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Resistivity profile and instability of the plane sheet pinch
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The stability of the quiescent ground state of an incompressible, viscous and electrically conducting
fluid sheet, bounded by stress-free parallel planes and driven by an external electric field tangential
to the boundaries, is studied numerically. The electrical conductivity varies as%ogh), where

X, is the cross-sheet coordinate anis the half width of a current layer centered about the midplane

of the sheet. Foa<0.4L, whereL is the distance between the boundary planes, the ground state is
unstable to disturbances whose wavelengths parallel to the sheet lie between lower and upper
bounds depending on the valueafind on the Hartmann number. Asymmetry of the configuration
with respect to the midplane of the sheet, modelled by the addition of an externally imposed
constant magnetic field to a symmetric equilibrium field, acts as a stabilizing factor1998
American Institute of Physic§S1070-664X98)02106-3

I. INTRODUCTION number Ha. A similar result for the cylindrical pinch was
o ) ) ~ proven by Montgomery° Ha is the geometric mean of two
The equilibrium states of_electrlc_:ally conducting fluids Reynolds-like numbers, one being kinetic and the other mag-
or plasmas have been a subject of intense study for a longegic. These do not influence the stability boundaries inde-
time, motivated in particular by the interest in controlled pendently, but only in combination in the Hartmann number.

thermonuclear fusion, as well as that in space and astrophysiy,, s )| calculations of stability boundaries in which viscos-

cal phenomena such as plasma loops in the solar corona. IK’ is neglected pertain to the limit Ha= and the stability

: : A oundaries obtained are independent of the remaifrivayg-
be held together by the action of an electric current passm%etic) Reynolds-like number.

through it with the pressure gradients being balanced by the A recent stud§® has been done on the MHD equations

Lorentz force. The resultant configuration is known as a . L S
pinch. without any boundary-layer approximation and with viscos-

Pinch configurations are subject to various instabili—ity take_n into.accoun_t, in a voltage-driven.incompressiblle
ties'? Of special interest here are the tearing modes whicﬁheet .meh with spatllally anq f[emporally “T"fo.”” kinematic
belong to the class of finite-resistivity instabilities. By de- viscosity and magnetic diffusivity, as well with impenetrable

stroying magnetic surfaces, they can shorten the confinemeﬁ[ress_'free .boundanes. Itis fou.nd .that Fhe quiescent ground
time of fusion plasmas. Tearing modes represent one of tharate(in which the current density is uniform and the mag-
basic mechanisms for magnetic reconnection and are ald¥tic field profile across the sheet is lineg@mains stable,
thought to play a role in the explosive release of magnetid'© matter how strong the driving electric field. This contrasts
energy in space and astrophysical plasteag., substorms in With results of Shan, Montgomery, and Chérfor the
the terrestrial magnetosphere and solar flates voltage-driven cylindrical pinch. These authors observed, as
In a plane sheet geometry, the pinch with the fluid at res@n externally applied electric field was raised, transitions first
is absolutely stable if the electrical conductivity is infinite— O Stationary states with flow and eventually to turbulent
the case of ideal magnetohydrodynamibdHD)—but may  States. The situation is reminiscent of the difference between
be destabilized by resistivity. A systematic theory of the re-Plane and rotating hydrodynamic Couette flGwSpecifi-
sistive instability of the plane sheet pinch was developed byally, for the plane Couette flow—the flow between infinite
Furth et al,* who used a boundary layer approach, dividingParallel planes with one moving boundary—the ground state
the sheet into a narrow inner resistive layer and outer regiondith a linear shear flow profile is stable. For the rotating
with perfect conductivity(accounts of this approach may Couette flow—the flow between differentially rotating co-
also be found in Refs. 1, 2, and.3Numerical confirmation axial cylinders of which the inner one rotates faster—the
of the analytical results of Furtlet al. was obtained by laminar ground state becomes unstable if the rotation rates of
Wessorf Schnack and KilleeA,and Steinolfson and Van the two cylinders are sufficiently different.
Hoven® who studied the basic equations of Fuethal. with- In the present paper the sheet-pinch study of Ref. 11 is
out making the boundary-layer approximation. These basiextended to the case of electrical conductivity varying across
equations are the general MHD equations, but with viscositghe sheet. This results in the profiles of the equilibrium mag-
neglected. As noted by Dahlbuag al.® the stability bound- netic field deviating from linear behavior. In particular, the
aries of the sheet pinch are determined by the Hartmanoonductivity profile may be chosen such that the magnetic-
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field and/or current profile has inflection points. Inflection
points in the velocity profile are known to be necesdiuyt
not sufficienj for the instability of inviscid plane shear
flows® With respect to the plane sheet pinch, Dahlburg
et al® observed instability to be associated with inflection
points in the current profile. These authors along with Sa- X
ramito and MaschKé'® in related work, studiedquasi- 3
equilibria, namely, states with a nonuniform current density X
in a fluid with uniform resistivity(such states decay resis-
tively). In the present study we investigagactpinch equi- 0
libria, driven by an external electric field tangential to the X ‘a\*
boundary planes. Our main concern is with the influence of !
the cross-sheet resistivity profile on the stability boundaries.
The resistivity profile determines the current profile and the
magnetic field profile can then still be modified by an exter-gig. 1. Geometry of the magnetohydrodynamic sheet pinch. Arrows in the
nally imposed constant field. Given the cross-sheet profilesshaded plane indicate the direction of the equilibrium magnetic field.
the stability boundaries are determined by the Hartmann
number. We consider a configuration with a current sheet
centered about the midplane of the sheet and study in detail
how the degree of current concentration in the sheet center X/L—X,  B/Bo—=B, Viva—v, t(Llva) —t, )
influences the stability properties. We also study the influ- plpv2—p, J(Bouol) —J, E/Boua—E.
ence of asymmetries in the magnetic field profile, introduced
by adding an externally imposed field to the self-consistently js the electric field. Equationd) and(2) then become
supported one.

In Sec. Il we outline the governing equations and define N _ —(v-V)V+M~1V2/— Vp+IxB, 6)

0

r/ &

the boundary conditions and the equilibrium state. Then, in  dt
Sec. lll we describe the method of stability analysis and B
discuss some general properties of the problem. In Sec. IV — = -V x (S 13J-vxB), 7
we present and discuss our numerical results. In Sec. V, fi- at
nally, a brief summary and an outlook are given. where

UAL UAL
M=— and S=— (8)
Il. BASIC EQUATIONS, BOUNDARY CONDITIONS 1% Mo

AND EQUILIBRIUM
are Reynolds-like numbers based on the Affwelocity:Sis

We use the nonrelativistic, incompressible MHD equa-hg | yndquist number anid its viscous analog. The dimen-

tions, Iy sionless Ohm’s law becomes
p E'F(V-V)V):pVVZV_VP‘FJXB, (l) S*l';'?\]:E_i_va' (9)
B
i VX(puol—VXB), 2 We use Cartesian coordinates X,, X3 and consider our
magnetofluid in the slab€@x;<1. In thex, and x5 direc-
V.v=0, V-B=0, 3 tions periodic boundary conditions are assumed. The geom-
wherev is the fluid velocity,B the magnetic induction] the ~ etry of the slab configuration is shown in Fig. 1.
electric current density=V xB/u, uo denoting the mag- The boundary planes are assumed to be impenetrable

netic permeability in a vacuump the mass densityp the ~ and stress-free, i.e.,

the_rma_l pressurey the 1<i1n_ematic visc_osity, ang the_ mag- Jv, dvs

netic diffusivity [ (ug7) " is the electrical conductivitly No CE vt WZO’ at x;,=0,1. (20
externally applied force appears in Ed). While p and v ! !

are assumed constant,is allowed to vary spatiallybut not

The system is driven by an electric field of stren
temporally: y 'S drv y e 1 g

in the x5 direction, which can be prescribed only on the
7(X) = 9o7(X), (4)  boundary. We further assume that there is no magnetic flux

- through the boundary,
where 74 is a dimensional constant ang{x) a dimension-

less function of position. B,=0, atx;=0,1. (12)

Let L=L, and B, denote arbitrary units of length and
magnetic induction. Writing) =B /\/uop for the Alfven  Conditions(10) and (11) imply that the tangential compo-
velocity corresponding t8,, we transform to dimensionless nents ofvxB on the boundary planes vanish, so that accord-
guantities according to ing to Eq.(9),
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\]2:0, J3: poy y
b

at x;=0,1, 12

where7, is the value ofy on the boundaries. The boundary

conditions for the tangential components®fthen become
(J=V xB in the dimensionless units

/B, E*S
IXq 77b

Bs o, atx=01
ax, O at x;=0,1.

13
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1
P=p+3B% b=B-B% j=1-J°, (22

wherev and b are our dynamical variables, for which the
complete boundary conditions are as follows :

7y _ibs_

0"1)2 (?U3
T7ox,  axyq

v = e—= =
17ox,  axyq

atx,=0,1. (23)

We Fourier expand into modes exp|i(koXo+ksXs)} in
the x, and x5 directions. Letv;,, b;, and j;, denote the

A discussion of these boundary conditions is found in RefFourier coefficients ob;, b; andj;, respectively, for wave-

11.

numberk = (k,,k3). Linearizing about the static equilibrium,

Any stationary state with the fluid at rest has to satisfyEqgs.(6) and(7) become

the equations

~Vp+JIxB=0, (14)
V x(75J)=0. (15

For 7 depending only on the cross-sheet coordinateEgs.

(14), (15) and the boundary conditions are then satisfied with

J=0J°=(0,077 E*S), (16)
B=B®=(0,E* Sly(x;) + BS,BS), (17)
_ e B¥ 18
p=p°=——5" (18

where overbars denote spatial

=[x~ [ tdx,.
We use the diffusivity profile

averages angx,)

7= cosH[(x,—0.5)/a], (19

V= —P—M Y (k2=D?)v  +iF by,
vok=—iKoPx—M "1 (k2=D?)v +iF b+ (BS) by,

b3k=—ik3Pk—Mfl(kz—Dz)v3k+iFkb3k, (24)

by =iF 1S ik 7ja—ikamjal,

Dok =iF v~ (B3) vik—S ika7j 1= (mia) ',
ba=iFwa—S L (7ia) —iKa7ikl,
whereF,=k,BS+kzBS andD="=d/3x,. Both equilibrium

magnetic field component8; andB$, are combined in one
single profile functionF (x,).

The special modes with,=0 cannot become unstable
since BS does not enter the equations for them; they thus
always behave as E* =0 [cf. Eg. (17)]. For modes with
k,#0 a constant field componeBf in the sheetwise direc-

tion parallel to the driving electric field acts in the same way

wherea is the current sheet half width. The magnetic fieldas a constant field componed§ (= (ks/k,)BS). It does not

unit, By, is chosen in such a way that, in the caseB_Qf:O,
|B5|=1 on the boundary planes. This fixes the valueedf
such that

E*=[Sl(1)] ™, (20)
and then the equilibrium magnetic field can be written as
BS=[tani(1/2a)] tanH (x,— 0.5)/a]+ BS.

This is the frequently studied Hartfssheet.

(21)

Ill. STABILITY ANALYSIS

lead to oscillations as incorrectly argued in a former article
where a Squire’s theorem for a voltage-driven sheet pinch is
proved, stating that for each unstable three-dimensional per-
turbation there exists a more unstable two-dimensional one
(with vectorsv andb lying completely in thex;-x, plane and
having nox; dependence Also, as the Reynolds-like num-
bersM andS are raised from small values, two-dimensional
perturbations become unstable first. This proof is valid for
B5=0. An immediate implication is that an unstable equilib-
rium Wit£B§=0 can never be stabilized by adding a nonva-
nishing Bg;As is seen from the definition of the profile func-
tion Fy, B influences only the stability of modes withy

#0 and does not influence tiim the absence of B5) most

The system of Eqg3), (6) and (7) has been studied by unstable modes, for whick;=0. Therefore the field com-
means of a pseudo-spectral method in Fourier space. Tmpnenth cannotincreasethe global stability. It is possible,
treatment is analogous to that of the case with spatially uninowever, that the addition @3 makes an equilibriuntess

form magnetic diffusivity in Seehafet al!' and details may
be found there. As in the case of uniform the spatial

stable(see Sec. IV B
To determine the stability of the Harris sheet equilib-

means ob,, v, B, andB; are independent of time. Without rium, with 7 and BS given by Egs(19) and(21), the eigen-
loss of generality we have restricted ourselves to the case ofalues of the Jacobian matrix of our system at the equilib-
v,=v3=0, since the mean flow can be removed by a Galdium [i.e., the eigenvalues of the linear operator on the right-

ilean transformation. The mean valug$andB3 are consid-
ered as parameters.
We use the notation

hand side of the systeii24)] have been calculated. Since a
nonvanishingd; can be formally transformed intoB5 and
for vanishingB3 the Squire’s theorem is valid, the calcula-
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FIG. 2. Stability boundaries in tha-L, plane for different values of the
Hartmann number Ha. The paramedeis the current sheet half width of the

equilibrium configuration and.,=2m/k, is the wavelength of the pertur-
bation in thex, direction. Asterisks denote calculation with 128 collocation
points in thex; direction; the other calculations were made with 64 collo- X,
cation points.

FIG. 3. Magnetic field lines and velocity stream lines &7#0.15,B_§=0,
L,=3, and Ha100. Solid (dashed velocity stream lines correspond to
clockwise(counterclockwisgmotion. A mixture of 20% perturbation and

tions have been restricted to the caseB_§f=O and to two  80% equilibrium fieldB® was taken for the magnetic field. The lower left
spatial dimensions. The remaining current density Compopanel shows the undisturbed cross-sheet equilibrium pdfi{e;).
nent |SJ 3k= bék_ ik2blk .

We have used expansions of and b in pure sine e cyrrent sheet half width, the constant magnetic field

series and ot , andb, in pure cosine series Wl_th respect to componenB_S (both contained in the equilibrium profife,)
X1, in correspondence with the boundary conditions. The NUZ 4 the wave numbe, of the perturbation

merical calculations were made with §dnd partially with
128 collocation points in the cross-sheet;] direction and
just one wave numbek,= F*2x/L,, in thex, direction. e

At the stability threshold two identical real eigenvaluesA. Equilibrium with  B5=0
were always observed to pass through zero. The fact that

. . . In this subsection we present numerical results for the
unstable eigensolutions are nonoscillatory has been know(r;alse ofBe=0. We have studied equilibria with=0.1. The
since the paper of Furtét al* The multiplicity of the eigen- 2 = d o

values is obviously due to th@(2) symmetry of the prob- minimum Hartmann number necessary for instability is then
: y L y y ol P Ha=64.6 (reached for the parametess=0.1,L,=2.4). Fig-
lem with respect to th&, direction: The translational sym-

AL ) : - ure 2 shows, for different values of the Hartmann number,
metry in this direction combined with the periodic boundary ; : o oo
- . . . numerically determined stability boundaries in tlael ,
conditions gives a circle symmetig((2), which together . :
: . . = plane. Each stability boundary consists of two branches—an
with the symmetry to reflections in the plang&s=const

_upper one and a lower one—with the unstable region lying
leads to anO(2) ;ymmetry.O(Z) symmetr.y,.h.oweve.r, al between both branchét the left of the total, parabola-like
ways forces the eigenvalues to have multiplicity tfaim-

ply because with each eigenmodexplikx} there is another, stability curve. The equilibrium is found to b.e. stable far
“ N . : >a. and unstable foa<<a., wherea, is a critical current
reflected” eigenmode~exp{—ikx} for the same eigen-

. . . sheet half width. The parametag depends on Ha, bud,
value, and the two modes are linearly independénhis <0.41 (see below In the case of instability, the wave-
argument does not apply to modes witj=0.) - ) Y

. . i L lengths of the unstable modes in thedirection lie between
Since the critical eigenvalues are real, one hat=0

" X | lower and upper bounds depending anAs a approaches
at the stability threshold. In this case the rescaling, a., the unstable wavelength interval shrinks to zero. The

M _mvjk—wjk, S 1/2bjk—> b, S Yp_.p, pre.viously studieq case of a _spatially uniform resistivit_y gnd
a linear magnetic field profité corresponds to the limit
in Egs. (24) leads to equationgvalid at the thresholdin a— o,
which M andS do not occur separately but only arise when Figure 3 shows magnetic field lines and velocity stream
combined in the Hartmann number H&M S)Y2 which thus  lines of an unstable mode, for the parameters=3, a
determines the stability bounddif'®—together with =0.15 and Ha100. The typical tearing-mode pattern is

IV. RESULTS AND DISCUSSION
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clearly visible. Null points oB—a chain ofO points andX division into resistive and ideal regions. Specifically, in the
points in alternating order, th® points being centers of paper of Furthet al. the “infinite-conductivity” equation,
magnetic islands—coincide with stagnation points of theEd. (G.1), is seen to follow from Eq(17) (of Ref. 4 if the
flow, which is organized in convection-like cells. growth rate of the instability is set equal to zero. Equation
The magnetic field profile has an inflection point in the (17) is one of the linearized equations determining the sta-
center of the shedthe inflection points of the magnetic field Dility and is, except for the neglect of viscosity, still general.
profile simply correspond to extrema of the current profile This fact was used by Shivamoggto study the effect of the
while the current profile has two inflection points, one onWalls without the division into separate regiofisut also
either side of the midplang,=0.5. We also note that for neglecting viscosity The only remaining approximation is
values ofa well above 0.41, the two inflection points in the then the neglect of viscosity, which amounts to studying the
current profile are still situated well within the sheet. So theiriMit Ha—2. One can be rather confident, therefore, that the
presence in the she@ombined of course with a sufficiently IMit 8:=<1/2.4=0.417 holds. _ _ o
strong driving to overcome dissipatipis not enough for We include some more speculative considerations in the

instability, but the current must be sufficiently concentrated®!loWing. It is well known that the wavelength of a pertur-
in the sheet center. The reverse holds if the current is unidiPation parallel to the equilibrium field has to exceed a critical

rectional and sufficiently concentrated. In this case, the cur\-’a_lu_e in order fgr the tearlqg mo‘?'.e t? lead to instability. The
rent profile must have inflection points within the sheet driving mechanism of the instability is the mutual attraction
Traditional boundary-layer theory of the sheet pi‘illch of parallel currents, and the separate pinches into which the

finds tearing modes to be stable for large and unstable fo‘?heet tb riaki S‘"fwke to be_l_s.Uffl'C'%n“}[/ l?r? glcompared tr? thef
small wave numberk,. If the equilibrium is just the Harris current-sheet thickness. This leads 1o Ine lower brancnes o

sheetk,a<1 is the condition for instability. This result re- the stability boundaries in Fig. 2. On the other hand, if the

R . . magnetic islands and the convection cells become too long,
fers to infinitely distant walls or very small valuesaflying e . . .
. . I diffusion across the sheet—Ohmic and viscous—might be-
in a region to the left of that covered in Fig. 2. For our

. come important and quench the instability. This would ex-
smallest value ofa, 0.1, we have found a critical lower : g o
wavelength ofL,~0.63 (see the lower branch of the curve plain the upper branches in Fig. 2. Instead of thinking of the
f H 9107 2~ .F' ) di o Kk islands becoming longer, one may equivalently imagine that
frz /(?83 0 }JT G- ' (iorr%s]pt(;]n 'ng d't'o Z%a the walls come closer to the midplane of the sheet. The latter
~(2/0.63)0. » 1N agreement wi € condition from - ephances the diffusive damping of perturbatiddsie to
the boundary-layer analysis.

: 2 . steeper gradients with respect xg), in a similar way as
In Appendix G of Furtret al." the influence of walls at a increased values of the diffusivities would. The Hartmann

finite distanc-e is ‘?ISO considered. Ir_1 that paper the Currenhumber necessary for instability then becomes larger, lead-
sheet half widtha is used as the unit of length, so that in- ing to the upper branches in Fig. 2. Also, increasing the

stead ofa the distance of the walls has to be varied. By ¢, rent-sheet half widtla acts as if the walls would come
modifying the solution in the outer, perfectly conducting re-closer(if we had chosera as the unit of length, we would
gions, the walls have a stabilizing influence. If, in our units,pove to vary the distance of the walls instead of vangig

a approaches the value 1/2.4 from below, the minimumrhis can explain the decrease of the upper critical wave-
wavelength for instability tends to infinity, so that far  |ength with increasinga. It does not explain yet why the
>1/2.4 absolute stability is achieved. Also, the loweryming point where lower and upper branches meet is not
branches of the curves in Fig. 2 steeply increas@ @-  shifted to larger and larger valuesafs Ha—. Seemingly,
proachesa;, but the upper critical wavelengths simulta- for walls which are too close or current profiles which are

neously decrease sharply such that the marginal stabilityyo flat the basic driving mechanism of the tearing instability
curves in thea-wavelength plane have turning pointsat no Jonger works.

=a.. An upper critical wavelength for instability is not re-
ported in F_urthet_al., and has not peen obs_erved in subseg Equilibrium with B—ggﬁo
guent studies using the same basic equations. Our calcula-
tions with very high Hartmann numbers indicate thet In this subsection the influence of an asymmetryB§f
~0.41(...0.42) is a limiting value for the location of the on the stability is studied. For this purpose we vB#yin the
turning point (see Fig. 2 for Ha 107), which is thus not interval[0,1] [cf. Eq.(21)]. Figure 4 shows, for Ha10® and
shifted to larger values for Hax. This conclusion is sup- Ha= 1O4,Espectively, the stability boundaries for different
ported by the result in Furtht al, namely, the stability for values ofB5. Again the unstable regions lie to the left of the
a>1/2.4, as well as by numerical results of Saramito andespective curves. In the caB§=1 there is no surfac€,
Maschket* who found stability of the quasi-stationaryy( =0 or no reversal of the equilibrium field in the sheet, so
was assumed unifornHarris equilibrium fora™1<2.5. that magnetic islands cannot form and the equilibrium re-
With respect to the treatment in Appendix G of Furth mains stable. The larger the constant part of the profile, the
et al, we note that an “infinite-conductivity” equation is more stable the equilibrium becomes, i.e., the smaller the
solved there to determine the lower critical wavelen@ih ~ unstable region in tha-L, plane between the two branches
upper critical wave number, respectivefpr instability and  of the stability boundary. ABS— 1, the unstable wavelength
its dependence on the distance of the walls. However, in thiterval shrinks to zero. Figure 5 shows magnetic field lines
case of marginal stability this equation is valid without theand velocity stream lines for a typical asymmetric case.



2368

Phys. Plasmas, Vol. 5, No. 6, June 1998

1000

100F

Lo

{ 100F"

1000 -

FIG. 4. Stability boundaries for different valuesﬁg (see the legend in the
left pane) in the a-L, plane for Ha=10* and Ha=10*. Triangles denote

calculated points.
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Let O denote the ratio of the maximum self- FIG. 6. Global stability boundary in the H@y, plane, where@)0=B_§’1, for
consistently supported magnetic field to the externally im-hree cases{l) a=0.15 andL,=3.0; (2) a=0.25 andL,=6.0; (3 a

posed magnetic field, i.e(&)0=1/B_§

units. Figure 6 shows stability boundaries in the #g-
plane, calculated for three different parameter satsL().
The curves shown here are global stability boundaries, i.e.,

the envelopes of all the modal stability boundaries in the
respective cases. Quiescent states with high Hartmann num-

bers(with strong currentsare possible, provide® , is small — _ _ =
enough. Diamonds in Fig. 6 correspond to parameter§table. LeB5(x;) be a symmetric profile admitting unstable

(Ha,BS) for which stability boundaries are shown in Fig. 4. two-dimensional perturbations, and let the constBftbe

B

° Vi

X2

v

@

0 0.5

X4

FIG. 5. Magnetic field lines and velocity stream lines fm#O.lS,B_g

=0.4,L,=6, and Ha1000. The indication of the flow direction and the —e . . . .
mixture ratio for the magnetic field are as in Fig. 3. The lower left panel B3=0), which in turn is less unstable for the asymmetric

shows the undisturbed cross-sheet equilibrium pré&fex,).

=0.25 andL,=3.0. Crosses denote calculated points. Points below the

in our dimensionless  gashed line correspond to completely stable equilibria. Diamonds indicate

the parameters of the stability curves in Fig. 4.

It is now possible that the addition ong makes an
asymmetricequilibrium less stable or even a stable one un-

chosen such thaB5=BS5(x,)+BS does not change sign
within the sheet. The corresponding equilibrium is then
stable to all two-dimensional perturbations, as seen before.
However, for a giverk=(k,,k3), B§ can always be found
such thatF(x;) changes sign within the sheet, for instance
by the choiceB$= —(k,/k3)B3. The stability problen{for

the mode withk=(k,,k3)] is then equivalent to the case
with BS=BS and B§=0. The Squire’s transformation con-
nects the three-dimensional mode with wave veckor
=(k,,k3) to a two-dimensional mode with wave number

k= (k3+k3)¥2 and the two modes are simultaneously
stable or unstabl¥. If the profile BS then admits growth of

the two-dimensional mode with wave numfer (our nu-
merical results show that this is certainly possiptae equi-
librium is unstable to a three-dimensional perturbation,
though it is stable to all two-dimensional perturbations. In
such a case a Squire’s theorem clearly cannot be valid.

At least for our special choice of the functional form of
the resistivity profile, however, a Squire’s theorem seems to
be valid even wittB5+ 0 if the equilibrium B is symmetric
with respect to the midplane of the sheet. Namely, for a
givenk=(k,,k3), k3#0, a nonvanishindd3 can be “trans-
formed” into aB$, so that the profild5 becomes asymmet-
ric. For the new, asymmetric profile the three-dimensional
(k3#0) perturbation is less unstable than some two-
dimensional perturbatiofiSquire’s theorem for a case with

than for the original, symmetric profile. So in the symmetric
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caseBS does not influence the global stability. spatial dimension&"'>??The new time-asymptotic states are
For a voltage-drivercylindrical pinch, with the plasma then of the tearing-mode type, characterized by a magnetic
or magnetofluid occupying a full cylinder, the driving exter- island structure with a chain o€ andO points and an orga-
nal electric field being axially directed, and the resistivity nization of the fluid motion in convection-like cells or rolls.
increasing with distance from the axis or being spatially uni-We note here that even though with increasing Reynolds
form, it was found®!®?'that the quiescent ground state cannumbers the equilibrium first becomes unstable to two-
be stabilized by an externally imposed axial magnetic fielddimensional perturbations, the new final states might be
component. However, in the case of the sheet pinch dc fieldiree-dimensionalalready after the primary bifurcatipn
parallel to the driving electric field can never stabilize anThis problem is the subject of ongoing studies.
equilibrium which is unstable in their absen@. Sec. Il
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