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Abstract. The field lines of closed magnetic structures above the photosphere define a mapping from the 
photosphere to itself. This mapping is discontinuous, and the field line connectivity to the boundary can 
change discontinuously in response to continuous changes of field strength and direction, if fietd lines either 
end in a singular point of the field or are tangential to the photosphere at one end. Whereas the general 
existence of singular points is questionable, the field has typically a cell structure due to the presence of 
segments of the zero line of the photospheric longitudinal field on which the transversal field is directed from 
negative (pointing into the Sun) to positive fields. The cell boundaries are made up of field lines which all 
touch the photosphere on one of these line segments. Within each of the cells the field line mapping is 
continuous. When during a slow evolution a substantial part of a coronal loop or of an arcade has passed 
from one cell into another a fast dynamic instability may set in which was previously prevented by the 
anchoring of field lines in the dense photosphere. 

1. Introduction 

According to Sweet (1958, 1969; cf. also Syrovatskii, 1981 ; Bratenahl and Baum, 1976) 
the magnetic field of a solar active region with two bipolar sunspot groups contains in 
general two neutral (singular, null) points, where the field vanishes. These are situated 
in the photosphere, which is assumed to be a plane. The field above the photosphere 
is divided into four topologically distinct flux systems by two intersecting separating 
surfaces. These surfaces are made up of field lines which for each surface end or start, 
respectively, in one of the neutral points; the line of intersection of the two surfaces is 
a field line joining the two neutral points. 

Sweet derived this model from the general statement that photospheric flux concen- 
trations share their flux among several neighbouring flux concentrations of opposite 
sign. He considered four flux tubes protruding through the photosphere and representing 
sunspots, assuming the photospheric normal field component to vanish outside the area 
of the four spots. Then outside the spots the photosphere is a magnetic surface, i.e., the 
field lines lie in the photosphere. However, that the two-dimensional field on this 
magnetic surface has two singular points can hardly we derived from divB = 0 alone. 

Let the x 3 direction of a system of Cartesian coordinates xl, x2, x3 be perpendicular 
to the photosphere and upward in the atmosphere. If on the whole periphery of each 
of the two positive (with positive field component B3) spots the photospheric B I - B  2 field 
has a positive component along the exterior normal, and is correspondingly directed into 
the spots on the peripheries of the negative spots, then the arguments of Sweet (1958) 
apply and in general there exist two singular points in the photosphere. For flux tubes 
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perpendicular to the photosphere this seems plausible (cf. Sweet, 1958, Figure 1). If, 
however, a flux tube emerges obliquely through the photosphere, the photospheric B~-B 2 
field is directed into the spot on a part of the spot boundary and out of the spot on 
another part. It may occur that a photospheric field line followed along its positive 
direction leads out of a positive and into a negative spot. 

Also the following consideration indicates that Sweet's model is not necessarily 
typical of the field configuration in solar active regions. Let the field have Sweet's 
configuration and then shift the photosphere upward by a small amount while leaving 
the field unchanged. Then the resulting configuration has no neutral points in or above 
the photosphere, though flux shearing is still present. 

For a potential field in and above the photosphere, Molodensky and Syrovatskii 
(1977) generalized the four-component model of Sweet to an arbitrary number of spots. 
Using the concept of the Poincar6 index, they showed that if spots are assumed to be 
singular points of node type of the photospheric B1-B 2 field, in general the difference 
between the number of spots and the number of saddle (X) points of the two-dimensional 
photospheric field is two (that is that for more than two spots such saddle points exist). 
In Section 2 of the present paper it is shown that for deriving this the supposition that 
the magnetic field is a potential field can be given up. If the photosphere is a magnetic 
surface outside the spots, the photospheric saddle points are also singular points of the 
three-dimensional field. 

Baum and Bratenahl (1980) calculated numerically the field due to four point charges 
situated in the photosphere and assumed to represent sunspots. They obtained Sweet's 
configuration. The field generated by point charges (or dipoles, respectively), often used 
to model the magnetic field above the photosphere (cf., e.g., Syrovatskii, 1969; Priest 
and Raadu, 1975; Baum et aL, 1979), is discussed in Section 3. If the point charges are 
located below the photosphere, the field in and above the photosphere contains neutral 
points only for special arrangements of the charges. 

Recently, Seehafer (1985a) presented an example for solar flares possibly caused by 
a change of the magnetic field line topology. Using a photospheric magnetogram of a 
solar activity complex as boundary data, force-free magnetic fields with spatially 
constant ~, ~ defined by the equation 7 x B -- ~B, were calculated. When the parameter 

was continuously varied, it was observed that field lines changed their connectivity 
to the boundary discontinuously. Let, as in the model of Sweet, the field above the 
photosphere be partitioned into cells such that within each cell the mapping of the 
boundary on itself, defined by the field lines, is continuous. During an evolution of the 
field, the separating surfaces between the cells are deformed and displaced, accompa- 
nied by the passage of field lines from one cell into another and a discontinuous change 
of the connectivity to the boundary of these field lines. 

In Section 4, further numerical studies of the example of Seehafer (1985a) are 
presented in order to elucidate the effect observed. Whereas the cell structure seems to 
be typical of the magnetic field of active regions, the existence of neutral points remains 
questionable. 
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2. Singular Points and Singular Field Lines 

Parametric representations x(t) of individual magnetic field lines are 

solutions of the equation 

obtained as 

dx 
- B(x).  (1) 

dt 

Equation (1) can be considered as describing a mechanical system with the parameter 

t as time and the field lines as phase space trajectories. Because of divB = 0 this is a 
Hamiltonian system, i.e., the phase volume is preserved under the field line flow. 

We suppose that B(x) is continuously differentiable. Through any point x o there is 

a unique solution X(Xo, t), which, for given finite t, is continuous and continuously 

differentiable with respect to the initial position x o (Arnold, 1973). If the right-hand side 

of Equation (1) depends continuously on some parameter or vector of parameters a, 

B = B(x, a), then the solution x(t, Xo, a) depends continuously on a (and is differentiable 

with respect to a if B is correspondingly differentiable). The parameter t for the 

description of the entity of the field lines, the field line flow, is determined except for 
an additive constant. 

Each singular point x o represents itself a field line, x ( t ) =  Xo, or an equilibrium 

solution of the mechanical system, respectively (cf. Arnold, 1973; Minorsky, 1962; 

Bogoliubov and Mitropolsky, 1961). There is a one-to-one correspondence between the 
singular points of B and the equilibrium solutions of Equation (1). Because of the 

uniqueness of the solutions, field lines can approach singular points only as t---, oe or 

t ~  -00 .  

Consider a finite or infinite volume V. A field line intersecting the boundary 0V of 
V must return to 3V unless it is of infinite length in V or ends in a singular point. 

Consider further a point x o on ~V in which the field component normal to 0V does not 

vanish and a (piece of a) curve on 0V through x o. If the field line through Xo, when 

followed along its positive or negative direction into V, ends in a point x 1 on OV with 

nonvanishing normal field component, then in a sufficiently small neighbourhood of x o 

the curve through x o is mapped onto a continuous curve through x 1 by the field lines. 
Thus, when the mapping of a curve on which the field component normal to 3V does 

not vanish is discontinuous at some point on the curve, the field line through this point 

must either lead to a singular point or to a point on ~V with a vanishing normal field 

component. In the first case we shall speak of a singular, in the second of a quasi-singular 

field line. The effect of quasi-singular field lines is illustrated in Section 4. That the 
presence of singular points can lead to a discontinuity of the field-line mapping is 
connected with the fact that the theorem on the continuous dependence of the solutions 
of Equation (1) on the initial conditions is valid only for finite t, whereas a singular field 
line, also when of finite length, approaches the singular point as t ~ oe or t--. - oe. 

Fully analogous considerations can be made when not the field line starting point on 
OV but some parameter a on which the field continuously depends is varied. Choose 
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a point x o on OV and an interval of a such that for all values of a the normal field 
component at x o does not vanish. With variation of a the point on which x o is mapped 
describes a curve on 0V. If this curve is discontinuous for some value a o of a, then for 
a = ao the field line starting from x o must be a singular or a quasi-singular field line. 

For a two-dimensional vector field on a plane, the Poincar~ index (cf. Arnold, 1973; 
Bogoliubov and Mitropolsky, 1961) of a closed curve not running through a singular 
point is defined as the number of rotations of the field vector around the curve, i.e., as 
the angle in units of 2n by which the field vector changes around the curve. The index 
of a curve not enclosing a singular point is zero. The index of an isolated singular point 
is defined as the index of a curve of small diameter enclosing the point. The index of 
a curve is equal to the sum of the indexes of the singular points enclosed by the curve. 

In the general case, for non-singular gradient matrix ~Bi/~xj, singular points of 
two-dimensional fields have the index + 1 or - 1, - 1 only for a saddle (X) point. 

Molodensky and Syrovatskii (1977) assume the field in (and above) the photosphere 
to be a potential field. Then at infinity the field has dipole character (if the total dipole 
moment does not vanish), and the index of a curve of sufficiently large diameter is two, 
that is, the sum of the indexes of the singular points of the photospheric B1-B 2 field is 
two. If  spots are then assumed to be singular points of node type, the difference between 
the number of spots and the number of photospheric saddle points is two. 

On a spherical photosphere the supposition on the index sum of the two-dimensional 
photospheric field is strictly valid. This follows from the theorem (cf. Arnold, 1973) that 
the sum of the indexes of the singular points of a vector field on a spherical surface is 
two, independent of the choice of the vector field. (This independence is connected with 
the fact that a spherical surface is a compact manifold, and does not apply to a plane, 
which is not compact.) 

3. Fields Due to Point Charges 

The field generated by two point charges, or one dipole, located below the photosphere 
has no singular point in or above the photosphere. The photospheric B1-B2 field has 
two singular points of node type (only one when the dipole moment is perpendicular 
to the (plane) photosphere). 

We shall consider the field due to four coplanar point charges, two positive and two 
negative, of equal strength. The total dipole moment vanishes if (and only if) the point 
charges form two anti-parallel dipoles (a quadrupole), i.e., are situated at the corners 
of a parallelogram with neighbouring charges having opposite sign. 

Let the four point charges be located in the photospheric plane. If the total dipole 
moment does not vanish (cf. Baum et al., 1979, Figure 1), the Poincar6 index of a 
photospheric curve of sufficiently large diameter is two and there are two saddle points 
in the photosphere, which are also singular points of the three-dimensional field since 
the photosphere is a magnetic surface. In the case of a quadrupole (cf. Syrovatskii, 1969, 
Figure 2) the index sum is three and there is one photospheric saddle point. The second 
saddle point may be imagined as placed at infinity; in the case of a spherical photosphere 
there exist two saddle points in any case. 
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Now let the charges be situated at equal depth below the photosphere. If they are close 
to the photosphere, the photospheric B 1 - B  2 field has still the same configuration, i.e., 
contains four nodes and one or two saddle points. Whether there are three-dimensional 
singular points in or above the photosphere is, however, less obvious. 

For special arrangements of the charges such singular points exist. The field due to 
four point charges arranged colinearly with alternating sign (Bantu et al., 1979) is axially 
symmetric with a circular line consisting of singular points, which is in part above the 
photosphere if the charges are sufficiently close to the photosphere (cf. Syrovatskii, 
1969, Figure 1). When, as a second example, the charges are situated at the corners of 
a rectangle and neighbouring charges have opposite sign, there is a straight line 
perpendicular to the plane of the rectangle on which the field vanishes for symmetry 
reasons (cf. Syrovatskii, 1969, Figure 2). 

The field due to four point charges in the plane x3 = 0, + e at positions a and e 
and - e  at positions b and d, is given by 

e ( x - a )  e ( x - b )  e ( x - e )  e ( x - d )  
B(x)  - + , (2) 

R~ R~ R~ R~ 

with R a = x - a!, etc. For x 3 # 0 the condition B3(x ) = 0 takes the form 

1 1 1 1 
+ = o .  (3)  

R~ R~ R~ R~ 

Then the conditions Bx(x ) = 0 and B2(x ) = 0 imply 

- a 1 b l  C 1 d l  
+ + - -  = O ,  (4 )  

R~ R~ R~ R~ 

- a 2 b 2  + 

Ra 

Equations (4) and 

e2 d2 
+ -  = 0 .  (5)  

R 3 R2 

(5) cannot be satisfied if in the plane x3 = 0 there exists a straight 
line separating the two positive charges from the two negative (if, e.g., this straight line 
is taken as the x2-axis, obviously Equation (4) cannot be satisfied). For example the 
configuration studied numerically by Banm and Bratenahl (1980) belongs to this 
category and has consequently no singular point above the plane of the charges. 

We suppose that a straight line separating positive and negative charges does not exist 
and restrict the problem by locating the charges at the corners of a parallelogram (then 
neighbouring charges must have opposite sign). Without loss of generality we can write 

a 1 = a 2 = b 1 = 0 ,  r = dl , C2 -- d2 = b2. (6) 

Then from Equations (3)-(5) we have 

R .  = R b = R e  = R a . (7) 

That is, the parallelogram must be a rectangle. 
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It can be stated that singular points outside the plane of the charges exist only for. 
special arrangements of the charges, though not all possible configurations have been 
considered. 

4. Activity Complex HR 16862, 16863, 16864 

Seehafer (1985a) calculated force-free magnetic fields for the activity complex 
H R  16862, 16863, 16864 at the end of May 1980. In the model used strength and 
direction of the field depend continuously on the parameter ~ of the force-free field. It 
was observed that, for a fixed starting point of a field line on the boundary (photosphere), 
with variation of ~ the position of the end point changed discontinuously for some 
critical value of ~. According to the discussion in Section 2, the field line considered 
must be singular or quasi-singular for the critical parameter value. 

Let for fixed starting point Xo the end point xl jump for ~ = ~c, 

lira xl(~ ) #  lira Xl(~). 
~--~ ~xc + 0 a - -~  ~xc - 0 

If the field component normal to the boundary is different from zero at Xo, xl(~c - 0), 
and x 1 (~c + 0), the field line considered must be a singular field line, i.e., there must exist 
a singular point. Thus, when systematically applied, one has a method to prove the 
existence of singular points. If, however, x l ( ,  c - 0) or x~(,, + 0) is situated on a zero 
line of the normal field component, the existence of a singular point cannot be inferred; 
whether the limit point on the zero line is perhaps itself a singular point can be easily 
checked. 

For the activity complex H R  16862, 16863, 16864 the behaviour of a number of 
individual field lines, selected because they changed their connectivity to the boundary 
with variation of ~, has been studied in detail. All these field lines proved to be 
quasi-sin~lar field lines; evidence for singular points has not been found. 

At thos'e points of the zero line of the photospheric normal component where a 
quasi-sirigular field line is tangential to the photosphere, the photospheric transversal 
field is .not directed from the area of positive to the area of negative fields but from 
negatiye to  positive fields. Segments of the zero line consisting of such points are not 
bridged by field lines above the photosphere; they may be imagined to be bridged below 
the photosphere. 

Figure 1 of the present paper should be looked at in conjunction with Figure 1 of 
S eehafer (1985a). It shows the zero line of the longitudinal magnetogram of the activity 
complex, whereas in the previous paper only fields stronger than 20 G are represented. 
Segments where the photospheric B 1 - B  2 field is directed from negative to positive 
fields are drawn as dashed lines. Each of these segments causes discontinuous 
field line mapping2 The photospheric transversal field on the zero line was calculated 
from the longitudinal magnetogram using the method of Seehafer (1978) with 

= 0.005 arc sec-  1. 
A cross in Figure 1, in the positive polarity of H R  16862, marks the photospheric 

starting point of a selected field line. When the parameter c~ is increased from zero while 
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W 

(a) 

W 

(b) 

Fig. 2a-b. Field line traced from the point marked by a cross in Figure I for two values of the parameter ~. 

the field line starting point is kept fixed (and the photospheric normal field is kept fixed) 

the field line end point (on the photosphere) describes a curve which is discontinuous, 
i.e., has a gap, for a critical value ~ = %. The two parts of this curve are drawn in 

Figure 1. That part corresponding to c~ values less than % lies in the negative polarity 
of HR  16863 (with ~ increasing the end point moves from N to S on the curve), that 
for c~ > 0~ c in the negative polarity of HR 16862. For e = % the point jumps on the zero 
line of the normal field. How this takes place is illustrated in Figure 2(a-b), where the 
field line is drawn for two e values close to ec- 

The field line flow above the photosphere is partitioned into cells within which the 
field line mapping is continuous. The lines of intersection of the separatrix surfaces with 
the photospheric plane are, to some extent, visible in drawings of sets of randomly 
selected field lines, e.g., Figure 2(a) of Seehafer (1985a). They appear as strips not 
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W 

E S 

W 

Fig. 3a -b .  Field line t raced  from a pho tospher i c  s tar t ing  point  in the posi t ive  polar i ty  o f H R  16863 for two 

values of the parameter c~. 

covered by field lines. All major flux concentrations share their flux among different 

cells. The field structure is complicated by various small magnetic islands and the 
presence of lateral boundaries (cf. Seehafer, 1978). 

The lines separating the photospheric flux have segments in common with the zero 
line of the photospheric longitudinal field. On such common line segments the trans- 

versal field is directed from negative to positive fields. The separatrix surfaces are made 
up of field lines which all touch the photosphere on one of these segments. 

The global topology is rather involved. Figure 3(a-b) illustrates flux sharing, respec- 
tively, the corresponding transition from one cell to another with variation of a, in the 
positive polarity of HR 16863. The field lines on the separatrix surfaces are channeled 
on the line segments discussed. 
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5. Discussion 

Syrovatskii (1981; see also Vasyliunas, 1975; Sonnerup, 1979) stresses the importance 
of field fines common to four different flux systems (X-lines, separators) for current sheet 
formation and magnetic field line reconnection. Such field lines are the fines of 
intersection (or self-intersection) of separatrix surfaces. They can also be expected for 
general field line configurations without singular points, as lines of intersection of 
separatrix surfaces made up of quasi-singular field lines. Then a separator does not 
connect between two singular points, as in the model of Sweet (1958), but is at one end 
or both ends tangential to the photosphere. For a simple four-cell topology due to two 
bipolar spot pairs the separator must touch the photosphere at both ends. If at one end 
point the photospheric normal field component would be different from zero, this point 
would lie in the interior of a photospheric flux concentration and would be common to 
all four flux cells. It cannot, however, be common to more than two flux cells because 
each photospheric flux concentration shares its flux among only two flux concentrations 
of opposite sign. 

Note that flux sharing and separatrix surfaces are defined with respect to one definite 
surface, the photosphere. E.g., for the field generated by four point charges in a plane 
below the photosphere the separator with respect to the photosphere, which is (in 
general) the line of intersection of separatrix surfaces made up of quasi-singular field 
lines, is not identical with the field line connecting between the two saddle points in the 
subphotospheric plane (which cannot be tangential to the photosphere). 

A change of the field line connectivity to the photosphere may be defined as magnetic 
reconnection. When the electrical conductivity of the plasma is infinitely high the field 
is frozen-in. Then, since the motion of the medium is a continuous deformation, the 
magnetic field evolves through topologically equivalent states. Two fields are topologi- 
cally equivalent if there is a one-to-one continuous mapping with continuous inverse of 
the volume considered onto itself such that the field lines of the one field are transformed 
into those of the other. 

A local change of the topology is possible only at singular points (cf. Seehafer, 1986). 
A special effect is introduced by the presence of boundaries which are not magnetic 
surfaces. Obviously transitions such as those displayed in Figures 2 and 3 are brought 
about by continuous deformations of the field line flow if the whole field above and 
below the photosphere is considered (and has a smooth continuation across the 
photosphere, which is the case for the force-free field model used). The transitions lead 
to non-equivalent topologies, however, if topological equivalence is defined with respect 
to the volume above the photosphere alone. 

With such a separate consideration of the volume above the photosphere, qualitative 
topological changes require either magnetic field diffusion or exchange of material 
between the photosphere and the upper atmosphere. Both processes are slow with 
respect to the Alfvrn time-scale of the upper atmosphere. For processes on the Alfvrn 
time-scale, because of its high density, the photosphere can to some extent be considered 
as a rigid wall for the upper atmosphere. The anchoring of field lines in the photosphere 
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(line-tying) imposes a topological constraint stabilizing the field against ideal mhd 
instabilities (Raadu, 1972; Hood and Priest, 1979; Van Hoven, 1981; Einaudi and 
Van Hoven, 1983), which are processes preserving the field topology (qualitatively) and 
proceeding on the fast Alfvtn time-scale. 

Mok and Van Hoven (1982) found that line-tying stabilizes also against resistive 
mhd instabilities. These - developing on a hybrid time-scale between the Alfvtn and the 
diffusive time-scale - are still fast compared with pure magnetic field diffusion. Both 
ideal and, in particular, resistive mhd instabilities are used to explain the explosive 
release of magnetic energy in solar flares (Van Hoven, 1981). 

With any evolution of the field for which diffusion is not negligible, there will be a 
continual passage of field lines through separatrix surfaces. As long as the large-scale 
field evolves through equilibrium states in response to photospheric motions on different 
scales, field line jumping occurs at a low rate. In order that the field can always relax 
to a constant-~ force-free state, the whole evolution must be slower than this 
relaxation, which is assumed to involve small-scale magnetic reconnection (cf. Taylor, 
1974; Heyvaerts and Priest, 1984). 

Now consider a loop structure, or an arcade or any multi-loop structure, containing 
a n  amount of free magnetic energy sufficient to produce a flare and being stabilized 
against fast current-driven instabilities by line-tying. Let the loop be situated fully in one 
cell and approach a separatrix surface, or a separatrix surface approach the loop, 
respectively. Then the field lines of the loop jump successively and the stabilizing effect 
of line-tying is reduced. 

Note in particular that when a loop has two (or more) parts situated in different cells, 
it can become subject to resistive instabilities, the essential feature of which is field line 
reconnection (White, 1983). As long as the loop remains situated fully in one single cell 
its topology cannot change and resistive instability is excluded. This is consistent with 
the result of Mok and Van Hoven (1982) that resistive instability of a finite-length 
cylindrical pinch with line-tying at the ends requires a reversal of the axial field 
component. The cylindrical surface on which the axial field vanishes is a degenerate 
separatrix surface. 

Let, as in the example considered by Seehafer (1985a), the slow evolution be 
accompanied by an input of energy into the magnetic field. Then the following two 
developments are conceivable. 

A fast instability can set in after only a small part of the loop field lines has passed 
through the cell boundary. Since the assumed fast energy dissipation cannot be 
compensated for by the slow energy input from the photosphere, the field lines which 
have jumped jump back. In such a situation the main part of the loop stays in the original 
cell, while continual energy input into the magnetic field leads to some heating. 

Alternatively, unstable perturbations may exist only after a substantial part of the loop 
has passed into the new topology. Then the instability can lead to a flare. 

The flares in the activity complex of May 1980 considered by Seehafer (1985a) are 
a possible example of flare initiation in this way. Another preferred flare site in the same 
complex was a small positive magnetic island north-west of the large leading (negative 
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polarity) spot of HR 16864, indicated by an arrow in Figure 1, which formed a delta 
configuration with the main spot. The flare productivity of this configuration can be 
attributed to the western island boundary, part of which is a critical line segment of the 
kind discussed. (Seehafer, 1985b; the term 'neutral sheet' used in that paper should now 
be replaced by separatrix surface.) It is characteristic of delta configurations consisting 
of a parent spot and a satellite spot, compared with configurations with a parent spot 
and a satellite of the same polarity within a common penumbra, that the common 
penumbra is observable only between parent spot and satellite, but not at the outer 
satellite boundary, away from the main spot. This suggests that the magnetic flux from 
the satellite is (nearly) completely connected to the main spot and that a separatrix 
surface touches the photosphere at the penumbra-free part of the satellite boundary, a 
possible explanation for the flare productivity of these configurations (cf. Seehafer, 
1985b). A similar example (no delta configuration), with all magnetic flux from a small 
flare productive magnetic feature connected to a central large spot of opposite polarity, 
was found by Seehafer and Staude (1980). 

Concluding it should be noted that a definite decision whether magnetic neutral points 
exist or not will in general, if at all, only be possible after systematic numerical 
calculations, e.g., using index evaluation methods (Hsu and Guttalu, 1983). Thus it 
needs further studies to clarify whether perhaps structural bifurcations at neutral points 
(cf. Seehafer, 1986), one possibility for topological changes not due to the presence of 
boundaries, can play a role in solar active regions. 
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