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Abstract. A new nonlinear Galerkin method based on an approximate inertial manifold and
on a finite number of determining modes has been implemented for the three-dimensional
magnetohydrodynamic equations. It is found that these active modes, which regulate the
dynamics of the system, are not necessarily those with the smallest wavenumbers but those
containing most of the time-averaged enstrophy. It is demonstrated that owing to the reduced
number of equations the modified nonlinear Galerkin method, which includes only these
determining modes in a truncation, improves the computational efficiency in comparison with
the traditional Galerkin method.

1. Introduction

For numerical investigations of certain nonlinear dissipative partial differential equations
(PDEs) it is necessary to approximate the solutions to thea priori infinite-dimensional
problem by solutions to a finite-dimensional system of ordinary differential equations
(ODEs). One usually expands the solution into a Fourier series, constructs a system of
infinitely many ODEs for the Fourier coefficients and truncates the system dropping the
smaller wavenumbers. This procedure, known as the linear or traditional Galerkin method,
provides a finite-dimensional approximation for the Fourier modes.

The qualitative behaviour of solutions to this finite-dimensional system, however,
strongly depends on the number of modes taken into account. An approximation
with too few modes may lead to solutions whose long-term behaviour is completely
different from those in the original system. Thus, the number of necessary equations
(dimension of the phase space) may be very large, as for example, in hydrodynamics and
magnetohydrodynamics (MHD) for the case of high Reynolds numbers, and the numerical
computation of these high-dimensional problems is nearly impossible with capacities of
currently available computers.

A very important property of dissipative differential equations is that after a transient
period of time the state of the system converges to an attractor whose dimension is less than
the dimension of the phase space (Swinney and Gollub 1985, Manneville 1990). Therefore
one is inspired to reduce the dimension of the problem by splitting the solution in master
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modes, essentially determining the dynamics of the system, and in so-called slaved modes
as a function of them.

The theory of inertial manifolds (IM) and approximate inertial manifolds (AIM) was
introduced 10 years ago by Temam (1988) to provide such a function. In connection
with this theory nonlinear Galerkin methods have been developed by Temam and Marion
(1989) to study the long-term behaviour of certain dissipative PDEs. The essential aim of
these methods is to characterize high-dimensional nonlinear differential equations by low-
dimensional equations without losing the qualitative properties of the original system. Many
publications suggest that these approximations, based on nonlinear Galerkin techniques, are
more efficient than traditional Galerkin methods (Duboiset al 1991, Foiaset al 1988,
Jauberteauet al 1989/90, Frischet al 1986, Foiaset al 1988a).

An IM is a finite-dimensional positively invariant Lipschitz-manifold which attracts
all trajectories at an exponential rate. It contains the global attractor, whenever it exists
(cf Temam 1988, 1989, 1990, Foiaset al 1988, 1989). In the limit of infinite time the
solutions to the PDE lie on the IM; the PDE is reduced to a finite system of ODEs.
For several PDEs such as the Kuramoto–Sivashinsky, Cahn–Hillard and Ginzburg–Landau
equations there exists an IM (Foiaset al 1988c, 1988, Temam 1988). The existence of an
IM for both the Navier–Stokes equations (NSE) and the MHD equations is still an open
problem.

Therefore the concept of AIM has been introduced by Foiaset al (1988b) for two-
dimensional (2D) NSE. An AIM is actually an approximation of the solution of the PDE
for sufficiently large time and applicable regardless of the existence of an IM. The smallness
of the higher modes in the large time limit has been used to construct an AIM for the 2D
NSE and the distance between the AIM and an arbitrary solution has been estimated.

Many PDEs, including NSE and MHD equations, can be written in the form of an
abstract evolution equation in an appropriate Hilbert spaceH . Let u be the solution to the
abstract flow equation inH ,

du

dt
+ Au+ B(u) = f (1)

wheref ∈ H,A is a linear, self-adjoint, positive operator andB is a nonlinear operator
in H . We assume that for all initial valuesu0 ∈ H there exists a unique solution of
equation (1) satisfying the initial conditionu(0) = u0. Furthermore, we assume that there
exists a complete orthonormal system of eigenvectors{vj }∞j=1 of A in H :

Avj = λjvj j ∈ N
0< λ1 6 λ2, . . . λj →∞ asj →∞.

Let p = Pmu denote the projection ofu onto the finite-dimensional space spanned by
the firstm eigenvectors ofA (lower modes) andq = Qmu denote the projection ofu onto
the infinite-dimensional space spanned by the remaining eigenvectors ofA (higher modes).
Then equation (1) can be written equivalently as a coupled system of equations forp and
q,

dp

dt
+ Ap + PmB(p + q) = Pmf (2)

dq

dt
+ Aq +QmB(p + q) = Qmf. (3)

Pm andQm are the projectors onto the finite- and infinite-dimensional linear subspaces ofH .
To solve equation (1) numerically one has to approximate it using a finite system of ODEs.
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When applying the linear Galerkin method the higher modesq are neglected in equation (2)
leading to an approximate solutionum in a finite-dimensional phase spacePmH ,

dum
dt
+ Aum + PmB(um) = Pmf. (4)

Foias et al (1988b) have shown that for 2D NSE a reasonable approximation to
equation (3) is given by

Aq +QmB(p) = Qmf. (5)

This led them to introduce a finite-dimensional manifold by

8AIM (p) := A−1(Qf −QmB(p)). (6)

The function8AIM defines an AIM and represents the small-scale componentsq in an
approximate way as a function of the large-scale componentsp of the solution. Any
solutionu = p + q to the 2D NSE satisfies

lim sup
t→∞

q(t)−8AIM (p(t))| 6 cm (7)

with constantscm that, asm tends to infinity, tend to zero much faster than lim supt→∞ |q(t)|.
In order to determine the number of relevant degrees of freedom which characterize the

qualitative behaviour of solutions a finite number of determining modes has been estimated
by Foias and Prodi (1967) for 2D NSE.

According to a definition introduced by Foias and Prodi (1967),m is said to be the
number of determining modes if for any two solutionsu1, u2 to equation (1)

lim
t→∞ |p1− p2| = 0 implies lim

t→∞ |q1− q2| = 0

wherepi = Pmui , qi = Qmui andui = pi + qi (i = 1, 2). This criterion is clearly satisfied
for solutions on an IM, since in this case

lim
t→∞ |q1− q2| = lim

t→∞ |8IM (p1)−8IM (p2)| 6 l lim
t→∞ |p1− p2|

with l denoting a Lipschitz constant of8IM .
The Fourier coefficients of these determining modes, which are active modes for

nonlinear Galerkin methods, are calculated as solutions of a finite-dimensional system of
ODEs, while the influence of the remaining modes is considered in the form of a slaving
function.

This paper is organized as follows. In section 2 we introduce the MHD equations, while
in section 3 we estimate the number of determining modes and describe the implementation
of Galerkin methods. In section 4 we compare numerically the number of necessary
equations, as well as the computational efficiency for both linear and nonlinear Galerkin
methods.

2. MHD equations

A central problem in the theory of electrically conducting fluids is the explanation of the
origin of cosmical magnetic fields, such as those of the Earth and the Sun (Roberts and
Soward 1992). The majority of studies in this field have been kinematic. Kinematic dynamo
theory studies the conditions under which a prescribed velocity field can amplify or at least
prevent from decaying, some seed magnetic field, completely disregarding the equations
governing the motion of the fluid. The hitherto most successful branch of kinematic dynamo
theory is the theory of turbulent dynamo (Moffatt 1978, Krause and Rädler 1980), which
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has supplied evidence that the presence of kinetic and magnetic helicity at small scales is the
motor of growth of the large-scale magnetic field. By imposing a forcing which produces
a strong kinetic helicity we have studied the complete system of the incompressible MHD
equations.

The equations which we are interested in are given in a domain� ⊂ R3, occupied
by a nonrelativistic, incompressible, viscous fluid with finite electrical conductivity. The
unknown functions are fluid velocityu, magnetic fieldB and thermal pressurep. The
density is supposed to be homogeneous and for simplicity set equal to unity. Then the
equations can be written as (Roberts 1967, Sermange and Temam 1983)

∂u

∂t
+ (u · ∇)u− ν ·1u+ gradp + 1

2 gradB2− (B · ∇)B = f in � (8)

∂B

∂t
+ (u · ∇)B − (B · ∇)u− η ·1B = 0 in � (9)

divu = 0 in � divB = 0 in � (10)

whereν and η denote kinetic viscosity and magnetic diffusivity (both assumed constant),
andf is an externally applied volume force. Equations (8)–(10) are completed by initial and
boundary conditions uponu andB. We restrict ourselves to the case of periodic boundary
conditions,

u(x+ 2πei, t) = u(x, t) B(x+ 2πei, t) = B(x, t) x ∈ [0, 2π ]3

∂uj

∂xk
(x + 2πei, t) = ∂uj

∂xk
(x, t)

∂Bj

∂xk
(x+ 2πei, t) = ∂Bj

∂xk
(x, t) x ∈ [0, 2π ]3

(11)

where(ei)3i=1 is an orthonormal basis ofR3, j, k = 1 . . .3.
The mean values ofu andB, and consequently also off , are assumed to vanish,∫

[0,2π ]3
u d3x = 0

∫
[0,2π ]3

B d3x = 0
∫

[0,2π ]3
f d3x = 0. (12)

The periodicity assumption implies that

exp(ik · x) k ∈ Z3

is a complete orthonormal system of eigenvectors of the Laplacian with eigenvalues

λk = k2 k ∈ Z3

and that Fourier representations ofu,B, p, andf ,

u(x, t) =
∑

k∈Z3,k 6=0

uk(t) exp(ik · x) B(x, t) =
∑

k∈Z3,k 6=0

Bk(t) exp(ik · x) (13)

p(x, t) =
∑

k∈Z3,k 6=0

pk(t) exp(ik · x) f(x) =
∑

k∈Z3,k 6=0

fk exp(ik · x) (14)

can be differentiated term by term with respect to the spatial coordinates. In Fourier space
equation (10) takes the form

uk · k = 0 Bk · k = 0 (15)

and is automatically satisfied if we write

uk = u(1)k e(1)k + u(2)k e(2)k Bk = B(1)k e(1)k + B(2)k e(2)k for k 6= 0 (16)

with real ‘polarization’ unit vectorse(1)k , e
(2)
k perpendicular tok,

e(i)k · k = 0 e(1)k · e
(2)
k = 0 e(i)k · e

(i)

k = 1 e(i)−k = e(i)k i = 1, 2. (17)
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The last condition in equation (17) ensures that

u−k = u∗k B−k = B∗k (18)

for real u(x) andB(x) (an asterisk indicates the complex conjugate). By using these
representations foruk andBk we discard both the thermal, gradp, and magnetic, gradB2/2,
pressure terms in equation (8) and arrive at the following infinite-dimensional system of
ODEs:

du(j)k
dt
= −νk2u

(j)

k − i
∑
p∈Z3

p 6=0,k

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k · k)[u(α)p u
(β)

k−p − B(α)p B
(β)

k−p] + f (j)k (19)

dB(j)l
dt
= −ηk2B

(j)

k − i
∑
p∈Z3

p 6=0,k

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)[Bα)p u
(α)

k−p − u(β)k−p − u(α)p B(β)k−p]. (20)

f
j

k on the right of equation (19) is defined by

f
j

k = fk · e(j)k j = 1, 2. (21)

Owing to condition (18) we can restrict ourselves tok vectors in a subsetK of Z3, defined
by

K := {(k1, k2, k3) ∈ Z3 : k3 > 0} ∪ {(k1, k2, 0) ∈ Z3 : k1 > 0} ∪ {(0, k2, 0) ∈ Z3 : k2 > 0}.
It has been useful for our calculations to segmentK into successive shells ofk vectors

Ki := {k ∈ K : k2 = i} i = 1, 2 . . .

K =
∞⋃
i=1

Ki;Ki ∩Kj = ∅ i, j ∈ N, i 6= j.

An overview of the segmentation is given in the appendix.
We have used the forcing

f = νuABC (22)

whereuABC is an ABC flow (named after Arnold, Beltami and Childress),

uABC(x, y, z) = (A sink0z+ C cosk0y, B sink0x + A cosk0z, C sink0y + B cosk0x)

whereA,B,C are constants andk0 is the wavenumber of the forced mode (for a rather
comprehensive account of the ABC flows see Dombreet al (1986)). The ABC flows are
Beltrami fields, namely, curluABC×uABC = 0; thus they are strongly helical. In general (if
ABC 6= 0), there are domains in the flow where the streamlines are chaotic. It is for these
two reasons that the ABC flows have received much interest in the context of kinematic
dynamo theory (cf Galloway and Frisch 1986).

The ABC flows are steady solutions of the incompressible Euler equation. They are also
steady solutions of the incompressible NSE if an external forcing as given by equation (22)
is applied to compensate for viscous losses. The bifurcation properties of the NSE with
ABC forcing have been investigated by Podvigina and Pouquet (1994), while the MHD
equations with this kind of forcing have been investigated by Galantiet al (1992), Feudel
et al (1995a, 1996) and Seehaferet al (1996).

Throughout our calculations we have used a forcing according to equation (22) with

k0 = 1 A = B = C = f



7146 O Schmidtmann et al

and have, following Galantiet al (1992), defined the kinetic and magnetic Reynolds numbers
R andRm by

R = f

ν
Rm = f

η
.

While restricting ourselves to the caseν = η (magnetic Prandtl number equal to unity),
R has been our bifurcation parameter.

3. Determining modes and implementation of Galerkin methods

It has been shown by several authors that by using AIMs the distance between the exact
solution to equation (1) and the approximate solution can be reduced compared with a
simple Fourier truncation, see for example, Titi (1990) and Marion and Temam (1989) for
2D NSE. However, there are no estimates in general which tell how the functionsp = Pmu
andp+8AIM (p) are related to the exact solutionu or how largem must be in equation (4)
to obtain at least a qualitatively correct approximation.

To obtain a suggestion of which modes have to be used as active modes and which
have to be used as slaved modes for nonlinear Galerkin methods we estimate the number of
determining modes. First we estimate the number of determining modes in the sense defined
by Foias and Prodi and second we give some estimates based on a generalized definition of
determining modes. It is important to mention that these estimates do not give an absolute
number of active modes, but justify a numerical search for these determining modes. Thus,
the final number must be determined for every different problem numerically.

Following Constantinet al (1985) we give a definition of determining modes. Let
ui ,Bi (i = 1, 2) be two solutions to equations (8)–(11) starting from different initial values
with Fourier representation (13) and Fourier coefficientsuik andBi

k.

Definition 3.1.m0 ∈ N is said to be the number of determining modes of equations (8)–(11)
if

from lim
t→∞ |u

1
k(t)− u2

k(t)| = 0 lim
t→∞ |B

1
k(t)−B2

k(t)| = 0 k2 6 m0

follow lim
t→∞ |u

1
k(t)− u2

k(t)| = 0 lim
t→∞ |B

1
k(t)−B2

k(t)| = 0 k ∈ Z3
(23)

for any two solutionsu1,B1 andu2,B2 to equations (8)–(11).

While estimating the number of determining modes a necessary and sufficient condition
for m0 to be the number of determining modes is given via a lower bound for the eigenvalues
of the Laplacian,λk = k2 k ∈ Z3, which is explicitly derived in Schmidtmann (1996). Using
this condition the eigenvectors are taken into account only by their eigenvalues which implies
that one cannot distinguish between eigenvectors corresponding to the same eigenvalue.

In order to obtain a more accurate estimate of the number of determining modes in the
following we shall not give a condition for the eigenvalues but characterize the determining
modes by the enstrophy of the Fourier coefficients, which is the energy of the Fourier
coefficients multiplied by the corresponding eigenvalue (see section 4.3). In contrast to
definition 3.1, where the determining modes are chosen according to the size of their
eigenvalues, which may be the same for a large number of eigenvectors, we are now
able to check for every single eigenvector the quality to be determining or not. With this
characterization it is possible to distinguish between eigenvectors belonging to one and the
same eigenvalue and to give a more precise subdivision of the eigenvectors into determining
and slaved modes.
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A more precise characterization of determining modes has been used to define
generalized nonlinear Galerkin methods. This is explained in the following.

For linear Galerkin methods LGM(m) we restrict equations (19)–(20) to a finite set ofk
vectors such thatk,p andk−p belong to shells 1. . . m. To implement nonlinear Galerkin
methods NLGM(m, n) we represent coefficients of wavevectors in shellsm + 1 . . . n,
1 < m < n in terms of the coefficients of wavevectors in shells 1. . . m according to
the definition of8AIM (see equation (6)) by

u
(j)

k := −i

νk2

∑
p∈∪mi=1Ki
p 6=0,k

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)[u(α)p u
(β)

k−p − B(α)p B
(β)

k−p] + f
(j)

k

νk2
(24)

and

B
(j)

k := −i

ηk2

∑
p∈∪mi=1Ki
p 6=0,k

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)[B(α)p u
(β)

k−p − u(α)p B(β)k−p]. (25)

If we takep andk such thatp2 6 m and(k − p)2 6 m we find

k2 = ((k − p)+ p)2 = (k − p)2+ 2(k − p) · p+ p2 6 4m

and therefore we always choosen 6 4m. Solutions to LGM(m) and NLGM(m, n) are
denoted byum,Bm, while the correction terms for nonlinear Galerkin methods arezm for
the velocity andZm for the magnetic field((zm,Zm) = 8AIM (um,Bm)).

The active modes, in the sense of the generalized definition of finite sets of determining
modes, are not necessarily the first modes of a Fourier series and we try to characterize them
by their enstrophy. Therefore in the following the nonlinear Galerkin methods are modified
in such a way that lower modes can also be slaved modes and higher modes could be active
modes we measure the entropy of the coefficients of the Fourier modes. The modes whose
time-averaged enstrophy is small are slaved in terms of the modes containing most of the
enstrophy.

We assume that the solutionsum andBm to LGM(m) are known for sufficiently large
m. We define for the coefficients of these solutions

0(uk) := lim sup
t→∞

1

t

∫
u2
k(τ ) dτ k ∈

m⋃
i=1

Ki

0(Bk) := lim sup
t→∞

1

t

∫ t

0
B2
k(τ ) dτ k ∈

m⋃
i−1

Ki .

Furthermore we look for vectorsk∗u andk∗B such that

0(uk∗u) · k
∗2
u > 0(uk) · k2 0(Bk∗B ) · k

∗2
B > 0(Bk) · k2 k ∈

m⋃
i=1

Ki .

By means of these quantities we define the sets of relevant modes for velocity and
magnetic field

Nu :=
(
k ∈

m⋃
i=1

Ki : 0(uk) · k2 > ε · 0(uk∗u) · k
∗2
u

)
06 ε 6 1

and

NB :=
(
k ∈

m⋃
i=1

Ki : 0(Bk) · k2 > ε · 0(Bk∗B ) · k
∗2
B

)
06 ε 6 1.
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In the caseε = 0 there holds of course

Nu = NB =
m⋃
i=1

Ki .

For the setsNu andNB of vectors, whose coefficients can be considered as active
modes we define generalized nonlinear Galerkin methods NLGM(ε,m, n), 1 6 m 6 n,
06 ε 6 1 as a finite system of ODEs for the coefficients

uk : k ∈
m⋃
i=1

Ki ∩Nu and Bk : k ∈
m⋃
i=1

Ki ∩NB

(active modes). The coefficients

uk : k ∈
n⋃
i=1

∖( m⋃
i=1

Ki ∩Nu
)

are calculated as a generalization of (24) by

u
(j)

k := f
(j)

k

νk2
− i

ν · k2

( ∑
k−p

p∈∪mi=1Ki∩Nu

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)u(α)p u
(β)

k−p

)

+ i

ν · k2

( ∑
k−p

p∈∪mi=1Ki∩NB

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)B(α)p B
(β)

k−p

)
(26)

and the coefficients

Bk : k ∈
n⋃
i=1

∖( m⋃
i=1

Ki ∩NB
)

are calculated as a generalization of (25) by

B
(j)

k := −i

η · k2

( ∑
k−p

p∈∪mi=1Ki∩NB

2∑
α,β=1

(e(α)p · e
(j)

k )(e
(β)

k−p · k)[B(α)p u
(β)

k−p − u(α)p B(β)k−p]

)
. (27)

4. Numerical results

For the integration of the equations we used a Runge Kutta method of sixth order where
the step size was controlled by a method used by Haireret al (1983).

4.1. Stationary solutions

For sufficiently weak forcing, which is equivalent to a small Reynolds numberR, the ABC
flow with no magnetic field is the only attracting state. VaryingR, we have calculated the
eigenvalues of the Jacobian in order to detect bifurcation points. For an increased value of
R the primary ABC flow loses stability in a Hopf bifurcation, leading to a periodic solution
with a non-vanishing magnetic field.

The influence of the number of active and slaved modes for linear and nonlinear
Galerkin methods LGM(m) and NLGM(m, n) onto the critical value ofR for the Hopf
bifurcation has been investigated by Schmidtmannet al (1997). The number of active
modes has been reduced by 60% with NLGM(m, n) compared with LGM(m) to compute
the critical Reynolds number for the magnetic instability in the corresponding kinematic
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Figure 1. CPU time needed to approximateu37,B37 with accuracyξ for linear Galerkin
methods LGM(m) and nonlinear Galerkin methods NLGM(m, 2m) (R = 10).

dynamo problem, for which a value ofRc = 8.9 has been found (cf Galloway and Frisch
(1986)).

4.2. Accuracy and computational efficiency of nonlinear Galerkin methods

Next we have studied, for a periodic orbit, the influence of the degree of truncation on
the quality of the approximation, both for the LGM and the NLGM. We have fixed the
Reynolds number atR = 10, where a periodic attractor exists ifm > 21, and have varied
the number of shells taken into account. Another question which we are interested in is
whether solutions with the same accuracy as those of LGM(m̃) can be obtained by lower
computational costs (CPU time) by means of NLGM(m, n). In experiments to address this
question, the Reynolds number has been fixed atR = 10 and the initial points for the
approximate solutionsum,Bm have been given by the projectionsP7u37(0) andP7B37(0);
u37 andB37 we refer in the following as the ‘exact’ solution. The distance between the
exact and the approximate solution at timet we define by

ξLGM(m)(t) = (‖u37(t)− um(t)‖2
L2 + ‖B37(t)−Bm(t)‖2

L2)

for linear Galerkin methods and

ξNLGM(m,2m)(t) = (‖u37(t)− (um(t)+ zm(t))‖2
L2 + ‖B37(t)− (Bm(t)+Zm(t))‖2

L2)

for nonlinear Galerkin methods. ξLGM(m) and ξNLGM(m,2m), respectively, measure the
accuracy of the different approximations.

We integrate up to a timet = t1 for LGM(m) and t = t2 for NLGM(m, 2m), where the
quantitiesξLGM(m)(t) andξNLGM(m,2m)(t) satisfy the inequality

ξLGM(m)(t1), ξNLGM(m,2m)(t2) 6 ξ for ξ = 10−6.5+i0.25, i = 0 . . .9. (28)

In figure 1 these accuraciesξ are plotted versus the CPU time needed to integrate up to
t = t1 and t = t2, respectively. For largerm,m > 15, the use of the nonlinear Galerkin
methods allows us to reduce the CPU time by approximately 30% compared with the linear
methods.

These plots indicate a better convergence for the nonlinear Galerkin method, which
confirms the expectation that the solutions obtained by NLGM(m, n), n > m, are more
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Figure 2. CPU time needed to approximateu34,B34 with an accuracyξ for nonlinear Galerkin
method NLGM(ε,m,2m) (R = 10).

accurate than those obtained by LGM(m). However, on the other hand the nonlinear
Galerkin method NLGM(m, n) cannot be better than the linear method LGM(n) for n > m

and loosely speaking, the accuracy of the nonlinear Galerkin method NLGM(m, n) should
correspond to that of some LGM(m̃) with m < m̃ < n.

Furthermore we have compared the efficiency of the nonlinear Galerkin methods
NLGM(m, 2m) and NLGM(ε,m,2m) for 14 6 m 6 17, 0 6 ε 6 0.4. In figure 2 the
CPU time is plotted which is necessary to approximate the ‘exact solution’ within a given
accuracy

ξ = 10−6.6+i0.1 i = 0, . . . ,3.

By using NLGM(ε,m,2m) we are able to reduce the CPU time more significantly than
by using NLGM(m, 2m). For NLGM(0.3, 17, 34) we can reduce the CPU time compared
with NLGM(17, 34) by approximately 70% and compared with LGM(m) by about 75%.

4.3. Kaplan–Yorke dimension for the chaotic regime

Since in the case of chaotic solutions sensitivity to initial conditions would lead to bad
accuracy, another criterion, different from that in the case of periodic solutions, has to be
applied in order to measure the quality of the approximation of a reference solution. To
estimate the number of modes needed to describe the behaviour of the exact solutions in
the chaotic regime qualitatively correctly, we have calculated the energy of the flow,

1
2‖u‖2

L2 + 1
2‖B‖2

L2 = 1
2(2π)

3
∑
k∈Z3

|uk|2+ |Bk|2

as well as its enstrophy,

‖ curlu‖2
L2 + ‖ curlB‖2

L2

which, because of periodic boundary conditions, equals (cf Doering and Gibbon (1995))

‖∇u‖2
L2 + ‖∇B‖2

L2 = (2π)3
∑
k∈Z3

k2(|uk|2+ |Bk|2).

The estimation of the number of determining modes shows that enstrophy decisively
influences the number of determining modes.
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Figure 3. Time average of enstrophy versus the number of shellsm containing the active modes
for LGM(m) (R = 20).

Figure 4. The time average of enstrophy versus the number of shellsm containing the active
modes for NLGM(m, 35) (R = 20).

The following numerical experiments have been done for a Reynolds number ofR = 20,
for which the solutions are chaotic. Their chaotic character has been verified by calculating
the Lyapunov exponents.

For LGM(m) m∗ = 35 is a saturation point with respect to the calculation of both energy
and enstrophy, in the sense that by further increasingm both quantities do not change
significantly (see Schmidtmannet al (1997)). By applying NLGM(m, 35) the saturation
point is shifted to a smaller number,m, of (active) shells as can be seen in figures 3 and 4.

By using an algorithm of Shimada and Nagashima (1979), forR = 20 the largest
Lyapunov exponents have been computed and used to calculate the Kaplan–Yorke dimension
DKY of the attractor, which provides a good approximation of its Hausdorff dimension
(Kaplan and Yorke 1979). If the Lyapunov exponentsµi are ordered descendingly andj is
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Figure 5. Kaplan–Yorke dimension versus the number of active shells for LGM(m) and
NLGM(m, 14) (R = 20).

the largest index satisfying

j∑
i=1

µi > 0

then

DKY = j − 6
j

i=1µi

|µj+1| .

Figure 5 gives the Kaplan–Yorke dimensions calculated by means of LGM and NLGM
versus the number of active shells. With LGM a saturation is reached atm = 14 (while
the saturation with respect to energy and enstrophy is reached atm = 35). With the
nonlinear Galerkin method MLGM(l, 14) the plateau value of the Kaplan–Yorke dimension
is reasonably approximated already forl = 10. This again suggests that the constructed
mapφAIM provides an acceptable approximation of the small-scale structures of the flow.
By means of NLGM(10,14) we can reduce the CPU time needed to calculate the dimension
of the attractor compared with LGM(14) by 25%.

To test the efficiency of linear and nonlinear Galerkin methods in the case of the chaotic
solution we have measured the CPU time necessary to calculate the Kaplan–Yorke dimension
within a given accuracy for linear and nonlinear Galerkin methods. The initial values for
the Galerkin methods LGM(m), NLGM(m, n) and NLGM(ε,m, n) have been chosen on
the attractor calculated with these methods. For a given dimension dim we measure the
CPU time to reach the dimension

dim= 3.52+ i · 0.5 i = 0, . . . ,3.

with an accuracy

dim− 0.16 DKY 6 dim+ 0.1.

In figure 6 it can be seen that with increasingm for LGM(m) the necessary CPU time
increases. By means of the NLGM(m, 14) we can reduce the CPU time for NLGM(10, 14)
compared with LGM(14) by about 25%. With NLGM(0.2, 10, 14) the CPU time compared
with LGM(14) can be reduced by 75%.



Nonlinear Galerkin methods 7153

Figure 6. Necessary CPU time needed to calculate a Kaplan–Yorke dimensionDKY dim−
0.1 6 DKY 6 dim+ 0.1 with initial value on the attractor of LGM(m), NLGM(m, 14) and
NLGM(ε,10, 14) (R = 20).

5. Summary

In this paper we have modified a nonlinear Galerkin method, introduced by Foiaset al
(1988b) for 2D NSE and applied to investigate the long-term behaviour of solutions to
three-dimensional (3D) MHD equations. Instead of using the first modes of a Fourier series
of the solution as active modes for a nonlinear Galerkin method we have selected the
modes containing most of the time-averaged enstrophy as active modes. This was justified
by estimating a finite number of determining modes for MHD equations in terms of the
time-averaged enstrophy of the Fourier modes. There exists a critical threshold such that the
modes whose time-averaged enstrophy is larger than this threshold are determining modes for
the solution. With this generalization of the definition of the number of determining modes
for the solution. With this generalization of the definition of the number of determining
modes introduced by Foias and Prodi (1967) the number of determining modes could be
reduced. The absolute number of determining modes, however, can only be estimated
numerically. Special bifurcation points, time-averaged values of energy and enstrophy
as well as Kaplan–Yorke dimensions have been calculated for both linear and nonlinear
schemes in order to compare the efficiency of both methods and to estimate the number
of modes necessary to correctly describe the behaviour of the exact solution. While the
necessary CPU time to approximate the exact solution could be reduced only slightly for
the nonlinear Galerkin methods the modified nonlinear Galerkin methods reduce both the
number of necessary equations and the necessary CPU time considerably.
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Appendix

Table A.1 gives an overview of the partition ofk space into successive disjoint shells ofk
vectors.

Table A.1. Partition ofk space.

Numberm of shell Number ofk vectors Number ofk vectors Number of ODEs for
in k space in shellKm in ∪mj=1Kj LGM(m)

1 3 3 24
2 6 9 72
3 4 13 104
4 3 16 128
5 12 28 224
6 12 40 320
7 0 40 320
8 6 46 368
9 15 61 488

10 12 73 584
11 12 85 680
12 4 89 712
13 12 101 808
14 24 125 1000
15 0 125 1000
16 3 128 1024
17 24 152 1216
18 18 170 1360
19 12 182 1456
20 12 194 1552
21 24 218 1744
22 12 230 1840
23 0 230 1840
24 12 242 1936
25 15 257 2056
26 36 293 2344
27 16 309 2472
28 0 309 2472
29 36 345 2760
30 24 369 2952
31 0 369 2952
32 6 375 3000
33 24 399 3192
34 24 423 3384
35 24 447 3576
36 15 462 3696
37 12 474 3792
38 36 510 4080
39 0 510 4080
40 12 522 4176
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