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Abstract

Using the incompressible magnetohydrodynamic equations, we have numerically
studied the dynamo effect in electrically conducting fluids. The necessary energy
input into the system was modeled either by an explicit forcing term in the Navier-
Stokes equation or fully selfconsistently by thermal convection in a fluid layer heated
from below. If the fluid motion is capable of dynamo action, the dynamo effect ap-
pears in the form of a phase transition or bifurcation at some critical strength of the
forcing. Both the dynamo bifurcation and subsequent bifurcations that occur when
the strength of the forcing is further raised were studied, including the transition
to chaotic states. Special attention was paid to the helicity of the flow as well as
to the symmetries of the system and symmetry breaking in the bifurcations. The
magnetic field tends to be accumulated in special regions of the flow, notably in the
vicinity of stagnation points or near the boundaries of convection cells.
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1 Imtroduction

Electrically conducting fluids in motion can act as self-excited dynamos. The
magnetic fields of celestial bodies like the Earth and the Sun are generated
by such dynamos. Their theory aims at modeling and understanding both the
kinematic and dynamic aspects of the underlying processes. Realistic models,
describing the dynamo processes, are given in the form of a complex system of
nonlinear partial differential equations including the Navier-Stokes equation
(NSE), the induction equation, the heat equation, and the thermodynamic
equation of state. Heating causes fluid motions which in turn, notably in the
presence of rotation, induce magnetic fields. For comprehensive accounts of
dynamo theory we refer to Refs. [1-3].
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It is generally accepted that the nonlinear system of the incompressible mag-
netohydrodynamic (MHD) equations contains the basic elements of a dynamo.
It consists of the coupled system of the NSE for the flow and the induction
equation for the magnetic field in the form

?)—:+(V~V)V=R‘1V2V—V1”_ SVB’+(B-V)B+1, (1)
OB — 12

W.{.(V.V)B:RmVB—F(B'V)V, (2)
V-v=0 V.-B=0, (3)

where v, p and B denote fluid velocity, thermal pressure and magnetic field,
R and R,, the kinetic and magnetic Reynolds number, respectively, and f
is a yet unspecified body force. The third and fourth terms on the right-
hand side of Eq. (1) constitute the Lorentz force. Equations (3) impose the
incompressibility condition on the fluid and ensure the source-free property of
the magnetic field. The body force f on the right-hand side of the NSE has to
be specified in the concrete physical context and is the sum of all forces that
drive the fluid, as e.g. the buoyancy force in thermal convection, or modify
the motion, like the Coriolis force in a rotating star. It pumps energy into the
fluid and we look for long lasting magnetic fields, not decaying as a result of
the nonlinear coupling of NSE and induction equation. This phenomenon will
be called nonlinear dynamo effect.

Traditional dynamo theory has been mainly kinematic, i.e., the induction
equation, Eq. (2), is solved for a prescribed velocity field, disregarding the
equation of motion, Eq. (1). In the kinematic frame the question is whether a
fluid motion can amplify, or at least prevent from decaying, some weak seed
magnetic field. Positive growth rates indicate instability of the zero magnetic
field solution and we speak of a kinematic dynamo effect. A central result of
traditional kinematic dynamo theory is that a nonvanishing kinetic helicity,
for a given volume V defined by

H:/v-(va)d3x, (4)

with h = v - (V x v) being the helicity density, is favourable for a dynamo
effect. An intensively studied example for helical dynamos are the ABC flows
VABC [4—6]

To take into account the back reaction of the magnetic field on the velocity
field, the kinematic analysis has to be extended to studying the full nonlinear
MHD equations, Egs. (1)-(3). The velocity fields vapc can be produced as
steady solutions of the incompressible NSE, Eq. (1), if an external body force
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fapc = —V2vape is applied. In the first part of this paper we report bifur-
cation studies of the MHD equations with the forcing fapc (detailed results
are published in Refs. [7-12]; see also Ref. [13] where dynamo bifurcations in
an array of driven convection-like rolls similar to the flow in the outer core
of the Earth are studied). After that we present results on dynamo action in
thermal convection. In this case, which corresponds to the situation in the
Earth and in stars, the force driving the fluid motion is thermal buoyancy. It
is not prescribed but selfconsistently obtained by solving the MHD equations
coupled with a temperature equation.

2 Dynamo bifurcations in the ABC flows
2.1 Pure ABC forcing

One of the successful examples for producing a dynamo are the ABC flows
(named after Arnold, Beltrami and Childress)

vasc = (Asinkyz + Ccoskgy, Bsinkgx + Acoskgz, Csinkgy + Bcoskgzx),(5)

where A, B, C denote constant coefficients and kg is a wave number. They are
strongly helical Beltrami flows. Beltrami flows are flows with parallel velocity
and vorticity (V xv) vectors. The ABC flows satisfy the Beltrami condition,
V xv = v, with a constant -y, namely v = ko, which is a necessary condition
for the existence of chaotic domains in Beltrami flows [4]. For this reason,
they have received much interest [5,14], notably in the kinematic context as
candidates for fast dynamos [6] (for which the growth rate remains bounded
from below by a positive constant as the magnetic diffusivity tends to zero).

Imposing an external body force
f = —-V?vapc = k2vasc (6)

in the NSE and applying periodic boundary conditions with period 27 in
all three spatial directions, Galanti et al. [15] investigated the system of the
MHD equations [Egs. (1)—(3)]. Numerically simulating the system for different
Reynolds numbers and selected initial conditions, they observed that at some
critical value of the Reynolds number the ABC flow with no magnetic field
loses stability to a time-periodic state in which a magnetic field is excited and
which, thus, represents a dynamo.

At this stage we started our study of the ABC dynamo, for the special case
A =B =C =1, kg = 1. The magnetic Prandtl number was set equal to
unity, P, = R,/R =1, so that the kinetic Reynolds number R was the only
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remaining control parameter. R was raised from zero in small steps in order
to detect bifurcations. For small R, there exists only one stable stationary
solution, namely the ABC flow [given by Eq. (5)] with a vanishing magnetic
field. Its symmetry group is the full equivariance group of the ABC forced
MHD equations, the octahedral group O (the rotation group of the cube)
[4,14,16].

For varying R, this steady-solution branch was traced and the Jacobian ma-
trix and its eigenvalues were computed in each step. The table in Fig. 1 lists
the solution branches detected, along with their regions of stability and sym-
metries. The numbers in the branch designations indicate the multiplicity of

3 branches

Branch Stability Sym- | mmmmomoo r—

. 4 branches

interval metry R o/
ABC flow 0<R<5.7 0 &
Per-1 5.7<R<115 O
Per-3 7T7<R<16.0 Dy R} , , ) -

[} 5 10 15 20

Per—4 11.5<R<17.3 Dj
Torus-3 16.0<R<20.0 —— stable ABCflow -~ unstable ABC flow
Torus—4 17.3<R<17.9 --- periodic branches —— torus branches
Chaos-3 ~ R>20.0 "\~ chaos 0 Hopf bifurcation
Chaos—4 R>17.9

Fig. 1. Overview of the different solution branches (left). Schematic bifurcation
diagram (right).

the branches, i.e. the number of coexisting conjugate branches. Per-3, for in-
stance, stands for three coexisting branches of periodic solutions, each being
invariant to one of three conjugate dihedral subgroups D4 (Dy is the group of
all rotations and reflections which transform a square in a plane into itself).
The primary ABC flow loses stability in a Hopf bifurcation in which a sta-
ble periodic branch with a nonvanishing magnetic field is born. Since only a
single pair of complex-conjugate eigenvalues crosses the imaginary axis, the
new branch, denoted as Per-1, retains the full symmetry O. More precisly, the
solution is no longer point symmetric with respect to all symmetry transfor-
mations since some of these produce time shifts. However, the periodic orbit
as a whole is invariant. In the right half of Fig. 1 a schematic bifurcation
diagram is depicted. There are two main (stable) branches. One of them is
generated by successive bifurcations from the primary ABC flow. The other
one, appearing with Per-3, seems to be a result of a saddle-node bifurcation;
its unstable counterpart has not been found.
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Next we want to give an impression of the magnetic field structure in real
(configuration) space. In kinematic dynamo studies using the ABC flow with
A = B = C cigar-like concentrations of the magnetic field about velocity
stagnation points were observed [15,17]. The ABC flow with A = B = C
has eight stagnation points, which are unstable fixed points of the flow v.
The corresponding eigenvalues are real and have signs (+, —, —) or (—, +, +).
The intersections of the stable and unstable manifolds of the stagnation points
form a complicated web of heteroclinic lines [14]. Stagnation points with a two-
dimensional stable manifold have been denoted as of o type and those with
a two-dimensional unstable manifold as of 8 type. There are four stagnation
points of each type. The cigar-like structures of the magnetic field observed for
the kinematic problem are localized about the stagnation points of the « type.
In Fig. 2 isosurfaces of the magnetic field strength are drawn. The cigar-like

Fig. 2. Isosurfaces of the magnetic field with 65% of the maximal modulus for the
symmetric branch at R = 10 (snapshot).

structures are clearly recognizable also in the nonlinear regime, where their
shape now varies in time.

2.2 Generalized ABC forcing with varying helicity

In order to test the role of helicity for a dynamo effect we have, besides the
pure ABC forcing given by Egs. (5) and (6), also applied a generalized ABC
forcing of the form

where we introduce

Vape = (Acoskoz+C sinkgy, B coskoz + A sinkyz, C coskoy + B sinkoz)(8)
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and ) is a parameter varying between 0 and 0.5 (but A=B=C=ky=11n
all calculations described here). vipc satisfies V X vige = —koViape and for a
positive kg its helicity is thus negative whereas that of the original ABC flow
is positive. The degree of helicity in the forcing varies with A. For A = 0.5 the
addition of v pe in the forcing term leads to a vanishing total helicity in the
periodic box while A = 0 corresponds to the original ABC forcing.

Fig. 3 gives a bifurcation diagram for the case of the generalized ABC forcing.

R ST N ST S N RY SR H WU TS D oo 7SO

Fig. 3. Primary and secondary bifurcations of the original stationary solution in
the A-R plane. Solid line and dashed-dotted line: a single pair of complex conjugate
eigenvalues crosses the imaginary axis; dashed line: two real eigenvalues pass through
zero; dotted line: two pairs of complex conjugate eigenvalues cross the imaginary
axis. Asterisks indicate points at which, by means of simulations, non-magnetic
chaotic (Shilnikov-like) time-asymptotic states have been found, while circles corre-
spond to magnetic periodic attractors.

For weak forcing (small R), there exists always a stable stationary, globally
attracting solution (which coincides with the original ABC flow only in the
special case of A = 0). Keeping A fixed and raising R, we have traced the
steady-solution branch. For A < 0.4 the steady state loses stability in a Hopf
bifurcation, but at A = 0.4 the type of the first bifurcation, as well as the
character of the time-asymptotic states after this bifurcation, change. While
for A < 0.4 a magnetic periodic state is the (only) new attractor, for A be-
tween 0.4 and 0.5 new non-magnetic states appear. The new non-magnetic
stationary and periodic solutions bifurcating from the original stationary one
for 0.4 < A < 0.5 are stable only over very small intervals of the bifurcation
parameter K and lose their stability directly to non-magnetic chaotic states.
The chaotic attractors found here are strongly suggestive of Shilnikov-type
homoclinic chaos (for details see [7]).
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3 Dynamo in asymmetric square convection

Studies of convection-driven dynamos have concentrated either on turbulent
convection [18] or on convection near onset, where simple steady flows can be
obtained [19,20]. For Rayleigh-Bénard Boussinesq convection with symmetric
top and bottom boundary conditions, i.e. for convection with up-down reflec-
tion symmetry, the preferred convection pattern near onset is rolls. However,
recent experimental and theoretical investigations show other possible attrac-
tors in this kind of convection. Resonant square and hexagon patterns appear
in a range where only rolls were previously known to be stable [21-24]. Usu-
ally these asymmetric hexagons and squares, with rising or with descending
motion in the center (and descending or rising motion near the boundary) are
observed in convection lacking up-down reflection symmetry, namely in fluids
with strongly temperature dependent viscosity or in Bénard-Marangoni con-
vection [25-27], the asymmetric square pattern representing the dominating
pattern over a wide range of the control parameters. Details about this pattern
can be found in [23,24,28].

In this section we report on the dynamo properties of the asymmetric square
pattern. We consider buoyancy-driven rotating convection in an electrically
conducting plane fluid layer of thickness d heated from below. Using the
Oberbeck-Boussinesq approximation, the governing system of partial differ-
ential equations now reads as follows:

V-v=V-B=0 (9)
%+(V-V)v= —Vp+ P Av + PR, fe,
+HVxB)xB+PVTvxe (10)
B
%5* (v-V)B = PP-AB + (B- V)v (11)
%-{—v-vgzvz—l—ﬂg. (12)

Here p and # represent the deviations of pressure and temperature from their
values in the pure conduction state. We use Cartesian coordinates z, y and
z with the z axis in the vertical direction parallel to the gravitational force.
e, is the unit vector in the vertical direction whereas the vector e is the
general notation for the unit vector in the direction of the rotation axis. For
our special choice e=e, one has v x e = (v, —9;,0) in Eq. (10). Equations
(9)-(12) are given in usual dimensionless form. There are four dimensionless
parameters, the Prandtl number P, the magnetic Prandtl number P,,, the
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Rayleigh number R, and the Taylor number T, defined by

8 2042\ ?
. R, =% T:( ), (13)

p=% p,=Z
K n VK v

where v is the kinematic viscosity, x the thermal diffusivity, 7 the magnetic
diffusivity, v the volumetric expansion coefficient, g the gravitational accel-
eration, 0T the temperature difference between lower and upper boundaries
of the fluid layer and Q the angular velocity of the rotation. The Rayleigh
number R, measures the strength of the buoyancy forces. We apply periodic
boundary conditions with spatial period L in the horizontal directions z and
y. The top and bottom planes are assumed to be stress-free, isothermal and
impenetrable for matter and electromagnetic energy:

0B, 0B,

Ovy, Ov, _ _

As in [29,30] we restrict ourselves to the case of a vanishing mean horizontal
flow since such a flow can be removed by a Galilean transformation. L is kept
fixed at a value of 4 and P at 6.8. The Taylor number, measuring the rotation
rate, is restricted to values below the critical one for the Kiippers-Lortz [31]
instability. Here we find the primary convection patterns near onset to be never
capable of dynamo action, neither with nor without rotation (for studies of
dynamos in rapidly rotating plane layers see [32,33]). An example of steady
up-square convection in the absence of rotation is shown in Fig. 4(a).

(a) (b)

Fig. 4. Shadowgraph images of the vertical velocity component v, of an asymmetric
square pattern for R, = 7000 and T = 0 (a) and of the vertical component B, of
the associated unstable magnetic eigenmode for P, = 5.5 (b). The values in the
horizontal midplane are shown, bright areas indicating positive values.
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The square pattern appears via the skewed-varicose [34] instability of primary
rolls (details are described in [24]). Depending on the initial conditions, cells
with rising or descending motion in the center appear. The spectrum of the
excited Fourier modes shows that the asymmetric squares can be represented
to lowest order by

(Aleiklx + Aze“‘"") + (Blei(k”kz”‘ + Bzei(kl‘kZ)x) +c.c. (15)

where k; and ko are horizontal wave numbers with k; Lka, |ki| = |kao| = &
being the fundamental wave number of the square pattern (27/k the side
length of the asymmetric squares). Eq. (15) represents a superposition of two
checkerboard or symmetric square patterns, one with the fundamental wave
number and the other, rotated by an angle of 7/4, with the wave number
q = |k +ka| = v/2k, which is the wave number of the skewed varicose unsta-
ble rolls. We find the two checkerboard pattern solutions to be always unsta-
ble. However, rolls with the smaller wave number k£ are stable in the region
where we observe stable asymmetric squares. The wave numbers k£ and ¢ are in
resonance through triadic interactions of the associated wave vectors. A repre-
sentation like Eq. (15) was used in [28] to study square cells in non-Boussinesq
convection near onset and is contained in a more general Galerkin ansatz used
in [23] to study asymmetric squares in Boussinesq convection. Asymmetric
squares were also found numerically in compressible magnetoconvection near
onset [35].

Without rotation, the checkerboard pattern solutions are symmetric to reflec-
tions in vertical planes parallel to one of the sides of a square (additionally
there is a symmetry to up-down reflections combined with horizontal trans-
lations by one square), implying zero net helicity H (since the pseudoscalar
H changes sign under reflections). Furthermore, we find these solutions to be
incapable of kinematic dynamo action for T' = 0.

The bifurcation of the asymmetric squares from the rolls with wave number ¢
being apparently subcritical [24], simulations starting from a superposition of
the unstable rolls with a small perturbation lead, depending on the perturba-
tion added to the rolls, either to asymmetric squares or to rolls of wave number
k as final states. In the case of T = 0, the square solutions obtained may or
may not possess horizontal Dy symmetry. For the Dy symmetric solutions
one has A; = Ay and B; = B, in Eq. (15). Like for the checkerboard pat-
tern solutions, symmetry to reflections in vertical planes then implies H = 0.
We also find the asymmetric square solutions with horizontal D, symmetry
(obtainable only for T' = 0) to be incapable of kinematic dynamo action.

In the following we report results for solutions lacking the horizontal D, sym-
metry at T = 0. For these we always find the D, symmetry to be completely
broken. In particular, all reflection symmetries are absent, allowing a nonzero
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net helicity even in the absence of rotation. Fig. 5(a) shows the helicity of a
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Fig. 5. The helicity of an upflow square as a function of the Rayleigh number for
(a) T =0 and (b) T = 100. The lower panel (c) shows stability boundaries for the
kinematic dynamo instability in the P,,-R, plane, the dashed line corresponding to
the nonrotating case and the continuous line to T = 100.

nonrotating upflow square as a function of R, in the range where the flow is
stationary. Rotation at low rates about the vertical axis leaves the asymmet-
ric squares stable. The stability boundary towards higher values of F,, where
the pattern loses stability to different kinds of oscillations, is shifted upwards
compared to the case without rotation. The helicity due to rotation [see Fig.
5(b)] is much larger than the “self-helicity” of the nonrotating squares already
for small 7'

Through solving the magnetic induction equation the kinematic dynamo prop-
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erties of the asymmetric squares were determined. In Fig. 5(c) resultsfor 7' = 0
and T = 100 are given. The two curves in the P,,-R, plane are stability bound-
aries where a single real eigenvalue becomes positive and the dynamo starts.
An example of the generated magnetic field is depicted in Fig. 4(b). The flow
stretches and folds the magnetic field lines and concentrates magnetic flux
near cell boundaries.

Traditionally, it is assumed that the introduction of nonlinearity leads to a
saturation of the exponential growth of the magnetic field and to a modified
velocity field that maintains the magnetic field at a finite amplitude. However,
recent investigations show that the back-reaction of the magnetic field can
also extinguish the dynamo. This was observed for flow in triply periodic
Cartesian geometry driven by an explicit forcing [36], spherical dynamo models
with rotation and explicit forcing [37] and two-dimensional convection rolls in
a plane layer rotating about an oblique axis [20]. Fig. 6(a) shows the time
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] ]
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¢ 2E i f s
X = 3 4 z
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Integration time Integration time

(a) (b)

Fig. 6. Time evolutions of kinetic and magnetic energies for (a) T = 0, R, = 5000
and P, =6 and (b) T = 10, R, = 7000 and P, = 4.65.

evolutions of magnetic and kinetic energies starting from a square pattern
and a small seed magnetic field for T = 0. Initially the magnetic field grows
exponentially with a well defined growth rate. In this kinematic phase the
Lorentz force is negligible and the square pattern remains undisturbed. After
reaching a sufficient strength the magnetic perturbation forces the solution
into the basin of attraction of the two-dimensional roll state with wave number
k. The roll solution is incapable of dynamo action and the magnetic field decays
to zero.

In order to achieve nonlinear dynamo action additional effects have to be in-
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cluded. We consider background rotation at very low rates (0 < T < 150)
where the asymmetric square pattern is not affected by hydrodynamical in-
stabilities. Although the mechanism underlying the self-extinguishing is still
acting, there are parameter ranges where a nonlinear dynamo is found. Time
evolutions of kinetic and magnetic energies in such a case are shown in Fig.
6(b). After the initial kinematic phase, a back reaction of the magnetic field is
clearly visible. But though the velocity field is modified, it still corresponds to
an asymmetric square pattern. The magnetic field saturates and is maintained
for all time. A necessary condition for nonlinear dynamo action is a certain
balance between the Coriolis and Lorentz forces. A similar balance between
these forces characterizes the strong-field branch of the Childress-Soward [19]
dynamo where in a rapidly rotating layer the Lorentz force counteracts the
Coriolis force such as to facilitate conveetion {32].

4 Conclusion

We have demonstrated the dynamo effect by means of two examples in which
the fluid was driven by two different kinds of forcing. In one case an explicit
forcing of the ABC type was used, motivated by the kinematic dynamo prop-
erties of the ABC flow. The other example was thermal convection in a plane
layer.

The first bifurcation of the ABC forced system is a symmetry preserving Hopf
bifurcation generating solutions with a nonvanishing magnetic field that de-
pend periodically on time. Concentrations of the magnetic energy were found
around the stagnation points of the o type, which have two-dimensional sta-
ble and one-dimensional unstable manifolds and which survive the bifurcation.
The mechanism of stretching, twisting and folding, which works in their vicin-
ity, thus continues to operate in the nonlinear regime.

By using a generalized ABC forcing the degree of helicity in the force field
and thus in the generated flow could be varied. In order that the primary
bifurcation leads to a dynamo, the degree of helicity in the forcing has to
exceed a threshold value.

For the thermally driven system we have concentrated on the dynamo proper-
ties of asymmetric square convection. Cases without rotation and with weak
rotation about a vertical axis were considered. There exist solutions with flows
possessing a net kinetic helicity and being capable of kinematic dynamo action
in the presence as well as in the absence of rotation. In the nonrotating case
these flows are, however, always only kinematic, not nonlinear dynamos. Non-
linearly the back-reaction of the magnetic field then forces the solution into
the basin of attraction of a roll pattern incapable of dynamo action. But with
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rotation added parameter regions are found where the Coriolis force counter-
acts the Lorentz force in such a way that the self-extinguishing of the dynamo
by the Lorentz force is prevented. The dynamo-generated magnetic flux tends
to be concentrated near cell boundaries.
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