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Bifurcations of rotating waves in rotating spherical shell convection
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The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard
convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by
means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation
rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is
determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches
is demonstrated. Multistability is typical in the parameter range considered.
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I. INTRODUCTION

Convection in a spherical shell of viscous fluid heated
from the inner sphere and driven by a radially directed
volume force represents an idealized model for the large-
scale flows in the outer cores of terrestrial planets and in
the convection zone of the sun and has for this reason
been investigated extensively over the past decades. The
pioneering theoretical work of Chandrasekhar [1], Roberts
[2], and Busse [3] concentrated primarily on linear stability
analyses and asymptotic solutions. Subsequently, as three-
dimensional computations became possible, focus shifted to
the patterns of finite-amplitude convection and large-scale
flows [4–8]. Rotating spherical shell convection is thought
to contain the basic ingredients for explaining generic features
of geophysical and astrophysical flow dynamics. In particular,
if the fluid is electrically conducting, its motion can maintain
magnetic fields [9].

In this work, classical Rayleigh-Bénard convection in a ro-
tating shell is revisited by studying multistability of coexisting
solution branches, their bifurcations, and their patterns, which
appear in the form of rotating waves (RWs). These are also
known as thermal Rossby waves. In the asymptotic regime of
fast rotation the dispersion relation expected for Rossby waves
in the presence of thermal buoyancy is approached [3,10–14].

In a companion investigation [15], we studied this config-
uration for a fixed rotation rate (corresponding to an Ekman
number of 10−3). We found four branches of drifting columnar
vortices, each with a different azimuthal wave number. We
determined the wave speed along each of these branches,
which we found to be a decreasing function of Rayleigh
number. We now wish to investigate these trends by varying
both the rotation rate and the Rayleigh number.

Takehiro [16] and Kimura et al. [17,18] investigated RWs in
spherical shells under slightly different conditions. We begin
by obtaining similar results, thus confirming their studies. We
extend the investigation by not only tracing RWs that bifurcate
stably from the conductive state, but also RWs that originate
at higher Rayleigh numbers and are therefore unstable at
onset. By determining their stability region and computing
secondary branches, we try to characterize the multistability
of all coexisting solutions in the considered range of control
parameters. A similar approach was also used by Sánchez
et al. [19], but for higher rotation rates and smaller Prandtl

numbers compared to our values of these parameters. The
present work is an extension of the studies of Takehiro [16],
Kimura et al. [17,18], and Sánchez et al. [19], which yields
a detailed description of the coexisting solution branches and
their bifurcations.

A. Governing equations

We study buoyancy-driven Rayleigh-Bénard convection in
a spherical shell rotating with a constant angular velocity
� = �ez about the z axis and heated from within imposing a
temperature difference �T between its spherical boundaries.
Using the gap size d as the unit length scale, scaling time by
the viscous time d2/ν (where ν is the kinematic viscosity),
and temperature by �T , the equations in Boussinesq approx-
imation can be written in nondimensional form as

Ek

[
∂u
∂t

+ u · ∇u − ∇2u
]

= − ∇P + Ra T
r
r0

− 2ez × u,

(1a)
∂T

∂t
+ u · ∇T = 1

Pr
∇2T , (1b)

∇ · u = 0, (1c)

where

Ek = ν

d2�
, Ra = α �Tg0 d

�ν
, Pr = ν

κ

are the Ekman number, a modified Rayleigh number (α is the
thermal expansion coefficient and g0 is the magnitude of the
gravitational acceleration at the outer radius), and the Prandtl
number (κ is the thermal diffusivity), respectively. In Eq. (1a),
the centrifugal acceleration and a gradient part of acceleration
due to buoyancy have been incorporated into P .

Our modified Rayleigh number is related to the con-
ventional Rayleigh number R̃a via Ra = R̃a Ek/Pr. Nor-
malizations of this kind are often used in dynamo studies
[20–22]. A discussion of different definitions of the Rayleigh
number in the context of geodynamo simulation was given by
Kono and Roberts [23]. The fourth and last nondimensional
parameter specifies the geometry and can be given by either
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the nondimensional outer radius, ro, or, equivalently, the radius
ratio η = ri/ro = (ro − 1)/ro.

Following a dynamo benchmark study [22] and a preceding
work [15] we fix the Prandtl number to Pr = 1 and the radius
ratio to η = 0.35, i.e., the dimensionless radii ro = 20/13
and ri = 7/13. This value of η is estimated to be close to
that of the outer core of the Earth. In contrast, the Prandtl
number Pr = 1 does not correspond to realistic geophysical
applications. However, from Ref. [22] it is known that self-
sustained dynamos exist for these parameters, and we have
chosen them in order to prepare for a future investigation on
dynamo bifurcations in an electrically conducting fluid. The
Ekman number Ek and the Rayleigh number Ra are varied in
this study.

The spherical boundaries are assumed to be rigid and
perfectly conducting:

u = 0 at r = ri, ro, (2a)

T = 1 at r = ri and T = 0 at r = ro. (2b)

B. Numerical approach

A spectral time-stepping code developed by Hollerbach
[24] constitutes the basic ingredient of a path-following
method implemented for tracing the RWs. We summarize its
features here; more details can be found in Ref. [15]. The
spatial discretization in (r,θ,ϕ) uses an expansion in complex
spherical harmonics of 36 wave numbers both in latitudinal
and longitudinal directions, and in Chebyshev polynomials up
to a degree of 36.

Equations (1) and (2) can be represented schematically in
the form

∂U
∂t

= L(U) + N (U), (3)

where U is the state vector, L(U) a linear operator, whose
time-integration is treated implicitly, and N (U) contains the
terms which are treated explicitly.

In spherical polar coordinates RWs are characterized by
the condition U(r,θ,ϕ) = U(r,θ,ϕ0 − ωt), where ω is the
angular velocity of the RW (also referred to as drift frequency).
Equation (3) reduces to a fixed point problem of the form

0 = L(U) + N (U) − ω U, (4)

which is solved by a matrix-free Newton iteration. As
described by Mamun and Tuckerman [25], the implicit
integration of L plays the role of a preconditioner in solving
the resulting linear system, which is solved by either the
generalized minimal residual method (GMRES) [26] or the
biconjugate gradient stabilized method (BICGSTAB) [27].
The convergence of these two methods is comparable and is
greatly deteriorated by the antisymmetric contribution of the
Coriolis term for higher rotation rates.
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FIG. 1. (Color online) Critical Rayleigh numbers of the
m = 2, 3, 4, 5 modes as a function of the Ekman number plotted
with a logarithmic scale for Ek. Crosses label the points at which
bifurcations have been calculated; the solid lines are drawn to guide
the eye.

II. PRIMARY BIFURCATIONS

The basic conductive state, with the fluid at rest and the
temperature profile given by

Tc(r) = ro(ro − 1)

r
− ro + 1, (5)

is stable for low Rayleigh numbers at all Ekman numbers.
For moderate rotation rates 0.001 � Ek � 0.01 the basic state
loses stability in a supercritical Hopf bifurcation. Figure 1
depicts the Rayleigh numbers at which modes with azimuthal
wave numbers m = 2, 3, 4, 5 acquire positive growth rates
and rotating waves (RWs), in the following denoted by RW2,
RW3, RW4, and RW5, bifurcate from the conductive state.
For the linear stability analysis of Fig. 1, the computation is
restricted to a single value of m. The resulting eigenmodes
serve subsequently as initial conditions for the path-following
procedure. States on a given branch contain a primary
azimuthal wave number and its harmonics, i.e., multiples of the
main wave number, including the m = 0 component, which is
the mean flow.

The azimuthal wave numbers of the RWs and the order in
which they bifurcate is determined primarily by the geometry,
i.e., in this case the radius ratio. Systems such as Rayleigh-
Bénard convection or Taylor-Couette flow favor rolls whose
cross-sections are nearly equal in both directions. Setting the
azimuthal cross-sections π(ro+ri )

2m
of a roll equal to the radial

cross-section ro − ri leads to

π

2m
= ro − ri

ro + ri

= 1 − η

1 + η
,

which yields m = 3.26 for the value of η considered in this
study. The preferred wave number is about 3 and bifurcations
to RWs with wave numbers that are farther from 3, i.e., m = 1
or m > 5 would occur at higher values of Ra.

The succession and the Rayleigh numbers at which the RWs
appear also depend on the Ekman number. For Ek ≈ 0.001, cf.
Fig. 1, the RW5 and RW3 solutions are the second and third
to bifurcate, while for slightly higher Ekman numbers they
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FIG. 2. (Color online) Radial velocity normalized to its maxi-
mum modulus in the equatorial plane for RW2 (top left), RW3 (top
right), RW4 (bottom left), and RW5 (bottom right) at Ek = 0.001
and Ra = 100. Positive values (red) correspond to radial outflow and
negative values (blue) to radial inflow.

exchange their bifurcation order. The value of Ek = 0.001
was the subject of our previous study [15]; in this sequel, we
extend the investigation to the interval 0.001 � Ek � 0.01,
focusing on the qualitative effect of the rotation rate on the
solution branches.

Equations (1) and (2) are equivariant with respect to the
symmetry group SO(2) × Z2, where the special orthogonal
group SO(2) consists of rotations about the z axis and
the Z2 group is generated by reflection in the equatorial
plane. Under these circumstances, Hopf bifurcations that break
the azimuthal symmetry generate patterns of RWs drifting
rigidly along the azimuthal direction [28–30]. The equatorial
reflection symmetry is retained and the bifurcating RWs
exhibit a cyclic symmetry Zm determined by the critical mode
number m. The critical Rayleigh numbers shown in Fig. 1 were
calculated for a discrete set of Ekman numbers. For these
Ekman numbers, the bifurcating RW branches were traced
systematically by varying the Rayleigh number.

The RWs are visualized by contour plots of the radial
velocity in the equatorial plane. In Fig. 2 these patterns are
presented for Ek = 0.001 and Ra = 100, at which four RW
solutions coexist. The flow pattern consists of m counterrotat-
ing vortex pairs around the inner boundary, sometimes referred
to as Busse columns. In accordance with the Taylor-Proudman
theorem, the rolls become increasingly straight and parallel to
the rotation axis as the Ekman number is decreased, while they
curve around the inner sphere for smaller rotation rates. The
cross-sectional areas of the convection rolls spiral outwards
in the prograde direction. Figure 3 presents views of the
RWs in a meridional plane. The plane shown is rotated by
π/6 counterclockwise about the z axis with respect to the
meridional plane that would be seen in front view in the
perspective of Fig. 2.

We now study the RW branches, in particular their stability
and secondary bifurcations over the Ekman number interval
0.002 � Ek � 0.01. As seen in Fig. 1, in this interval the
m = 3 mode is the first to become unstable when Ra is

−1

0

+1

FIG. 3. (Color online) Radial velocity in the meridional plane at
Ek = 0.001 and Ra = 100. RW2 (top left), RW3 (top right), RW4
(bottom left), and RW5 (bottom right).

increased, followed by the m = 4, m = 2, and m = 5 modes.
The bifurcation diagrams of the corresponding RWs branches
are drawn separately in Figs. 4–7. The solution branches
were computed, first, for a discrete set of Ekman numbers
while varying the Rayleigh number, and second, for two fixed
Rayleigh numbers, Ra = 80 and Ra = 100, while varying the
Ekman number. The kinetic energy

∫ |u|2dV integrated over
the spherical shell serves as a convenient order parameter in
these three-dimensional bifurcation diagrams. Stable parts of
the branches are drawn as thick lines and unstable parts as thin
lines. It can immediately be seen that the RW3 solutions, cf.
Fig. 4, resulting from the critical mode are dominant in the
sense that they are stable over a wide range of the Ekman-
Rayleigh number control parameter plane. However, the RW4
(Fig. 5), RW2 (Fig. 6), and RW5 (Fig. 7) branches are also
stabilized in secondary bifurcations, leading to multistability.
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FIG. 4. (Color online) Kinetic energy of RW3 as function of the
Ekman and Rayleigh numbers. Thin (thick) lines correspond to
unstable (stable) solutions and the lower dashed line shows the critical
Rayleigh number as function of the Ekman number.
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FIG. 5. (Color online) Same as described in the caption of
Fig. 4, but for RW4.

In particular, for Ek = 0.001 and Ra = 100, the parameter
values of Fig. 2, all four RWs are stable.

We note that for certain values of the Ekman numbers,
0.004 � Ek � 0.006, the RW4 solutions all remain unstable,
cf. Fig. 5, but for higher values, approximately Ek � 0.0065,
this branch is stabilized. The RW5 solutions exhibit similar
stability behavior, cf. Fig. 7. They are also stabilized for larger
Ekman numbers, remain unstable for smaller ones, and become
stable again for high rotation rates, Ek ≈ 0.001, not shown in
Fig. 7 but discussed in Ref. [15].

Figure 8 shows the Nusselt-number dependence of the
rotating waves for various m and Ek values, with stable and
unstable portions highlighted, as in Figs. 4–7. To summarize,
over our parameter ranges, the m = 3 branches are stable over
a large range of Ra for all Ek studied, the m = 4 branches are
created unstable but restabilize at higher Ra for low and high
values of Ek, but not for intermediate values, and the m = 2
(m = 5) branches restabilize only for low (high) Ek.

The physical mechanisms underlying the RW propagation
or drift have been a focus of investigation of rotating spherical
shell convection [5,15–18]. In particular the question under
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FIG. 6. (Color online) Same as described in the caption of Fig. 4,
but for RW2.
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FIG. 7. (Color online) Same as described in the caption of
Fig. 4, but for RW5.

which conditions the drift is prograde or retrograde with
respect to the rotating frame and how the drift direction and
rate depend on the Ekman and Rayleigh numbers is still under
discussion in the literature.

In Ref. [15] we studied reversals of the RW drift direction
for Ek = 0.001. Here, as in the preceding part of this section,
we extend the investigation to a wider range of the control
parameters. Figure 9 presents the dependence of the drift
frequency ω on the Rayleigh number for the RWs at the Ekman
numbers 0.008, 0.006, 0.004, and 0.002. Positive (negative)
values of ω correspond to prograde (retrograde) propagation.
Two features are seen:

(i) At the critical Rayleigh numbers, where the convection
sets in, the propagation direction is retrograde for small
rotation rates (large Ekman numbers) and changes to prograde
for large rotation rates (small Ekman numbers). In particular,
for the smallest Ekman number, Ek = 0.002 (right bottom
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FIG. 8. (Color online) Nusselt-number dependence of the rotat-
ing waves. For each m, curves from left to right correspond to
Ek = 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01.
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FIG. 9. (Color online) Drift frequency ω as function of Ra for
RW2 (dashed line), RW3 (solid line), RW4 (dotted line), and RW5
(dash-dotted line).

panel), all the RWs considered propagate in the prograde
direction at onset.

(ii) For a given branch at a fixed Ekman number, ω

decreases continuously as the Rayleigh number is increased.
That is, if ω is negative at onset, it remains negative, with
increasing modulus as Ra is increased. If, on the other hand,
the convection sets in with prograde propagation, the drift
frequency decreases with increasing Ra until eventually the
propagation reverses from the prograde to the retrograde
direction.

From the observations (i) and (ii) we may draw two
conclusions:

(a) The convective motions generate a retrograde drift. The
stronger these motions, the stronger the generated drift.

(b) The drift at the onset of convection originates by
a mechanism different from that responsible for the drift
described in (a) since it sets in at a finite rate when the motions
are vanishingly weak.

So there are, seemingly, two different drift-generation
mechanisms at work. This agrees with a similar conclusion
of Kimura et al. [17]. These authors attribute the retrograde-
prograde transition for increasing rotation rate at the convec-
tion onset to the changing shape and location of the convective
vortices (curved around the inner sphere for small rotation
rates and increasingly straight and parallel to the rotation axis
as the rotation rate is increased). In contrast, they attribute the
reversal of the drift direction at fixed rotation rate for increasing
Rayleigh number along a given branch to the mean zonal flow.

The importance of angular momentum conservation and
transport arises from the fact that, at least in the limit of fast
rotation, the RWs can be interpreted as Rossby waves, the
underlying physical principle of which is angular momentum
conservation or, equivalently, potential vorticity conservation.
In our investigations we observed a correlation between
angular momentum transport and the RW drift [31]. For all
branches at fixed Ekman number, prograde axial angular
momentum (Lz > 0) is transported through the spherical

shell, into the shell at the inner boundary and at the same
rate out of the shell at the outer boundary, beginning from
zero at the convection onset and increasing with increasing
Rayleigh number. In order to explain this effect a more detailed
investigation will be necessary.

III. SECONDARY BIFURCATIONS

While we have discussed the stability of the RWs in
Sec. II, in particular the points at which the RWs acquire
or lose stability, we have not yet discussed the type of
secondary bifurcations that are responsible. In many cases
the RWs undergo subcritical Hopf bifurcations engendering
unstable modulated rotating waves (MRWs), which cannot be
calculated by time-dependent simulations, while the tracing
of unstable MRW branches by path-following methods is a
numerical task that goes beyond this study.

We therefore cannot elucidate all secondary bifurcations.
Instead, we will discuss a specific example, in which the RW4
branch undergoes a symmetry-breaking bifurcation reducing
the Z4 symmetry to Z2, corresponding to rotation by π about
the z axis. We denote the state that is created by this bifurcation
as RW4-2 to indicate that the state has an m = 2 component
as well as the multiples of m = 4 contained by RW4.

In order to demonstrate how this bifurcation evolves with
the rotation rate, in Fig. 10 the RW4 and the bifurcating RW4-2
branches are shown for three selected values of the Ekman
number, namely 0.003, 0.004, and 0.007. At Ek = 0.003, the
top panel in Fig. 10, the RW4 branch is stable for 68.2 < Ra <

76.1 and loses stability in a Hopf bifurcation at the upper end
of this interval, at which stable MRWs (not depicted here) are
born. For a higher Ra along the now unstable RW4 branch
a further subcritical symmetry-breaking pitchfork bifurcation
occurs, creating the highly unstable RW4-2 states, which have
a rotational Z2 symmetry.
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FIG. 10. (Color online) Bifurcations breaking the Z4 symmetry
of the RW4 branch and generating a new branch, RW4-2, with Z2

symmetry are drawn in the plane spanned by Ra (abscissa) and the
kinetic energy contained in the m = 4 mode (ordinate). The RW4
(RW4-2) branches are shown in blue (red). From top to bottom,
Ek = 0.003, Ek = 0.004, and Ek = 0.007. Solid (dashed) lines mark
the stable (unstable) parts of the RWs.
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FIG. 11. (Color online) Radial velocity as in Fig. 2, but for the
RW4-2 solution at Ek = 0.007 and Ra = 120 at midgap (left) and in
the equatorial plane (right).

As the Ekman number is increased, the RW4 branch
becomes unstable over our entire Rayleigh-number range,
cf. middle panel in Fig. 10 for Ek = 0.004. Eventually the
RW4 branch is restabilized by other secondary bifurcations in
this scenario, as depicted for Ek = 0.007 in the bottom panel.
There now exists a stable part of the RW4 branch from which
the stable RW4-2 solutions branch off, now in a supercritical
bifurcation.

The RW4-2 branch loses stability in a further Hopf bifur-
cation at Ra = 109.2, cf. bottom panel of Fig. 10. Generically
MRWs must originate at this bifurcation, and indeed, we
have observed MRWs just above the Hopf threshold. We

have observed that beyond this point, the solution jumps to
another branch where two other frequencies appear in addition
to the drift frequency, indicating a transition to a nongeneric
three-torus branch for which all modes become excited. The
further transitions to chaos are beyond the scope of this study.

The RW4-2 solution is illustrated in Fig. 11, where contour
plots of the radial velocity in the middle of the spherical gap
(left) and in the equatorial plane (right) are shown at Ek =
0.007. Since the contribution of the m = 2 mode is rather
weak on the stable part of the RW4-2 branch we have chosen
a larger value for the Rayleigh number, namely Ra = 120, to
make this effect visible.

IV. CONCLUSIONS

In this work we computed systematically the RWs for
different dominant azimuthal wave numbers m, studied their
stability, and described secondary bifurcations. It is demon-
strated that by the use of path-following techniques and the
computation of unstable as well as stable branches a deeper
understanding of the qualitative solution behavior can be
acquired than is possible by pure time-dependent simulations.
In particular, this approach yields an extensive exposition of
the coexisting solutions and their multistability.

In a future study, we extend this approach to the magneto-
hydrodynamic equations by adding the induction equation and
the Lorentz force in order to reveal the origin of the dynamo
effect.
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