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The stability of the quiescent ground state of an incompressible viscous fluid sheet bounded by two
parallel planes, with an electrical conductivity varying across the sheet, and driven by an external
electric field tangential to the boundaries is considered. It is demonstrated that irrespective of the
conductivity profile, as magnetic and kinetic Reynolds numbers~based on the Alfve´n velocity! are
raised from small values, two-dimensional perturbations become unstable first. ©1997 American
Institute of Physics.@S1070-664X~97!01312-8#

One of the basic configurations in magnetohydrodynam-
ics ~MHD! is the pinch, namely, an electrically conducting
fluid confined by the action of an electric current passing
through it, such that pressure gradients are balanced by the
Lorentz force.

In the geometry of a plane sheet, the pinch with the fluid
at rest is stable if the electrical conductivity is infinite, but
may be destabilized by resistivity.1

In this Brief Communication we demonstrate that for
increasing Reynolds numbers the quiescent ground state of a
voltage-driven resistive plane sheet pinch becomes first un-
stable to two-dimensional perturbations. This is a generaliza-
tion of Squire’s theorem in hydrodynamics.2,3 For the special
case of a spatially uniform resistivity and no dc magnetic
field in the sheetwise or ‘‘toroidal’’ direction~the direction
of the driving electric field!, a proof was given in Dahlburg
and Karpen.4

If the resistivity is spatially uniform, the equilibrium cur-
rent is also uniform and the equilibrium magnetic field must
be a linear function of the cross-sheet coordinate~by equi-
librium we mean a stationary state with the fluid at rest!. To
admit cross-sheet profiles of the equilibrium magnetic field
deviating from the linear one, one has to allow for variation
of the electrical conductivity across the sheet. This is impor-
tant, since, as found recently,5 in a voltage-driven incom-
pressible sheet pinch with spatially and temporally uniform
kinematic viscosity and magnetic diffusivity and with impen-
etrable stress-free boundaries, the quiescent ground state
with uniform current density and a linear profile of the mag-
netic field across the sheet remains stable, no matter how
strong the driving electric field. This agrees with the obser-
vation made in studies of quasiequilibria, that is of states
with a nonuniform current density in a fluid with uniform
resistivity ~these states thus decay resistively!, that seem-

ingly inflection points in the magnetic field~or current! pro-
file are necessary for instabilities to appear.6

We use the nonrelativistic, incompressible MHD equa-
tions,

rS ]v

]t
1~v–“!vD5rn“

2v2“p1J3B, ~1!

]B

]t
52“3~hm0J2v3B!, ~2!

“–v50, “–B50, ~3!

wherev is the fluid velocity,B the magnetic induction,J the
electric current density (5“3B/m0, m0 denoting the mag-
netic permeability in a vacuum!, r the mass density,p the
mechanical pressure,n the kinematic viscosity, andh the
magnetic diffusivity@(m0h)21 is the electrical conductivity#.
No externally applied force appears in Eq.~1!. While r and
n are assumed constant,h is allowed to vary spatially

h~x!5h0h̃~x!, ~4!

whereh0 is a dimensional constant andh̃(x) a nondimen-
sional function of position.

Let L andB0 denote arbitrary units of length and mag-
netic induction. WritingvA5B0 /Am0r for the Alfvén veloc-
ity corresponding toB0, we transform to nondimensional
quantities according to

x/L→x, B/B0→B, v/vA→v, tY L

vA
→t,

~5!

p/rvA
2→p, JY B0

m0L
→J, E/B0vA→E.

E is the electric field. Eqs.~1! and ~2! then become
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]v

]t
52~v–“ !v1R21
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2v2“p1J3B, ~6!

]B

]t
52“3~S21h̃J2v3B!, ~7!

where

R5
vAL

n
and S5

vAL

h0
~8!

are Reynolds numbers based on the Alfve´n velocity, namely
R the kinetic Reynolds number andS the Lundquist number.
The nondimensional Ohm’s law reads

S21h̃J5E1v3B. ~9!

We use Cartesian coordinatesx1, x2, x3 and consider our
magnetofluid in the slab 0,x1,1. In thex2 and x3 direc-
tions periodic boundary conditions are applied.

We assume that there is no mass flow and no magnetic
flux through the boundary planes, i.e.,

v15B150 at x150,1. ~10!

To allow for nontrivial time-asymptotic states, the sys-
tem is driven by an electric field of strengthE* in the x3

direction, which can be prescribed only on the boundary.
Condition ~10! implies that the tangential components of
v3B on the boundary planes vanish, so that according to Eq.
~9!

J250, J35
E* S

h̃b

at x150,1. ~11!

h̃b is the value ofh̃ on the boundaries. The boundary con-
ditions for the tangential components ofB then become (J
5“3B in the nondimensional units!

]B2

]x1
5

E* S

h̃b

,
]B3

]x1
50 at x150,1. ~12!

Stationary state with the fluid at rest are given as solu-
tions of the equations

2“p1J3B50, ~13!

“3~ h̃J!50. ~14!

We assumeh̃ to depend only on the coordinatex1. Equation
~14! and the boundary conditions are then satisfied with

J5Je5~0,0,h̃21E* S!, ~15!

B5Be5~0,E* SI0~x1!1B2
e,B3

e!, ~16!

where overbars denote spatial averages andI 0(x1)

5*h̃21 dx12*h̃21 dx1.
E* can be formally eliminated by the still free choice of

the magnetic field unit,B0. Let, for instance,h̃ be symmetric
about the midplanex150.5, so that in the case ofB2

e50, B2
e

is correspondingly antisymmetric. We have the freedom to
chooseB0 in such a way that thenuB2

eu51 on the boundary
planes, and consequently

E* 5@SI0~1!#21. ~17!

There is a Lorentz force in thex1 direction,

Je3Be5~2B2
eJ3,0,0!5S 2B2

e
]B2

e

]x1
,0,0D ~18!

and Eq.~13! is satisfied with

p5pe52
Be2

2
. ~19!

So the quiescent ground state is exactly defined.
We use the decomposition

~“3B!3B5~B–“ !B2 1
2 “B2 ~20!

and write

P5p1 1
2 B2, b5B2Be, j5J2Je. ~21!

v andb are our dynamical variables.
The spatial means ofv2, v3, B2, andB3 are independent

of time. For the case of spatially uniformh this is shown in
Ref. 5, and the arguments given there are easily generalized
to the case of nonuniformh. Without loss of generality we
restrict ourselves to the case ofv25v350, since any mean
flow can be removed by a Galilean transformation. The mean
valuesB2 andB3 are parameters of the equilibrium field.

We now Fourier expand in thex2 andx3 directions. Let
v ik and bik denote the Fourier coefficients ofv i and bi for
wave numberk5(k2 ,k3). Linearizing about the static equi-
librium, Eqs.~6! and ~7! become

v̇1k52Pk82R21~k22D2!v1k1 ik2B2
eb1k1 ik3B3

eb1k ,

v̇2k52 ik2Pk2R21~k22D2!v2k1 ik2B2
eb2k1 ik3B3

eb2k

1~B2
e!8b1k ,

v̇3k52 ik3Pk2R21~k22D2!v3k1 ik2B2
eb3k

1 ik3B3
eb3k , ~22!

ḃ1k5 ik2B2
ev1k1 ik3B3

ev1k2S21@ ik2h̃ j 3k2 ik3h̃ j 2k#,

ḃ2k5 ik2B2
ev2k1 ik3B3

ev2k2~B2
e!8v1k2S21@ ik3h̃ j 1k

2~ h̃ j 3k!8#,

ḃ3k5 ik2B2
ev3k1 ik3B3

ev3k2S21@~ h̃ j 2k!82 ik2h̃ j 1k#,

where a prime denotes differentiation with respect tox1 and
D5]/]x1.

Generalizing Squire’s transformation of ordinary
hydrodynamics2,3 to the magnetohydrodynamic case, we de-
fine

k̃5~k2
21k3

2!1/2, P̃ k̃ / k̃5Pk /k2,

k̃ ṽ 2 k̃5k2v2k1k3v3k , ṽ 1 k̃5v1k , k̃ R̃5k2R, ~23!

k̃ b̃2 k̃5k2b2k1k3b3k , b̃1 k̃5b1k , k̃ S̃5k2S.

We can assumek2Þ0 here, since modes withk250 cannot
grow and are bound to decay if not in additionD and k3
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vanish. This can be seen from the system~22!, where the
only driving terms are those withB2

e ~as demonstrated below,
a nonvanishingB3

e does not influence growth rates!. In the
case ofD5k25k350 also dissipation is absent, so the cor-
responding perturbations are neutrally stable.

Multiplying the first of the equations~22! by k̃ /k2 we
have

k̃

k2
v̇̃ 1 k̃52 P̃ k̃

82R̃21~ k̃22D2! ṽ 1 k̃1 i k̃ B2
eb̃1 k̃

1
k̃

k2
ik3B3

eb̃1 k̃ , ~24!

while the second and the third of these equations can be
combined to give

k̃

k2
v̇̃ 2 k̃52 i k̃ P̃ k̃2R̃21~ k̃22D2! ṽ 2 k̃1 i k̃ B2

eb̃2 k̃

1
k̃

k2
ik3B3

eb̃2 k̃1~B2
e!8 b̃1 k̃ . ~25!

Similarly, on observing that

j 3k5b2k8 2 ik2b1k , j 2k5 ik3b1k2b3k8 ~26!

and consequently

k2 j 3k2k3 j 2k5k2b2k8 2 ik2
2b1k2 ik3

2b1k1k3b3k8

5 k̃ b̃2 k̃
8 2 i k̃ 2b̃1 k̃ 5 k̃ j̃ 3 k̃ , ~27!

one finds from the last three of the equations~22!

k̃

k2
ḃ̃1 k̃5 i k̃ B2

eṽ 1 k̃1
k̃

k2
ik3B3

eṽ 1 k̃2 S̃21i k̃ h̃ j̃ 3 k̃ ~28!

and

k̃

k2
ḃ̃2 k̃5 i k̃ B2

eṽ 2 k̃1
k̃

k2
ik3B3

eṽ 2 k̃2~B2
e!8 ṽ 1 k̃

1 S̃21~ h̃ j̃ 3 k̃ !8. ~29!

Now let first B3
e50. Then up to the factork̃ /k2 on the left-

hand sides, which can be removed by the additional transfor-
mation t̃ 5(k2 / k̃ )t, the equations~24!, ~25!, ~28! and ~29!
have the same mathematical form as the system~22! with the
x3 dependence dropped,v35b350 andk25 k̃ . And if l is
an eigenvalue of the linear operator on the right-hand side of
the original system~22!, then (k̃ /k2)l is an eigenvalue of
the linear operator on the right-hand side of the system~24!,
~25!, ~28!, ~29! ~to see this replace on the left-hand side of
the system~22! v̇ ik and ḃik by lv ik andlbik and apply the
manipulations described!. Thus, if there is an unstable eigen-
mode of the original system, i.e., an eigenvaluel with posi-
tive real part~giving the growth rate of the mode!, then,
since k̃ /k2>1, there is an unstable eigenmode of the derived
two-dimensinal system with at least the same growth rate; if

the eigenmode of the original system is really three-
dimensional, that isk3Þ0, then the eigenmode of the two-
dimensional system grows indeed faster. Furthermore, and
most important,R̃<R and S̃<S. That is, if the Reynolds
numbers are raised from small values, two-dimensional per-
turbations become unstable first.

To complete the proof, we note that also the conditions
~3!, which take the form

v1k8 1 ik2v2k1 ik3v3k50, ~30!

b1k8 1 ik2b2k1 ik3b3k50 ~31!

in Fourier space, are satisfied for the derived two-
dimensional system: One finds

ṽ 1 k̃
8 1 i k̃ ṽ 2 k̃50, b̃1 k̃

8 1 i k̃ b̃2 k̃50. ~32!

A nonvanishingB3
e, finally, leads to Alfvénic oscilla-

tions, but does not influence the growth rates of unstable
modes. This is most easily seen if Elsa¨sser variablesz65v
6b are used. If the system~22! is transformed to these vari-
ables, on the right-hand sides of the equations for theżik

1 the
term1 ik3B3

ezik
1 appears, while there is a term2 ik3B3

ezik
2 on

the right-hand sides of the equations for theżik
2 . Now let, for

prescribed initial conditions att50, @zk
1 ,zk

2# be the solution
for the case withB3

e set equal to zero. Then the solution for
nonvanishing B3

e is given by @zk
1 exp$ik3B3

et%,
zk

2 exp$2ik3B3
et%#, that is, the solution is merely modulated

by an oscillation with frequencyk3B3
e. This applies equally

to the solutions of the system~24!, ~25!, ~28!, ~29!.
In conclusion we note that, though for increasing Rey-

nolds numbers the equilibrium becomes first unstable to two-
dimensional perturbations, this does not yet imply that also
the bifurcating new time-asymptotic states are two-
dimensional. Numerical simulations show that the initial
growth of a two-dimensional perturbation can be followed
by an evolution towards a three-dimensional final state.7 It is
not clear yet, however, whether the quiescent ground state
loses its stability directly to three-dimensional~final! states
or whether two-dimensional states with flow are stable in
certain Reynolds number intervals close to the primary bifur-
cation point.
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