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Abstract. It has been suggested that the activity of cosmical magnetic fields is a consequence of a general 
topological nonequilibrium in the neighbourhood of magnetostatic equilibria. Evidence for this suggestion 
can be obtained from the Kolmogorov-Arnold-Moser theorem of classical mechanics, applied to the 
magnetic field line flow as a Hamiltonian system. A finite-length magnetic flux tube, however, always 
possesses two independent sets of flux surfaces - or, equivalently, the corresponding Hamiltonian system 
two independent first integrals - and is topologically stable if in the volume occupied by the tube there are 
no singular (null) points of the magnetic field and the normal field component does not change its sign on 
the end faces of the tube. Therefore, the concept of nonequilibrium due to flux surface destruction is not 
applicable to solar atmospheric loops with each end situated in the interior of one polarity of the 
photospheric normal field component. Further, it seems unlikely that the tearing-mode mechanism can play 
a role in such loops. 

1. Introduction 

It has been suggested (Parker, 1972, 1979; Yu, 1973; Tsinganos et aI., 1984) that the 
generally observed (or inferred, respectively) activity of cosmical magnetic fields, with 
solar coronal heating and (sub-)flares as particular examples, is a consequence of a 
general topological nonequilibrium in the neighbourhood of magnetostatic equilibria. 
This suggestion is based on the conjecture that the topology of any magnetostatic field 
can be changed by arbitrarily small perturbations in such a way that magnetostatic 
equilibrium is no longer possible. 

Mathematically, the notions toplogical equivalence and topological stability are 
defined as follows (cf., e.g., Arnold, 1973; Chow and Hale, 1982, Chapter 2; Kubi~ek 
and Marek, 1983, Appendix C): two fields are termed topologically equivalent if there 
is a one-to-one continuous mapping with continuous inverse of the volume considered 
onto itself such that the field lines of the one field are transformed into those of the other. 
A field B(r) is termed topologically (or structurally) stable if in a (small) neighbourhood 
(with respect to an appropriately defined norm in the function space of three- 
dimensional vector fields) of B(r) all fields are topologically equivalent to B(r). 

In a plasma of infinitely high electrical conductivity, since the magnetic field is frozen 
into the plasma and the motion of the medium represents a continuous deformation, 
the magnetic field evolves through topologically equivalent states. The transition to a 
non-equivalent topology requires resistivity. On the other hand, resistivity is not 
sufficient for topological changes. If at a given instant of time a magnetic field has a 
stable topology, then, by definition, during some (maybe small) time interval about this 
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instant the topology cannot change, irrespective of whether the electrical conductivity 
is finite or infinite. 

Magnetic field lines may (a) extend to infinity, (b) be closed, (c) end in a singular 
(neutral) point of the field, (d) lie on a two-dimensional surface, or (e) wander chaotically 
through a volume (and may have more of these properties). 

In magnetohydrostatic equilibrium the magnetic field B, the current density j, and the 
pressure p are related by the equation 

] • B = 7 ,0 .  (1) 

If p is a sufficiently smooth function of position, which we can assume, and is not 
constant in any three-dimensional region, then surfaces p = const, are defined. Equation 
(1) implies that the magnetic field lines lie on these surfaces. The same holds for the 
]-field and magnetic and current surfaces coincide. If such a surface lies in a bounded 
volume and is closed, and if neither the B-field nor the ]-field has a singular point on 
it, it must be topologically equivalent to a toms (Kruskal and Kulsrud, 1958). 

If  the pressure gradient vanishes, in the low-frequency approximation, 

~oJ = t7 • B ,  (2) 

Equation (1) takes the form 

p' • B - ~(x). B ,  (3) 

with ~ denoting a scalar function of position - the magnetic field is force-free. From 
Equation (3) and 

it follows 

~'. B - 0 ,  (4) 

(~'~). B = 0 .  (5) 

B-lines and ]-lines (which coincide) lie again on surfaces, namely the surfaces ~ = const. 
The arguments of Kruskal and Kulsrud (1958) can be repeated. Surfaces ~ = const. 
exist if ~ is sufficiently smooth and not constant in three-dimensional regions. If they 
are bounded and closed and B does not vanish on them, then they must be toroids. For 
force2free fields singular points of the B-field are also singular points of the ]-field 
(Seehafer, 1986). 

In the case of force-free fields with spatially constant 0~ (including current-free fields) 
the existence of magnetic surfaces cannot be inferred in this way. In fact, as demon- 
strated by H6non (1966), these do not in general exist. 

It is presently not known whether magnetic fields lacking any symmetry can possess 
a continuous distribution of flux surfaces. If not, then all magnetohydrostatic fields not 
force-free with constant ~ must show such a symmetry, which may be weaker and more 
subtle than those associated with ignorable spatial coordinates (Low, 1985a, b). It 
should be noted in this context that the existence of magnetic surfaces is not sufficient 
for equilibrium. Obviously the symmetry, when existing (and required) is preserved 
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under the frozen-in condition, since this preserves magnetic flux surfaces (though 
equilibrium may be destroyed under this condition). 

By using the Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics 
(cf. Whiteman, 1977; Berry, 1978; Arnold, 1978, Appendix 8), Tsinganos et al. (1984) 
have presented evidence that any symmetry-breaking perturbation destroys a finite 
fraction (a set of nonvanishing measure) of the flux surfaces of a symmetric equilibrium 
field (that the unperturbed field is an equilibrium field is not explicitly used). This leaves 
still open the possibility that in the gaps between the preserved (only smoothly deformed) 
tori the magnetic field is force-free with constant ~. 

The arguments of Tsinganos et al. are not fully conclusive insofar as they use a 
canonical Hamiltonian representation of the field line flow by means of a Hamiltonian 
function. For the symmetric equilibrium field such a representation can be obtained and, 
since the system is integrable, can be transformed to action and angle variables. The 
perturbations allowed by the canonical perturbation theory - and by Tsinganos et al. 

- are such that the action and angle variables of the unperturbed system are canonical 
also for the perturbed system. In general, however, the canonical coordinates of the 
integrable system are not canonical for the perturbed system. This difficulty can be 
overcome by using a more general noncanonical Hamiltonian formulation (Cary and 
Littlejohn, 1983), which yields similar results about the destruction of flux surfaces. 

The above considerations are only partially relevant for the magnetohydrostatic 
equilibrium (or non-equilibrium, respectively) in volumes with boundaries intersected by 
magnetic field lines. This is the case for the solar atmosphere, which is connected by 
field lines with the much denser subatmospheric layers, and applies similarly to the 
atmospheres of other stars and to planetary magnetospheres. Magnetohydrostatics is 
applicable when the velocity of the medium is small compared with the Alfvrn velocity 
or, equivalently, when the kinetic energy density is small compared with the magnetic 
energy density (Roberts, 1967, p. 21). This condition is satisfied in the solar chromo- 
sphere and corona (except during explosive events), but not in and beneath the 
photosphere. 

Since the characteristic velocity, the Alfvrn velocity, of the medium above the 
photosphere is much higher than that of the deeper layers (cf. Priest, 1982, p. 83), in 
the superphot0spheric layers deviations from equilibrium in the form of instabilities can 
develop so rapidly that the deeper layers remain effectively unchanged on the time-scale 
of these instabilities. On the other hand, the anchoring of field lines in the dense 
photosphere acts stabilizing with respect to both ideal and resistive mhd instabilities 
(Raadu, 1972; Hood and Priest, 1979, 1980; Van Hoven, 1981; Gibons and Spicer, 
1981; Mok and Van Hoven, 1982; Einaudi and Van Hoven, 1983; Migliuolo and 
Cargill, 1983; An, 1984). However, further work is needed to properly treat the 
photospheric boundary conditions (cf. Low, 1985b). 

Resistive instabilities, in particular in loop structures, are considered as important for 
the explosive release of magnetic energy in solar flares (Spicer, 1976, 1977; Van Hoven, 
1979, 1981) and may, occuring at a slower rate, play a role also for coronal heating. The 
essential feature of resistive instabilities is that they change the field line topology (Furth 
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et al., 1963; Bateman, 1978, Chapter 10; White, 1983). The onset of a topology-changing 
instability, however, requires a topologically unstable magnetic field. Note that resistive 
instabilities and topological nonequilibrium as considered by Parker are quite distinct. 
In a resistive instability the field line topology of the perturbed state, though different 
from that of the unperturbed state, may be compatible with equilibrium. 

In Section 2 of the present paper finite-length magnetic flux tubes, representative of 
coronal loops, are considered. It is shown that they possess flux surfaces and are 
topologically stable under rather general conditions. 

2. Flux Surfaces and Rectification of Finite-Length Field Line Bundles 

We assume the magnetic field B(x) to be continuously differentiable. Parametric 
representations x(2) of individual field lines are obtained as solutions of the equation 

dx 
- B(x) .  (6) 

d2 

The entity of the field lines, the field line flow, can be considered as the phase flow of 
a mechanical system with the parameter 2 as time; because of div B = 0 this is a 
Hamiltonian system (cf. Filonenko etaL, 1967; Spicer, 1976; Whiteman, 1977; Cary, 
1982; Cary and Littlejohn, 1983; White, 1983; Tsinganos etal., 1984; Boozer, 1984; 
Doveil, 1984; Bernardin and Tataronis, 1985; Thyagaraja and Haas, 1985; Turner, 
1985; Salat, 1985). The phase space of the system being three-dimensional, the number 
of the degrees of freedom is 1.5 - by using div B = 0, Equations (6) can be brought into 
a canonical Hamiltonian form with one degree of freedom and an explicit dependence 
on the canonical time coordinate of the Hamiltonian. When the field possesses some 
symmetry, the Hamiltonian is independent of time (the system is autonomous). 

A function f (x )  which is constant along the phase trajectories (the field lines) is called 
a first integral (a constant of the motion). Here it is assumed that f ( x )  is continuously 
differentiable and not identically equal to a constant. A system with a least one first 
integral is called conservative. Magnetic fields with a dense set of flux surfaces 
correspond to conservative Hamiltonian systems; the flux surfaces are the level surfaces 
of a first integral. Obviously, with the exception of the constant-~ force-free fields, the 
field line systems of magnetohydrostatic fields are conservative. The same is true for all 
symmetric fields, since for them the Hamiltonian itself is a first integral. 

Global first integrals are rare, since in general the phase trajectories do not lie fully 
in the level sets of a function. Locally, however, the situation is quite different. In the 
neighbourhood of any nonsingular point of the field B, an n-dimensional system of the 
form given by Equation (6) has just n -  1 independent first integrals. This is an 
immediate consequence of the rectification theorem (Arnold, 1973), which states that, 
in a sufficiently small neighbourhood V of a nonsingular point Xo, a vector field is 
diffeomorphic to a spatially constant field e 3 . This means that there is a differomorphism 
(a one-to-one differentiable mapping with differentiable inverse) G of V onto some 
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spatial domain W such that the linear mapping G* (linear for x e V fixed), defined by 

the matrix 

o,  3 _ o(O(x)),, (7) 
~xj 

transforms B(x) into e3, 

G*(x)(B(x)) = %. (8) 

This is equivalent to stating that (locally) a coordinate system YI, Y2, Y3 can be found 
in which Equation (6) takes the form 

dYl _ dy2 dY3 
- 0 ,  - 1 .  ( 9 )  

d~ d2 d), 

Yl and Y2 and all functions of Yl and Y2 are first integrals. 
The diffeomorphism G, which transforms the field lines into straight lines, can be 

chosen such that x 0 is a fixed point. Thus any two fields for which x 0 is a nonsingular 
point are topologically equivalent (even diffeomorphic) and, therefore, topologically 
stable in the neighbourhood of x 0 . 

We now consider a finite-length field line bundle. Let the field lines of a bundle start 
from a connected part S I of a plane P1 and end on a connected part S 2 of a plane P2. 

Suppose that in the volume V traversed by the bundle [B I > b > 0 and that the normal 
field component B n satisfies B n >_ b 1 > 0 o n  S 1 and Bn > b 2 > 0 o n  $2 , .  We choose a 
coordinate system xi ,  x2, x3 such that x3 -- const, in P1 and Xl, x2 are a coordinate 
system in P1, and set 2 = 0 in P1. Each point in V lies on just one field line. So it is 
connected with just one point of SI and corresponds to a unique value of the 
parameter 2. Let the coordinates xl and x2 of the point on S1 with which the point x 
is connected by a field line be given by the functions fl(x) and f2(x). The mapping G, 
defined by 

G(Xl, x2, x3) -- (f~(x), fz(X), 2(x)), (10) 

is a rectifying diffeomorphism. That it is one-to-one is obvious. Further, with the 
coordinate transformation Yl = fl(x), Y2 = f2(x), Y3 = 2(x) Equation (9) is satisfied. 
G-  i is differentiable since the solutions of Equation (6) are differentiable with respect 
to the initial position (at 2 = 0) and, of course, with respect to 2. Then, the differ- 
entiability of G follows from the inverse function theorem (this all is analogous to the 
proof of the local rectification theorem by Arnold, 1973). 

f l(x) and f2(x)  (and all functions of f l  and f2)  are first integrals; the surfaces 
fl(x) = const, and f2(x) = const, correspondingly flux surfaces. Each field line lies on 
two independent flux surfaces. Any (smooth) curve on S l corresponds to a flux surface, 
since the field lines starting from this curve form a surface. A dense set of non- 
intersecting curves on S1 generates a dense set of flux surfaces. 

The surface S 1 is invariant with respect to the mapping G. G can easily be modified 
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such that in the volume W on which the volume V is mapped all field lines, which are 
straight lines, have a prescribed length; when, e.g., on the right-hand side of Equation 
(10) the third component is divided by the 2-value of the point on $2 with which the 
point x is connected by a field line, the field lines in W have length unity. Thus all field 
line bundles with one common end surfaces $1 can be continuously transformed into 
each other. Any bundle can be mapped first onto a cylinder with cross section S 1 and 
length unity and then onto any other bundle; the product mapping is also a diffeo- 
morphism and transforms one bundle into the other. In summary: given two fields B(r) 
and B'(r) and two field line bundles defined by these fields which extend from one 
common end surface $1 through volumes V and V', respectively, to end surfaces $2 and 
S~, respectively, ($1, $2, S~ bounded, closed, connected, and, for convenience, plane) 
with B 4 0 in V and B' 4 0 in V' and nonvanishing normal component of B on S 1 and 
$2 and of B' on S 1 and S~, there is a one-to-one differentiable mapping of V on V' such 
that a given field line of B is mapped on the field line of B' with the same starting point 
on S 1. This means, by definition, that the two bundles are topologically equivalent. 

Let the field line bundles be loops in the solar atmosphere, defined by a fixed 
photospheric field line starting point area $1. Now, for fixed initial position x(2 = 0), 
the solutions x(2) to Equation (6) depend continuously on the parameter 2 and on 
changes of the right-hand side, B(x) (provided these changes are sufficiently smooth). 
If the above suppositions on B in the bundle and on its end faces are satisfied for a given 
field, then for sufficiently small perturbations of the field the change of the volume 
traversed by the field lines (starting from $1) is so small that they are also satisfied for 
the perturbed field. Consequently perturbed and unperturbed bundle are topologically 
equivalent. Thus, by definition, such bundles are topologically stable. 

Until now one loop end was kept fixed. However, the above considerations can easily 
be generalized to include changes of $1, provided there is a one-to-one continuous 
mapping between Sa and the perturbed footpoint area S~. Then there is a continuous 
mapping between the two cylinders with cross sections S 1 and S'1, respectively, into 
which unperturbed and perturbed loop, respectively, can be transformed. The sup- 
positions needed remain satisfied for small changes of the footpoint area, since the 
solutions to Equation (6) depend continuously also on the initial position x(2 = 0). 

3. Discussion 

It has been shown in Section 2 that finite-length magnetic flux tubes possess two 
independent sets of flux surfaces and are topologically stable if in the volume occupied 
by the flux tube there are no singular (null) points of the magnetic field and if on the 
end faces of the tube the normal field component does not change its sign. Therefore, 
the concept of nonequi!ibrium due to flux surface destruction is not applicable to solar 
atmospheric loops with both ends situated in the interior of one polarity of the 
photospheric normal field component. Such loops evolve through topologically equiva- 
lent states irrespective of whether the magnetic field is frozen-in or not. 

The result obtained is in particular applicable to the uniform field extending in the 
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x3-direction between two parallel plates at x 3 --- T L considered by Parker (1972, 1979). 
Of course a perturbed state, in spite of the existence of magnetic flux surfaces, will in 
general not be a magnetohydrostatic equilibrium state and Parker's conjecture may be 
valid. However, the term 'topological' nonequilibrium is inadequate for the situation. 

Equally inadequate for finite-length flux tubes are the topological notions 'island 
formation', 'island coalescence', and 'field line stochasticity'. In toroidal geometry, these 
have the following meaning: given a set of nested toroidal flux surfaces around a central 
closed field line, the magnetic axis, the destruction of a part of the flux surfaces results 
in the formation of magnetic islands or stochastic field lines (or both) between preserved 
flux surfaces. A magnetic island is a new set of nested flux surfaces with its own local 
magnetic axis. Stochastic field fines do not lie on surfaces. Both phenomena are 
connected with the presence of infinitely long field lines. They can occur also in infinitely 
long straight cylinders. In contrast to finite-length flux tubes, these allow non-equivalent 
field line topologies. 

Formation and growth of magnetic islands are characteristic of tearing modes, which 
are considered as a possible (and likely) mechanism of the conversion of magnetic 
energy into particle energies in solar flares (Spicer, 1977; Van Hoven, 1981). The islands 
originate at so-called mode-rational surfaces. In the symmetry of a cylinder, straight or 
closed to a toms, it is usual to decompose perturbations of the equilibrium quantities 
into Fourier components f (r)  exp(imO + ikz) (m, k in general not integers), where r is 
the distance from the axis, 0 the poloidal angle, and z the distance along the axis, and 
to evaluate the stability of each excitation separately. The condition for magnetic tearing 
is the existence of a flux surface (the mode-rational surface) on which 

m--B o + kB z = 0, (11) 
?. 

i.e., on which the perturbation (its vector components in the r-O-z-coordinate system) 
is constant along the field lines of the equilibrium magnetic field, or the fines of constant 
perturbation coincide with the field lines, respectively. For the toroidal geometry this 
implies that on the mode-rational surface the field fines are closed. According to the 
Kolmogorov-Arnold-Moser theorem just those invariant tori of an integrable 
Hamiltonian system are, or may be, destroyed by a perturbation on which the phase- 
space trajectories close upon themselves. A perturbation resonant with such a rational 
torus destroys not only this torus but all tori in a layer about it, the width of this layer 
being small when the perturbation is small. 

When observing the field lines of a finite-length flux tube which is a part of a global 
field configuration with nested toroidal flux surfaces, one does not detect the formation 
of islands or of a stochastic layer of the global configuration. The finite-length bundle 
evolves through equivalent topologies. Resistive diffusion of the magnetic field, however, 
which is necessary for the change of the global topology, may be observed also in the 
finite-length part. Similarly, when the topological change is accompanied by the release 
of magnetic energy, energy conversion can be observed locally. 
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Now the boundary conditions for the instability of a coronal loop follow from the 
field-line tying in the photosphere. If the photosphere is considered as a perfectly 
conducting rigid plate, then both velocity and magnetic field cannot change at the loop 
ends. This excludes, in particular, tearing modes, since the resonance condition, 
Equation (11), then implies the vanishing of a perturbation in the whole loop (cf. Gibons 
and Spicer, 1981), provided that all field lines are anchored in the photosphere. On a 
mode-rational surface the field lines must be detached from the photosphere. In 
cylindrical symmetry, the axial field component must vanish on such a surface, and the 
unstable modes are those with m = 0 in Equation (11) (cf. Mok and Van Hoven, 1982). 

Thus, maybe, for the solar loops the concept of 'modes' and associated singular 
surfaces should be discarded. For the resistive gravitational instability, Roberts and 
Taylor (1965; cf. also Dagazian, 1976), who did not Fourier analyze in the direction of 
the main field, have demonstrated the possibility of excitations not localized about a 
singular surface, so-called quasi-modes. Spicer (1976) has pointed to the possible role 
of (hypothetical) tearing quasi-modes in solar flares. 

References 

An, C.-H.: 1984, Astrophys. or. 281,419. 
Arnold, V. I.: 1973, Ordinary Differential Equations, MIT, Cambridge, Massachusetts. 
Arnold, V. I.: 1978, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York. 
Bateman, G.: 1978, MHD Instabilities, MIT, Cambridge, Massachusetts. 
Bernardin, M. P. and Tataronis, J. A.: 1985, J. Math. Phys. 26, 2370. 
Berry, M. V.: 1978, in S. Jorna (ed.), Topics in Nonlinear Dynamics. A Tribute to Sir Edward Bullard, American 

Institute of Physics, New York. 
Boozer, A. H.: 1984, Report PPPL-2094, Princeton University. 
Cary, J. R.: 1982, Phys. Rev. Letters 49, 276. 
Cary, J. R. and Littlejohn, R. G.: 1983, Ann. Phys. N.Y. 151, 1. 
Chow, S.-N. and Hale, J. K.: 1982, Methods of Bifurcation Theory, Springer-Verlag, New York. 
Dagazian, R. Y.: 1976, Phys. Fluids 19, 169. 
Doveil, F.: 1984, J, Physique 45, 703. 
Einaudi, G. and Van Hoven, G.: 1983, Solar Phys. 88, 163. 
Filonenko, N. N., Sagdeev, R. Z., and Zaslavsky, G. M.: 1967, Nucl. Fusion 7, 253. 
Furth, H. P., Killeen, J., and Rosenbluth, M. N.: 1963, Phys. Fluids 6, 459. 
Gibons, M. and Spicer, D. S.: 1981, Solar Phys. 69, 57. 
Hrnon, M.: 1966, Compt. Rend. Acad. Sci. Paris A262, 312. 
Hood, A. W. and Priest, E. R.: 1979, Solar Phys. 64, 303. 
Hood, A. W. and Priest, E. R.: 1980, Solar Phys. 66, 113. 
Kruskal, M. D. and Kulsrud, R. M.: 1958, Phys. Fluids 1,265. 
Kubirek, M. and Marek, M.: 1983, Computational Methods in Bifurcation Theory and Dissipative Structures, 

Springer-Verlag, New York. 
Low, B. C.: 1985a, Astrophys. J. 293, 31. 
Low, B. C.: 1985b, Solar Phys. 100, 309. 
Migliuolo, S. and Cargill, P. J.: 1983, Astrophys. J. 271, 820. 
Mok, Y. and Van Hoven, G.: 1982, Phys. Fluids 25, 636. 
Parker, E. N.: 1972, Astrophys. J. 174, 499. 
Parker, E. N.: 1979, Cosmical Magnetic Fields, Clarendon Press, Oxford, Chapter 14. 
Priest, E. R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland. 
Raadu, M. A.: 1972, Solar Phys. 22, 425. 
Roberts, K. V. and Taylor, J. B.: 1965, Phys. Fluids 8, 315. 



TOPOLOGICAL STABILITY OF FINITE-LENGTH MAGNETIC FLUX TUBES 81 

Roberts, P. H.: 1967, An Introduction to Magnetohydrodynamics, Longrnans, London. 
Salat, A.: 1985, Z. Naturforsch. 40a, 959. 
Seehafer, N.: 1986, Astrophys. Space Sci. 122, 247. 
Spicer, D. S.: 1976, Report 8036, Naval Research Laboratory, Washington, D.C. 
Spicer, D. S.: 1977, Solar Phys. 53, 305. 
Thyagaraja, A. and Haas, F. A.: 1985, Phys. Fluids 28, 1005. 
Tsinganos, K. C., Distler, J., and Rosner, R.: 1984, Astrophys. J. 278, 409. 
Turner, L.: 1985, J. Math. Phys. 26, 991. 
Van Hoven, G.: 1979, Astrophys. J. 232, 572. 
Van Hoven, G.: 1981, in E. R. Priest (ed.), Solar Flare Magnetohydrodynamics, Gordon and Breach, New 

York, p. 217. 
White, R. B.: 1983, in A. A. Galeev and R. N. Sudan (eds.), Basic Plasma Physics I, Volume I of Handbook 

of Plasma Physics, North-Holland, Amsterdam, p. 611. 
Whiteman, K. J.: 1977, Rep. Progr. Phys. 40, 1033. 
Yu, G.: 1973, Astrophys. J. 181, 1003. 




