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BRIEF COMMUNICATIONS

The purpose of this Brief Communications section is to present important research results of more limited scope than regular
articles appearing in Physics of Plasmas. Submission of material of a peripheral or cursory nature is strongly discouraged. Brief
Communications cannot exceed three printed pages in length, including space allowed for title, figures, tables, references, and an
abstract limited to about 100 words.
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The stability of the quiescent ground state of an incompressible viscous fluid sheet bounded by two
parallel planes, with an electrical conductivity varying across the sheet, and driven by an external
electric field tangential to the boundaries is considered. It is demonstrated that irrespective of the
conductivity profile, as magnetic and kinetic Reynolds numieased on the Alfue velocity) are

raised from small values, two-dimensional perturbations become unstable firdt99® American
Institute of Physicg.S1070-664X97)01312-§

One of the basic configurations in magnetohydrodynamingly inflection points in the magnetic fiel@r currenj pro-
ics (MHD) is the pinch, namely, an electrically conducting file are necessary for instabilities to app&ar.
fluid confined by the action of an electric current passing We use the nonrelativistic, incompressible MHD equa-
through it, such that pressure gradients are balanced by ti@ns,
Lorentz force.

In the geometry of a plane sheet, the pinch with the fluid  p a— +(v- V)V> prV?v—Vp+JIxB, )
at rest is stable if the electrical conductivity is infinite, but at
may be destabilized by resistivity. P

In this Brief Communication we demonstrate that for i —VX(npugd—vxB), (2)
increasing Reynolds numbers the quiescent ground state of a
voltage-driven resistive plane sheet pinch becomes first un- Vv.y=0, V.B=0, 3

stable to two-dimensional perturbations. This is a generaliza-

tion of Squire’s theorem in hydrodynami& For the special wherev is the fluid velocity,B the magnetic induction] the
case of a spatially uniform resistivity and no dc magnetlce'ectrIC current densityX VxB/ o, po denoting the mag-

field in the sheetwise or “toroidal” directiorithe direction netic permeability in a vacuump the mass densityp the

of the driving electric fielgl a proof was given in Dahlburg mechan_lca! pressure; theiliujematlc ws_cosny, and;.the
and Karperf. magnetic diffusivity{ (xq7)  is the electrical conductivity

If the resistivity is spatially uniform, the equilibrium cur- No externally applied force appears in &d). While p and

rent is also uniform and the equilibrium magnetic field must” &€ assumed constan,is allowed to vary spatially

k?e a linear function of_the cross—she_et coordir{dnye equi- 2(X) = 7o 7(X), (4)
librium we mean a stationary state with the fluid at re$b _

admit cross-sheet profiles of the equilibrium magnetic fieldwhere 7, is a dimensional constant ang(x) a nondimen-
deviating from the linear one, one has to allow for variationsional function of position.

of the electrical conductivity across the sheet. This is impor- ~ Let L andB, denote arbitrary units of length and mag-
tant, since, as found recenflyin a voltage-driven incom- netic induction. Writingy o= B /+/up for the Alfvén veloc-
pressible sheet pinch with spatially and temporally uniformity corresponding toB,, we transform to nondimensional
kinematic viscosity and magnetic diffusivity and with impen- quantities according to

etrable stress-free boundaries, the quiescent ground state L

with uniform current density and a linear profile of the mag-  x/L—x, B/By—B, V/iva—V, t/ — —t,

netic field across the sheet remains stable, no matter how vA (5)
strong the driving electric field. This agrees with the obser-

vation made in studies of quasiequilibria, that is of states p/vaﬁp, /——>J E/Bovpa—E.

with a nonuniform current density in a fluid with uniform

resistivity (these states thus decay resistiyelthat seem- E is the electric field. Eq9.1l) and(2) then become

Phys. Plasmas 4 (12), December 1997 1070-664X/97/4(12)/4447/3/$10.00 © 1997 American Institute of Physics 4447



v E*=[Sly(1)]" L. (17

—=—(v-V)v+R 1V?y—Vp+JIxB, (6)
ot There is a Lorentz force in the, direction,
ﬁ——VX S 1J-vxB 7 ey pe e e&Bg
ra (S " nJ—vxB), (7) JexBe=(—B$J;,0,00=| — 2(9—)(1,0,0 (18
where and Eq.(13) is satisfied with
UAL UAL Be2
V 7o (8 p=p > (19
are Reynolds numbers based on the Affwelocity, namely  So the quiescent ground state is exactly defined.
R the kinetic Reynolds number ai@the Lundquist number. We use the decomposition
The nondimensional Ohm’s law reads
(VxB)XB=(B-V)B— $VB? (20)

S 'pJ=E+VXB. 9) _
and write
We use Cartesian coordinates X,, X3 and consider our

magnetofluid in the slab0x;<1. In thex, and x; direc- P=p+3B% b=B-B° [=J-J° (21)
tions periodic boundary conditions are applied. . .
. v andb are our dynamical variables.
We assume that there is no mass flow and no magnetic : .
The spatial means af5, v, B,, andB; are independent

flux through the boundary planes, i.e., of time. For the case of spatially uniform this is shown in
v,=B;=0 atx;=0,1. (10 Ref. 5, and the arguments given there are easily generalized

to the case of nonuniforny. Without loss of generality we

restrict ourselves to the case wf=v;=0, since any mean

flow can be removed by a Galilean transformation. The mean

valuesB, andB; are parameters of the equilibrium field.

We now Fourier expand in the, andxs directions. Let

To allow for nontrivial time-asymptotic states, the sys-
tem is driven by an electric field of strengEf in the x5
direction, which can be prescribed only on the boundary
Condition (10) implies that the tangential components of
vX B on the boundary planes vanish, so that according to Eq}.

9 ik andb;, denote the Fourier coefficients of andb; for
wave numbek = (k,,k3). Linearizing about the static equi-
E*S librium, Egs.(6) and(7) become
J,=0, J;=— atx;=0,1. (11) _ _ e
b Ulk:_P|;_R_l(kZ_DZ)U1k+|szgblk+|k3B§blk,
7 is the value ofy on the boundaries. The boundary con- b= — 1KoPy— R (k2= D2)p -+ ikoBEb + ikaBSba
ditions for the tangential components Bfthen become J
=V xB in the nondimensional units +(B3) by,
07_82: E’:CS, 0-'_8320 at Xlzo,ll (12) l-)3k:_ik3pk_R_1(k2_D2)U3k+iszgb3k
+iksB3bay, (22
Stationary state with the fluid at rest are given as solu- . e = I o
tions of the equations b1k=1koBov 1k +iksBzv k=S ika7j sk —ikz 7 k],
—Vp+JIxB=0, (13 bok=1K,BSv o+ ikaB5v 2= (BS) 'v1k— S~ ik37j 1
VX (73)=0. (14) —(miz)'],
We assumey to depend only on the coordinatg. Equation bar=ik,BSv g +iksBSva— S (i k) — iK2 7 1],

(14) and the boundary conditions are then satisfied with . _ o .
where a prime denotes differentiation with respectt@nd

J=J°=(0,0,7 E*9), (15  D=dlx,.
. . — = Generalizing Squire’s transformation of ordinary
B=B"=(0E*Sly(x;) +B3,B3), (1) hydrodynamic&® to the magnetohydrodynamic case, we de-
where overbars denote spatial averages angx,) fine
=t dx 7" dx,. K=(C+K)2  Pr/k=P,/ky,
E* can be formally eliminated by the still free choice of . _ .
the magnetic field unit,. Let, for instancez be symmetric kvok=kovoktKavak, vik=vik, KR=KR, (23

about the midplang&, =0.5, so that in the case &;=0, BS —— ~ ——
is correspondingly antisymmetric. We have the freedom to KD2k=kabaitksbsi,  bak=buc, kS=keS.

chooseBy, in such a way that thefB5|=1 on the boundary We can assumk,+#0 here, since modes witk,=0 cannot
planes, and consequently grow and are bound to decay if not in additi@n and ks
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vanish. This can be seen from the syst&®), where the the eigenmode of the original system is really three-
only driving terms are those witB5 (as demonstrated below, dimensional, that i%;# 0, then the eigenmode of the two-

a nonvanishingg_g does not influence growth rajesn the  dimensional system grows indeed faster. Furthermore, and
case ofD =k,=k;=0 also dissipation is absent, so the cor-most importantR<R and S<S. That is, if the Reynolds

responding perturbations are neutrally stable. numbers are raised from small values, two-dimensional per-
Multiplying the first of the equation§22) by k/k, we  turbations become unstable first.
have To complete the proof, we note that also the conditions
F (3), which take the form
k_g;ﬁ:_ﬁLk_ﬁil(T(’z_DZ)E&HEB‘ZE’EIF vt ikava+ikava=0, (30
-~ o bik+ik2b2k+ik3b3k:0 (31)
+ k_zikangli, (24 in Fourier space, are satisfied for the derived two-

dimensional system: One finds
while the second and the third of these equations can be

combined to give vz +ikvg=0, bip+ikby=0. (32
K - e e g oo o A nonvanishingB_g, finally, leads to Alfvaic oscilla-
K, vok=—TkPR—RT(k“=D%v i +ikB;bsk tions, but does not influence the growth rates of unstable

modes. This is most easily seen if Esar variableg™=v
*b are used. If the syste22) is transformed to these vari-
ables, on the right-hand sides of the equations forzthéhe
term + ik?,B_gzi+k appears, while there is a tenﬂﬂikgB_gzi’k on
the right-hand sides of the equations for tﬁg Now let, for
Jak=Dba—ikabyy,  jox=ikaby—bg (26)  prescribed initial conditions at=0, [z ,z] be the solution
and consequently for the case withB3 set equal to zero. Then the solution for
nonvanishing B§ is given by [z expfiksBst},
z, exp{—iksB5t}], that is, the solution is merely modulated

[— ~
+ 1 ikaB3bai+(BS) 'buk. (25)
2

Similarly, on observing that

Koj 3= Kaj k= Kob — ik3by—ik3by+ kabj,

:’RE;E_ ik?b %=k a%, (277 by an oscill'ation with frequencisBS. This applies equally
] . to the solutions of the syste(24), (25), (28), (29).
one finds from the last three of the equati¢@g) In conclusion we note that, though for increasing Rey-
e =~ nolds numbers the equilibrium becomes first unstable to two-

'BliziEBgle+ 5 ik3B_§le—'§*1i"k'77'j“3; (28 dimensional perturbations, this does not yet imply that also
the bifurcating new time-asymptotic states are two-
and dimensional. Numerical simulations show that the initial
growth of a two-dimensional perturbation can be followed
by an evolution towards a three-dimensional final stdtés

not clear yet, however, whether the quiescent ground state
~_q ~ loses its stability directly to three-dimensior(éihal) states

+S (7] 3% (29 or whether two-dimensional states with flow are stable in

Now let firstB_§:O. Then up to the factok/k, on the left- certain Reynolds number intervals close to the primary bifur-
hand sides, which can be removed by the additional transfo/Gation point.

mationT:(kzl’E)t, the equati0n$24), (25), (28) and (29) ACKNOWLEDGMENTS
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