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The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary
and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are
traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased
Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by
their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by
a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and
attractors control the dynamics for higher Rayleigh numbers.
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I. INTRODUCTION

Buoyancy-driven convection in a rotating spherical fluid
shell which is heated, either by internal heat sources or
by imposing a temperature gradient between the spherical
boundaries, and is subject to a central gravity field represents
an idealized model for fluid flows in various geophysical and
astrophysical bodies, such as the outer cores of the terrestrial
planets, the envelopes of the giant planets, or the convection
zone of the Sun. Its study has a long history which began
with linear stability analyses [1–3] and was continued by
the investigation of pattern formation beyond the onset of
convection [4–6]. Although this idealized model is a rather
rough attempt at explaining the complex processes occurring
in geophysical and astrophysical applications, it describes
some basic generic features and can also be observed in more
comprehensive models. Its solutions have been studied over a
wide range of the control parameters, with the results reported
in a large number of publications, but not all details of the
bifurcations and features of the different solution branches are
fully understood yet.

The present study was initiated by a numerical dynamo
benchmark test [7] that we carried out using a spectral code
developed by Hollerbach [8]. The results obtained with the
code passed all requirements of the test with a high accuracy
concerning both the magnetohydrodynamical and purely con-
vective phenomena. Our investigations also yielded a variety of
additional solutions and further properties of known solutions
in the parameter range prescribed for the benchmark test.
Concentrating on purely convective phenomena, we studied
symmetry-breaking bifurcations in the nonrotating sphere [9].
The present study extends our investigation to the rotating
case. We examine the dynamics of coexisting time-dependent
solution branches and their properties in a selected small
parameter range. In particular, these states can be interpreted as
rotating waves (RWs) and modulated rotating waves (MRWs)
and their generation can be connected to the azimuthal circle

symmetry of the problem. The spatiotemporal symmetry of
the solutions is one focus of our investigation.

The paper is organized as follows: In Sec. II we introduce
the model and describe the numerics used. Then, in Sec. III,
the primary convective states, the RWs, are studied, followed
by an investigation of the MRWs, which bifurcate from the
RWs, in Sec. IV. Higher-frequency and chaotic dynamics are
the subject of Sec. V, and finally, in Sec. VI, we discuss our
results.

II. BASIC EQUATIONS AND NUMERICS

We study classical Rayleigh-Bénard convection in a spheri-
cal fluid shell rotating with constant angular velocity � = �ez

about the z axis (ez is the unit vector in the z direction). The
shell is heated from within by imposing a temperature differ-
ence �T between the inner and outer boundaries. Using the
Boussinesq approximation, the governing equations are made
nondimensional with the gap size d as the unit of length, so that
the dimensionless outer and inner radii are ro and ri = ro − 1,
respectively. Time is scaled by the viscous diffusion time d2/ν,
where ν is the kinematic viscosity. The flow velocity u is scaled
by the viscous diffusion velocity ν/d, temperature by �T , and
pressure p by ρoν�, where ρo is the reference mass density at
the reference temperature To. The gravitational acceleration g
is assumed to be proportional to the distance r from the center
of the sphere (as valid for the self-gravity in the interior of a
spherical body with constant mass density) and is thus express-
ible in the form g = −(go/ro)r , where go is the absolute value
of g at radius ro. The resulting nondimensional equations read

Ek

[
∂u
∂t

+ (u · ∇)u − ∇2u
]

= −∇p + RaT
r
ro

− 2 ez×u,

(1a)
∂T

∂t
+ u · ∇T = 1

Pr
∇2T , (1b)

∇ · u = 0, (1c)
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where

Ek = ν

d2�
, Ra = α �Tgod

�ν
, Pr = ν

κ
(2)

are the Ekman number, a modified Rayleigh number (α is
the thermal expansion coefficient), and the Prandtl number
(κ is the thermal diffusivity). The centrifugal acceleration
and a gradient part of the acceleration due to buoyancy have
been included in the pressure gradient on the right-hand side
of Eq. (1a). Ra is connected with the conventional Rayleigh
number R̃a by the relation Ra = R̃aEk/Pr.

The system is characterized by four dimensionless param-
eters, namely, the three numbers defined in Eq. (2) and the
outer radius ro (or, equivalently, the aspect ratio η = ri/ro). In
our choice of these parameters we follow the benchmark study
[7]: ro = 20/13 (so that ri = ro − 1 = 7/13 and η = 7/20),
Pr = 1 and Ek = 10−3 (corresponding to a Taylor number
Ta = 4/Ek2 = 4 × 106). Ra remains a free control parameter.

The boundary conditions imposed at the spherical surfaces
are those corresponding to rigid and thermally perfectly
conducting spheres, namely,

u = 0 at ri,ro, (3a)

T = 1 at r = ri and T = 0 at r = ro, (3b)

with the associated temperature profile in the time-independent
conductive basic state being given by

Tc(r) = ro ri

r
− ri . (4)

Due to the presence of the Coriolis force [the last term on
the right-hand side of Eq. (1a)], the full spherical symmetry
of the nonrotating case is broken. Equations (1a)–(1c) remain
equivariant with respect to the symmetry group SO(2) × Z2,
generated by rotations about the z axis [forming the special
orthogonal group SO(2), which is isomorphic to the circle
group S1] and reflections in the equatorial plane (forming the
reflection group Z2). This symmetry plays a determining role
in the transitions between different solutions.

The computations were carried out by means of a spectral
solver [8] which makes use of the representation of the velocity
field by toroidal and poloidal potentials:

u(r,θ,ϕ,t) = ∇ × f torer + ∇ × ∇ × f poler . (5)

All variables, in particular the potentials f tor and f pol and the
temperature T , are expanded in terms of spherical harmonics
Ym

� for the angular dependence and Chebyshev polynomials
Tk for the radial dependence:

f (r,θ,ϕ,t) =
∑
k,�,m

Tk

(
2r − (ro + ri)

ro − ri

)
P m

� (cos θ )

× [fk�m(t)eimϕ + f ∗
k�m(t)e−imϕ] (6)

(a superscript asterisk denotes the complex conjugate). The
time stepping is based on a modified Crank-Nicolson algorithm
for the diffusive terms and a Runge-Kutta scheme for the
remaining terms. A spatial resolution of (30,40,40) in (r,θ,ϕ)
and a time step of �t = 10−4 are used.

For demonstrating some of the dynamical features of our
system we use the total kinetic energy of the fluid,

Ekin = 1

2

∫
V

u2d3r, (7)

with V denoting the spherical shell.

III. ROTATING WAVES

For low Rayleigh numbers and all rotation rates, the pure
heat conduction state with the fluid at rest and the temperature
profile Tc, given by Eq. (4), is the only stable solution. At a
Rayleigh number Ra > 55.9, this basic state loses stability in a
supercritical Hopf bifurcation where the azimuthal mode m =
4 becomes unstable. The theory of bifurcations with symmetry
predicts that if the bifurcation from the basic state breaks the
azimuthal symmetry, this bifurcation is generically a Hopf
bifurcation that generates rotating waves drifting along the
group orbit [10–12]. RWs are stationary solutions in a suitably
rotating coordinate frame, and accordingly they are also called
relative equilibria. In our case the RWs show an azimuthal
cyclic Z4 symmetry. The solution branch is correspondingly
denoted by RW4.

In order to find additional solutions, numerous simulations
with different initial conditions at various Rayleigh numbers
were carried out, which led to three further branches of RWs.
More precisely, a stable RW with a Z5 symmetry with respect
to azimuthal rotations appears in a simulation at Ra = 100 by
taking the conductive state as the initial condition. In addition,
a magnetic RW branch with a Z3 symmetry was already
known from previous dynamo simulations, a topic which is
not covered in this article. By switching off the coupling to the
magnetic field the attractor is reduced to a pure convective RW
state with a Z3 symmetry. Finally, a fourth branch was found
by taking a superposition of the Z4 and Z5 states as an initial
condition for a simulation. This gave a RW attractor with
Z2 symmetry. In accordance with their symmetry properties
these RW branches are denoted by RW5, RW3, and RW2,
respectively.

Contour plots of the radial velocity in the middle of
the spherical gap and in the equatorial plane are exhibited
in Figs. 1 and 2 for Ra = 100, the value of the Rayleigh
number used in the previously mentioned benchmark study [7].
The kinetic energy and precession frequency of RW4 agree
with the benchmark values. The existence of the additional
RW5, RW3, and RW2 solutions manifests the feature of
multistability of RWs over a large interval of the Rayleigh
number. All RWs are spatially invariant under reflections in
the equatorial plane, i.e., the original Z2 symmetry is not
broken.

Although nonlinear interactions generate higher harmonics
as Ra is increased, the fundamental azimuthal mode (e.g., that
with mode number m = 4 for the branch RW4) continues to be
the dominant one, followed by the m = 0 mode, which gives
the mean flow (that is, differential rotation and meridional
circulation). The m = 0 mode amplitude is constant. For m �=
0, the real and imaginary parts oscillate while leaving the
absolute value constant.

We have found empirically that at least the RW4, RW5,
and RW3 branches can generate magnetic fields (provided the
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FIG. 1. (Color online) Time-asymptotic states of RW4 (left) and
RW5 (right) at Ra = 100. Depicted is the radial velocity normalized
to its maximum modulus at midgap (upper row) and in the equatorial
plane (lower row). Positive values (red) correspond to upwelling and
negative values (blue) to downwelling flows.

fluid is electrically conducting), but we leave this property to
future studies.

Figure 3 shows the kinetic energy of the RWs for a dense
set of Rayleigh numbers, obtained as time-asymptotic states
by long-time simulations.

The RW3 and RW5 branches originate at Rayleigh numbers
higher than that of the RW4 branch. Hence, these two branches
must be unstable when they bifurcate from the conductive
state, but are stabilized by subsequent bifurcations at Rayleigh
numbers Ra = 60 (RW3) and Ra = 65 (RW5). The lower limit
(Ra = 90) of the RW2 branch is considerably higher than
that of the other branches. This lower limit is marked by a
subcritical oscillatory instability, below which the trajectory
jumps onto the RW4 branch.

FIG. 2. (Color online) As Fig. 1 for RW3 (left) and RW2 (right).
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FIG. 3. (Color online) Bifurcation diagram exhibiting the kinetic
energy of stable RWs vs. Ra.

Figure 4 depicts the precession frequency ωpr of RWs
as a function of the Rayleigh number; ωpr is positive for
prograde precession. At the onset of convection the RWs show
a prograde precession. With increasing Rayleigh number the
precession slows down and finally a direction reversal into
a retrograde precession takes place. We note that all RWs
show the same linear scaling behavior over nearly the whole
Rayleigh number interval of their stability. This is in agreement
with the theory of Ecke et al. [12] which predicts a linear
relation between the precession frequency ωpr and the Rayleigh
number. Here, however, we see two extensions of the theory
of Ecke et al. [12]. Surprisingly, all of the lines in Fig. 4 have
the same slope, independent of the fundamental azimuthal
mode number m. Second, the dependence of frequency
on Ra is linear in a range which is considerably above
onset.

We can compare the precession of RWs in our system with
that in other configurations combining rotation and convection.
Depending on the rotation rate and the Prandtl number, the
precession of RWs can be prograde or retrograde with respect
to the overall system rotation [13]. In addition, convective
structures can be more or less localized near inner or outer
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FIG. 4. (Color online) Drift frequency ωpr of RWs vs Rayleigh
number over the range of stability.
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boundaries, with those at the outer boundaries usually called
wall modes.

In Rayleigh-Bénard convection in a rotating circular cylin-
der, wall modes set in first if the rotation is rapid and in this
case, a retrograde drift is observed [14]. This is also the case
for rotating convection in an annulus [15,16], but other modes,
which appear at higher Rayleigh numbers and are attached to
the inner boundary, precess in the prograde direction.

In our spherical case, convection near onset takes the form
of broad columnar vortices that are somewhat closer to the
inner than to the outer boundary and which precess in the
prograde direction. As the Rayleigh number is increased,
the columnar vortices widen towards the outer wall and the
precession becomes retrograde. Indeed, the results in [13]
indicate that, at least at onset, the dominance of columnar over
outer-wall-attached convection may favor prograde compared
to retrograde drift, and vice versa, which would be in accor-
dance with our observation of prograde precession. However,
this issue is not yet well understood. We note that a similar
reversal of the precession direction from prograde to retrograde
in rotating spherical shell convection was reported by Kimura
et al. [17].

For further increased Rayleigh number, eventually each of
the RWs loses stability via a Hopf bifurcation (cf. Fig. 3)
in which solution branches of modulated rotating waves are
generated, whose properties are the subject of Sec. IV.

IV. TRANSITIONS TO MODULATED ROTATING WAVES

There exists a general mathematical theory for the classifi-
cation of solutions created at secondary Hopf bifurcations of
RWs [11,18]. These solutions appear as simply time periodic in
coordinate frames moving with the speed of the corresponding
wave, that is, in the frames rotating with angular velocity
1/Ek + ωpr with respect to the inertial rest frame. [We recall
from Eq. (2) that 1/Ek is the dimensionless overall rotation
rate of the system relative to the rest frame.] Here, we call
these solutions MRWs, as is usual in physics; they are also
called relative periodic orbits.

A well-known application of the theory concerns the
transitions in the Taylor-Couette system, i.e., in the flow in the
gap between differentially rotating coaxial circular cylinders.
Based on the azimuthal SO(2) equivariance of the governing
equations, Rand [19] classified the possible MRWs. The
solutions he predicted were found experimentally by Gorman
and Swinney [20]; see also Gorman et al. [21]. Later, it was
noticed that the ensemble of MRWs contains further solutions,
whose presence can be explained if the system is modeled
as having SO(2) × O(2) symmetry [azimuthal SO(2) coupled
with axial O(2) symmetry] [22].

For our problem of rotating spherical Rayleigh-Bénard
convection, the symmetry group is SO(2) × Z2 (see Sec. I),
However, in the parameter range we have studied, the bi-
furcations are controlled by the SO(2) subgroup only, since
the Z2 equatorial-plane reflection symmetry is preserved
throughout all the solutions and transitions that we have
studied. This Z2 symmetry remains preserved even for the
higher-frequency or chaotic states which are described later
in Sec. V. Consequently, we can use the classification and
notation given by Rand [19]. Another application of the theory

TABLE I. Characteristics of MRWs.

Ra ωpr/ωmo IMRW Interval of stability

MRW2 136 4.637/351.02 (2,1,1) 136 � Ra � 148
MRW3 130 2.369/380.80 (3,1,2) 130 � Ra � 140
MRW4 133.7 4.637/126.93 (4,2,1) 133.5 < Ra < 133.8
MRW5 122 4.025/12.62 (5,1,1) 122 � Ra � 137.4

is the flow in a circular cylinder driven by the rotation of an
end wall [23], which also has only SO(2) symmetry.

MRWs are quasiperiodic, i.e., characterized by two incom-
mensurate frequencies ωpr and ωmo, with ωmo denoting the
frequency of a time-periodic modulation of the rotating waves.
More specifically, there exists a basic time period τ , which
we call the pattern-repeat period, after which, in the frame
rotating with the wave, the pattern recovers its initial shape,
but is azimuthally shifted. In general τ is different from both
the precession and modulation periods. The kinetic energy
and the Nusselt number, for instance, are time periodic with
period τ . Rand [19] characterizes the MRWs by a triple of
integers, IMRW = (m,s,n). As before, m is the fundamental
azimuthal wave number of the solution branch, or number of
wave peaks. Although the azimuthal Zm symmetry is broken
(i.e., the different wave peaks of the MRWs oscillate with
different phases), there remains an instantaneous Zs symmetry,
where s divides m. For example, s may be 1, 2, or 4 for m = 4,
but can only be 1 or m for m = 3 or m = 5. The last element
n of the triple IMRW = (m,s,n) is such that the wave pattern at
time t + τ in the reference frame rotating with angular velocity
ωpr differs from that at time t by a rotation through 2πn/m,
with 0 � n < m/s The modulation frequency ωmo = 2π/τmo

is then given by the total period τmo = (m/s) τ of the wave
modulation.

In our case, all the RWs (see Fig. 3) lose their stability
via secondary Hopf bifurcations at which the associated
branches MRW2, MRW3, MRW4, and MRW5 of modulated
rotating waves are generated. In the following we discuss the
features of the MRWs at Rayleigh numbers slightly above their
respective bifurcation points. Some characteristics are listed in
Table I. The modulation frequencies in the second column
of the table are nearly the same as the imaginary parts of
the critical eigenvalues associated with the secondary Hopf
bifurcations. For comparison, the rotation rate of the system
relative to the rest frame is 1/Ek = 103, where we recall that
we use as our unit of time the viscous diffusion time across
the gap.

The kinetic energies and Nusselt numbers oscillate with
a single frequency ωmo, as is the case for the m = 0 mode
amplitudes. The modes with the fundamental azimuthal wave
number are most strongly excited, followed by those with m =
0, as was the case for the RWs. All modes with m �= 0 behave
quasiperiodically with two incommensurate frequencies ωpr

and ωmo.
Figures 5–7 show, for MRW5, MRW3, and MRW4,

representative instantaneous profiles of the radial velocity as a
function of azimuthal angle around the equator at the midgap.
The selected times are multiples of the pattern-repeat period
τ , and in each figure a full modulation period τmo is covered.
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FIG. 5. Radial velocity vr of MRW5 vs azimuthal angle ϕ around
the equator at the midgap for Ra = 122 and IMRW = (m,s,n) =
(5,1,1). From top to bottom, times tj = t0 + jτ for j = 0, . . . ,5.
Black dots, initially marking a selected wave crest, show the azimuthal
drift, while squares indicate the reappearance of the wave crest at
times tj during the modulation cycle. (The squares are omitted when
they would coincide with the black dots.)

In each panel of MRW3 and MRW5 (Figs. 5 and 6), it can be
seen that each of the m oscillations differs from all the other
ones. For MRW4, however, the two oscillations over [0,π ]
are identical to the two oscillations over [π,2π ]; this is the
manifestation of the value s = 2.

The drift, with angular velocity ωpr with respect to that of
the spherical boundaries, is retrograde or westwards (leftwards
in the figures) in all three cases and is indicated by the
slow wandering of black dots that initially mark a selected
wave crest. After each time period τ the wave recovers its
initial form, up to an azimuthal phase shift of 2πn/m + ωprτ .
This shift is indicated by hollow squares located on the
selected wave crest (omitted in subfigures where they would
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FIG. 6. As Fig. 5, but for MRW3 at Ra = 130, with IMRW =
(m,s,n) = (3,1,2), from top to bottom at times tj = t0 + jτ for j =
0, . . . ,3. The hollow square is displaced leftwards by two oscillations
over each time τ , corresponding to the value n = 2.
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FIG. 7. As Fig. 5, but for MRW4 at Ra = 133.7, with IMRW =
(m,s,n) = (4,2,1), from top to bottom at times tj = t0 + jτ for j =
0,1,2. The wave form over [π,2π ] is the same as that over [0,π ],
corresponding to the value s = 2.

coincide with the black dots). These squares are displaced by
n wavelengths after each time τ , i.e., by one wavelength for
MRW5 (Fig. 5) and MRW4 (Fig. 7), both with n = 1, but by
two wavelengths for MRW3, with n = 2. The state reached
after the completion of the modulation cycle, depicted in the
last panel of each figure, differs by an azimuthal shift of ωprτmo

from the initial state.

V. HIGHER-FREQUENCY AND CHAOTIC DYNAMICS

In this section we want to demonstrate multistability
and the complexity of the dynamics for higher Rayleigh
numbers where some of the modulated rotating waves have
lost their stability. The MRW4 branch is stable only over a
very small Rayleigh number interval (see Table I), and it is
the first branch that undergoes a further Hopf bifurcation.
By ramping up the Rayleigh number in small steps above
this bifurcation point, we give an example of the qualitative
changes that accompany the subsequent transitions between
different solutions. Figure 8 shows, for three selected Rayleigh
numbers, time series of the kinetic energy, presenting certain
dynamical features along this route. In the top panel, at
Ra = 133.9, the time series of the kinetic energy contains
two dominant frequencies, which can be clearly identified in
the corresponding power spectrum in Fig. 9 (left). Besides
the pattern-repeat frequency f1 = 1/τ of the original MRW4
branch, a second frequency f2 appears. Thus, taking into
account the precession frequency, a stable three-frequency
solution has been formed (the precession does not change
the kinetic energy and, hence, its frequency does not appear
in the power spectrum). Quasiperiodic convection with two
frequencies in addition to precession in a rotating spherical
shell has previously been observed by Sun et al. [24].

It is not the aim of this study to elucidate all details
in the transitions to aperiodic dynamics. However, we want
to describe how the temporal behavior of the solutions is
qualitatively changed by a further increase of the Rayleigh
number. The time series of the kinetic energy shown in
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instability point of MRW4, from top to bottom at Ra = 133.9, 135.0,
135.2, and 135.2 continued.

the three upper panels of Fig. 8 in conjunction with the
corresponding power spectra in Fig. 9 reveal such qualitative
changes. In the process, the three-frequency solution loses its
regular quasiperiodicity and the temporal behavior becomes
increasingly aperiodic. At Ra = 135, the time series of the
kinetic energy shown in Fig. 8 (second panel from the top)
is characterized by remnants of the quasiperiodic dynamics,
interrupted by larger fluctuations. The corresponding power
spectrum in Fig. 9 (middle) shows a broadening of the peaks at
the two dominant frequencies, combined with an enhancement
of the background noise.

A further ramping up of the Rayleigh number by a small
step to Ra = 135.2 changes the temporal behavior drastically;
see Fig. 8 (third panel from top). The behavior is now obviously
strongly chaotic. The two originally dominant frequencies
are embedded in a broadband spectrum whose exponential
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Ra = 135.2 (right) on continuation of the branch MRW4.
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FIG. 10. Kinetic energy vs time at Rayleigh numbers above the
instability point of MRW3, from top to bottom at Ra = 141, 145,
and 165.

decay over the frequency range indicates the occurrence of
deteriminstic chaos; see Fig. 9 (right).

Surprisingly, the chaos does not persist. After a longer
simulation time the trajectory suddenly jumps to another,
regular attractor, which can be identified as the MRW3 branch.
This behavior is depicted in the bottom panel of Fig. 8 (a
continuation in time of the panel above it). The resulting
regular oscillations of the kinetic energy on the MRW3 branch
are very small compared to the previous chaotic fluctuations
and are not discernible in the figure (but are well resolved in
the numerical computations).

We find transient chaos to be typical when starting from
states in the modulated wave regime and ramping up the
Rayleigh number above critical values at which the behavior
is no longer strictly quasiperiodic, that is, to Ra > 133.8 for
the MRW4 branch and to Ra > 137.4 for the MRW5 branch
(Table I, right column). The resulting dynamics are controlled
by long-lasting chaotic transients, where in most cases the
trajectory eventually jumps to one of the coexisting regular
attractors, namely, MRW2 or MRW3. The most convincing
explanation for this unpredictable behavior is the presence of
a chaotic saddle. In some cases (for instance, for Ra = 135.5,
when starting with the same initial state as for simulating the
time series at Ra = 135.2 on the prolonged MRW4 branch
discussed above), we also observe seemingly persistent chaos
over a simulation period of 100 viscous time units, but no final
conclusion can be drawn here.

The results described raise the question of whether and if so,
in what way, persistent chaos appears. In order to answer this
question, the MRW3 branch, which had proved to be attractive
for the quasichaotic solutions on the continuation of the MRW4
branch at higher Rayleigh numbers, was traced towards higher
Rayleigh numbers beyond its stability range as well. Here we
discuss the dynamics for three selected Rayleigh numbers,
Ra = 141, Ra = 145, and Ra = 165, which represent distinc-
tive and typical cases on this route. The kinetic energies as
functions of time are shown in Fig. 10, while the related power
spectra are presented in Fig. 11. In addition, Fig. 12 gives
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FIG. 11. Power spectrum P (f ) of kinetic energy for time-
asymptotic states at Ra = 141 (left), Ra = 145 (middle), and Ra =
165 (right) on continuation of the branch MRW3.

the distribution of the kinetic energy over the azimuthal wave
numbers for each of the three time-asymptotic states.

Analogously to the MRW4 branch, the MRW3 branch loses
stability by the appearance of a further frequency f2 generating
a stable three-frequency solution, as depicted in the top panel
of Fig. 10 and the left panel of Fig. 11 for Ra = 141. The
quasiperiodic or torus solutions decay on further raising the
Rayleigh number, leading to aperiodic dynamics. A typical
example of the dynamics in this regime, at Ra = 145, is
presented in the middle panel of Fig. 10 together with the
corresponding power spectrum in the middle panel of Fig. 11.
The broadening of the original frequency peaks seems to be
a typical feature of the torus decay; compare the analogous
behavior in the preceding example (the continuation of the
MRW4 branch).
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FIG. 12. Distribution of kinetic energy over azimuthal mode
number m for time-asymptotic states at Ra = 141 (left), Ra = 145
(middle), and Ra = 165 (right) on continuation of the branch MRW3.
The bars for m = 3 are cut off at the upper panel margins.

The distribution of the kinetic energy over the wave num-
bers can be considered as indicative of the degree of complexity
of the dynamics. Compared to the rotating wave solution RW3,
where only the dominant m = 3 mode, its higher harmonics,
and the m = 0 mode are excited, for the MRW3 solution the
m = 5 mode is also present. The energy distribution of the
subsequent three-frequency solution, shown in the left panel
of Fig. 12 for Ra = 141, remains qualitatively similar to that of
MRW3. In the torus-decay stage which follows, at Ra = 145,
the distribution remains discrete and almost entirely in these
modes. as can be seen in the middle panel of Fig. 12. The
excitation of the remaining modes by means of triadic coupling
is perceptible, but is still at a low level.

In contrast, at the next stage all of the modes undergo a
substantial excitation, as can be seen in the azimuthal wave
number distribution in the right panel of Fig. 12 for Ra = 165.
This wide distribution is obviously related to the complexity
of the dynamics seen in the bottom panel of Fig. 10 and to the
exponential decay of the frequency spectrum in the right panel
of Fig. 11. A question we pose for forthcoming investigations
is whether this stage is reached in a continuous process or by
an abrupt transition.

For demonstrating chaotic dynamics at high Rayleigh
numbers we have used the kinetic energy in the fluid shell,
a global quantity. It is of interest, however, to determine
whether the chaotic behavior is localized to one or several
restricted regions in the shell. We have studied a convective
regime at moderate Rayleigh numbers, with the largest
scales dominating and smaller scales only weakly excited.
The dynamics of our flows may be characterized as weak
spatiotemporal chaos in the form of complex oscillations of
large-scale structures. Consequently, all spatial regions are
involved in the oscillations. The temporal behavior of the radial
velocity component at fixed spatial locations shows the same
dynamics as the kinetic energy.

VI. DISCUSSION

The purpose of this investigation was to demonstrate
the multistability of solutions and their interplay in rotating
spherical shell convection. Particular attention was paid to
the spatiotemporal features of the solutions, consecutive
bifurcations, and the route to chaos. Multistability is primarily
manifested in the form of RWs with different fundamental
azimuthal wave numbers. All of the RWs we have found in
this configuration share the property that they appear with an
eastwards (prograde) drift at onset. Furthermore, they show
a common linear scaling of the drift rate with the Rayleigh
number, and for all of them the drift direction is reversed at
some value of the Rayleigh number. We have discussed the
transition from prograde to retrograde drift in the context of
previous research [12–17].

The property of multistability continues towards higher
Rayleigh numbers where all RWs lose stability by Hopf
bifurcations in which stable MRWs are generated. We have
examined the MRWs resulting from each of the RWs,
presenting their wave forms and characterizing them according
to the classification of Rand [19].

Some of the MRWs in turn undergo a third Hopf bifurcation,
leading to solutions with three clearly identifiable frequencies.
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With the examples of the MRW4 and MRW3 branches,
we have illustrated the subsequent transitions to transient
or permanent chaos, respectively. In summary we state that
for higher, but still moderate, Rayleigh numbers, several
distinctive solutions of different types exist. Stable MRWs
and three-frequency solutions as well as chaotic saddles

and attractors coexist over certain intervals of the Rayleigh
number.
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