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Abstract. - In a magnetofluid, magnetic and velocity fluctuations B' and U' can generate a mean 
electromotive force along the mean magnetic field, which has been termed the alpha-effect. In 
the present paper the mathematical relationship between the alpha-effect and the mean current 
helicity of the fluctuations, (B' . curl B' ), hitherto proven for the case that i) either the magnetic 
or the velocity fluctuations are statistically homogeneous and stationary, ii) the first-order 
smoothing approximation (FOSA) is valid, and iii) the mean flow, (U), vanishes, is rederived, 
assuming the magnetic fluctuations to be stationary and the coupled magnetic-electric 
fluctuations to be homogeneous, but without using FOSA and allowing for a non-vanishing mean 
flow. 

In order to explain the origin of the cosmical magnetic fields, the theory of the turbulent 
dynamo has been developed [l-31. The central mechanism in this theory is the alpha-effect, 
namely the generation of a mean electromotive force (e.m.0 along a mean, or large-scale, 
magnetic field by turbulently fluctuating, or small-scale, parts of velocity and magnetic field. 
The effect has also been invoked to understand the plasma behaviour in fusion 
experiments [4]. 

It has been found that kinetic and magnetic helicities can enable a turbulent dynamo 
effect. With U ,  B and A denoting fluid velocity, magnetic field and a magnetic vector po- 
tential, the densities per unit volume of kinetic, magnetic and current helicity are defined by 

H K = u " r l u ;  H M = A . B ;  H c = B . c u r l B .  (1) 

Let the evolution of the magnetic field be described by the induction equation 

aB - = C W ~ ( U  X B )  + q V 2 B ,  
at 

with a constant magnetic diffusivity q = (po  U)-', Q denoting the electrical conductivity. If, as 
usual in mean-field electrodynamics, velocity and magnetic fields are split up into mean and 
fluctuating parts according to 

(3) U = (U) + U ' ,  B = ( B )  + B ' ,  
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with angular brackets denoting averages and primes the corresponding residuals, then 
eq. (2) can be separated into two coupled equations for the time evolution of ( B )  and B‘ ,  
namely 

(5) 
3B’ - = curl(u’ x ( B ) )  + curl((u) x B ’ )  + ?V2B’ + curlG, 
at 

where 

and 

G = ( u r  x B ‘ )  (6) 

G = U ’  x B‘ - ( u r  x B’ ) , (7) 

G is the mean e.m.f. caused by the fluctuations. 
Formally the averages can be understood as ensemble averages. They can, however, 

physically meaningfully be defined as space, time, or space-time averages if the turbulence 
has the two-scale property, i.e. if the characteristic scales (space, time, or space-time) of the 
fluctuations are much smaller than those of the mean fields, so that proper means can be 
obtained by averaging over intermediate scales. 

Usually ti is evaluated by assuming the mean velocity to vanish, 

( U )  = 0 , (8) 

and applying the fist-order smoothing approximation (FOSA), which consists in neglecting 
curlG in eq. (5). Then eq. (5 )  simplifies to 

aB’ - = curl(u’ x ( B ) )  + qV2B‘, 
at (9) 

which with ( B )  taken as a constant (justified in the case of a space-time two-scale turbulence 
with (...) defined as space-time average) can be easily solved by using Fourier- 
transformation techniques, allowing for an expression of B’ and, therefore, also of G in terms 
of U’.  One thus arrives at relations revealing a connection between the alpha-effect and the 
kinetic helicity H i  of U‘.  

As found by Keinigs [5], who used eq. (9) to express t: in terms of B’ ,  the alpha-effect is, 
however, more directly related to current helicity than to kinetic helicity, namely by the 
equation 

In deriving this, Keinigs assumed the magnetic fluctuations to  be statistically stationary, 
homogeneous and symmetric about the direction of (B) .  Then 6 and ( B )  are parallel. For the 
case that the velocity fluctuations represent a turbulence that is stationary and 
homogeneous, but not necessarily rotationally symmetric about any axis (or even fully 
isotropic), and the scalar CI has consequently to be replaced by a tensorial quantity, Radler 
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and Seehafer [6] derived the relation 

uv (Bi)(Bj) = - q(B‘ * CurlB’ ) , (11) 

where Cartesian coordinates x l ,  x2, x3 have been used and the tensor aij is defined by 

4 =a&).  (12) 

Equation (10) has been written in such a way that also this slightly more general case is 
covered. In the following the relation (10) is rederived without applying FOSA and without 
using eq. (8): 

Let the magnetic fluctuations be statistically stationary and the coupled 
magnetic-electric fluctuations be statistically homogeneous. To formulate the actually needed 
assumption on the spatial symmetry more precisely: the mixed magnetic-electric two-point 
correlation tensor Qu(x, r )  = (B/  (x)Ej’ (x + r)) ,  E’ denoting the fluctuating part of the 
electric field E ,  is supposed to be independent of x. 

Our rederivation of eq. (10) will be essentially based on a consideration of the mean value 
of the fluctuating part of the magnetic helicity, (A’eB’).  Now, a statistically homogeneous 
field is by definition of infinite spatial extent, so that it is difficult to define a proper vector 
potential for B’.  This difficulty can be overcome by working with relative magnetic helicity, 
H R ,  as defined by Berger and Field [“I. H R  is not a helicity density, as e.g. HM, but measures 
the total, i.e. volume-integrated helicity of a magnetic field in a (in general finite) volume V, 
namely by comparing it to the current-free field with the same n_ormal component on aV. 
More explicitly: the field B given in Vis extended into the exterior V of V by the current-free 
field in Vwith the same normal component on aV as the given field. From the total magnetic 
helicity of the entire field defined in all space one then subtracts that of the field B, which is 
current-free on both sides of aV and whose normal component on aV is again that of the given 
field (B, is thus generated by a current-sheet on av). HR depends only on the field B in V. 

Let V be a sphere cut out of our infinitely extended field. The rate of change of H R  in Vis 
given by [7] 

= - 2  E . B d V + 2  ( A , X E ) . n d S .  I av I W R  (v) 
dt 

V 

Here n is the exterior unit normal on aV and A, the Coulomb vector potential (satisfying 
divA, = 0) of B,. The volume integral on the right-hand side of eq. (13) is due to the internal 
dissipation of magnetic helicity, the surface integral describes the flow of magnetic helicity 
through aV. 

For the fluctuating part Hf, of H R  one finds a relation fully analogous to eq. (13), which 
after averaging reads 

= -2  ( E ’ * B ’ ) d V +  2 (A; x E ’ ) . n  dS I av I d(HA (VI) 
dt 

V 

A coupling between fluctuating and mean fields does not occur here, since only linear 
equations are used to  define HR and to calculate its rate of change. So eq. (14) is derived from 
Maxwell’s equations divB’ = 0 and aB’/at = -curlE’ and B’ = curlA’. 

Because of the assumed statistical stationarity of the magnetic fluctuations, the left-hand 
side of eq. (14) must vanish. The surface integral on the right-hand side vanishes as a 
consequence of the spatial homogeneity of the correlation between magnetic and electric 
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fluctuations: AA can be represented in the form 

where JI, is the density of the sheet current on aV that generates BI,. It is given by the jump 
AB; of the tangential component of BI, across W, 

,uoJb(x,) =n, X S b ( x a ) .  (16) 

By using appropriate Green’s functions for the potential-field problems in V and its 
complement v, S; in turn admits of a representation 

The detailed form of the vector-valued function G(x,, xb) is not needed here. We shall only 
use the fact that AA at  a given position on aV is obtained as the superposition of the influences 
of the values of B ‘ . n  at  all other points. Let r ,  8 ,  5 be spherical polar coordinates and 
consider that part of the helicity flux at  the north pole, 8 = 0, of our sphere which is 
determined by the value of B‘ en at  the point (e,, CO). Compare this with the helicity flux at  
( e ,  + r, S o )  due to the influence of the south pole, 8 = ii. The vector r from (eo ,  S o )  to the 
north pole is equal to that from the south pole to (e, + i ~ ,  +o).  So the two-point correlation 
between fluctuating magnetic and electric fields is the same for both point pairs and the 
considered parts of the helicity fluxes at  the north pole and at  the point (0 ,  + 7i ,  G o )  cancel 
one another. 

The latter can perhaps be seen more clearly from the fact that the relevant quantities for 
the second point pair are obtained from those of the first one by a mirror reflexion in the 
plane through the centre of the sphere and perpendicular to the radius vector of the point 
(0,/2, $,). The helicity flow as a pseudoscalar quantity must change sign under such a 
reflexion. 

Since, in this way, for any contribution to the helicity flow another one just cancelling it 
can be found, the total flow of relative magnetic helicity through aV must vanish. 

Letting now V+ 0, we arrive at  

( E ’ # )  = 0 .  (18) 

Next we derive an expression for (E’  .B’ ) following from Ohm’s law. Using ,uoj = curlB and 
eq. (6), the unaveraged and averaged forms of Ohm’s law can be written as 

((U) + U‘) x ( ( B )  + B ’ )  = E = - -  (8 +.it 
5 

= Tcurl(B) + 1;curlB‘ -(U) x ( B )  - (U) x B’ - U ’  x ( B )  - U ’  x B’ (19) 

and 

( E )  = curl ( B )  - (U) x ( B )  - 8 .  

For their difference we then find 

(20) 

E’ = E - ( E )  = YcurlB‘ - (U) x B’ - U ’  x ( B )  - U ’  x B’ + [,’, (21) 



N. SEEHAFER: CURRENT HELICITY AND THE TURBULENT ELECTROMOTIVE FORCE 357 

which, by scalar multiplication with B‘ and subsequent averaging, gives 

E ’ . B ’ =  vcurlB’.B’ + (U’ x B ’ ) ( B )  + 8 . B ’  (22) 

and 

(E”)  = ‘7( curlB’*B’) + c:‘.(B). 

Note that eq. (23) has been derived without any assumption except for Ohm’s law in the form 
j = o(E + U X B) .  It shows that, as already noticed by Keinigs and Gerwin [8] for the case of 
(U) = 0, eq. (10) is equivalent to eq. (18). We have, however, derived eq. (18) independently 
and, therefore, achieved an independent derivation of eq. (10). 

Most remarkable in our rederivation seems to be the exemption from FOSA. 
Our presuppositions concerning the temporal and spatial symmetry of the turbulence 

differ slightly from those of Keinigs [5],  who assumed the magnetic-magnetic (instead of the 
magnetic-electric) correlations to be independent of position. 

Nothing has been assumed about the mean velocity. So we have in particular dispensed 
with the usual assumption (U) = 0. If (U) is uniform, then one can change to a coordinate 
system moving with velocity (U) with respect to the original one. A non-uniform mean 
velocity, on the other hand, has represented a considerable difficulty in traditional dynamo 
theory and has, for the calculation of the turbulent e.m.f., been taken into account at most 
approximately (see ref. [l], Chapter 8). 

The component of the turbulent e.m.f. in the direction of (B) ,  a(B) ,  can lead to  an increase 
as well as to a decrease of the energy contained in the mean magnetic field. In the first case it 
acts as a dynamo. Equation (10) can be used to distinguish between both possibilities [8,6,9]: 
to be able to  pick up energy from the fluctuations, the mean magnetic field must possess a 
current helicity, ( B )  curl (B) ,  whose sign is opposite to that of the mean current helicity of 
the fluctuations. 

Addi t ional  Remark  

It has been pointed out by an anonymous referee that, instead of working with relative 
magnetic helicity, one can alternatively define A’ via the relation between the Fourier 
transforms (considered as generalised functions) of A’ and B’.  Then eq. (18) is readily 
obtained using normal Coulomb gauge for A’ .  
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