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Abstract. At first it is shown that a magnet ic  field being force-free, i.e. satisfying V • B = a B ,  with 
a = constant  (ct r O) in the whole exterior of the Sun cannot  have a finite energy content  and cannot  be 
determined uniquely from only one magnetic  field componen t  given at the photosphere.  Then  the 
boundary value problem for a semi-infinite column of arbitrary cross section is solved by a Green ' s  
function method.  

1. Introduction 

Magnetic fields play an important role in almost all events in the solar atmosphere. 
Therefore there is a strong need for information about the magnetic flux density 
vector throughout the atmosphere. At present, however, reliable and detailed 
information about magnetic fields is available only for the photospheric level, 
where the inverse Zeeman effect in Fraunhofer lines is observable, most obser- 
vations being restricted to the line-of-sight component only. The implications about 
magnetic fields that can be drawn from chromospheric and coronal observations, 
such as H a  fibrils and loops seen in EUV and X-ray lines, are very limited. 
Therefore, the measured line-of-sight component of the photospheric field must be 
extrapolated into the field vector in the higher layers. The mostly used way of doing 
this is to assume that the magnetic field is current-free (potential) or, more general, 
force-free above the photosphere, and then to solve the arising equation with the 
measured photospheric magnetic field distribution providing the boundary con- 
dition. The use of force-free fields is justified by the dominance of the magnetic 
field and its stability in the chromosphere and lower corona (Sturrock and Wood- 
bury, 1967). As a consequence, if appreciable currents are present, these must be 
aligned with the magnetic field, since otherwise the resulting Lorentz forces could 
not be balanced by nonmagnetic forces. Therefore, neglecting displacement cur- 
rents, 

V x B = a B ,  (1) 

where a is, in general, a scalar function of position (and time). The practical 
application is confined to the case of a = const., a being treated as a parameter that 
must be determined by comparison of the computed magnetic field configuration 
with chromospheric or coronal features that can serve as tracers of magnetic field 
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topology, for example loops seen in various lines. For varying a one needs infor- 
mation about a throughout the considered volume, o~ = 0 corresponds to the 
current-free case. 

There are three extensively applicated extrapolation procedures (Levine, 1975): 
(a) The Schmidt procedure (Schmidt, 1964): 

The potential field above a limited photospheric region is computed. Implicitly, a 
Nehmann boundary value problem for the upper half space is solved, assuming that 
the magnetic field component normal to the boundary plane vanishes everywhere 
in this plane outside the region covered by the measurement (magnetogram). 

(b) The procedure of Altschuler and Newkirk (1969): 
The potential field in the full volume between the photosphere and a surface at 
some radial distance R1 (about 2.5Re) is computed. The assumption that the field 
becomes radial, thereby simulating the effects of the solar wind, provides the 
boundary condition at r = R1. 

(c) The procedure of Nakagawa and Raadu (1972): 
The constant a force-free magnetic field above a rectangular photospheric region is 
computed. Implicitly the input data are two dimensionally periodically extrapolated 
into the whole magnetogram plane (Seehafer, 1975). 

(a) and (c) start from incomplete data. The need for specifying the boundary 
conditions on vertical planes comprising the considered volume (semi-infinite 
column above magnetogram area) is eliminated by extending the volume into a half 
space. 

In this paper at first the case of the magnetic field being force-free with a = 
constant in the full volume outside the Sun (above photosphere) is considered. 
Then the boundary value problem for a semi-infinite column of arbitrary cross 
section is solved by a Green's function method. 

2. The Exterior Boundary Value Problem for the Sphere 

With a = constant (1) is equivalent to 

B = ~ r x V P + V x ( r x V P ) ,  (2) 

where r is a constant vector (Nakagawa and Raadu, t972) or the radius vector 
(R~idler, 1974), and the scalar function P satisfies the Helmholtz equation 

(V 2 q- ot2)P = O. (3) 

By taking the divergence of (1) it can be seen that div B = 0 is automatically fulfilled 
(except for a = 0). 

There is a difference between the Laplace equation (which must be solved in the 
case of the potential field) and the Helmholtz equation: If a solution of the Laplace 
equation vanishes at the boundary surface S of a finite region and at infinity, it 
vanishes identically outside S, while under similar conditions a solution of the 
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Helmholtz equation does not necessarily vanish (Miiller, 1957). For example, 

sin c~ r 
/ f i r )  - (4) 

r 

and 

COS ~ r 
f2(r) - , (5) 

r 

where r denotes the radius vector and r =lrl, are solutions of the Helmholtz 
equation that vanish at infinity. One can always find a linear combination of fl and 

f2 that vanishes at some distance r = R (and at infinity). 
An exterior boundary value problem with a unique solution can be posed by 

means of an extra condition at infinity (Miiller, 1957), namely the Sommerfeld 

radiation condition 

0s =o( r_ l )  " P = o (r ~), - -  + io~P (6) 
3r 

Let us consider the exterior boundary value problem for the sphere in detail: 
P can be represented by a harmonic expansion .... 

e(r, O, ~o) = ~. ~, R.j(r)Y~)(O, q~), ( 7 )  
n = 0  j=--n  

where Y~) denote spherical harmonics of degree n and order j. Then, the 
coefficients R . j ( r )  must satisfy the equation 

R~i+2R~nj+(a 2 n(n+l)~ R 
r -] . j = o .  ( 8 )  

The general solution of (8) can be written in the form 

R . j ( r ) = A  __1 .0  ) 1 (2) 
(ar )  + B , j  ~ / r H ,  + 1/2 / . . . + i / 2  _ (9) 

~ ( l )  L r ( 2 )  where ,1,+1/2 and ,,n+1/2 denote the Hankel functions of the first and second 
kind, respectively, of the order  n +�89 and A,i, B,j are arbitrary constants. 

Clearly, if only one magnetic field component  is given at r =lR (photosphere), it 
is impossible to determine both A,j and B,j. Nakagawa (1973) gives a solution of 
the boundary value problem with only one set of constants to be determined. 
Obviously, he does not use the general solution of (8), although claiming to do this. 

To define a unique boundary value problem, an additional condition is needed. 
The Sommerfeld radiation condition (6), which is used in studying wave prop- 
agation, is not adequate to the problem. An adequate condition would be that the 
magnetic field outside the sun had a finite energy content. 
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The magnetic energy content M within the volume of analysis is given by 

M =~-~ IB[ 2 dV.  (10) 

V 

From (2) (with r being a constant vector, for convenience), it can easily be verified 
that in a system of rectangular Cartesian coordinates x, y, z not only the function P 
but also the magnetic field components Bx, By, Bz satisfy the Helmholtz Equation 
(3). 

Now, one can show (Rellich, 1943) that, if u is a function that satisfies the 
Helmholtz Equation (3) with ~ r 0 for r > R, the function 

f (R1)= f l l  [ul2dV (11) 

R < r < R I  

tends to infinity as R1 ~ oo. 
Thus, we have the remarkable result: A magnetic field being force-free with 

c~ =constant  everywhere outside the sun cannot have a finite energy content 
(except for ~ = 0). 

3. Green's Function Method for a Semi-Infinite Column 

in the following we use Cartesian coordinates x, y, z and the representation (2) with 
r = (0, 0, 1). Let the domain of analysis be given by 

O<~x<_Lx, 0_<y_<Ly, 0 _ z < o o ,  

where z = 0 defines the plane of magnetograph observation. If the Green's function 
G(r, r') for the Helmholtz Equation (3) in the considered volume is known, the 
values of any solution P can be determined from the values of P at the boundary by 
means of the representation 

P(r')=-ff P(r)O~--GdS'on (12) 
S 

where S denotes the surface enclosing the considered volume, n is the local exterior 
normal on S. 

For constructing the Green's function we consider the inhomogeneous equation 

(V 2 + a2)O = - F  (13) 

with the boundary condition that Q vanishes at S. 
By means of the Green's function, a solution Q of (13) can be represented in the 

form 

O(r')=;f I G(r, r')F(r) d V. (14) 
V 

Let ~Om,(x,y) denote the normalized eigenfunctions of the two-dimensional 
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Laplacian A• in the region 0 <- x <- Lx, 0 <- y <- Ly, i.e. the solutions of the equation 

A~,.n + M.n~.,. = 0  (15) 

that vanish at x = 0, Lx and y = 0, Ly. 
They are given by 

~bm, (x, y ) =  ~ / L ~  sin ( r rmx]  sin (~ny) (16) 
\ Lx ] \ Ly ]" 

The corresponding eigenvalues are 

2 [ m  2 n 2 \  

amn = r [ - T T + T y ! .  (17) \Lx Ly] 

Using (15) and the expansions 

O(x, y, z)= ~ Om.(z)O.,.(x, y), (18) 
m ,  rl = l 

F(x, y, z)= ~ Fm.(z)q*,.n(x, y) ,  (19) 
m,.=, 

we get from (13) 

O~,. +(Ot2--Arnn)Ornn = --Fro,. (20) 

In verifying this note that the expansion (18) can be differentiated twice term by 
term with respect to x and y. Consider, for example, the dependence on x: Because 
of the boundary condition, O can be considered as an odd function in the interval 
- L x  -< x -< Lx and, therefore, OO/Ox as an even function. The values of both O and 
O0/Ox at x = - L x  and x =Lx are equal. Therefore,  the Fourier expansions 
representing them can be differentiated term by term. 

The solution of (20) that vanishes both at z = 0 and as z ~ oo is given by 

o o  

1 
(~mn(Z)~-2~nm n f F,..(t){e-r="l=-'l-e -r~"l~+'l} dt, (21) 

0 

where 

2 
rmn = - -  Ol 

This can easily be shown by splitting the integral on the right-hand side of (21) 
U + f  ~ according to ~o=J0 j= and considering the two summands of the integrand 

separately. 
Because of 

L x L y  

Fm,,(t)= I I F(x, y, t)q~m.(X, y)dx dy, (22) 
0 0 
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(21) becomes 

O,,n(z)=2~m, I I I F(x, y, t)qJmn(x, y ) x  
V 

x {e r~.lz-tl _ e-rm.lz+,l} dx dy dt. (23) 

Putting this expression into (18) and interchanging summation and integration, we 
get a representation of Q according to (14) with 

G ( r , r ' ) :  ~ 6m,(X, y)~0m,(X', Y'){e ~ . l z - ~ ' l  _ e - r . , . I z + z ' J }  (24) 
m , n  = 1 2 rmn 

(24) gives the Green's function for the Helmholtz equation in a semi-infinite 
column of rectangular cross section. If the cross section has another form, the ~b,,, 
must be replaced by the eigenfunctions of the two-dimensional Laplacian in a 
region of corresponding form. For example, considering a semi-infinite cylinder 
Bessel functions must be used. 

The use of the Green's function method in applicating special boundary con- 
ditions shall be illustrated in an example: 

The magnetograph observation provides the boundary condition in terms of the 
vertical magnetic field component B~ at z = 0. Since B~ satisfies the Helmholtz 
Equation (3), it can be determined uniquely by specifying its values at the vertical 
planes enclosing the volume. Then, after determining P from the equation 

02p 
Bz = - a 2 p  _ OZ - ' -~  ' (25) 

which follows from (2), Bx and By can be obtained from (2). 
Let B~ vanish at the vertical planes x = 0, x = Lx, y = 0, y = Ly. It is assumed that 

the values of IBz [ at the boundary are small compared with its values at the inner 
parts of the cross section of the column. Then, from (2), (12), and (24) we get 

: e -  ~ "  ~ o l - -  s i n  - -  
. . . .  1 Amn [ Ly \--~--1 cos \-~y-y ] 

7rm ( ~rmx] rrny 
-rmn--COSLx \ Lx ] s in ( -~y)}  , (26) 

By-= - ~ Cm~ e-r" z[. ,a--cos'rrm (IrmX]sin(rrny]+ 
. . . .  1 Am,, ! Lx \ Lx / \ Ly / 

rcn . ( ~rmx~ r 
Ly \ L~ ! ' 

. [Trmx\ 7my 
Bz= . . . .  1 Cm" e-rm"z sin ' - - '  sin ( L ~ - - r ) \ L ~ /  ' (28) 
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where the Cmn are defined by the expansion (28) at z =0.  (For the practical 
application the magnetogram must be changed or completed in such a way that the 
values at the boundary vanish, for example by adding an artificial boundary.) 

The representation (26), (27), (28) has been used by in studying the large sunspot 
group of August 1972 (Seehafer and Staude, 1977, 1978). It does not require the 
net magnetic flux through the magnetogram area to be zero, as do the Schmidt 
procedure and the procedure of Nakagawa and Raadu. 

There is a close similarity of the Equations (26)-(28) with the Equations (18)- 
(20) of Nakagawa and Raadu (1972). The relation of the two procedures shall be 
considered in detail.: 

The solution (26), (27), (28) is periodic, as the solution of Nakagawa and Raadu, 
but with the periods 2Lx and 2Ly, whereas the solution of Nakagawa and Raadu 
has the periods Lx and Ly. One can get the solution (26), (27), (28) by extrapolating 
the magnetogram, which covers the domain 0 -< x -< L~, 0 -< y --< Ly, into the domain 
- Lx <- x <- Lx, - Ly <- y <- Ly according to 

Bz ( -  x, y, 0) = - Bz (x, y, 0), (29) 

Bz(x, - y ,  0)= -Bz(x,  y, 0), (30) 

and then applicating the formulae of Nakagawa and Raadu to the extrapolated 
magnetogram. The solution of Nakagawa and Raadu is got in the same way if the 
extrapolation of the magnetogram into the domain - i x  <-x <-Ix, -Ly  <-y <-Ly is 
carried out according to (instead of (29), (30)) 

B z ( - X ,  y, o) = B~(x, y, o ) ,  

Bz(x, - y, o) = Bz (x, y, 0 ) .  

(31) 

(32) 

The use of (29), (30) instead of (31), (32) ensures that the net magnetic flux through 
the (original) magnetogram area is balanced. 

As to the conditions at the (vertical part of the) boundary corresponding to the 
two solutions, the present solution is more restrictive in that it requires the vertical 
magnetic field component to vanish at the boundary, whereas the solution of 
Nakagawa and Raadu only requires that 

and 

Bz(0, y, z )  = u z ( G ,  y, z )  (33) 

B~(x, O, z)= Bz(x, Ly, z) .  (34) 

But, since it is assumed to be twice differentiable term by term with respect to x and 
y, the solution of Nakagawa and Raadu requires additionally (Seehafer, 1975) 

3Bz(x, y, z)l OBz(x, y, z)l 
Ox x =0 = ' (35) 

(~ X x = L x  
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OBz(x, y, z)l OBz(x, y, z)l 
Oy y=0 -- 0y y=Ly' 

which the present solution does not. 

(36) 

4. Discussion 

In this paper it is shown (Section 2) that a magnetic field that is force-free with 
a =constant  (a # 0) in the whole volume outside the sun cannot have a finite 
energy content and that such a field cannot be determined uniquely from only one 
magnetic field component  given at the photosphere.  Therefore,  the extension of a 
global scale constant a force-free magnetic field to infinity neither has a physical 
meaning nor provides a mathematically unique boundary value problem. The use 
of global scale constant a force-free magnetic fields must be confined to the 
consideration of finite volumes. A generalization of the method of Altschuler and 
Newkirk (1969), in which the potential field between the photosphere and a surface 
at some radial distance (where the field is assumed to become radial) is computed, 
to cases of a r 0 seems most reasonable. However,  since the curl of a radial field has 
no radial component,  the way of matching to the outer solar wind dominated regions 
must be appropriately changed then. 

The start from global scale magnetograms in extrapolating photospheric mag- 
netic fields has the advantage (compared with the start from magnetograms cover- 
ing limited regions) that no reference (in terms of special boundary conditions) to 

fields surrounding the magnetogram area is needed. Its disadvantage is the necessity 
to assume that the fields are steady for a period of about one month, which is 
needed to get a complete magnetic map of the photosphere.  Thus, the extrapola- 
tion starting from magnetograms covering limited regions is also of interest. 
Moreover,  this is the case so far as special physical assumptions, such as the 
constancy of a, are more questionable on a global scale. 

If one computes the constant a force-free magnetic field in a semi-infinite 
column above a limited photospheric region, it is inadequate to eliminate the need 
for boundary conditions at the vertical parts of the surface bounding the considered 
volume by extending the volume into either the whole exterior of a sphere or a half 
space, except for o~ = 0. These extensions do not provide unique boundary value 
problems. Chiu and Hilton (1977) have shown that the boundary value problem in 
a half space, using only the normal field component at the boundary as boundary 
values, is non-unique. It should be clarified if the result that a constant o~ force-free 
magnetic field cannot have a finite energy content is also valid for the half space (a 
mathematically non-trivial problem). 

In the case of the extrapolation starting from magnetograms covering limited 
regions the boundary conditions must be treated carefully: Comparisons of field 
line calculations for the same magnetogram region using the Schmidt procedure 
and using the procedure of Nakagawa and Raadu can show drastic differences in the 
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conf igura t ion  of field lines, these  d i sc repanc ies  be ing  due  to the  d i f ferent  t r e a t m e n t  

of the  b o u n d a r y  cond i t ions  in the  two schemes  (Levine,  1975). The  G r e e n ' s  funct ion  

m e t h o d  given in Sect ion 3 r ender s  it poss ib le  to d e t e r m i n e  the cons tan t  c~ fo rce - f ree  

magne t i c  field ( including the  case a = 0) above  a l imi ted  p h o t o s p h e r i c  reg ion  f rom 

b o u n d a r y  condi t ions  at the  surface  enclos ing  the ac tual ly  cons ide red  vo lume.  

Di f fe ren t  b o u n d a r y  condi t ions ,  especia l ly  such cons ide red  as real is t ic  for  phys ica l  

reasons ,  can be imposed ,  the  p re sen t ly  used  ex t r a po l a t i on  m e t h o d s  be ing  inc luded  as 

specia l  cases in the  de r ived  genera l  scheme.  The  prac t ica l  use of the  scheme has been  

i l lus t ra ted  in der iv ing  an ex t r apo l a t i on  p r o c e d u r e  which uses b o u n d a r y  cond i t ions  

s o m e w h a t  d i f ferent  f rom those  of the  p r o c e d u r e  of N a k a g a w a  and  R a a d u  and,  

the re fo re ,  does  not  r equ i r e  tha t  ne t  magne t i c  flux th rough  the  m a g n e t o g r a m  a rea  to 

be  zero.  
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