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The solar activity cycle is weakly synchronized with the solar inertial motion
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Abstract

We study possible interrelations between the 300-year record of the yearly sunspot numbers and the solar inertial motion (SIM) using the
recently developed technique of synchronization analysis. Phase synchronization of the sunspot cycle and the SIM is found and statistically
confirmed in three epochs (1734–1790, 1855–1875 and 1907–1960) of the whole period 1700–2000. These results give quantitative support to the
hypothesis that there is a weak interaction between the solar activity and the SIM.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Regularities and irregularities in the solar activity cycle [1]
are among the most intriguing and poorly understood aspects
of the Sun. Dynamo theory [2–4], describing complex magne-
tohydrodynamic plasma motions inside the Sun, has resulted in
many models which reproduce basic features of solar activity
[5–7]. However, the nature of the solar cycle is far from being
understood. Attempts have been made to identify signatures of
low-dimensional chaos in the sunspot data [8–10], however, the
used algorithms have been found unreliable when applied to
noisy and possibly non-stationary experimental data.

The hypothesis that the gravitational forces exerted upon
the Sun by the giant planets in the solar system can influ-
ence the solar activity cycle has been discussed for decades
[11–14], however, until now possible connections were only de-
scribed in qualitative or indirect ways. The recently developed
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concept of phase synchronization in complex systems [15–19]
provides a highly efficient method for the detection and quanti-
tative assessment of a weak interaction between two processes
represented by possibly nonlinear, noisy, non-stationary and
relatively short time series. In this Letter we present such a
synchronization analysis of the sunspot numbers and the solar
inertial motion. We find with high statistical significance that
there are decadal epochs where these two oscillatory phenom-
ena are probably phase synchronized. This result provides the
first quantitative evidence that the motion of the giant planets
has some influence on the dynamics of the solar cycle.

2. Solar inertial motion and sunspots: The data

In reaction to movements of the planets in the solar system,
the Sun moves around the barycenter (the center of mass) of
the solar system, as already noted by Newton in his Principia:
“. . . since that center of gravity (center of mass of the solar sys-
tem) is continually at rest, the Sun, according to the various
positions of the planets, must continually move every way, but
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Fig. 1. Trajectory of the SIM in the period 1949–2100 A.D. The barycenter of
the solar system is located at + and the positions of the Sun are marked by ∗.
The orbital rotation of the Sun is anti-clockwise. The shadowed circle shows the
solar disk in January 2002, when the barycenter was clearly outside the Sun.

will never recede far from that center.” [20]. This movement,
called the solar inertial motion (SIM hereafter), is confined to
a region with a diameter of 4.34 solar radii, that is 0.02 AU
(astronomical units) or 3 × 106 km. For comparison, the ec-
centricity of the Earth’s orbit is 5 × 106 km. The SIM mainly
reflects movements of the two largest planets—Jupiter (orbit
period of about 11.86 years) and Saturn (about 29.45 years),
which account for 93% of the total planetary mass, however,
other planets influence the SIM, too. As a result, the trajectory
of the Sun around the barycenter (which is often outside the
Sun) is a complicated composition of loops and arcs (Fig. 1).
Similar motions of other stars yield a part of the oscillatory
Doppler shift of their spectral lines, which is also an important
signature of extrasolar planets [21].

The SIM, i.e., the temporal evolution of the coordinates
x, y, z of the Sun relative to the barycenter has been calcu-
lated using the procedure of Shirley [22]. The solar motion
is largely determined by the positioning of the giant planets
Jupiter, Saturn, Uranus, and Neptune. Thus the core of the solar
motion program used here is an algorithm for the heliocentric
ecliptic of date planetary positions published by Van Flandern
and Pulkkinen [23], listing nearly 300 periodic terms for longi-
tude, latitude, and distance from the Sun of the 4 giant planets.
Clemence [24] gives formulae for calculating the position of the
solar system barycenter. The planetary positions are corrected
for precession and obliquity, to refer to the ecliptic of 1950.0.
Planetary mass values are those employed in the Jet Propulsion
Laboratory development ephemeris DE-102 [25].

Here we use the coordinates of the center of the Sun relative
to the solar system barycenter with the solar system invariable
plane as the reference x–y plane. Two rotations convert the
1950 ecliptic frame positions into invariable plane coordinates.
The new positive x direction corresponds to the node of the in-
variable plane on the 1950 ecliptic, at longitude 107◦16′38.96′′.
The inclination correction is 1◦39′16.47′′. Having computed the
coordinates x, y, z, any function descriptive of the Sun’s motion
Fig. 2. Top panel: Radius of curvature of the trajectory of the solar inertial
motion (SIM), calculated according to (1) from the Sun’s coordinates relative to
the solar system barycenter with the invariable plane as the reference x–y plane,
for the period 1700–2000. Middle panel: Yearly sunspot numbers for the period
1700–2000. Bottom panel: Phase difference between the instantaneous phases
of the radius of curvature of the SIM trajectory and the (band-pass filtered)
sunspot cycle. The solid vertical lines are the borders of the epochs in which the
sunspot cycle is phase synchronized with the SIM. These epochs are 1734–1790
(marked as I), 1855–1875 (marked as II) and 1907–1960 (marked as III).

can be found. Here we analyze the radius of curvature, ρ, of the
Sun’s orbit, computed from the components of the SIM veloc-
ity and acceleration, i.e., from the first-order and second-order
temporal derivatives of the Sun’s coordinates x, y, z:

(1)ρ = v3/

√
(ẏz̈ − żÿ)2 + (żẍ − ẋz̈)2 + (ẋÿ − ẏẍ)2,

where the dots mean temporal derivatives and the velocity v is
defined as

(2)v =
√

ẋ2 + ẏ2 + ż2.

Using Shirley’s algorithm [22], the coordinates x, y, z were
generated with daily sampling in order to obtain smooth es-
timates of their first-order and second-order derivatives. Then
the values of the curvature radius ρ as given by (1) were com-
puted and averaged in order to obtain the series {ρ(t)} (where
t = 1,2, . . . stands for time) with yearly sampling (Fig. 2, top
panel), which can be analyzed together with the series {S(t)} of
the yearly sunspot numbers from the period 1700–2000 (Fig. 2,
middle panel) [26]. It should be mentioned that ρ oscillates with
a period of about 20 years. Therefore, we have to test for a
possible 2 : 1 synchronization of SIM and solar activity [see
Eq. (6) below]. Prior to further processing, the sunspot series
has been filtered by a simple moving average (MA) band-pass
filter: First, the MA’s from a 13-sample (year) window have
been subtracted from the data in order to remove slow processes
and trends, and then a 3-sample MA smoothing has been used
in order to remove high-frequency components and noise.

3. Synchronization analysis: The method

Based on the concept of phase synchronization of chaotic
oscillators [15,19], a new technique has been developed to ana-
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lyze complex, even non-stationary, bivariate data [16–18]. First,
we calculate the instantaneous phases φS(t) and φρ(t) of the
sunspot cycle and the SIM’s curvature radius, respectively. The
instantaneous phase and amplitude of a signal s(t) can be de-
termined by using the analytic signal concept of Gabor [27],
recently introduced into the field of nonlinear dynamics within
the context of chaotic synchronization [15,16]. The analytic sig-
nal ψ(t) is a complex function of time defined as

(3)ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t),

where the function ŝ(t) is the Hilbert transform of s(t),

(4)ŝ(t) = 1

π
P.V.

∞∫

−∞

s(τ )

t − τ
dτ.

(P.V. means that the integral is taken in the sense of the Cauchy
principal value.) A(t) is the instantaneous amplitude and the
instantaneous phase φ(t) of the signal s(t) is

(5)φ(t) = arctan
ŝ(t)

s(t)
.

Here we use a discrete version of the Hilbert transform (4)
with a finite (25-sample) summation window instead of the infi-
nite integration interval in (4). Having the instantaneous phases
φS(t) and φρ(t) of the sunspot cycle and the SIM’s curvature
radius, respectively, we define the instantaneous 2 : 1 phase dif-
ference

(6)�φ(t) = 2φρ(t) − φS(t).

In the classical case of periodic self-sustained oscillators
phase synchronization is defined as phase locking, i.e., the
phase difference is constant. In the case of phase-synchronized
chaotic or other complex systems fluctuations of phase differ-
ence typically occur. Therefore, the criterion for phase synchro-
nization is that the absolute values of �φ must be bounded [15].
When the instantaneous phases are not represented as cyclic
functions in the interval [0,2π) but as monotonously increas-
ing functions on the whole real line, then also the instantaneous
phase difference �φ(t) is defined on the real line and is an
unbounded (increasing or decreasing) function of time for asyn-
chronous states of systems, while epochs of phase synchroniza-
tion appear as plateaus in the �φ(t) vs. time plots.

4. Results and their statistical evaluation

In Fig. 2, bottom panel depicting �φ(t) (6), one can iden-
tify three plateaus in the periods 1734–1790, 1855–1875, and
1907–1960 (marked as I, II and III, respectively). For obtaining
quantitative evidence that these periods are epochs in which the
sunspot cycle is phase synchronized with the SIM, we use ideas
of Stratonovich [28] and consider phase locking in a statistical
manner, i.e., as appearance of a peak in the distribution of the
cyclic relative phase (phase difference)

(7)�ψ = �φ mod 2π.

We estimate �ψ distributions as histograms with 16 bins
on the interval [0,2π). The histograms for the above epochs
Fig. 3. Histograms of the cyclic relative phases (phase differences) �ψ of the
sunspot cycle and the radius of curvature, ρ, of the SIM trajectory (thick solid
lines) for the epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III). Also
shown are the histograms of related surrogate (Barnes model vs. ρ) sets: Dashed
lines correspond to average histograms and dash-and-dotted lines, from bottom
to top, show the 95th, 97.5th and 99th percentiles of the frequency value distri-
butions in each of the 16 histogram bins.

I, II and III (Fig. 3, solid lines) are strongly localized around
particular values and are clearly different from a uniform dis-
tribution which should be generated by phase differences of
non-synchronized systems. Considering, however, the small
amounts of samples in the scrutinized epochs, the differences
from a uniform �ψ distribution should be statistically evalu-
ated. Employing the concept of surrogate data [10,29,30], we
generate 131,000 independent realizations of the Barnes model
[31],

(8)zi = α1zi−1 + α2zi−2 + ai − β1ai−1 − β2ai−2,

(9)si = z2
i + γ

(
z2
i − z2

i−1

)2
,

where α1 = 1.90693, α2 = −0.98751, β1 = 0.78512, β2 =
−0.40662, γ = 0.03 and ai are independent, identically distrib-
uted Gaussian random variables with zero mean and standard
deviation SD = 0.4.

The model (8), (9) effectively mimics main statistical prop-
erties of the sunspot cycle, however, by construction is inde-
pendent of the SIM. It is not used here to model the physics
of the solar cycle, but to produce realizations of a process with
similar frequency content as the sunspot cycle. These artificial
data will be processed in order to assess whether such a process
could randomly produce epochs which appear like phase syn-
chronized with the SIM, like those observed using the real
sunspot data. Each realization of the Barnes model is processed
in the same way as the original sunspot numbers, so we can es-
timate the ranges of frequency (relative count) values in each
histogram bin.

Using 131,000 surrogate realizations yields 131,000 his-
tograms for any of the epochs I, II and III. Each histogram is
estimated using the same number of samples as the related his-
togram of �ψ of the sunspots vs. ρ. Then for each histogram
for every bin there are 131,000 count values which are sorted,
their distribution is constructed and values for the mean and se-
lected percentiles in every bin are evaluated. Here we present
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the 95th, 97.5th and 99th percentiles (dash-and-dotted lines in
Fig. 3) of the surrogate distribution in each histogram bin for
each of the three histograms for the epochs I, II, and III. These
percentiles are “significance levels” for rejecting the null hy-
pothesis of a uniform �ψ distribution, i.e., the hypothesis that
the sunspot cycle and the SIM are not phase synchronized. In
each of the three scrutinized histograms of the sunspot cycle
vs. SIM’s ρ cyclic relative phases �ψ there are one or two bins
whose values are higher than the related 99th percentile of the
surrogate distributions (Fig. 3). Thus the null hypothesis that
the phases of the sunspot cycle and of the SIM are indepen-
dent has been rejected with p < 0.01, where p is the level of
significance.

In addition, we quantify the histograms by using the concept
of Shannon entropy,

(10)H = −
16∑
i=1

pi logpi,

where pi is the relative frequency of occurrence of a value
of the relative cyclic phase difference �ψ in a particular his-
togram bin. The Shannon entropy is maximized for a uniform
distribution. So we test whether the Shannon entropy for the
scrutinized �ψ histograms is significantly smaller than its val-
ues obtained from the Barnes surrogate data, which are not syn-
chronized with the SIM. Here we directly estimate the “signif-
icance” of the test by counting the percentage of the surrogate
data Shannon entropy values which are smaller than or equal
to the value obtained from the tested histogram. This “signif-
icance” is in fact a probability that such a value (as obtained
from the sunspot data vs. SIM) can randomly occur without any
phase synchronization (i.e., that similar synchronous epochs
can occur by chance in data with frequency content similar to
the sunspot data).

Finally, we use a simple trigonometric statistic, also known
as the mean resultant length [32]:

(11)γ 2 = 〈
cos

(
�ψ(t)

)〉2 + 〈
sin

(
�ψ(t)

)〉2
,

where 〈 〉 means the temporal average. This trigonometric sta-
tistic tends to zero for �ψ of asynchronous processes and to
one for phase locked systems. Again, the Barnes model is used
as the asynchronous null hypothesis and the significance eval-
uation is equivalent to the case of the Shannon entropy, how-
ever, now we evaluate whether γ for the sunspots vs. ρ is
significantly larger then γ ’s for the surrogates. In all the tests,
employing the Shannon entropy and the trigonometric statis-
tic γ , the phase synchronization of the sunspot cycle with the
SIM has been confirmed with high statistical significance (from
p < 0.02 to p < 0.003).

5. More statistical testing

The above statistical tests support our claim that the plateaus
observed in the phase difference �φ(t) vs. time plot are proba-
bly caused by phase synchronization between the solar inertial
motion and the solar activity cycle. The probability of a ran-
dom occurrence of such plateaus in synchronization analyses of
independent oscillatory systems with the same frequency con-
tents is very low. The plateaus in the studied data, however,
were selected by a visual inspection, i.e., the segments with
the highest potential for the presence of phase synchroniza-
tion were selected and then tested against segments of the same
length at the same temporal positions in surrogate data. This ap-
proach, in the following referred to as the “simple testing”, can
be biased in favour of false detection of phase synchronization,
since a segment with a higher potential for synchronous behav-
ior could occur at a different position in time in a surrogate data
realization. For a fully correct test we need to evaluate the prob-
ability of an occurrence of a synchronous segment (a plateau)
anywhere regardless of its temporal position. It is certainly im-
possible to search visually for plateaus in a large number of
surrogate data realizations. Therefore, for each tested epoch of
the scrutinized data (the plateaus) we determine—in each re-
alization of the surrogate data—a segment of the same length
which minimizes (over the 300-year surrogate data realization)
the Shannon entropy of the �ψ distribution.

For the correct application of this “testing with entropy min-
imization” approach, however, it is important to test all three
segments simultaneously, i.e., to search for three disjoint seg-
ments minimizing the Shannon entropy of the �ψ distribution
estimated from the same number of �ψ samples as the number
of samples in the tested epoch. While using the simple testing
approach, the simultaneous and the individual testings give the
same results, the individual testing with the entropy minimiza-
tion decreases the significance for either the short epoch II or
the epoch I. The segment I is characterized by a slightly wider
�ψ histogram and thus by a higher Shannon entropy than the
other epochs. It is not clear whether this “weaker” synchrony in
the epoch I is an actual phenomenon or just a consequence of
a worse quality of the sunspot data from the 18th century. The
requirement of the simultaneous occurrence of three segments
in each surrogate data realization, as it is observed in the real
sunspot data, is strong enough to reject the hypothesis that the
plateaus occurred by chance.

Applying this strengthened testing approach for evaluation
of the histograms of the cyclic relative phase �ψ (Fig. 4) we
can see that the significance levels (percentiles) are at higher
positions than in the previous simple test (cf. Fig. 3). This de-
creases the significance of the results for the epoch I to p <

0.025, which is, however, still highly significant. In the epochs
II and III there is always one bin whose value is clearly higher
than the 99th percentile of the surrogate distribution (Fig. 4).
Thus the null hypothesis of uniform �ψ distribution, i.e., the
hypothesis that the phases of the sunspot cycle and of the SIM
are independent, has been rejected with p < 0.01. Applying the
test with the Shannon entropy (10) and the trigonometric sta-
tistic (11), the phase synchronization of the sunspot cycle with
the SIM has been confirmed with statistical significance from
p < 0.03 to p < 0.07.

The phenomenon of phase synchronization could be mim-
icked by a trivial phase locking if two oscillatory processes
have the same constant frequencies (or different constant fre-
quencies in a rational ratio). In order to demonstrate that this
is not the case in the present study, in Fig. 5 we present his-
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Fig. 4. Histograms of the cyclic relative phases (phase differences) �ψ of the
sunspot cycle and the radius of curvature, ρ, of the SIM trajectory (thick solid
lines) for the epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III) to-
gether with histograms of the related surrogate (Barnes model vs. ρ) segments
which minimize the Shannon entropy of the �ψ distribution. Dashed lines cor-
respond to average histograms and dash-and-dotted lines, from bottom to top,
show the 95th, 97.5th and 99th percentiles of the frequency value distributions
in each of the 16 histogram bins.

Fig. 5. Histograms of the instantaneous frequencies of (a) the radius of curva-
ture, ρ, of the SIM trajectory (the frequency multiplied by two is used), (b) the
sunspot cycle (solid line) and (c) the Barnes model—the solid line corresponds
the mean histogram of 131,072 300-year realizations. The dashed lines in (b)
and (c) show the 5th (lower dashed line) and the 95th (upper dashed line) per-
centiles of the Barnes model surrogate frequency value distributions in each of
the 16 histogram bins.

tograms of instantaneous frequencies fρ of the SIM curvature
radius ρ, (Fig. 5a; the histogram of 2fρ is plotted) and fS of
the sunspot cycle (Fig. 5b, solid line). Simultaneously, we can
assess the adequacy of the Barnes model (8), (9) as surrogate
data for the sunspot cycle. The variability of histograms of the
instantaneous frequencies obtained from 300-year realizations
of the Barnes model is presented by the 5th and the 95th per-
centiles (dashed lines in Fig. 5b) of the relative count value
distributions in each bin of these histograms. The same per-
centiles together with the mean surrogate histogram (solid line)
are presented in Fig. 5c. Both the SIM and the sunspot cycle
are narrow-band oscillatory processes, however, their frequen-
cies are variable. The variability of the sunspot cycle frequency
does not differ from that of realizations of the Barnes model.
Fig. 6. Histograms of the cyclic relative phases (phase differences) �ψ of
the sunspot cycle and the radius of curvature, ρ, of the SIM trajectory (thick
solid lines) for the epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III)
together with histograms for the related surrogate data (sunspot data with ran-
domly permutated cycles vs. ρ) segments which minimize the Shannon entropy
of the �ψ distribution. Dashed lines correspond to average histograms and
dash-and-dotted lines, from bottom to top, show the 95th, 97.5th and 99th per-
centiles of the frequency value distributions in each of the 16 histogram bins.

Nevertheless, we repeated all the above described tests using
the amplitude-adjusted Fourier transform surrogate data [29,30]
which almost exactly preserve the spectrum and thus the fre-
quency distribution. The obtained results were fully consistent
with those obtained in the above tests with the Barnes model.

According to a referee’s recommendation we have repeated
the tests with surrogate data constructed from the sunspot data
by random permutations of individual cycles. We performed the
randomization in the wrapped phase representation—the mix-
ing of individual “saw-teeth” of the phase rising from −π to
π is technically simpler than the mixing of individual cycles
of the raw data. Each phase “saw-tooth” contains information
about the cycle length (consists of the same number of samples
as the original cycle) as well as about the intra-cycle dynam-
ics. Random reordering of the cycles (−π to π “saw-teeth” in
the phase representation) provided a new type of surrogate data
used in the same tests as the previously considered realizations
of the Barnes model and the AA FFT surrogates. Application
of the simple testing approach yielded results fully consistent
with those obtained in the testing with the Barnes model surro-
gate data. Some differences can be observed when these “cycle
mixing” surrogates are used in the testing with the entropy min-
imization approach. The histograms of the sunspot cycle vs.
SIM’s ρ cyclic relative phases �ψ with the related percentiles
(significance levels) for the “cycle mixing” surrogates are pre-
sented in Fig. 6. One can see that with the entropy minimization
the “cycle mixing” surrogates do not provide enough variability
for the percentile values to converge to a single value indepen-
dent of �ψ . Using the highest estimate for the percentiles, how-
ever, the �ψ histograms for all three epochs significantly differ
from a uniform distribution with p < 0.05. (Using the “local”
estimates of the percentiles, p < 0.05 holds for the epoch I,
while p < 0.01 holds for the epochs II and III.) The significance
of the tests with the Shannon entropy (10) and the trigonometric
statistic (11) decreased to values about p < 0.1. Using this type
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of surrogate data the significance of test results decreases, i.e.,
the value of p giving the probability of random occurrence of a
synchronous segment increases. Not only the truly synchronous
segments contribute to the increased p value, but due to a recur-
rent behavior of the SIM, the sunspot cycles from the epoch I
would synchronize with the SIM in the segment III and vice
versa, as well as various combinations of these cycles could
contribute to the increase of the p value. It is also interesting
to note that the phase difference between the SIM and the solar
cycle in segments I and III is between 4 and 5 radians, while the
preferred phase difference in the “cycle mixing” surrogate data
is 0 or 2π (Fig. 6). Nevertheless, the histograms of the cyclic
relative phases �ψ of the sunspot cycle and the radius of cur-
vature, ρ, of the SIM trajectory differ from the corresponding
�ψ distributions for these surrogate data and ρ on the signifi-
cance level p < 0.05, which supports the claim that in the tested
epochs, the SIM and the solar activity are phase synchronized.

6. Possible physical mechanisms underlying the
synchronization

In this section we briefly discuss possible physical interac-
tion mechanisms of the SIM with the solar activity cycle.

The dynamo for the solar magnetic field is assumed to oper-
ate in the convection zone, a spherical shell below the surface of
the Sun with a thickness of about 0.3 solar radii, and active re-
gions are believed to result from the emergence of magnetic flux
tubes which have broken away from a toroidal field (which is
azimuthal with respect to the spin axis of the Sun) in the convec-
tion zone and are carried up by magnetic buoyancy. The toroidal
field below the surface is generated from a poloidal one (whose
field lines lie in planes containing the spin axis) by differen-
tial rotation, i.e. velocity shear resulting from the dependence
of the spin rate on radius and latitude, while the regeneration
of the poloidal field is thought to be accomplished by the al-
pha effect [2], namely the generation of a mean or large-scale
electromotive force by small-scale or turbulent fluid motions
that are helical due to the action of Coriolis forces. In some
models the toroidal field consists of an ensemble of flux tubes
which are stored in a layer close to the bottom of the convection
zone and whose rise is initiated by a flux tube instability [33];
in these models the action of Coriolis forces on unstable flux
tubes gives rise to an alpha effect [34]. It is common to all
models that distortions, changes or modulations of the Sun’s
own rotation should be reflected in the properties of the activity
cycle. Correspondingly, spin–orbit coupling has been suggested
as an explanation for correlations between solar activity and the
barycentric orbital motion of the Sun [35–37], using as an argu-
ment the fact that the orbital angular momentum of the Sun is
of the order of 10% of its spin angular momentum and varies by
an order of magnitude over a period of ≈ 10 years. However, no
physical model of the solar spin–orbit coupling has been elabo-
rated yet.

Spin–orbit coupling of a celestial body can occur if its mass
distribution deviates from spherical symmetry, the degree of
asymmetry being measured by the gravitational quadrupole mo-
ment of the body. Such deviations from spherical symmetry
may be due to permanent deformations, tidal effects or rota-
tional flattening [38]. Since the Sun is in a plasma state, perma-
nent deformations can presumably be excluded. The tidal forces
exerted by the planets at the surface of the Sun are ∼ 10−12 of
the solar surface gravity. For comparison, the corresponding ra-
tio for the tidal effect of the Moon on the Earth is 10−7. Because
of the weakness of the tidal forces and also because no convinc-
ing evidence for correlations with the activity phenomena or
the SIM were found, there seems to be largely agreement now
that the planetary tidal influence on solar activity is negligible
[12,37,39]. This should also apply to tidal effects on the buoy-
ancy instability of magnetic flux tubes and their rise through
the convection zone, since the effective gravitational potential,
which determines the behavior of the flux tubes, deviates only
by ∼ 10−12 from the unperturbed potential (though, as simula-
tions for close binary stars show, tidal perturbations ∼ 10−3 can
still have significant effects [40,41]).

Then there remains the solar oblateness f = (Requatorial −
Rpole)/Requatorial ∼ 10−5 [42] as a possible source of spin–
orbit coupling. This oblateness corresponds to a difference of
7 km between the equatorial and polar solar radii, which is
at least large compared with the height of the tides raised by
the planets (� 1 mm). For comparison, the oblateness of the
Earth is ≈ 0.003 and leads to the precessional motion of the
spin axis with its period of 26,000 years, which is even still
under discussion as a possible driving mechanism for the geo-
dynamo [43]. The orbits of the planets are inclined by 3◦ to
8◦ to the Sun’s equatorial plane (and the angle between the
Sun’s equatorial plane and the invariable plane of the solar sys-
tem is 6.25◦). These inclinations in conjunction with the solar
oblateness give rise to torques on the Sun due to the planets.
According to present knowledge, the oblateness of the Sun is
essentially caused by rotational flattening of the outer layers,
rather than by an internal quadrupole moment. Thus merely
the convection zone, perhaps only its outer parts, will be di-
rectly affected by the planetary torques. One may expect, then,
weak large-scale circulations to be induced or existing ones to
be modulated, with an obvious potential to influence the activ-
ity cycle.

Though the interaction mechanisms discussed above are
very weak, they may lead to significant effects if they act over a
sufficiently long period of time. The relevant time-scale here is
the age of the solar system (4.5 × 109 years). The evolution of
this system is characterized by an increasing synchronization of
the orbital and rotational motions of its objects, caused by spin–
orbit, orbit–orbit as well as more complicated couplings [38].
Where the coupling is so strong that the time-scale required to
settle into a synchronized configuration is less than the age of
the solar system, complete synchronization can be observed.
Examples where this phenomenon was caused by spin–orbit
coupling include the 1 : 1 synchronization of the orbital and
rotational periods of the Earth’s moon and of most other nat-
ural satellites and the 3 : 2 spin–orbit resonance of the planet
Mercury. In other cases, where the coupling is weak, as for
small satellites orbiting far from the parent planet (like the Sat-
urnian satellite Hyperion), only partial synchronization seems
to have been reached up to now. Similarly, the observed weak
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synchronization of the SIM with the solar activity cycle may be
a cumulative effect, resulting from the action of solar spin–orbit
coupling, due for instance to the solar oblateness, over the last
4.5 billion years. Also, the solar oblateness may have been sig-
nificantly larger during earlier phases of the solar evolution. An
elaboration of these processes and their quantitative assessment
are beyond the scope of this study.

7. Conclusion

Using the concept of synchronization analysis, we have
quantitatively demonstrated that the solar activity cycle and the
solar inertial motion are not independent. These two oscilla-
tory phenomena are phase-synchronized during three epochs
together accounting for almost half of the studied three-century
observational data.

It is important that techniques of nonlinear data analysis
have a potential to contribute to resolving long disputed prob-
lems such as the nature of the solar activity cycle. In an inde-
pendent study, Paluš and Novotná [44] have recently observed
nonlinear behavior of the sunspot cycle, namely its amplitude-
frequency correlation. In this study we present quantitative ev-
idence for a weak interaction of solar activity and gravity, i.e.,
for a weak influence of the movement of the giant planets of
the solar system on the solar activity cycle. The existence of
this weak interaction with still unknown physical mechanism
does not mean that the SIM is the source of the solar cycle,
neither is an argument against dynamo models. The phase syn-
chronization is a phenomenon emerging in an interaction of two
autonomous processes [19] which could evolve independently,
or, due to a weak link, their phases could synchronize.

Recently, Winterhalder et al. [45] demonstrated that the syn-
chronization analysis might not be specific regarding the dy-
namics of the underlying processes. This means that the pre-
sented analysis provides evidence for a dependence between
the phases of the sunspot cycle and the SIM, but this does
not automatically imply an explanation of the dependence by
the physical mechanism of phase synchronization. The alter-
native hypothesis in [45], however, considers transfer function
systems, in which one signal is obtained just as a filtration of
the other, primary signal. We consider phase synchronization
of two autonomous processes as the more plausible hypothesis
for explaining the observed relation between the instantaneous
phases of the sunspot cycle and the SIM. For further research
and understanding of a possible coupling mechanism, it would
be interesting to select a realistic dynamo model and propose a
way how to simulate the interaction with the SIM. It is known
from numerical studies of noisy oscillators and chaotic systems
that even a very weak interaction can result in phase synchro-
nized dynamics.

A special point here is to understand why the detected phase
synchronization appears just in the observed intervals. In their
previous studies, Charvátová [14,46,47] and Charvátová and
Střeštík [13] identified the intervals 1730–1780 and 1910–1960
(almost coinciding with the above periods I and III) as recurring
periods of ordered SIM (the SIM trajectories are ordered in a
trefoil-like pattern). It is possible that the synchronized epochs
recurred in the past and will recur in the future with the trefoil
SIM periods which always occur after 178.7 years [13].
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