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ABSTRACT 

The central mechanism in traditional mean-field dynamo theory is the a-effect, and it has been found 
that the presence of kinetic or magnetic helicities is favourable for the effect, which corresponds to the 
simultaneous generation of magnetic helicities in the mean field and in the fluctuations, the generation rates 
being equal in magnitude and opposite in sign. Generally, the two helicities generated by the a-effect, that 
in the mean field and that in the fluctuations, have either to be dissipated in the generation region or to 
be transported out of this region. The latter presumably leads to the observed appearance of magnetic 
helicity in the solar atmosphere, which thus provides valuable information on dynamo processes inaccessible 
to in situ measurements. We have included details of two numerical dynamo studies in the present review, 
one for a “laminar” dynamo, where no averaging is applied, the other for a mean-field dynamo. In the 
first case the full nonlinear system of the incompressible MHD equations is studied in idealized rectangular 
geometry, with an external forcing of the Roberts type driving a flow in the form of an array of convection- 
like rolls. Defining mean fields by appropriate averages, it is found that there is a segregation of magnetic 
helicity between the mean field and the fluctuations similar to that predicted by the mean-field theory of 
the a-effect. The mean-field calculations are done in a quasi-linear approximation for the turbulence, for 
realistic spherical geometry, with compressibiliy included and using a profile of the solar internal rotation 
rate obtained from helioseismic inversions. The results are compared with observations, concentrating on 
the observational finding that the moduli of the averaged values of the force-free twist parameter cuff and 
and the current helicity Hc increase from zero at the equator towards higher latitudes and attain a certain 
saturation level at middle latitudes (at about 20” - 30”). On the assumption that the a-effect is operating in 
a thin spherical shell, the best coincidence between calculated and observed quantities is found for a-effect 
operation close to the bottom of the convection zone. 0 2003 COSPAR. Published by Elsevier Ltd. All rights 
reserved. 

INTRODUCTION TO THE DYNAMO PROBLEM AND ITS CONNECTION WITH HE- 
LICITY 

The dynamo for the global solar magnetic field is assumed to operate in the convection zone and to 
consist of the cyclic generation of a toroidal (azimuthal) field from a poloidal one (whose field lines lie in 
planes containing the rotational axis of the Sun) and the regeneration of a poloidal field from a toroidal 
one. If there exists a poloidal field, then a toroidal field is generated very efficiently by differential rotation. 
But the regeneration of the poloidal field poses a problem. For this reason the theory of the turbulent 
dynamo has been developed (see Moffatt, 1978; Parker, 1979; Krause and Radler, 1980; Zeldovich et al., 
1983; Roberts and Soward, 1992). The central mechanism in this theory is the generation of a mean, or 
large-scale, electromotive force E by turbulently fluctuating, or small-scale, parts of velocity and magnetic 
field, and it is has been found that the presence of kinetic and magnetic helicities is favourable for a so-called 
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o-effect, i.e., a non-vanishing component &, = a(B) of & proportional to the mean magnetic field (B); the 
factor Q is in general a tensorial quantity. The densities per unit volume of kinetic, magnetic and current 
helicity are defined by 

HK=v.(Vxv),H~=A.B,Hc=B.(VxB), (1) 
where v, B and A denote fluid velocity, magnetic field and a magnetic vector potential. HM and Hc are 
closely related. 

The a-effect was introduced by Steenbeck et al. (1966) as a mechanism linked with the mean lcinetic 
helicity density of turbulent fluid motions, and for isotropic situations, where a is a scalar, traditionally the 
estimate 

o!M-- F(v’. (V x v’)) (2) 

is quoted, where rcorr is the correlation time of the velocity fluctuations v’ (angular brackets denote averages 
and primes the corresponding residuals). This estimate is derived under the following approximations and 
assumptions: 
1) The first-order smoothing approximation (FOSA), also known as second-order correlation approximation 
(SOCA), which consists of neglecting a term V x (v’ x B’ - (v’ x B’)) in the equation for the time evolution 
of the magnetic fluctuations and thus corresponds to a quasi-linear treatment of the fluctuations. 
2) (v) = 0. 
3) Statistically stationary and homogeneous fluctuations. 
4) Magnetic diffusivity 71 + 0. 

More recently it was found (Keinigs, 1983; Matthaeus et al., 1986; Ridler and Seehafer, 1990; Seehafer, 
1994, 1996) that the o-effect is more directly related to current helicity than to kinetic helicity, namely by 
the relation 

c aij(Bi)(Bj) = -q(B’ . (V x B’)) . (3) 
i,j 

For deriving this relation, of the above four conditions only the third one is needed. In the isotropic case, 
(Y is a scalar given by 

a = -&(B’ . (V x B’)). (4) 

The mean value of the magnetic helicity can be written as the sum of two contributions resulting from 
the mean and fluctuating magnetic fields, respectively, namely 

(HM) = HEMEAN + HLLuc, 

with 
HgEAN = (A). (B), HGLuc = (A’. B’), 

(5) 

(6) 

For the time evolutions of HzEAN and HEtuc one finds (Seehafer, 1996) 

aHpAN 
at 

= -2rjV x (B) . (B) + 2&. (B) + (7) 
transport 

and 
dHpC 

at 
= -277(V x B’ . B’) - 2&. (B) + 

transport 

These two equations show that the a-effect (appearing through the terms ~2&. (B) on the right-hand sides) 
corresponds to the simultaneous generation of magnetic helicities in the mean field and in the fluctuations, 
the generation rates being equal in magnitude and opposite in sign. The mean total magnetic helicity, 
which is an invariant of ideal magnetohydrodynamics, is not influenced by the a-effect. This may equally 
be considered as a transfer of magnetic helicity between the fluctuating (or small-scale) and the mean (or 
large-scale) fields mediated by the o-effect, or as a helicity cascade (Frisch et al., 1975; Pouquet et al., 1976; 
Stribling and Matthaeus, 1990, 1991). The two magnetic helicitities generated by the o-effect, that in the 
mean field and that in the fluctuations, have either to be dissipated in situ or to be transported out of the 
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dynamo region. The latter may lead to the appearance of magnetic helicity in the solar atmosphere and in 
interplanetary space. From Eq. (7) ‘t 1 is seen that the magnetic helicity that is accumulated in the mean 
magnetic field has the sign of l . (B), i.e., the sign of the scalar a in the isotropic case. 

Consider for a moment a situation in which the magnetic fluctuations are statistically homogeneous in 
space and time. Then in Eq. (8) the term on the left-hand side and the last term on the right-hand side 
vanish, implying that 01 is connected to the mean current helicity density of the fluctuations by Eq. (3) in 
the general case and by Eq. (4) in the isotropic case. 

Besides the a-effect, also the R-effect (that is, differential rotation) may generate magnetic helicity. In 
the present paper we concentrate on the contribution of the a-effect and refer to Berger and Ruzmaikin 
(2000) for a study of magnetic helicity production by the action of differential rotation on magnetic fields 
in the convection zone; in other studies the generation of magnetic helicity by the differential rotation of 
the photospheric footpoints of coronal magnetic structures was considered (van Ballegooijen and Martens, 
1990; van Ballegooijen et al., 1998; DeVore, 2000; Dkmoulin et al., 2002). 

In contrast to the kinetic helicity in the dynamo region (the convection zone), the current helicity of the 
dynamo-generated magnetic fields can be observed, namely in the atmosphere (Seehafer, 1990; Rust and 
Kumar, 1994; Pevtsov et al., 1995; Abramenko et al., 1996; Bao and Zhang, 1998; Zhang and Bao, 1998; 
Longcope et al., 1998; L6pez Fuentes et al., 2003) and in interplanetary plasma clouds ejected from the 
Sun (Rust, 1994; Bothmer and Schwenn, 1998). Since the magnetic field is the physical key parameter 
of the solar atmosphere, the presence of magnetic or current helicity becomes apparent even in purely 
morphological observations of many of the atmospheric phenomena, for instance as chirality patterns in and 
around sunspots (Hale, 1927; Richardson, 1941; Ding et al., 1987) and filaments (Martin et al., 1994) or as 
sigmoid (i.e. S or reverse S shaped) structure of transient brightenings (Rust and Kumar, 1996); for reviews 
see Zirker et al. (1997), Martin (1998), Rust (2001) and Low (2001). In quantitative analyses, in general USC 
is made of the fact that the magnetic field at, superphotospheric levels is approximately force-free, satisfying 

V x B = afSB, 
HC afS = B2, 

where crff is a scalar that is constant along magnetic field lines but may vary in directions perpendicular 
to the field lines. The observations indicate that aff and HC are predominantly negative in the northern 
and positive in the southern hemisphere of the Sun. Under the assumption that the magnetic field evolves 
quasi-statically through successive force-free states with a spatially constant aff, one has HM. HC > 0 (see 
Seehafer, 1990). This is still approximately valid if <xff has a predominant sign in the volume considered, 
e.g. the atmospheric part of an active region. Thus, we may conclude that the magnetic helicity HM is also 
predominantly negative in the northern and positive in the southern hemisphere. 

The above discussion of dynamo theory has referred to mean-field dynamo theory only, i.e. to the large- 
scale dynamo action of small-scale velocity fields. The role of helicity for small-scale dynamos, where the 
magnetic field and the velocity field vary on comparable scales, is much less clear presently though these 
dynamos can be studied by direct numerical simulations of the full system of the governing equations 
(Brandenburg et al., 1996; Brandenburg, 2001). Several strongly helical flows are known to be very dynamo 
effective on the small scale. The ABC flow vABC (Arnold, 1965; Arnold and Korkina, 1983; Galloway and 
Frisch, 1986; Seehafer et al., 1996) and the Roberts flow vR (Roberts, 1970, 1972; Soward, 1987, 1989, 1994; 
Riidiger et al., 1998) are intensively studied examples. These flows can be produced as steady solutions 
of the incompressible Navier-Stokes equations if an external force field of the ABC type or Roberts type 
is applied. Feudel et al. (1995) studied the full incompressible magnetohydrodynamic equations with a 
generalized ABC forcing for which the degree of hclicity in the force field (and thus in the generated flow) 
can be varied by varying a parameter. It was found that, for increasing strength of the forcing, the primary 
bifurcation from the non-magnetic steady basic flow leads to a dynamo if the degree of helicity in the forcing 
exceeds a threshold value and to non-magnetic secondary flows for helicities below the threshold value. Thus 
at least for certain flow families, there is a correlation between helicity and small-scale dynamo action. On 
the other hand, helicity is certainly not necessary for a small-scale dynamo. So Hughes et al. (1996) found 
dynamo action for flows with vanishing total kinetic helicity in the volume considered or even identically 
vanishing helicity density HK. An important question with respect to solar and planetary dynamos is then 
how convective flows behave in this respect. Demircan and Seehafer (2002) obtained evidence that, in the 
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special case of cellular convection in the form of squares helicity is favourable for dynamo action. In the next 
section of the present paper we report some new results for the small-scale Roberts dynamo, i.e. small-scale 
dynamo action in driven convection-like rolls, which have also relevance for large-scale dynamo action and 
helicity generation. 

After the treatment of the ‘Vaminar” Roberts dynamo we present a straightforward comparison of mean- 
field model calculations for the a-effect and the current helicity in the solar convection zone with magnetic 
field observations at atmospheric levels. The natural sources of helicity and the a-effect in cosmical bodies 
are the action of Coriolis forces on turbulent fluid motions and a stratification of the mean mass density 
and/or turbulence intensity (Moffatt, 1978; Krause and Radler, 1980; Riidiger and Kitchatinov, 1993). The 
Coriolis forces may be due to rigid or differential rotation. Hitherto in most calculations of the a-effect rigid 
rotation has been assumed. However, a gradient of the rotation rate, or velocity shear, may significantly 
influence the turbulence and thus the turbulent electromotive force, besides the role of differential rotation 
to generate a mean toroidal field from a mean poloidal one. A mean velocity shear may even give rise 
to an extra contribution to the turbulent electromotive force not vanishing for vanishing mean magnetic 
field (Yoshizawa, 1990; Yoshizawa and Yokoi, 1993; Blackman and Chou, 1997; Brandenburg and Urpin, 
1998; Yokoi, 1999; Blackman, 2000). We here consider the standard a-effect (vanishing for (B) = 0) 
under the influence of differential rotation, using a realistic profile 0(r,8) of the solar internal rotation 
rate obtained recently by means of helioseismic inversions by Schou et al. (1998). For further quantities, 
radial profiles are derived from a standard model of the solar interior (Stix, 2002). We do not include the 
effect of a mean density stratification in the present study. Yet the turbulence is assumed to be (weakly) 
compressible. That is to say, density fluctuations and buoyancy effects connected with them are allowed 
for. Furthermore, the turbulence is assumed to be driven by the Lorentz forces due to prescribed magnetic 
background fluctuations. These magnetic fluctuations are homogeneous in space and time and their helicity 
vanishes. Helicity develops in a natural way if the motions driven by them are acted upon by Coriolis forces. 
We compare the results of the model calculations for the a-effect and the current helicity in the convection 
zone with magnetic field observations at atmospheric levels in order to adjust unknown or only roughly 
known model parameters. Specifically, calculated values for the a-effect parameter Q and the magnetic field 
line twist in the convection zone are compared with the force-free coefficient cuff and the current helicity 
determined from magnetographic measurements in the photosphere. This allows, for instance, an adjustment 
of the depth in the convection zone at which the a-effect is operating. In a final section we conclude with a 
brief discussion of the results presented. 

COMPLETE SOLUTION FOR A DYNAMO IN CONVECTION-LIKE ROLLS 

In this section we treat a dynamo model based on a flow introduced by G. 0. Roberts (1970, 1972). 
The Roberts flow has recently received renewed interest. On the one hand it resembles the roll solutions 
of thermal (or solutal) convection. In the convective zones of rotating celestial bodies convection rolls 
parallel to the axis of rotation tend to be formed (see Busse, 1994). On the other hand the Roberts flow 
is approximately realized in an ongoing laboratory experiment aimed at demonstrating the dynamo effect 
under laboratory conditions (Stieglitz and Miiller, 1996, 2001). Kinematic studies related to this experiment 
are due to Ape1 et al. (1996), who applied mean-field dynamo theory, and Tilgner (1997), who used direct 
numerical simulation of the induction equation. In both studies the prescribed flow was the Roberts flow 
and system parameters most suitable for dynamo excitation were determined. 

The Roberts flow is given as a family of three-dimensional velocity fields which are independent of one of 
the spatial coordinates, namely, 

VR = (g sin x cos y, -gcosxsiny, 2f sinxsiny). (10) 

f and g are parameters, but we have only used f = g = 1 in our calculations. The flow consists of an array 
of rolls where the fluid spirals up and down in neighboring rolls. To give an impression of the flow structure, 
a projection of the velocity vectors on the x-y plane is plotted in Figure l(a). Since the flow is periodic with 
period 27r in the x and y directions, we consider only the four rolls shown. 
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Fig. 1. (a): Projection of the original Roberts flow on the X-Y plane. Full black dots indicate stagnation 
points of the flow. (b): Magnetic energy versus Reynolds number for time-asymptotic states. Steady-state (x), 
periodic (o), torus (A), and chaotic solutions (*) are marked. The inner small box shows the zoomed region for 
R = 14.4.. 15.0. 

We use the incompressible magnetohydrodynamic (MHD) equations in the non-dimensional form 

g + (v V)v = R-‘V2 v-Vp-;VB’+(BV)B+f, (11) 

g + (v V)B = Rm-‘V2B + (B . V)v, (12) 

V.v=O, V.B=O, (13) 

where p is the pressure, R and Rm the kinetic and magnetic Reynolds number, respectively, and f an 
external body force. The third and fourth terms on the right-hand side of the Navier-Stokes equation, 
Eq. (ll), constitute the Lorentz force. Equations (13) impose the incompressibility condition on the fluid 
and ensure the source-free property of the magnetic field. The body force f on the right-hand side of Eq. (11) 
has to be specified in the concrete physical context and is the sum of all forces that drive the fluid, as e.g. the 
buoyancy force in thermal convection, or modify the motion, like the Coriolis force in a rotating star. For 
simplicity we restrict our investigation to the above system of MHD equations and do not include processes 
generating the forces. We consider f as externally applied and given. It pumps energy into the fluid and we 
look for long lasting magnetic fields, not decaying as a result of the nonlinear coupling of the Navier-Stokes 
equation and the induction equation, Eq. (12). This phenomenon is called nonlinear dynamo effect. 

Applying the external forcing 
f = -v%R = 2vn (14) 

in Eq. (ll), the Roberts flow with vanishing magnetic field is a solution of the full MHD equations, Eqs. (11)) 
(13). It is also the only time-asymptotic steady state for small R; the magnetic Prandtl number Pm = Rm/R 
is fixed to the value 1 and periodic boundary conditions with period 27r are applied in all three spatial 
directions. 

For increasing Reynolds number a sequence of bifurcations occurs. Figure l(b) shows the stable solution 
branches that were obtained by applying continuation techniques and additional simulations. The sudden 
drop of the magnetic energy in the transition from periodic to quasiperiodic dynamics is conspicuous. For 
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Fig. 2. (a): Stagnation points and their connecting heteroclinic orbits after the first bifurcation of the Roberts 
flow. Full black dots denote a-type stagnation points and empty circles such of type /?. (b): Surface-level plot 
of the modulus of the magnetic field IBI. Bright grey tones indicate regions of strong magnetic field while dark 
regions correspond to weak fields. 

an explanation of this phenomenon we refer to Riidiger et al. (1998) w h ere also a discussion of the route to 
chaos may be found. 

The key to understanding the primary dynamo bifurcation is given by the stagnation points of the Roberts 
flow, indicated in Figure 1 (a). Due to its independence of the z coordinate, the flow possesses continuous lines 
of stagnation points which are connected by a family of heteroclinic orbits. The symmetry breaking dynamo 
bifurcation splits these lines up into a discrete set of sixteen stagnation points. A skeleton of the stagnation 
points together with the connecting heteroclinic orbits after the bifurcation is sketched in Figure 2(a) (for 
counting the stagnation points the periodicity has to be taken into account). Following the terminology 
introduced by Dombre et al. (1986), stagnation points with two negative eigenvalues (-, -, +) are denoted 
as of (Y type and such with one negative eigenvalue (-, f, +) as of /3 type. There are eight stagnation points 
with two negative eigenvalues and one positive eigenvalue (o type) and eight points with opposite signs of 
the eigenvalues (p type). There is a close correlation between the locations of these stagnation points and 
the regions of strong magnetic fields. Figure 2(b) shows a surface-level plot of the modulus of the magnetic 
field. Bright grey tones indicate regions of strong magnetic fields. Comparing Figures 2(a) and (b), one 
recognizes that regions of strong fields enclose the stagnation points of p type. Similarly the field is weak 
in the neighborhood of the stagnation points of Q  type. A correlation between the stagnation points and 
the regions of strong magnetic fields has already been found for the ABC dynamo (Galanti et al., 1992; 
Feudel et al., 1996). However, for the ABC dynamo the strong magnetic fields are concentrated around 
the a-type stagnation points. The reason for this contrasting behavior of the two dynamos lies in their 
saturation mechanisms and is discussed by Feudel et al. (2003), who also study the role of the symmetries of 
the Roberts flow and of layers with chaotic streamlines that are formed between the counter-rotating rolls 
as a result of the back-reaction of the generated magnetic field on the flow. 

An important property of the dynamo is revealed by calculating the horizontally averaged magnetic field 

Bh(Z) = ~eriodicity box B dzdy (15) 
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Interestingly, one finds Bh # 0. Now Bh is a large-scale field, that is, the non-vanishing of Bh, indicates 
that the small-scale Roberts dynamo is also a large-scale or mean-field dynamo. After the primary dynamo 
bifurcation just one Fourier component of B h, namely that with the vertical wave number k, = ~1. is 
non-vanishing; Bh and the excited wave vector arc: 

Bh = (cost, sinz, 0). k = (0. 0, ~1) (lf-4 

The mean magnetic field is purely horizontal and rotates in a spiral-staircase like fashion. This rotation 
of the horizontal average of the magnetic field is a well-known property of the kinematic R.oberts dynamo 
(Roberts, 1972; S oward, 1987, 1989). Here we find it for the nonlinearly saturated, time-asympt,ot,ic magnetic 
field too. 

Let us consider the difference B - Bh as the fluctuating part B’ of the magnetic field in the sense of a 
mean-field theory. Clearly B’ must be strong since otherwise the field concentration at the stagnation points 
of type p, seen in Figure 2(b); would not come about. Let, further, the Roberts dynamo be considered as 
an idealized model of the solar dynamo. The field concentrations at the stagnation points of type [j can 
then be interpreted as active regions and the question arises whether Bh or B’ contain magnetic h&city. 
The numerical result here is: Hn[(Bh) < 0 and HM(B’) > 0; as well as Hc(Bh) < 0 and Hc:(B’) > 0. 
That is to say, we find a helicity segregation between the mean field and the fluctuations as predicted by 
the mean-field theory of the a-effect. 

We have attempted here to explain general properties of the nonlinear dynamo, but, one has to keep in 
mind that there is, besides the geometrical idealization, still a Reynolds-number gap of several orders of 
magnitude between the theoretical model and the dynamo operating in the Sun. Therefore the statistical 
mean-field approach remains indispensible. 

A MEAN-FIELD MODEL WITH APPLICATION TO HELICITY OBSERVATIONS 

In this section we report results of a study by Kuzanyan et al. (2003) comparing model calculations for the 
a-effect and the current helicity in the solar convection zone with magnetic field observations at atmospheric 
levels. 

Review of Some Recent Helicity Observations 
Recently in a number of papers systematic studies of magnetographic observations in solar active regions 

were reported aimed at identifying observational tracers of the o-effect. We here briefly describe t,hc results 
of Kuzanyan et al. (2000) and Zhang et al. (2002). 

For determining relevant statistical properties of the magnetic field, these authors calculated the two 
helicity parameters of active regions, namely a mean force-free coefficient (off) and a mean current helicity 
density (Hc) = (Bil . (V x B)II) (th c index 1, denotes longitudinal components of vect,ors). The caclulations 
were done neglecting the contribution of the transverse component of the electric current, which cannot be 
determined from magnetographic observations at a single photospheric level. Mostly, the mean values were 
obtained by averaging over spatial scales of the order of 5” solar latitude, i.e. a scale slightly smaller than 
the size of active regions, and times of the order of one Carrington rotation, i.e. 27 days. 

The data used were photospheric vector magnetograms of solar active regions observed with the Vector 
Magnetograph at Huairou Solar Observing Station. The dataset covers the period 1988 -1997 and includes 
most of the large active regions in these ten years. For 422 active regions (one magnetogram per region) 
both (aff) and (Hc) were computed as described, e.g., in Bao and Zhang (1998). 

Figures 3(a,b) show that the moduli of the two tracers of the a-effect increase from zero at the equator 
towards higher latitudes and attain a certain saturation level at middle latitudes. The latitude x,5 at which 
the saturation occurs lies approximately at 20” - 30”. We shall compare this observational finding with 
predictions from model calculations and use it to adjust model parameters. 

Theoretical Calculation of a@ and HgLuc: 
For the solar convection zone, WC adopt hem a model of a weakly compressible magnetically driven 

turbulence that is subjected to differential rotation. Though the a-effect parameter tr is in general a tensorial 
quantity, we concentrate on just one of its components, namely the component Q $4. which is responsible for 
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Fig. 3. Values of the mean current helicity (Hc) = (Bil . (V x B)II) (a) and the mean twist parameters (off) 
(b). Averages were taken over five latitudinal intervals between latitudes O”, 8”, 12”, 16”, 24”, and 32” in each 
hemisphere. Vertical lines show 95% confidence intervals. 

the generation of the mean poloidal from the mean toroidal field in aR-dynamos. Also, assuming that the 
toroidal component of the mean magnetic field is large compared to the other components, Eq. (3) implies 
that o~~(B)2 z (B’ . V x B’) = H, FLUC if the fluctuations are homogeneous in space and time (see also 
Radler and Seehafer, 1990). 

We use first-order smoothing (FOSA) and adopt a polytropic equation of state for the turbulence. In the 
inertial frame, the (dimensional) equations for the fluctuations then read as follows: 

(P) [$ + ((4 . VI v’ + (v’ V)(v)] = -VP’ + p’g + (p)vV2v’ + ;(V x Bb) x (B) (17) 

g + (p)V. v’ = 0 (18) 

p’ = C&p’ (19) 
8BI, 
-=7/V2B’,+Vx( 

at 
v’ x (B) + (v) x B’) (20) 

Here p is the mass density, g the gravitational acceleration and C,, an average value for the speed of sound. 
The kinematic viscosity u and the magnetic diffusity n are assumed to stand for their turbulent values rather 
than for the microscopic ones. The mean motion (v) represents the differential rotation, considered as given, 
and Bb denotes prescribed magnetic background fluctions that are homogeneous in space and time. In the 
sense of a mixing-length approximation, their spectrum function is chosen as B(lc, w) N (Bb2)6(rC - Z&.)6(w) 
where l,,,, is the correlation length of the fluctuations or mixing length and the associated correlation time 
defined by r,,,, = l&,rr/u (Kitchatinov, 1991); we also use equal values for the two turbulent diffusivities 
(i.e., v = 77). The background fluctuations satisfy (Bb . V x Bb) = 0, that is, they are non-helical. The last 
term on the right-hand side of Eq. (17) corresponds to a Lorentz force that drives the turbulent velocity 



Helicity and the Solar Dynamo 1827 

field v’, which in turn, through its action on (B) described by Eq. (20), generates a fluctuating magnetic 
field B’,. The total magnetic field is then given by 

B=(B)+Bb+B’,. (21) 

Using the above equations and a perturbation procedure for solving the continuity equation, Eq. (18), 
Pipin (2003) derived expressions for c&‘$ and HELuc m which the energy density of the magnetic background 
fluctuations appears. If this energy density is replaced by the energy density of the turbulent fluid motions 
using the equipartition assumption 

( Bb2) ~ (P) (vf2) 

Go 2 ’ (24 

the expressions for IX@ and HELuc become: 

a@@ = - cosef,n* + [ (23) 

f$Luc - - [-cost)lJo62* + 

Here u, = 
\i( ) 

vt2 is the r.m.s. of the turbulent convective velocity and we have also used lcor,./rcorr z IL,. 

R* denotes the Coriolis number, defined by R* = 2Rer,,,,, where 00 = 2.87.10-6s-1 (surface rotation rate), 
and the functions fi, fcli, fa2, I/JO, @hi, $h2 are given in the Appendix. 

Estimates for c# and HcLuc in the Solar Convection Zone and Comparison with Observations 
To get estimates for c&‘b and HzLuc in the convection zone we use a realistic profile R(r, 0) of the solar 

internal rotation obtained recently by means of helioseismic inversions by Schou et al. (1998) in the form of 
an analytical fit given by Belvedere et al. (2000). Also used are radial profiles of the turbulent convective 
velocity u, and of the correlation time rcorr of the turbulence, both derived from a standard model of the 
solar interior (Stix, 2002). For details of the procedure applied here, which treats the turbulence in a mixing- 
length approximation with the standard value 1.6 for the mixing-length paramter ~MLT (ratio of correlation 
length to pressure scale height), we refer to Kitchatinov and Riidiger (1999); see also Kiiker et al. (1993) 
and Kitchatinov et al. (2000). 

To get a smooth transition from the convection zone to the rigidly rotating radiative interior, the convective 
velocity in the transition region, i.e. in the thin overshoot layer beneath the bottom of the convection zone, 
is analytically modeled by 

where rb marks the bottom of the convection zone, w; is the convective velocity at r = rb and d the half 
width of the overshoot layer. With this kind of approximation we follow Riidiger and Brandenburg (1995). 
We use rb = 0.715Ra and d = 0.014Ra. Inside the overshoot region the Coriolis number R* is fixed to its 
value at r = rb. The overshooting is followed down to 0.69Ra. An overview of the profiles of some important 
quantities in the convection zone, namely the internal differential rotation rate 0, the Coriolis number R* 
and the mean convective velocity uc, is given in Figure 4. 

In analogy to the force-free parameter off we introduce, for the convection zone, the twist parameter 
(ycz - ff - H;LUC/(B+)2. A s a working hypothesis, we assume that the twist (~7~ of the magnetic field in the 
convection zone propagates upward to atmospheric levels where it is directly observable as the twist off 
of the force-free magnetic field. We wish to emphasize that the physical processes by which magnetic flux 
generated in the convection zone is transported to the surface are ill-understood at present. Thus the direct 
comparison of convection-zone and atmospheric twists can only be a trial from which, perhaps, guidance for 
future studies can be obtained. 

From the observational data we could see that the modulus of off increases from zero at the equator 
towards higher latitudes and attains a certain saturation level at middle latitudes. The atmospheric current 
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ROTATION LAW 

Fig. 4. Left panel: Contours of the rotation rate R in the convection zone. Right panel: Radial profiles of the 
Coriolis number R* (non-dimensional, left scale, solid line) and the convective velocity u, (in m/s, right scale, 
dashed line). The radius is given in units of Ra. 

helicity behaves in a similar way. Let us, for each radius in the convection zone, define the latitude X$(r) at 
which the twist CX~~ saturates as follows: 

(26) 

Actually AS(r) as defined by Eq. (26) gives, for fixed T, approximately the inflection point of the curve “z(X), 
where X = 7r /2 - 6, namely that value of X at which ayf would reach its maximum value if the increase from 
zero at the equator to the maximum value were linear, with the rate of increase given by the denominator of 
the fraction on the right-hand side of Eq. (26), i.e. by the increase rate at the equator. We use this seemingly 
complicated definition of X, instead of, say, simply taking the latitude where the maximum (or minimum, 
respectively) value of CX~~ is attained because at higher latitudes beyond the plateau (not included in the 
present study) both the current helicity and the force-free parameter could show a complicated behaviour 
(Pevtsov and Latushko, 2000). The dependence of X, on radius is shown in Figure 5(a). 

Now let us use the assumption that the a-effect is operating in a very thin spherical shell, i.e. practically 
at one radius T, and then vary r to get an optimum coincidence between the calculated and the observed 
saturation latitudes. The best coincidence between X,(T) and the saturation latitude of the observed atmo- 
spheric twist is obviously somewhere between 0.75 and 0.78Ra, that is, rather deep in the convection zone. 
Figures 5(b,c) show the latitudinal distributions of ~~44 and C$ at 0.78Ra. They are in good qualitative 
agreement with the observed latitudinal distributions of the atmospheric current helicity and the twist pa- 
rameter aff of the force-free magnetic field; ~$4 is opposite in sign to current helicity and twist parameter, 
in agreement with relations between these quantities found previously (Keinigs, 1983; Seehafer, 1994). 

DISCUSSION 

The two helicities generated by the a-effect, that in the mean field and that in the fluctuations, have either 
to be dissipated in the generation region or to be transported out of this region. The latter presumably 
leads to the observed appearance of magnetic helicity in the atmosphere, and through solar eruptions even in 
interplanetary space. There has been accumulated strong evidence that the atmospheric and interplanetary 
magnetic helicity is predominantly negative in the northern and positive in the southern hemisphere. In 
the mean-field concept of the solar dynamo the mean magnetic field does not reflect the magnetic fields of 
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Fig. 5. (a): The dependence of the saturation latitude X, of c$ (” In degrees) on the height in the convection 

zone (in units of Ra). (b) and (c): Calculated latitudinal distributions of ~$4 (b) and ~7~ (c) at a level of 

0.78Ra. &‘@ is measured in m/s and acftf in m-l. 

individual active regions. Although these fields contribute to the mean field, they are presumably mainly 
fluctuations. The observed magnetic helicities and, for instance, their sign rules thus primarily give infor- 
mation on the fluctuating part of the magnetic field. 

In the present review we have included details of two rather different numerical dynamo studies, one for 
a “laminar” dynamo, the other for a mean-field dynamo. In the “laminar” case the full nonlinear system 
of the incompressible MHD equations was studied, with an external forcing of the R.oberts type driving 
a flow in the form of an array of convection-like rolls. Though compressibility is certainly important for 
the solar convection zone, it is generally accepted that the incompressible MHD equations contain all basic 
ingredients of a dynamo. The equations were solved without further approximations (assuming magnetic 
Prandtl number Pm = l), resulting in a bifurcation diagram for the time-asymptotic states. The primary 
bifurcation leads to a dynamo with magnetic fields concentrated at stagnation points of the flow (the B-type 
stagnation points). We have suggested to interpret the field concentrations as fluctuations in the sense of a 
mean-field theory ~ or, with application to the Sun, as active regions. Mean fields are defined by horizontal 
averages (the direction of the convection-like rolls is the vertical). It, is found that there is a segregation of 
magnetic helicity between the mean field and the fluctuations as predicted by the theory of the a-effect. 

Then we have presented mean-field model calculations for the a-effect and the current helicity in t,he 
convection zone (with compressibility included) and compared them with magnetic field observations at; 
atmospheric levels. The comparison between model calculations and observations was concentrated on t,he 
observational finding that the moduli of the averaged values of the two tracers of the o-effect (nf~ and 
Hc) increase from zero at the equator towards higher latitudes and attain a certain saturation level at 
middle latitudes (at about 20” - 30”). The a-effect parameter c&‘@ and the magnetic field line twist in 
the convection zone, both calculated using the model, behave in a sirnilar way. On the assumption that, 
the a-effect is operating in a thin spherical shell at a certain depth in the convection zone, this depth was 
varied to get an optimum coincidence between model and observations, i.e. between calculated and observed 
saturation latitudes. The coincidence is found to be best for a-effect operation somewhere between 0.75 and 
0.78Ra, that is, close to the bottom of the convection zone. The numbers given here must not bc taken too 
literally since neither on the theoretical nor on the observational side saturation latitudes can be determined 
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very accurately. 
The models presented here clearly need to be developed in many respects. We only mention that the 

magnetic Prandtl number Pm = v/q in the solar convection zone is of the order lo-‘. . . 10e6 while in 
the calculations Pm M 1 is used. In the calculations for the laminar dynamo, furthermore, the Reynolds 
numbers are much too small, while one has to resort to mixing-length estimates of the turbulent diffusivi- 
ties in the mean-field treatment where also the use of the turbulent diffusivities instead of the microscopic 
ones in the governing equations is perhaps too simple. Concerning the observational side, further improved 
measurements of magnetic helicity would be helpful. One point could be direct or indirect information on 
transverse photospheric currents in order to get correct values of the current helicity from vector magne- 
tograms. This all must.be left for future studies aimed at bridging the still large gap between the theory of 
the solar dynamo and solar magnetic field measurements. 

APPENDIX 

The functions fl, fal, fez, $0, $hl, $h2 are defined as follows: 

f1= -$ (R* (3 + 262*‘) - 3 (1 + 11”) arctan( , 

f 
1 

al = 
160R*8(1 + 0*2) 

10080R* + 15120R*3 + 34310*5 - 2324R*7 - 595R*’ 

+15(-672 - 12320*2 - 5&X22*4 + 137fl*6 + 850*’ + 3fl*“) arctan(R 

f a2 = -& (fl* (111+250t2) - (111+62R*2+7fl*4) arctan(n 

6R* +4R*3 
$0 = 

- 6 (1 + 62”2) arctan 

4R*5 , 

‘$hl = 
1 

96R*4(1 + ,*2) ( Q*(-405 - 228R*2 + 73R*4) + 3(135 + 121R*2 - llR*4 + 3fi*6) arctan(Q 

$h2 = 
1 

96 fl*4 (1 + fl*2) 
(61’ (117 + 192fl*2 + 43R*4) - 3 (39 + 77R*2 + 45R*4 + 7R*6) arctan( 
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