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Abstract. At first it is shown that a magnetic field being force-free, i.e. satisfying VxB =B, with
a =constant (a # 0) in the whole exterior of the Sun cannot have a finite energy content and cannot be
determined uniquely from only one magnetic field component given at the photosphere. Then the
boundary value problem for a semi-infinite column of arbitrary cross section is solved by a Green’s
function method.

1. Introduction

Magnetic fields play an important role in almost all events in the solar atmosphere.
Therefore there is a strong need for information about the magnetic flux density
vector throughout the atmosphere. At present, however, reliable and detailed
information about magnetic fields is available only for the photospheric level,
where the inverse Zeeman effect in Fraunhofer lines is observable, most obser-
vations being restricted to the line-of-sight component only. The implications about
magnetic fields that can be drawn from chromospheric and coronal observations,
such as Ha fibrils and loops seen in EUV and X-ray lines, are very limited.
Therefore, the measured line-of-sight component of the photospheric field must be
extrapolated into the field vector in the higher layers. The mostly used way of doing
this is to assume that the magnetic field is current-free (potential) or, more general,
force-free above the photosphere, and then to solve the arising equation with the
measured photospheric magnetic field distribution providing the boundary con-
dition. The use of force-free fields is justified by the dominance of the magnetic
field and its stability in the chromosphere and lower corona (Sturrock and Wood-
bury, 1967). As a consequence, if appreciable currents are present, these must be
aligned with the magnetic field, since otherwise the resulting Lorentz forces could
not be balanced by nonmagnetic forces. Therefore, neglecting displacement cur-
rents,

VxB=aB, 1)

where « is, in general, a scalar function of position (and time). The practical
application is confined to the case of @ = const., @ being treated as a parameter that
must be determined by comparison of the computed magnetic field configuration
with chromospheric or coronal features that can serve as tracers of magnetic field
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topology, for example loops seen in various lines. For varying @ one needs infor-
mation about a throughout the considered volume. « =0 corresponds to the
current-free case.

There are three extensively applicated extrapolation procedures (Levine, 1975):

(a) The Schmidt procedure (Schmidt, 1964):

The potential field above a limited photospheric region is computed. Implicitly, a
Netimann boundary value problem for the upper half space is solved, assuming that
the magnetic field component normal to the boundary plane vanishes everywhere
in this plane outside the region covered by the measurement (magnetogram).

(b) The procedure of Altschuler and Newkirk (1969):

The potential field in the full volume between the photosphere and a surface at
some radial distance R, (about 2.5R) is computed. The assumption that the field
becomes radial, thereby simulating the effects of the solar wind, provides the
boundary condition at r = R;.

(c) The procedure of Nakagawa and Raadu (1972):

The constant « force-free magnetic field above a rectangular photospheric region is
computed. Implicitly the input data are two dimensionally periodically extrapolated
into the whole magnetogram plane (Seehafer, 1975).

(a) and (c) start from incomplete data. The need for specifying the boundary
conditions on vertical planes comprising the considered volume (semi-infinite
column above magnetogram area) is eliminated by extending the volume into a half
space.

In this paper at first the case of the magnetic field being force-free with a =
constant in the full volume outside the Sun (above photosphere) is considered.
Then the boundary value problem for a semi-infinite column of arbitrary cross
section is solved by a Green’s function method.

2. The Exterior Boundary Value Problem for the Sphere

With o = constant (1) is equivalent to
B=arxVP+VXx@xVP), 2)

where r is a constant vector (Nakagawa and Raadu, 1972) or the radius vector
(Radler, 1974), and the scalar function P satisfies the Helmholtz equation

(V*+a®)P=0. 3)

By taking the divergence of (1) it can be seen that div B = 0 is automatically fulfilled
(except for & =0).

There is a difference between the Laplace equation (which must be solved in the
case of the potential field) and the Helmholtz equation: If a solution of the Laplace
equation vanishes at the boundary surface S of a finite region and at infinity, it
vanishes identically outside S, while under similar conditions a solution of the
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Helmholtz equation does not necessarily vanish (Miiller, 1957). For example,

sinar

hHr)= 4)

r
and

cosar

falt) ==, 5)

where r denotes the radius vector and r= x|, are solutions of the Helmholtz
equation that vanish at infinity. One can always find a linear combination of f; and
f, that vanishes at some distance r = R (and at infinity).

An exterior boundary value problem with a unique solution can be posed by
means of an extra condition at infinity (Miiller, 1957), namely the Sommerfeld
radiation condition

P=o(r'"), i—f+iaP:0(er). 6)

Let us consider the exterior boundary value problem for the sphere in detail:
P can be represented by a harmonic expansion

&9}

P(n6,¢)= Y 3 R,(NYP(6 ¢), (7)

n=0j=—n

where Y¥ denote spherical harmonics of degree n and order j. Then, the
coeflicients R,;(r) must satisfy the equation

+1
r

The general solution of (8) can be written in the form
Lo Lo
Rni(r):Anj—:Hn+1/2 (Oéf)‘*‘an”‘—‘HnH/z (ar), )
Jr Jr

where H{.;,, and HY,,, denote the Hankel functions of the first and second
kind, respectively, of the order n +3, and A, B,; are arbitrary constants.

Clearly, if only one magnetic field component is given at r =IR (photosphere), it
is impossible to determine both A,; and B, Nakagawa (1973) gives a solution of
the boundary value problem with only one set of constants to be determined.
Obviously, he does not use the general solution of (8), although claiming to do this.

To define a unique boundary value problem, an additional condition is needed.
The Sommerfeld radiation condition (6), which is used in studying wave prop-
agation, is not adequate to the problem. An adequate condition would be that the
magnetic field outside the sun had a finite energy content.
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The magnetic energy content M within the volume of analysis is given by

M=8—17;”j B> dV. (10)

\4
From (2) (with r being a constant vector, for convenience), it can easily be verified

that in a system of rectangular Cartesian coordinates x, y, z not only the function P
but also the magnetic field components B,, B,, B, satisfy the Helmholtz Equation
3.

Now, one can show (Rellich, 1943) that, if u is a function that satisfies the
Helmholtz Equation (3) with « # 0 for r > R, the function

swy= [[] wFav an

R<r<R;

tends to infinity as R, - 0.

Thus, we have the remarkable result: A magnetic field being force-free with
a = constant everywhere outside the sun cannot have a finite energy content
{except for a =0).

3. Green’s Function Method for a Semi-Infinite Column

In the following we use Cartesian coordinates x, y, z and the representation (2) with
r=(0, 0, 1). Let the domain of analysis be given by

O=x=1L, O=y=L, 0=z<w0,

where z = 0 defines the plane of magnetograph observation. If the Green’s function
G(r,r') for the Helmholtz Equation (3) in the considered volume is known, the
values of any solution P can be determined from the values of P at the boundary by
means of the representation

P@)=— f J P(r)%—; ds, (12)

where S denotes the surface enclosing the considered volume. n is the local exterior
normal on S.
For constructing the Green’s function we consider the inhomogeneous equation

(V’+a?)O=-F (13)

with the boundary condition that Q vanishes at S.
By means of the Green’s function, a solution Q of (13) can be represented in the
form

Q@)= JJJ G(r,r)F(x)dV. (14)

\Z
Let ¢n(x, y) denote the normalized eigenfunctions of the two-dimensional
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Laplacian A, in the region 0=x=<1L,, 0=y =L,, i.e. the solutions of the equation

Athmn T Anntlmn =0 (15)

that vanishat x =0, L, and y =0, L,.
They are given by

G (X, ¥y) = \/;ZSin (Z—rxnx) sin (Z—:ly> . (16)

The corresponding eigenvalues are

2 2

—o2(mo
Avn =7 (L3+L§>' (17)

Using (15) and the expansions
Q(x,y,2)= Zzl Qrin{z Wimn (X, ) » (18)
F(53.2)= 3 Fon(2hmn(x. ), (19)

we get from (13)
Q;/rln+(a2-/\mn)omn = —an- (20)

In verifying this note that the expansion (18) can be differentiated twice term by
term with respect to x and y. Consider, for example, the dependence on x: Because
of the boundary condition, Q can be considered as an odd function in the interval
—L,.=x=L, and, therefore, 3Q/dx as an even function. The values of both Q and
8Q/ox at x=-L, and x =L, are equal. Therefore, the Fourier expansions
representing them can be differentiated term by term.

The solution of (20) that vanishes both at z =0 and as z - o is given by

o0

| Btttz el 1)

0

1
2

Omn(z) =

where
pl
I = \//\mn —a.

This can easily be shown by splitting the integral on the right-hand side of (21)
according to [’ =[;+[;" and considering the two summands of the integrand
separately.

Because of

Y

S —

Foun(t)= j



220 N. SEEHAFER

(21) becomes

an(z) =

2r nn JIJ’ F(x, y, )mn(x, y) X

X{e;"""h_t‘ _e~r,,,,,lz+rl} dx dy dr. (23)

Putting this expression into (18) and interchanging summation and integration, we
get a representation of Q according to (14) with

Grxy= 3 Ll Wl V) et ity g

mn=1 2rmn

(24) gives the Green’s function for the Helmholtz equation in a semi-infinite
column of rectangular cross section. If the cross section has another form, the ,,,,
must be replaced by the eigenfunctions of the two-dimensional Laplacian in a
region of corresponding form. For example, considering a semi-infinite cylinder
Bessel functions must be used.

The use of the Green’s function method in applicating special boundary con-
ditions shall be illustrated in an example:

The magnetograph observation provides the boundary condition in terms of the
vertical magnetic field component B, at z=0. Since B, satisfies the Helmholtz
Equation (3), it can be determined uniquely by specifying its values at the vertical
planes enclosing the volume. Then, after determining P from the equation

aP
B.=—a’P—— 25)

which follows from (2), B, and B, can be obtained from (2).

Let B, vanish at the vertical planes x =0, x =L,, y =0, y =L,. It is assumed that
the values of |B,| at the boundary are small compared with its values at the inner
parts of the cross section of the column. Then, from (2), (12), and (24) we get

2 Cmn —rpnZ M
B.= %} e ""'{ le (sz>cos(%x)—

a— SIn
mn=1 )\mn

mm cos (me) sin (7my> } s (26)

T L L
oo () sin(F2) +

)
f

. 'frnsi (77mx> (
mn Ly

B,= § Cpne ™ sm( ) (28)

mn=1
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where the C,, are defined by the expansion (28) at z=0. (For the practical
application the magnetogram must be changed or completed in such a way that the
values at the boundary vanish, for example by adding an artificial boundary.)

The representation (26), (27), (28) has been used by in studying the large sunspot
group of August 1972 (Seehafer and Staude, 1977, 1978). It does not require the
net magnetic flux through the magnetogram area to be zero, as do the Schmidt
procedure and the procedure of Nakagawa and Raadu.

There is a close similarity of the Equations (26)-(28) with the Equations (18)-
(20) of Nakagawa and Raadu (1972). The relation of the two procedures shall be
considered in detail:

The solution (26), (27), (28) is periodic, as the solution of Nakagawa and Raadu,
but with the periods 2L, and 2L,, whereas the solution of Nakagawa and Raadu
has the periods L, and L,. One can get the solution (26), (27), (28) by extrapolating
the magnetogram, which covers the domain 0=x=<7L,, 0=<y=/L,, into the domain
-L,=x=L, —L,=y=L, according to

B,(—x,y,0)=~B,(x,y,0), 29)
B.(x, —y,0)= —B,(x, y,0), (30)
and then applicating the formulae of Nakagawa and Raadu to the extrapolated
magnetogram. The solution of Nakagawa and Raadu is got in the same way if the

extrapolation of the magnetogram into the domain —L,<x=<L,, —L,<y=L, is
carried out according to (instead of (29), (30))

B.(=x,y,0)=B.(x,y,0), (31)

Bz(x7 =Y O)ZBZ(x’ Y, O) (32)
The use of (29), (30) instead of (31), (32) ensures that the net magnetic flux through
the (original) magnetogram area is balanced.

As to the conditions at the (vertical part of the) boundary corresponding to the
two solutions, the present solution is more restrictive in that it requires the vertical
magnetic field component to vanish at the boundary, whereas the solution of
Nakagawa and Raadu only requires that

B.(0,y,z)=B,(L,, y, z) (33)

and
B.(x,0,2)=B,(x,L, z). (34)

But, since it is assumed to be twice differentiable term by term with respect to x and
¥, the solution of Nakagawa and Raadu requires additionally (Seehafer, 1975)

dB,(x,y,z)| _3B,(x,y,z)
ox x=0 Jx x=Lx

) (35)
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dB,(x,y,z)] _4B,(x,y,2)
ay y=0 ay y

: (36)

Ly

Il

which the present solution does not.

4. Discussion

In this paper it is shown (Section 2) that a magnetic field that is force-free with
a =constant (a #0) in the whole volume outside the sun cannot have a finite
energy content and that such a field cannot be determined uniquely from only one
magnetic field component given at the photosphere. Therefore, the extension of a
global scale constant « force-free magnetic field to infinity neither has a physical
meaning nor provides a mathematically unique boundary value problem. The use
of global scale constant « force-free magnetic fields must be confined to the
consideration of finite volumes. A generalization of the method of Altschuler and
Newkirk (1969), in which the potential field between the photosphere and a surface
at some radial distance (where the field is assumed to become radial) is computed,
to cases of « # 0 seems most reasonable. However, since the curl of a radial field has
no radial component, the way of matching to the outer solar wind dominated regions
must be appropriately changed then.

The start from global scale magnetograms in extrapolating photospheric mag-
netic fields has the advantage (compared with the start from magnetograms cover-
ing limited regions) that no reference (in terms of special boundary conditions) to
fields surrounding the magnetogram area is needed. Its disadvantage is the necessity
to assume that the fields are steady for a period of about one month, which is
needed to get a complete magnetic map of the photosphere. Thus, the extrapola-
tion starting from magnetograms covering limited regions is also of interest.
Moreover, this is the case so far as special physical assumptions, such as the
constancy of a, are more questionable on a global scale.

If one computes the constant « force-free magnetic field in a semi-infinite
column above a limited photospheric region, it is inadequate to eliminate the need
for boundary conditions at the vertical parts of the surface bounding the considered
volume by extending the volume into either the whole exterior of a sphere or a half
space, except for & =0. These extensions do not provide unique boundary value
problems. Chiu and Hilton (1977) have shown that the boundary value problem in
a half space, using only the normal field component at the boundary as boundary
values, is non-unique. It should be clarified if the result that a constant « force-free
magnetic field cannot have a finite energy content is also valid for the half space (a
mathematically non-trivial problem).

In the case of the extrapolation starting from magnetograms covering limited
regions the boundary conditions must be treated carefully: Comparisons of field
line calculations for the same magnetogram region using the Schmidt procedure
and using the procedure of Nakagawa and Raadu can show drastic differences in the
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configuration of field lines, these discrepancies being due to the different treatment
of the boundary conditions in the two schemes (Levine, 1975). The Green’s function
method given in Section 3 renders it possible to determine the constant « force-free
magnetic field (including the case a = 0) above a limited photospheric region from
boundary conditions at the surface enclosing the actually considered volume.
Different boundary conditions, especially such considered as realistic for physical
reasons, can be imposed, the presently used extrapolation methods being included as
special cases in the derived general scheme. The practical use of the scheme has been
illustrated in deriving an extrapolation procedure which uses boundary conditions
somewhat different from those of the procedure of Nakagawa and Raadu and,
therefore, does not require that net magnetic fiux through the magnetogram area to
be zero.
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