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ABSTRACT

Within the framework of mean-field dynamo theory some results concerning the
current helicities of fluctuating and mean magnetic fields are derived. Using the
second order correlation approximation a relation between the current helicity of the
fluctuating magnetic field and parameters determining the o-effect .js established.
On this basis it is shown that the enefgy stored in the mean magnetic field of an
a2-dynamo is prevented from decaying only if, at least in some region, the current
helicities of the fluctuating and the mean magnetic fields have opposite signs and the
modulus of the former exceeds that of the latter. Results of an analysis of magnetic
field configurations in solar active regions are also presented and discussed with
reference to current helicity and the a-effect.

1. INTRODUCTION

In investigations of dynamo processes which are believed to be responsible for
the magnetic fields of cosmical bodies, the mean-field approach has proved useful
(see, e.g., Krause & Radler, 1980). In this approach the magnetic flux density, B,
in an electrically conducting fluid as well as the velocity, u, of the fluid motions
are understood as superpositions of mean parts, < B > and < u >, which are
defined by a proper averaging procedure, and fluctuating parts, B/ and u’. The
mean magnetic flux density < B > inside the fluid is governed by the equation

NA<B>+curl (Ku>x<B>+€-9d<B> /ot=0. (1)

Here the magnetic diffusivity n of the fluid is assumed to be constant. ¢ is the mean
electromotive force caused by fluctuations,

e=<u xB > (2)
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angular brackets always indicate averages. For a wide range of reasonable assump-
tions the quantity ¢, when represented in Cartesian coordinates, has the form

€& = aij <B >; +bijx 0 < B >; [9zp. (3)

The tensorial coefficients a;; and bsjx depend on < u > and u'. Within the frame-
work of kinematic theory, to which we restrict ourselves in this paper, they are
independent of < B >. The first term on the right-hand side describes the a-effect,
the second term various effects like that of the turbulent magnetic diffusivity. In
the simple case in which < u > is equal to zero and u’ corresponds to isotropic
turbulence, relation (3) reduces to

e=a<B>-fcurl <B>, (4)

with scalar coefficients o and 8 which are determined by u’. The first term on the
right-hand side then describes the ideal, that is isotropic, a-effect and the second
term an effect which is completely covered by introducing a turbulent magnetic
diffusivity.

In dynamo processes the helicities of both the motion and the magnetic field
are of interest. In the following we pay particular attention to the current helicity,
B . curl B, the mean value of which, < B - curl B >, can be represented as the
sum-

\'n

<B:curlB>=<B>-.curl <B>+<B': curl B' > (5)

of two centributions resulting from the’mean and fluctuating magnetic field. In this
paper we show that there is, at least in some approximation, a simple connection
between the current helicity < B - curl B' > of the fluctuating magnetic field
and the a-effect coefficients a;;, or «, which are in turn related to the kinematic
helicity of the fluctuating motions. Using this result we study the current helicities
<B': curl B'> and <B > - curl < B > of the fluctuating and mean magnetic
fields in a®-dynamos. It is shown that the energy of the mean magnetic field can
only be maintained or grow if there is a region in which the signs of < B’: curl B’ >
and < B > curl < B > are different and, in addition, | < B'- curl B’ > | exceeds
| <B > -curl < B > |. Furthermore, we present some results on the current
helicity in active regions on the Sun which have been derived from observational
data, and discuss these in the light of our findings concerning current helicity and
the a-effect.
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2. CURRENT HELICITY OF THE FLUCTUATING MAGNETIC
FIELD AND «-EFFECT

In order to derive a relation between the current helicity < B’ . curl B' >
of the fluctuating magnetic field and the o-effect coefficients a;;, or a, we restrict
ourselves to the case in which < u > is zero and u’ so small that the second order
correlation approximation applies. Then we have

nAB' — 9B'/8t = — curl (u'x < B >). (6)

For the determination of € and also of < B’ - curl B' > it is useful to subject
B’ and u' to a Fourier transformation of the form

F@ﬂ://ﬁmwwwbwﬁkm. (1)

Then (6), with < B > taken as constant, reduces to

kit <B >,

’ .
B,=1¢€e¢ -
It s5k €kim nk’-—-tw

(8)

We further assume that u’ describes a homogeneous and steady field of turbulence.
This implies that

< 806, w)8j( ') >= Gy (k') 6k +K) 6w +w), %)
where Q,',- (k,w) is the Fourier transform of the correlation tensor Q;;(£,7) defined

by
Qis(€:7) =< ui(x,t) uj(x + & t+1) > (10)

A straightforward calculation of € using (8) and (9) provides us with

: : 2
65 <B >i< B >j= —n// (G(k,w) <B§)(k <B>)K a0 (1)
(nk?)* + w?

In an analogous way we find

(G(k,w)- < B >) (k- <B >)k?

d3k dw. 12
(nk?)” + w3 )

<E-wﬂ§>=/
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In both cases G is given by
Gilk,w) = —i €;;xQ;x(k, w). (13)

G(k,w) -k is just the Fourier transform of the kinematic helicity spectrum function
H(§,7) defined by

H(E,7) =<u'(x,t): curlu'(x+ ¢ t+71)>. (14)
We note that (11) can also readily be derived from a relation mentioned by Krause

and Radler (1980, eq. 7.1), and (12) from a result by Brauer and Krause (1972, eq.
14) or, for incompressible fluids, from a result by Riidiger (1974, eq. 26).

Comparing (11) and (12) we see that
<B': curl B' >= —(1/n)aij < B >i< B >;-. Y (18)
For the special case of isotropic turbulence, for which a;; = ad;;, we have simply
<B' . curl B >= ~(a/n) <B>2. (18)

Relations of this type have already been given by Keinigs (1983) and by Mattheaus
et al (1986).

As_is well-known, the sign of « is; as a rule, opposite to that of the kinematic
helicity f the fluctuating motions. Hence, as expected, the sign of the current
helicity of the fluctuating magnetic field coincides with that of the kinematic helicity
of the motions responsible for them.

8. CURRENT HELICITIES IN AN a?*-DYNAMO

Let us now consider a fluid body surrounded by free space and assume that
the mean magnetic field inside this body is governed by (1) and continues as an
irrotational field in the external space. Then we have

Et-/oo-§<B> dV—-—/(r,curl <B>+

+<u>-(curl <B>xXx<B>)+ curl <B>-€)dV, (17)
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where the integral on the left is over all space and that on the right over the fluid
body. The energy stored in the mean magnetic field is maintained, or it grows, if
the integral on the right is zero, or negative,

We restrict attention to a3-dynamos and assume that € is given by (4) with
non-negative . Thinking of a proper frame of reference we further put < u >=0.
We require that the energy of the mean magnetic field does not decay, that is,

/(a<B>-curl<B>——(n+ﬂ) cur12<B>)dV20. (18)

This implies that there must be sufficiently extended regions of the fluid in which
the signs of @ and < B > . curl < B > coincide. As long as (18) applies, in these
regions the signs of the current helicities < B> - curl <B> and <B’ curl B’ >
of the mean and the fluctuating magnetic fields are different.

)

e

R

In order to deduce a further result concerning the current helicities We:a;;ta.rt
again from (18) and introduce

<B' curlB'>=—-f<B>-curl <B> (19)

with a factor f depending on the space coordinates. In this way we arrive at

/f (<B>-curl <B>)?/<B>%)dV2 /(1+ﬂ/n)( curl < B >)%dV (20)
According to a mean value theorem of integral calculus, J takes somewhere in the
fluid volume a value f* such that

(<B>.curl <B>)? */(<B>-curl<B>)’
/f <B>? v =1 <B >3 av. (21)

From (20) and (21) we have

f* 2/(1+ﬂ/ﬂ)( curl <B >)’dV// (<B>-curl <B>)?/ <B>?)av
(22)

and therefore

fzL (23)

Assuming continuity of all relevant quantities, we conclude that the energy of the
mean magnetic field can only be prevented from decaying if there is some region in
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the fluid where the signs of < B’: curl B’ > and < B > - curl < B > differ and,
in addition, | < B’ curl B’ > | > | <B>-curl <B > |.

4. CURRENT HELICITY IN SOLAR ACTIVE REGIONS

Let us now proceed to an application of our relations (15) and (16) connecting
the current helicity of fluctuating magnetic fields and the a-effect to solar phenom-
ena. The solar magnetic fields are attributed to an aw-dynamo operating in the
convection zone of the Sun, that is, below the visible surface. In the observable
atmosphere, besides weak background fields, strong magnetic fields are found in
active regions. These regions are believed to result from the emergence of magnetic
flux ropes which have broken away from the predominantly toroidal field below the
surface and carried up by magnetic buoyancy. Above the photosphere (the thin
layer at the base of the atmosphere which represents the surface of the Sun in white
light), the magnetic energy density in active regions dominates, except for explosive
events (such as flares) over the thermal, kinetic and gravitational energytdensities.
Therefore a quasi-static equilibrium of the plasma may be assumed with a force-
free magnetic field. Of course, there is some evolution of the configuration, which
is induced by plasma motions in or below the photosphere. However, these motions
are slow compared to the Alfven velocity in the superphotospheric plasma, that is,
small compared to the velocity of the upward propagation of disturbances caused
by them, so that each state may be considered as an equilibrium state (cf. Low,
1982). Since then the magnetic field above the photosphere should be force-free, we
have there

curl B = ay/B, (24)

Y

. :
for some pseudo-scalar ayy. The sign of the current helicity B - curl B coincides
with that of ayy.

Seehafer (1989) has compiled 16 active regions for which the factor « ff was
estimated. Using observed photospheric magnetic fields as boundary data force-
free fields with constant o £ in the volume above the photosphere were calculated
and oy was varied until an optimum coincidence of the calculated field line con-
figrations with observed superphotospheric structures believed to be aligned with
the field was obtained. Of the 16 regions, which belonged to the activity cycles
20 (beginning 1965) and 21 (beginning 1976), 12 lay in the northern and 4 in the
southern hemisphere. For 11 of the 12 regions in the northern hemisphere a ff was
negative, for one positive. In the southern hemisphere, in 3 cases ay / was positive,
in one case a change of the sign of o £+ within the region was suggested. Thus we
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are led to conclude that in solar active regions the current helicity is predominantly
negative in the northern and positive in the southern hemisphere (though further
investigations are needed to firmly establish this result).

In the traditional mean-field concept of the solar dynamo the mean magnetic
field does not reflect the magnetic fields of the individual active regions. Al-
though these fields may contfibute to the mean field, they are presumably mainly
fluctuating fields. Their helicities then have to be interpreted in the sense of
< B'- curl B’ >. Using the relation (15) we thus conclude that a;; < B >;< B >
is predominantly positive in the northern and negative in the southern hemisphere.
If the a-effect is assumed to be isotropic we may replace (15) by (16) and conclude
that o is mainly positive in the northern and negative in the southern hemisphere.
This corresponds to the usual picture used in many solar dynamo models (see, e.g.,
Krause and Radler , 1980). Of course, the o-effect in the Sun deviates from isotropy.
Taking this into account and assuming that the toroidal componenfc_\of the mean
magnetic field is large compared to the'other components, we may cénclude that
a;j < B >;< B >; is approximately equal to a,, < B >? where ay,, is. just that
component of the a-tensor which is responsible for the regeneration of the poloidal
from the toroidal field. Clearly, the sign rule formulated above for the scalar o then
applies to @y, too.
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