplified

form with the equation for the fluid velocity containing a

viscous dissipation term, but no external forcing terms, and

the pressure term being neglected. Asymptotically in time,

a quiescent state with a force-free magnetic field is reached.

First a potential field satisfying the boundary condition for

the photospheric normal component is calculated, in a next

step the photospheric tangential components are overwritten

by the prescribed values, and then the relaxation is started

(the procedure is known as stress and relax method).

In the lower two panels of Fig. 2, results of the linear and

nonlinear extrapolations are shown. The nonlinear extrapo-

lation successfully reproduces the twisted loop (and also the

rest of the field, not shown here), while the linear one clearly

fails.

There are, however, still a number of problems with the

nonlinear force-free magnetic field extrapolation methods.

These include:

– Mathematical proofs for the existence of the solutions

and convergence of the iterations used are still missing

for most of the methods.

– The vector magnetograph data, in particular the trans-

verse field component (perpendicular to the line of sight

of the observer; this component can only be measured

with an ambiguity of 180◦), are noisy and not neces-

sarily consistent with the assumption of force-freeness.

To alleviate these problems, methods to appropriately

preprocess the magnetograph data have been proposed

(Wiegelmann et al. 2006b; Fuhrmann et al. 2007).

– There are no conditions for the lateral and upper bound-

aries (this applies to linear extrapolations as well).

– The calculations are numerically extensive.

5 Summary and outlook

– Magnetic field extrapolation is an indispensable tool for

solar physics.

– Extrapolations using linear force-free fields (including

current-free fields) are widely used presently. They can

be very helpful if their limitations are borne in mind.

– The methods using nonlinear force-free fields have to

be developed further to make them applicable routinely.

This will be necessary in order to employ the large mag-

netographic data sets to be expected from satellite mis-

sions as well as from new ground-based telescopes in

the near future.
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Metcalf, T.R., DeRosa, M.L., Schrijver, C.J., et al.: 2007, SoPh,

submitted

Nakagawa, Y., Raadu, M.A.: 1972, SoPh 25, 127
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