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Abstract. It is shown that, at neutral points of force-free magnetic fields, the electric current density must 
vanish. This property is independent of whether the neutral points are isolated or (e.g.) fill lines or surfaces. 
One implication is the fact that in a cold pressureless plasma the formation of neutral current sheets cannot 
be adiabatically slow. The field-line topology in the neighbourhood of neutral points is discussed. At neutral 
points of  force-free magnetic fields in general three constant-a surfaces, c~ defined by the equation 
7 x B = eB, with the same value of a intersect orthogonally. If, during a time-development, the magnetic 
field gradient matrix c~Bi/c~xj becomes singular at a neutral point, the field topology can change qualitatively 
- in general connected with the merger of two or more neutral points into one and/or the splitting up of 
one neutral point into several others. This can be interpreted as implying the transition from a quasi-static 
evolution to a dynamical state in which magnetic energy is released. 

1. Introduction 

Neutral (singular, null) points of magnetic fields, where the field vanishes, have received 
much astrophysical interest since they are believed to be the preferential sites of the 
explosive conversion of magnetic energy into particle energies. It is widely accepted that 
solar flares and magnetospheric substorms are manifestations of such an energy 
conversion. Probably the mechanisms studied there are relevant for flare stars, maybe 
also for other astronomical phenomena such as radio galaxies and quasars (Sturrock 
and Knight, 1976). 

In most models of the energy conversion process a cooperation between magnetic 
field convection and diffusion, accompanied by field line reconnection, is essential (see 
recent reviews by Vasyliunas, 1975; Sonnerup, 1979; Parker, 1979, Chapter 15; Baum 
and Bratenahl, 1980; Syrovatskii, 1981; White, 1983; Galeev, 1984). To get a sufficient 
amount of magnetic field diffusion for the whole process, the reconnection process, to 
operate fast enough, because of the high electrical conductivity of the plasmas encoun- 
tered very steep current gradients are needed. Therefore the existence of current sheets 
(Syrovatskii, 1981; Priest, 1981) is assumed; an alternative model with tearing-mode 
reconnection in sheared loop structures has been proposed by Spicer (1977; see also 
review by Van Hoven, 1981). 

One way in which a current sheet may form is the magnetic collapse of the region near 
a magnetic neutral point. This process, suggested by Dungey (1953), has been studied 
particularly by Syrovatskii and his co-workers (cf. review by Syrovatskii, 1981), most 
recently by Bulanov and Olshanetsky (1984) and by Bulanov et al. (1984). The time- 
developments considered start from an equilibrium state. Whether this is unstable and 
whether the nonlinear development of disturbances leads to the formation of a current 
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sheet depends on the magnetic field configuration near the neutral point in the initial 
state, the kind of the disturbances, and the boundary conditions imposed. Hitherto in 
all explicit models the initial magnetic field was assumed to be current-free. However, 
a generalization to models with force-free magnetic fields - i.e., magnetic field aligned 
electric currents - would be useful, since the currents represent magnetic energy free to 
be released; whereas in potential field models the energy must be transported, by waves, 
from distant sources to the current sheet. 

Force-free magnetic fields are common in (hot) tenuous cosmic plasmas such as 
stellar envelopes, in particular the solar atmosphere. There a low mass-density is 
connected with a correspondingly low energy-density of the plasma, the particle number 
density being on the other hand still high enough for a high electrical conductivity, so 
that Lorentz forces large compared with the non-magnetic forces are possible and in 
equilibrium significant electric currents must be aligned with the magnetic field. 

In Section 2 of the present paper it is proven that in neutral points of force-free 
magnetic fields the electric current density must vanish. The implications of this result 
for the field structure in the neighbourhood of neutral points may help to clarify whether 
the presently discussed current sheet formation processes can work in or can be 
generalized to force-free fields. Moreover, it is important to know the possible types of 
the neutral points of a magnetic field (cf. Section 3) since positions and types of the 
neutral points determine the qualitative structure of the field.It has been suggested that 
changes of the field topology during a slow evolution through a sequence of equilibrium 
states cause the transition from the quasi-static evolution to a dynamical state with an 
explosive release of magnetic energy (Seehafer, 1985; reviews by Birn and Schindler, 
1981; Low, 1982). Local changes of the field topology can be understood as type 
changes of a neutral point. 

2. Current-Free Character of Neutral Points of Force-Free Magnetic Fields 

In the low-frequency (mhd) approximation, 

#oJ = V • B ,  (1) 

a force-free magnetic field is defined by 

(v x B) x R = o, (2) 

v .  B = 0 .  (3) 

For any non-neutral point and its neighbourhood we can write 

V x B = ~(x) '  B ,  (4) 

with ~ denoting a (pseudo-) scalar function of position, c~(x) can be assumed to be 
continuous and differentiabte to any order if B(x) is assumed to be sufficiently smooth, 
since in the neighbourhood of the non-neutral point there is a non-vanishing field 
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component Bi, and 

(7 x B)i 
- - -  ( 5 )  

Bi 

From Equation (4) it follows that 

= (7 • t ) ' t ,  (6) 

where t denotes the unit vector in the direction of B, B = B[ �9 t. Thus ~(x) is a simple 
function of the field line geometry, independent of the specification of dBJ (cf. B ostr6m, 
1973). In neutral points t and accordingly ~ are not defined. 

For fields with spatially constant ~, the so-called constant-~ or linear (because with 
prescribed the field is determined from a linear equation) force-free fields (cf., e.g., 

Seehafer, 1978), a neutral point of the B-field is obviously also a neutral point of the 
j -field. 

Now assume that, for a B-field with non-constant c~, x o is a neutral point of the B-field 
and a non-neutral point of the j-field: B(xo) = 0, j(Xo) ~ 0. Then in any neighbourhood 
of x 0 there are non-neutral points of the B-field since otherwise j(x0) = 0. 

Let ~ denote the unit vector in the direction of j, j = I j l '  t, and a be defined by 

~2 = (7 x i) .  ~. (7) 

It is given by 

~ _  (V •  

i jJ  
(8) 

Assume that j is differentiable with bounded derivatives (respectively, that B is twice 
differentiable with bounded second-order derivatives). Then in x o and a (closed) 
neighbourhood ofx  o ~ is well-defined and bounded. Consider a sequence of non-singular 
points of the B-field which tends to x o. Then e tends to infinity, as can be seen from 
Equation (4), whereas & is bounded (~ is defined in the points of the sequence since 
because of the assumed continuity of B each of these points has a neighbourhood in 
which Bve 0). This, however, is a contradiction, since for j r 0 and B r 0, that is for 
all points of the sequence, t = ~ and 7 = ft. 

Thus we have established that, at a neutral point of a force-free magnetic field, the 
electric current density must vanish. 

3. Field Line Topology Near Neutral Points 

Parametric representations x(t) of individual magnetic field lines are obtained as 
solutions of the differential equation 

d x  
- B .  ( 9 )  

dt 
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The entity of the field lines is called field fine flow, analogously to the phase flow of a 
dynamical system, which denotes the entity of the phase space trajectories. The singular 
points of B are the fixed points of the field line flow and vice versa (Arnold, 1973). Field 
lines can only approach singular points as t ~ ~ or t ~ - ~ .  The classification of 
singular points of (two-dimensional) vector fields can be found in books on nonlinear 
oscillations (e.g., Minorsky, 1962; Bogoliubov and Mitropolsky, 1961). Neutral points 
of magnetic fields in particular have been studied by Dungey (1953), Stern (1966), 
Bulanov et al. (1984), and most carefully by Fukao et al. (1975). All these studies are 
based on the first-order representation of B in the neighbourhood of the neutral point 

XO~ 

B = ~ ( x  - Xo) ,  (10)  

where A denotes the gradient matrix of B, 

Ao " OBi --- - -  , x = x o . ( 1 1 )  

Oxj 

Because of divB = 0 the trace of A is zero, 

tr(A) = 0. (12) 

Consider two vector fields v(x) and w(x) defined on a spatial region M, which is assumed 
to be a differentiable manifold, e.g., all space or an open subset of it. The field line flows 
of v and w are called topologically equivalent (and v and w topologically orbitally 
equivalent) if there is a homeorphism (one-to-one continuous mapping with continuous 
inverse) of M on itself such that the field lines of v are transformed into the field lines 
of w (while the field direction along the field lines is preserved). 

Whith B given by Equation (10) and x o = 0, Equation (9) takes the form 

dx 
- A x  . ( 1 3 )  

dt 

Two such linear systems (respectively, the field line flows which they define) are 
topologically equivalent if their coefficient matrices have only eigenvalues with non- 
vanishing real parts and if the number of eigenvalues with positive (negative) real parts 
is the same for both systems (Arnold, 1973). In the neighbourhood of a fixed point a 
nonlinear system is topologically equivalent to its linear part if the linear part has only 
eigenvalues with real parts different from zero. 

If, on the other hand, the matrix A given by Equation (11) has an eigenvalue with 
vanishing real part the use of the first-order representation of B is not sufficient for 
studying the qualitative field-line behaviour near the neutral point. 

Because the current density vanishes at the magnetic neutral point, for a force-free 
field A is symmetric, that is its eigenvalues are real and the eigenvectors orthogonal. 

If we exclude the case when one of the eigenvalues vanishes - i.e., assume det (A) # 0, 
because oftr(A) = 0 two eigenvalues are positive and one negative or two negative and 
one positive. That is near the neutral point B is topologically equivalent to a three- 
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dimensional saddle: With the axes of an orthogonal Cartesian coordinate system given 

by the principal axes of A, the general solution of Equation (13) is 
3 

X : Z cixie~i' ,  ( 1 4 )  
i = 1  

where the 2 i and x,. denote the eigenvalues and corresponding unit eigenvectors (unit 

vectors along the coordinate axes), respectively, and the ci are arbitrary constants. If  a 
field line is on a coordinate axis or on a coordinate plane, it does not leave this axis or 

this plane. Let 21 and 22 be positive and 23 negative. In the x 1 - x 2 plane all field lines 
tend to the origin as t - ,  - o% i.e., the origin is a node. The positive and the negative 

x 3 half-axes are field lines tending to the origin as t ~ + ~ .  In the x 1 - x 3 and in the 

x2 -- x3 plane the origin is a saddle (X) point. 
It should be noted that, in the general case when no real part of an eigenvalue of A 

vanishes, also non-force-free fields are topologically equivalent to a saddle in the 

neighbourhood of the neutral point, since this is a consequence of tr(A) = 0. In 

particular in two dimensions a focus, where the field lines tend to the singular point while 
infinitely often spiraling around it (and which corresponds to a pair of complex 

conjugate eigenvalues), is topologically equivalent to a node. 
From Equations (3) and (4) it follows that 

(v~) .  B = 0 ,  (15) 

i.e., c~ is constant along a field line and the field lines lie on surfaces c~ = constant. For 

the three-dimensional linear saddle the coordinate planes are magnetic surfaces (the 

normal field component vanishes on them) and, therefore, surfaces c~ -- constant. Since 

these planes have common field lines, namely the coordinate axes, the ~ value must be 
the same for all three planes. 

For nonlinear B the planes are deformed to smooth surfaces composed of field lines 
(invariant manifolds). A neutral point of a force-free field with det(A) # 0 is a point of 
intersection of three constant-c~ surfaces with the same value of c~. 

Much less can be said if det(A) = 0. Because of t r(A) = 0 then either one eigenvalue 
vanishes and two are different from zero or all three eigenvalues vanish. 

Let one eigenvalue be zero and two different from zero. Then one can use the theorem 

(cf. Bogoyavlensky, 1980) that if k eigenvalues have negative real parts there is locally 
a k-dimensional invariant manifold on which all field fines tend to the singular point as 

t ~ to (for k eigenvalues with positive real parts correspondingly as t ~ - oo). In the 

case considered, where one eigenvalue is positive and one negative, this means that there 

are two smooth curves through the singular point such that one of the curves is a pair 
of field lines tending to the singular point and the other a pair field fines diverging 
from the singular point, c~ being not defined at the singular point, the values of  e on the 
four field lines may be different from each other. 

The two curves through the singular point intersect orthogonally, since when field 
lines have a definite direction at the singular point this must be the direction of an 
eigenvector of the finearized system (cf. Bogoyavlensky, 1980). Correspondingly, in the 

case of  three nonvanishing eigenvalues the three constant-~ surfaces intersect 
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orthogonally, though if the two eigenvalues with equal sign have also equal absolute 
values the node in the x~ - x 2 plane may be deformed to a focus. 

4. Discussion 

It should be noted that in deriving the result of Section 2, the current-free character of 
neutral points of force-free magnetic fields, no use has been made of div B = 0. Thus 
this result can be applied to hydrodynamic flows with parallel vortex lines and 
streamlines (Beltrami flows), no matter whether these are incompressible or compres- 
sible - i.e., whether or not the flow field is solenoidal. 

Neutral points of non-force-free magnetohydrostatic equilibria, which are character- 
ized by 

7 x ((V x B) x B) = 0, (16) 

are not necessarily current-free. A simple counter-example is the cylindrically symmetric 
linear pinch with uniform axial current density, where B vanishes along the symmetry 
axis (cf. Shercliff, 1965; p. 71). 

Using B(xo)= 0 and Equations (1) and (3), at a magnetic neutral point Xo, 
Equation (16) takes the form 

( j ' 7 )B  = 0,  x = x o. (17) 

Ifj  (Xo) r 0, j defines a direction at x o and the derivatives of B in this direction vanish 
there. Sweet (1958) studied the field configuration near neutral points of magneto- 
hydrostatic fields representing B by its linear terms and concluded that the neutral points 
must fill lines (or surfaces). In fact, in the linear approximation Equation (17) implies 
that B is invariant along the direction of j, but nothing is said about the influence of the 
higher-order terms. 

If we choose a coordinate system with one axis along the direction of j, we see from 
Equation (17) that the gradient matrix of B, defined by Equation (11), is non-regular; 
i.e., admits of the eigenvalue zero. Then the other two eigenvalues are both zero, both 
purely imaginary and complex conjugate, or both real with equal absolute values and 
opposite signs; the latter case is briefly discussed in Section 3. 

An evident consequence of the current-free character of the neutral points is that in 
force-free magnetic fields neutral current sheets, where the magnetic field vanishes in 
the centre of the sheet, cannot exist and that in a cold pressureless plasma the formation 
of a neutral current sheet cannot be adiabatically slow. 

Let the magnetic field evolve through a sequence of force-free equilibria. As long as 
no eigenvalue of the gradient matrix A changes sign these equilibria are topologically 
equivalent in the neighbourhood of the neutral point. If, however, one eigenvalue 
becomes zero, the transition to a non-equivalent topology, a structural bifurcation 
(Kubi6ek and Marek, 1983, Appendix C; Haken, 1983) can occur. 

Bifurcations connected with the passage of real eigenvalues through zero are called 
real bifurcations. A complex bifurcation (Hopf bifurcation) occurs if a pair of complex 
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conjugate eigenvalues crosses the imaginary axis. In a magnetic field this latter effect 
cannot be isolated, since because of tr(A) = 0 the third eigenvalue, which is real, must 
vanish then. 

Local qualitative changes of the field-line topology are possible only at neutral points 
of the field. In the neighbourhood of a given point x o all vector fields for which x o is 
a non-neutral point are topologically equivalent to each other: given a continuously 
differentiable vector field v(x) with v(xo) # 0, for a sufficiently small neighbourhood M 
of x o there is a diffeomorphism (one-to-one differentiable mapping with differentiable 
inverse) of M onto itself such that the field lines of v are transformed into straight lines 
(Arnold, 1973). 

A local change of the field topology at a neutral point is obviously accompanied by 
(respectively, represents also) a global topological change of the field in which the neutral 
point is embedded. On the other hand neutral points are not necessary for global 
topological changes, in particular if infinitely long (including closed) field lines are 
present (cf. Haken, 1983). 

So far the existence of magnetic neutraI points has been presupposed. In general the 
state of the system considered will depend on external parameters (control parameters). 
Changes of these parameters induce (or describe, respectively) an evolution of the 
system. The loci of the neutral points are obtained as solutions x(a) of the equation 

B(x, a) = o ,  (18) 

where a denotes a vector of parameters. Given a pair (Xo, %) such that Equation (18) 
is satisfied, according to the implicit function theorem, in a neighbourhood of a o there 
is a unique solution x(a) if the Jacobian determinant of B with respect to x, that is the 
determinant of the magnetic field gradient matrix A is different from zero at x = xo, 

a = a  0. 

Thus, since a purely complex bifurcation is not possible, for magnetic fields the 
condition for structural instability, det(A) = 0, coincides with the condition for branch 
points in x - a space (cf. Kubi~ek and Marek, 1983). At such branch points different 
solution curves x(a) (branches) meet or cross each other. Therefore, a structural 
bifurcation of B at a neutral point will in general be connected with the merging of two 
or more neutral points into one and/or the splitting up of one neutral point into several 
others The origination of a closed field line (limit cycle) from a neutral point (which 
represents itself a field line), typical of a Hopf bifurcation, is not to be expected during 
the evolution of force-free fields, at least if not all three eigenvalues vanish. 

In the general, structurally stable case, when all eigenvalues are different from zero, 
at a neutral point of a force-free magnetic field three magnetic surfaces intersect. Under 
a structural bifurcation these surfaces are destroyed, at least in part. In fusion research 
the existence and preservation of magnetic surfaces is considered as an essential 
requirement for plasma confinement by magnetic fields (Morozov and Solov'ev, 1966; 
White, 1983). Also in cosmic situations the destruction of magnetic surfaces may cause 
the transition of a quiescent plasma to a dynamical state. 

Magnetic surfaces separate spatial regions with different plasma properties from each 
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other. In solar active regions, for example, density and temperature are significantly 
increased compared with the rest of the solar atmosphere; besides that an active region 
is partitioned in subregions with different plasma regimes. Sweet (1958; see also 
Syrovatskii, 1981) has modelled the magnetic field of a region with four sunspots (two 
bipolar spot pairs) by a four-cell structure with two neutral points. The four cells are 
separated by magnetic surfaces and any field line on these surfaces ends or starts in at 
least one of the neutral points. Evidently a topological change at one of the neutral points 
destroys the whole equilibrium structure. 

In a plasma of infinitely high electrical conductivity, due to the frozen-in-field 
condition structural bifurcations of the magnetic field are not possible. With a small 
amount of resistivity a quasi-static evolution including topological changes seems 
possible if the evolution is sufficiently slow; if fluctuations are present these can provide 
for the necessary decoupling of the mean magnetic field from the plasma. 

On the other hand, a nearby but topologically non-equivalent state with lower 
magnetic energy can exist. If the system approaches a structurally unstable state a small 
disturbance connected with a change of the magnetic field topology may lead to the onset 
of a dynamical process during which free magnetic energy is released. 
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