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Resistivity profile and instability of the plane sheet pinch
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The stability of the quiescent ground state of an incompressible, viscous and electrically conducting
fluid sheet, bounded by stress-free parallel planes and driven by an external electric field tangential
to the boundaries, is studied numerically. The electrical conductivity varies as cosh22(x1 /a), where
x1 is the cross-sheet coordinate anda is the half width of a current layer centered about the midplane
of the sheet. Fora&0.4L, whereL is the distance between the boundary planes, the ground state is
unstable to disturbances whose wavelengths parallel to the sheet lie between lower and upper
bounds depending on the value ofa and on the Hartmann number. Asymmetry of the configuration
with respect to the midplane of the sheet, modelled by the addition of an externally imposed
constant magnetic field to a symmetric equilibrium field, acts as a stabilizing factor. ©1998
American Institute of Physics.@S1070-664X~98!02106-5#
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I. INTRODUCTION

The equilibrium states of electrically conducting fluid
or plasmas have been a subject of intense study for a
time, motivated in particular by the interest in controlle
thermonuclear fusion, as well as that in space and astroph
cal phenomena such as plasma loops in the solar coron
high temperatures prohibit solid walls, a conducting fluid c
be held together by the action of an electric current pass
through it with the pressure gradients being balanced by
Lorentz force. The resultant configuration is known as
pinch.

Pinch configurations are subject to various instab
ties.1,2 Of special interest here are the tearing modes, wh
belong to the class of finite-resistivity instabilities. By d
stroying magnetic surfaces, they can shorten the confinem
time of fusion plasmas. Tearing modes represent one of
basic mechanisms for magnetic reconnection and are
thought to play a role in the explosive release of magn
energy in space and astrophysical plasmas~e.g., substorms in
the terrestrial magnetosphere and solar flares!.3

In a plane sheet geometry, the pinch with the fluid at r
is absolutely stable if the electrical conductivity is infinite—
the case of ideal magnetohydrodynamics~MHD!—but may
be destabilized by resistivity. A systematic theory of the
sistive instability of the plane sheet pinch was developed
Furth et al.,4 who used a boundary layer approach, dividi
the sheet into a narrow inner resistive layer and outer reg
with perfect conductivity~accounts of this approach ma
also be found in Refs. 1, 2, and 5!. Numerical confirmation
of the analytical results of Furthet al. was obtained by
Wesson,6 Schnack and Killeen,7 and Steinolfson and Van
Hoven,8 who studied the basic equations of Furthet al.with-
out making the boundary-layer approximation. These ba
equations are the general MHD equations, but with visco
neglected. As noted by Dahlburget al.,9 the stability bound-
aries of the sheet pinch are determined by the Hartm
2361070-664X/98/5(6)/2363/7/$15.00
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number Ha. A similar result for the cylindrical pinch wa
proven by Montgomery.10 Ha is the geometric mean of tw
Reynolds-like numbers, one being kinetic and the other m
netic. These do not influence the stability boundaries in
pendently, but only in combination in the Hartmann numb
Thus, all calculations of stability boundaries in which visco
ity is neglected pertain to the limit Ha→` and the stability
boundaries obtained are independent of the remaining~mag-
netic! Reynolds-like number.

A recent study11 has been done on the MHD equatio
without any boundary-layer approximation and with visco
ity taken into account, in a voltage-driven incompressib
sheet pinch with spatially and temporally uniform kinema
viscosity and magnetic diffusivity, as well with impenetrab
stress-free boundaries. It is found that the quiescent gro
state~in which the current density is uniform and the ma
netic field profile across the sheet is linear! remains stable,
no matter how strong the driving electric field. This contra
with results of Shan, Montgomery, and Chen12 for the
voltage-driven cylindrical pinch. These authors observed
an externally applied electric field was raised, transitions fi
to stationary states with flow and eventually to turbule
states. The situation is reminiscent of the difference betw
plane and rotating hydrodynamic Couette flow.13 Specifi-
cally, for the plane Couette flow—the flow between infini
parallel planes with one moving boundary—the ground st
with a linear shear flow profile is stable. For the rotati
Couette flow—the flow between differentially rotating c
axial cylinders of which the inner one rotates faster—t
laminar ground state becomes unstable if the rotation rate
the two cylinders are sufficiently different.

In the present paper the sheet-pinch study of Ref. 1
extended to the case of electrical conductivity varying acr
the sheet. This results in the profiles of the equilibrium ma
netic field deviating from linear behavior. In particular, th
conductivity profile may be chosen such that the magne
3 © 1998 American Institute of Physics
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field and/or current profile has inflection points. Inflectio
points in the velocity profile are known to be necessary~but
not sufficient! for the instability of inviscid plane shea
flows.13 With respect to the plane sheet pinch, Dahlbu
et al.9 observed instability to be associated with inflecti
points in the current profile. These authors along with S
ramito and Maschke14,15 in related work, studiedquasi-
equilibria, namely, states with a nonuniform current dens
in a fluid with uniform resistivity~such states decay resi
tively!. In the present study we investigateexactpinch equi-
libria, driven by an external electric field tangential to t
boundary planes. Our main concern is with the influence
the cross-sheet resistivity profile on the stability boundar
The resistivity profile determines the current profile and
magnetic field profile can then still be modified by an ext
nally imposed constant field. Given the cross-sheet profi
the stability boundaries are determined by the Hartm
number. We consider a configuration with a current sh
centered about the midplane of the sheet and study in d
how the degree of current concentration in the sheet ce
influences the stability properties. We also study the in
ence of asymmetries in the magnetic field profile, introduc
by adding an externally imposed field to the self-consisten
supported one.

In Sec. II we outline the governing equations and defi
the boundary conditions and the equilibrium state. Then
Sec. III we describe the method of stability analysis a
discuss some general properties of the problem. In Sec
we present and discuss our numerical results. In Sec. V
nally, a brief summary and an outlook are given.

II. BASIC EQUATIONS, BOUNDARY CONDITIONS
AND EQUILIBRIUM

We use the nonrelativistic, incompressible MHD equ
tions,

rS ]v

]t
1~v•“ !vD5rn“2v2“p1J3B, ~1!

]B

]t
52“3~hm0J2v3B!, ~2!

“•v50, “•B50, ~3!

wherev is the fluid velocity,B the magnetic induction,J the
electric current density (5“3B/m0, m0 denoting the mag-
netic permeability in a vacuum!, r the mass density,p the
thermal pressure,n the kinematic viscosity, andh the mag-
netic diffusivity @(m0h)21 is the electrical conductivity#. No
externally applied force appears in Eq.~1!. While r and n
are assumed constant,h is allowed to vary spatially~but not
temporally!:

h~x!5h0h̃~x!, ~4!

whereh0 is a dimensional constant andh̃(x) a dimension-
less function of position.

Let L5L1 and B0 denote arbitrary units of length an
magnetic induction. WritingvA5B0 /Am0r for the Alfvén
velocity corresponding toB0, we transform to dimensionles
quantities according to
-
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e
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x/L→x, B/B0→B, v/vA→v, t/~L/vA!→t,
~5!

p/rvA
2→p, J/~B0/m0L !→J, E/B0vA→E.

E is the electric field. Equations~1! and ~2! then become

]v

]t
52~v•“ !v1M 21

“

2v2“p1J3B, ~6!

]B

]t
52“3~S21h̃J2v3B!, ~7!

where

M5
vAL

n
and S5

vAL

h0
~8!

are Reynolds-like numbers based on the Alfve´n velocity:S is
the Lundquist number andM its viscous analog. The dimen
sionless Ohm’s law becomes

S21h̃J5E1v3B. ~9!

We use Cartesian coordinatesx1, x2, x3 and consider our
magnetofluid in the slab 0,x1,1. In thex2 and x3 direc-
tions periodic boundary conditions are assumed. The ge
etry of the slab configuration is shown in Fig. 1.

The boundary planes are assumed to be impenetr
and stress-free, i.e.,

v15
]v2

]x1
5

]v3

]x1
50, at x150,1. ~10!

The system is driven by an electric field of strengthE*
in the x3 direction, which can be prescribed only on th
boundary. We further assume that there is no magnetic
through the boundary,

B150, at x150,1. ~11!

Conditions~10! and ~11! imply that the tangential compo
nents ofv3B on the boundary planes vanish, so that acco
ing to Eq.~9!,

FIG. 1. Geometry of the magnetohydrodynamic sheet pinch. Arrows in
shaded plane indicate the direction of the equilibrium magnetic field.
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J250, J35
E* S

h̃b

, at x150,1, ~12!

whereh̃b is the value ofh̃ on the boundaries. The bounda
conditions for the tangential components ofB then become
(J5“3B in the dimensionless units!

]B2

]x1
5

E* S

h̃b

,
]B3

]x1
50, at x150,1. ~13!

A discussion of these boundary conditions is found in R
11.

Any stationary state with the fluid at rest has to sati
the equations

2“p1J3B50, ~14!

“3~ h̃J!50. ~15!

For h̃ depending only on the cross-sheet coordinatex1, Eqs.
~14!, ~15! and the boundary conditions are then satisfied w

J5Je5~0,0,h̃21E* S!, ~16!

B5Be5~0,E* SI0~x1!1B2
e,B3

e!, ~17!

p5pe52
Be2

2
, ~18!

where overbars denote spatial averages andI 0(x1)

5*h̃21dx12*h̃21dx1.
We use the diffusivity profile

h̃5cosh2@~x120.5!/a#, ~19!

wherea is the current sheet half width. The magnetic fie
unit, B0, is chosen in such a way that, in the case ofB2

e50,
uB2

eu51 on the boundary planes. This fixes the value ofE*
such that

E* 5@SI0~1!#21, ~20!

and then the equilibrium magnetic field can be written as

B2
e5@ tanh~1/2a!#21tanh@~x120.5!/a#1B2

e. ~21!

This is the frequently studied Harris16 sheet.

III. STABILITY ANALYSIS

The system of Eqs.~3!, ~6! and ~7! has been studied b
means of a pseudo-spectral method in Fourier space.
treatment is analogous to that of the case with spatially u
form magnetic diffusivity in Seehaferet al.11 and details may
be found there. As in the case of uniformh, the spatial
means ofv2, v3, B2 andB3 are independent of time. Withou
loss of generality we have restricted ourselves to the cas
v25v350, since the mean flow can be removed by a G
ilean transformation. The mean valuesB2

e andB3
e are consid-

ered as parameters.
We use the notation
f.

h

he
i-

of
l-

P5p1
1

2
B2, b5B2Be, j5J2Je, ~22!

where v and b are our dynamical variables, for which th
complete boundary conditions are as follows :

v15
]v2

]x1
5

]v3

]x1
5b15

]b2

]x1
5

]b3

]x1
50, at x150,1. ~23!

We Fourier expand into modes;exp$i(k2x21k3x3)% in
the x2 and x3 directions. Letv ik , bik and j ik denote the
Fourier coefficients ofv i , bi and j i , respectively, for wave-
numberk5(k2 ,k3). Linearizing about the static equilibrium
Eqs.~6! and ~7! become

v̇1k52Pk82M 21~k22D2!v1k1 iF kb1k ,

v̇2k52 ik2Pk2M 21~k22D2!v2k1 iF kb2k1~B2
e!8b1k ,

v̇3k52 ik3Pk2M 21~k22D2!v3k1 iF kb3k ,
~24!

ḃ1k5 iF kv1k2S21@ ik2h̃ j 3k2 ik3h̃ j 2k#,

ḃ2k5 iF kv2k2~B2
e!8v1k2S21@ ik3h̃ j 1k2~ h̃ j 3k!8#,

ḃ3k5 iF kv3k2S21@~ h̃ j 2k!82 ik2h̃ j 1k#,

whereFk5k2B2
e1k3B3

e andD[8[]/]x1. Both equilibrium
magnetic field components,B2

e andB3
e, are combined in one

single profile function,Fk(x1).
The special modes withk250 cannot become unstabl

since B2
e does not enter the equations for them; they th

always behave as ifE* 50 @cf. Eq. ~17!#. For modes with
k2Þ0 a constant field componentB3

e in the sheetwise direc
tion parallel to the driving electric field acts in the same w
as a constant field componentB2

e (5(k3 /k2)B3
e). It does not

lead to oscillations as incorrectly argued in a former articl17

where a Squire’s theorem for a voltage-driven sheet pinc
proved, stating that for each unstable three-dimensional
turbation there exists a more unstable two-dimensional
~with vectorsv andb lying completely in thex1-x2 plane and
having nox3 dependence!. Also, as the Reynolds-like num
bersM andS are raised from small values, two-dimension
perturbations become unstable first. This proof is valid
B3

e50. An immediate implication is that an unstable equili
rium with B3

e50 can never be stabilized by adding a nonv
nishingB3

e. As is seen from the definition of the profile func
tion Fk , B3

e influences only the stability of modes withk3

Þ0 and does not influence the~in the absence of aB3
e) most

unstable modes, for whichk350. Therefore the field com-
ponentB3

e cannotincreasethe global stability. It is possible
however, that the addition ofB3

e makes an equilibriumless
stable~see Sec. IV B!.

To determine the stability of the Harris sheet equili
rium, with h̃ andB2

e given by Eqs.~19! and~21!, the eigen-
values of the Jacobian matrix of our system at the equi
rium @i.e., the eigenvalues of the linear operator on the rig
hand side of the system~24!# have been calculated. Since
nonvanishingB3

e can be formally transformed into aB2
e and

for vanishingB3
e the Squire’s theorem is valid, the calcula
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tions have been restricted to the case ofB3
e50 and to two

spatial dimensions. The remaining current density com
nent is j 3k5b2k8 2 ik2b1k .

We have used expansions ofv1 and b1 in pure sine
series and ofv2 andb2 in pure cosine series with respect
x1, in correspondence with the boundary conditions. The
merical calculations were made with 64~and partially with
128! collocation points in the cross-sheet (x1) direction and
just one wave number,k2572p/L2, in thex2 direction.

At the stability threshold two identical real eigenvalu
were always observed to pass through zero. The fact
unstable eigensolutions are nonoscillatory has been kn
since the paper of Furthet al.4 The multiplicity of the eigen-
values is obviously due to theO(2) symmetry of the prob-
lem with respect to thex2 direction: The translational sym
metry in this direction combined with the periodic bounda
conditions gives a circle symmetrySO(2), which together
with the symmetry to reflections in the planesx25const
leads to anO(2) symmetry.O(2) symmetry, however, al
ways forces the eigenvalues to have multiplicity two,18 sim-
ply because with each eigenmode;exp$ikx% there is another,
‘‘reflected’’ eigenmode;exp$2ikx% for the same eigen
value, and the two modes are linearly independent.~This
argument does not apply to modes withk250.!

Since the critical eigenvalues are real, one hasv̇5ḃ50
at the stability threshold. In this case the rescaling,

M 21/2v j k→v j k , S21/2bj k→bj k , S21/2Pk→Pk ,

in Eqs. ~24! leads to equations~valid at the threshold! in
which M andS do not occur separately but only arise wh
combined in the Hartmann number Ha5(MS)1/2, which thus
determines the stability boundary9,10,19—together with

FIG. 2. Stability boundaries in thea-L2 plane for different values of the
Hartmann number Ha. The parametera is the current sheet half width of the
equilibrium configuration andL252p/k2 is the wavelength of the pertur
bation in thex2 direction. Asterisks denote calculation with 128 collocati
points in thex1 direction; the other calculations were made with 64 col
cation points.
-

-

at
n

the current sheet half widtha, the constant magnetic field
componentB2

e ~both contained in the equilibrium profileFk)
and the wave numberk2 of the perturbation.

IV. RESULTS AND DISCUSSION

A. Equilibrium with B 2
e50

In this subsection we present numerical results for
case ofB2

e50. We have studied equilibria witha>0.1. The
minimum Hartmann number necessary for instability is th
Ha564.6 ~reached for the parametersa50.1,L252.4). Fig-
ure 2 shows, for different values of the Hartmann numb
numerically determined stability boundaries in thea-L2

plane. Each stability boundary consists of two branches—
upper one and a lower one—with the unstable region ly
between both branches~to the left of the total, parabola-like
stability curve!. The equilibrium is found to be stable fora
.ac and unstable fora,ac , whereac is a critical current
sheet half width. The parameterac depends on Ha, butac

&0.41 ~see below!. In the case of instability, the wave
lengths of the unstable modes in thex2 direction lie between
lower and upper bounds depending ona. As a approaches
ac , the unstable wavelength interval shrinks to zero. T
previously studied case of a spatially uniform resistivity a
a linear magnetic field profile11 corresponds to the limit
a→`.

Figure 3 shows magnetic field lines and velocity stre
lines of an unstable mode, for the parametersL253, a
50.15 and Ha5100. The typical tearing-mode pattern

FIG. 3. Magnetic field lines and velocity stream lines fora50.15,B2
e50,

L253, and Ha5100. Solid ~dashed! velocity stream lines correspond t
clockwise~counterclockwise! motion. A mixture of 20% perturbationb and
80% equilibrium fieldBe was taken for the magnetic field. The lower le
panel shows the undisturbed cross-sheet equilibrium profileB2

e(x1).
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clearly visible. Null points ofB—a chain ofO points andX
points in alternating order, theO points being centers o
magnetic islands—coincide with stagnation points of
flow, which is organized in convection-like cells.

The magnetic field profile has an inflection point in t
center of the sheet~the inflection points of the magnetic fiel
profile simply correspond to extrema of the current profi!
while the current profile has two inflection points, one
either side of the midplanex150.5. We also note that fo
values ofa well above 0.41, the two inflection points in th
current profile are still situated well within the sheet. So th
presence in the sheet~combined of course with a sufficientl
strong driving to overcome dissipation! is not enough for
instability, but the current must be sufficiently concentra
in the sheet center. The reverse holds if the current is un
rectional and sufficiently concentrated. In this case, the c
rent profile must have inflection points within the sheet.

Traditional boundary-layer theory of the sheet pinc4

finds tearing modes to be stable for large and unstable
small wave numbersk2. If the equilibrium is just the Harris
sheet,k2a<1 is the condition for instability. This result re
fers to infinitely distant walls or very small values ofa, lying
in a region to the left of that covered in Fig. 2. For o
smallest value ofa, 0.1, we have found a critical lowe
wavelength ofL2'0.63 ~see the lower branch of the curv
for Ha5107 in Fig. 2!, corresponding to k2a
'(2p/0.63)0.1'1, in agreement with the condition from
the boundary-layer analysis.

In Appendix G of Furthet al.4 the influence of walls at a
finite distance is also considered. In that paper the curr
sheet half widtha is used as the unit of length, so that i
stead ofa the distance of the walls has to be varied. B
modifying the solution in the outer, perfectly conducting r
gions, the walls have a stabilizing influence. If, in our uni
a approaches the value 1/2.4 from below, the minim
wavelength for instability tends to infinity, so that fora
.1/2.4 absolute stability is achieved. Also, the low
branches of the curves in Fig. 2 steeply increase asa ap-
proachesac , but the upper critical wavelengths simult
neously decrease sharply such that the marginal stab
curves in thea-wavelength plane have turning points ata
5ac . An upper critical wavelength for instability is not re
ported in Furthet al., and has not been observed in sub
quent studies using the same basic equations. Our calc
tions with very high Hartmann numbers indicate thata
'0.41( . . . 0.42) is a limiting value for the location of th
turning point ~see Fig. 2 for Ha5107), which is thus not
shifted to larger values for Ha→`. This conclusion is sup-
ported by the result in Furthet al., namely, the stability for
a.1/2.4, as well as by numerical results of Saramito a
Maschke,14 who found stability of the quasi-stationary (h
was assumed uniform! Harris equilibrium fora21&2.5.

With respect to the treatment in Appendix G of Fur
et al., we note that an ‘‘infinite-conductivity’’ equation is
solved there to determine the lower critical wavelength~or
upper critical wave number, respectively! for instability and
its dependence on the distance of the walls. However, in
case of marginal stability this equation is valid without t
e

r

d
i-
r-

or

t-

-
,

r

ty

-
la-

d

e

division into resistive and ideal regions. Specifically, in t
paper of Furthet al. the ‘‘infinite-conductivity’’ equation,
Eq. ~G.1!, is seen to follow from Eq.~17! ~of Ref. 4! if the
growth rate of the instability is set equal to zero. Equati
~17! is one of the linearized equations determining the s
bility and is, except for the neglect of viscosity, still gener
This fact was used by Shivamoggi20 to study the effect of the
walls without the division into separate regions~but also
neglecting viscosity!. The only remaining approximation i
then the neglect of viscosity, which amounts to studying
limit Ha→`. One can be rather confident, therefore, that
limit ac<1/2.450.417 holds.

We include some more speculative considerations in
following. It is well known that the wavelength of a pertu
bation parallel to the equilibrium field has to exceed a criti
value in order for the tearing mode to lead to instability. T
driving mechanism of the instability is the mutual attracti
of parallel currents, and the separate pinches into which
sheet breaks have to be sufficiently long compared to
current-sheet thickness. This leads to the lower branche
the stability boundaries in Fig. 2. On the other hand, if t
magnetic islands and the convection cells become too lo
diffusion across the sheet—Ohmic and viscous—might
come important and quench the instability. This would e
plain the upper branches in Fig. 2. Instead of thinking of
islands becoming longer, one may equivalently imagine t
the walls come closer to the midplane of the sheet. The la
enhances the diffusive damping of perturbations~due to
steeper gradients with respect tox1), in a similar way as
increased values of the diffusivities would. The Hartma
number necessary for instability then becomes larger, le
ing to the upper branches in Fig. 2. Also, increasing
current-sheet half widtha acts as if the walls would come
closer~if we had chosena as the unit of length, we would
have to vary the distance of the walls instead of varyinga).
This can explain the decrease of the upper critical wa
length with increasinga. It does not explain yet why the
turning point where lower and upper branches meet is
shifted to larger and larger values ofa as Ha→`. Seemingly,
for walls which are too close or current profiles which a
too flat the basic driving mechanism of the tearing instabi
no longer works.

B. Equilibrium with B 2
eÞ0

In this subsection the influence of an asymmetry ofB2
e

on the stability is studied. For this purpose we varyB2
e in the

interval @0,1# @cf. Eq. ~21!#. Figure 4 shows, for Ha5103 and
Ha5104, respectively, the stability boundaries for differe
values ofB2

e. Again the unstable regions lie to the left of th
respective curves. In the caseB2

e51 there is no surfaceFk
50 or no reversal of the equilibrium field in the sheet,
that magnetic islands cannot form and the equilibrium
mains stable. The larger the constant part of the profile,
more stable the equilibrium becomes, i.e., the smaller
unstable region in thea-L2 plane between the two branche
of the stability boundary. AsB2

e→1, the unstable wavelengt
interval shrinks to zero. Figure 5 shows magnetic field lin
and velocity stream lines for a typical asymmetric case.
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Let Q0 denote the ratio of the maximum sel
consistently supported magnetic field to the externally
posed magnetic field, i.e.,Q051/B2

e in our dimensionless
units. Figure 6 shows stability boundaries in the Ha-Q0

plane, calculated for three different parameter sets (a, L2).
The curves shown here are global stability boundaries,
the envelopes of all the modal stability boundaries in
respective cases. Quiescent states with high Hartmann n
bers~with strong currents! are possible, providedQ0 is small
enough. Diamonds in Fig. 6 correspond to parame
(Ha,B2

e) for which stability boundaries are shown in Fig.

FIG. 4. Stability boundaries for different values ofB2
e ~see the legend in the

left panel! in the a-L2 plane for Ha5103 and Ha5104. Triangles denote
calculated points.

FIG. 5. Magnetic field lines and velocity stream lines fora50.15, B2
e

50.4, L256, and Ha51000. The indication of the flow direction and th
mixture ratio for the magnetic field are as in Fig. 3. The lower left pa
shows the undisturbed cross-sheet equilibrium profileB2

e(x1).
-

.,
e
m-

rs

It is now possible that the addition of aB3
e makes an

asymmetricequilibrium less stable or even a stable one u
stable. LetB2

ẽ(x1) be a symmetric profile admitting unstab
two-dimensional perturbations, and let the constantB2

e be
chosen such thatB2

e5B2
ẽ(x1)1B2

e does not change sign
within the sheet. The corresponding equilibrium is th
stable to all two-dimensional perturbations, as seen bef
However, for a givenk5(k2 ,k3), B3

e can always be found
such thatFk(x1) changes sign within the sheet, for instan
by the choiceB3

e52(k2 /k3)B2
e. The stability problem@for

the mode withk5(k2 ,k3)# is then equivalent to the cas
with B2

e5B2
ẽ and B3

e50. The Squire’s transformation con
nects the three-dimensional mode with wave vectork
5(k2 ,k3) to a two-dimensional mode with wave numb
k2̃5(k2

21k3
2)1/2, and the two modes are simultaneous

stable or unstable.17 If the profile B2
ẽ then admits growth of

the two-dimensional mode with wave numberk2̃ ~our nu-
merical results show that this is certainly possible!, the equi-
librium is unstable to a three-dimensional perturbatio
though it is stable to all two-dimensional perturbations.
such a case a Squire’s theorem clearly cannot be valid.

At least for our special choice of the functional form
the resistivity profile, however, a Squire’s theorem seems
be valid even withB3

eÞ0 if the equilibrium B2
e is symmetric

with respect to the midplane of the sheet. Namely, fo
given k5(k2 ,k3), k3Þ0, a nonvanishingB3

e can be ‘‘trans-
formed’’ into aB2

e, so that the profileB2
e becomes asymmet

ric. For the new, asymmetric profile the three-dimensio
(k3Þ0) perturbation is less unstable than some tw
dimensional perturbation~Squire’s theorem for a case wit
B3

e50), which in turn is less unstable for the asymmet
than for the original, symmetric profile. So in the symmet

l

FIG. 6. Global stability boundary in the Ha-Q0 plane, whereQ05B2
e21, for

three cases:~1! a50.15 andL253.0; ~2! a50.25 andL256.0; ~3! a
50.25 andL253.0. Crosses denote calculated points. Points below
dashed line correspond to completely stable equilibria. Diamonds indi
the parameters of the stability curves in Fig. 4.
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caseB3
e does not influence the global stability.

For a voltage-drivencylindrical pinch, with the plasma
or magnetofluid occupying a full cylinder, the driving exte
nal electric field being axially directed, and the resistiv
increasing with distance from the axis or being spatially u
form, it was found12,19,21that the quiescent ground state c
be stabilized by an externally imposed axial magnetic fi
component. However, in the case of the sheet pinch dc fi
parallel to the driving electric field can never stabilize
equilibrium which is unstable in their absence~cf. Sec. III!
and are completely irrelevant for the global stability if th
configuration is symmetric to the midplane of the sheet. T
difference seems to be connected with the fact that the in
bilities of the cylindrical pinch are inherently three
dimensional, while the most unstable perturbations to
basic, symmetric sheet-pinch equilibrium are purely tw
dimensional.

V. SUMMARY AND OUTLOOK

The stability of the quiescent ground state of a Harr
type sheet-pinch equilibrium has been studied numeric
by means of a pseudo-spectral method. The cross-shee
sistivity profile was chosen such as to make the equilibri
an exact one. The stability of the quiescent ground state
found to be determined by the half widtha of the current
layer centered about the midplane of the sheet, the Hartm
number, and the degree of asymmetry of the cross-s
magnetic field profile. Only if the magnetic field profile
asymmetric can a dc field parallel to the driving electric fie
influence the global stability. Such a field can never stabi
an equilibrium which is unstable in its absence. Fora
&0.41, the symmetric ground state is unstable to dis
bances whose wavelengths parallel to the sheet lie betw
lower and upper bounds which depend on the value ofa and
the Hartmann number. An upper critical wavelength for
stability has not been noted before. Asymmetry of the c
figuration with respect to the midplane of the sheet, int
duced by the addition of an externally imposed const
magnetic field, acts as a stabilizing factor~and can, if suffi-
ciently strong, completely stabilize the pinch!.

A stability analysis may be considered as a part o
bifurcation analysis, by which one tries to determine the
of possible time-asymptotic states, the attractors, for gi
values of the system parameters. The bifurcations from
Harris sheet have hitherto been studied for the case of
-

d
ds

is
ta-

e
-

-
ly
re-

as

nn
et

e

r-
en

-
-
-
t

a
t
n
e
o

spatial dimensions.14,15,22The new time-asymptotic states a
then of the tearing-mode type, characterized by a magn
island structure with a chain ofX andO points and an orga-
nization of the fluid motion in convection-like cells or rolls
We note here that even though with increasing Reyno
numbers the equilibrium first becomes unstable to tw
dimensional perturbations, the new final states might
three-dimensional~already after the primary bifurcation!.
This problem is the subject of ongoing studies.
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