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ABSTRACT

Context. We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal
mass ejections in order to limit its accumulation in each hemisphere.
Aims. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection
from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the
torus or helical kink instability is obtained.
Methods. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity
being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly.
Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a
highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope
equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external
poloidal flux of 0.94.
Results. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first
account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a
fraction of ∼0.4−0.65 for typical source region parameters.

Key words. instabilities – magnetic fields – magnetohydrodynamics (MHD) – Sun: corona – Sun: coronal mass ejections (CMEs) –
Sun: flares

1. Introduction

The solar dynamo generates flux with predominantly positive
(right-handed) helicity in the southern hemisphere and predom-
inantly negative (left-handed) helicity in the northern hemi-
sphere (Hale 1925; Seehafer 1990; Pevtsov et al. 1995). New
flux from the dynamo region emerges primarily at large, active-
region scales into the atmosphere, where it undergoes a cascade
to small scales driven by the motions in the convection zone
(e.g., Parnell et al. 2009). However, the simultaneous cascade
of the helicity is thought to proceed primarily toward large
scales, although a weaker cascade toward small scales has also
been found (Alexakis et al. 2006). While small-scale flux ele-
ments can submerge and re-emerge with the convection cells
in the upper convection zone, the steep density stratification
in the photosphere presents a barrier to the submergence of
flux at the larger scales, with the dividing line estimated to
lie at roughly 1 Mm (van Ballegooijen & Martens 1989). As
a result, positive (negative) helicity is thought to accumu-
late in the large-scale coronal field in the southern (northern)
hemisphere.

The Sun does have options to prevent the helicity from accu-
mulating indefinitely, but two of them proceed very slowly, on
the timescale of the magnetic cycle, because they are driven by
the meridional flow. One is the annihilation of helicity when
flux reconnects across the equatorial plane, which is facili-
tated by the equatorward migration of the active-region belts
in the course of the solar cycle. The other is the transport
of flux toward the adjacent pole, there joining the open flux,
which can shed the helicity through torsional Alfvén waves

propagating away from the Sun. As these processes operate on
such a long timescale, the helicity would accumulate in each
hemisphere to very high levels in the course of a cycle if there
were not an option to shed the helicity much faster.

For the corona, whose flux is rooted in the photosphere and
partly extends into the interplanetary space, the relative magnetic
helicity is the relevant, gauge-invariant quantity to be considered
(Berger & Field 1984). As the relative magnetic helicity is car-
ried by the electric currents in the volume, which also carry the
free magnetic energy, the accumulation of helicity is a plausi-
ble driver of the coronal field toward instability. Therefore, it has
been conjectured that coronal mass ejections (CMEs) are the rel-
evant process of helicity shedding from the corona (Rust 1994;
Low 1996). CMEs presumably result from an instability of the
coronal field on active-region scales (van Tend & Kuperus 1978;
Forbes & Isenberg 1991; Kliem & Török 2006); they occur at
least once in every major active region, as well as in the quiet
Sun, and carry away a significant fraction of the source region
flux in the form of a large-scale flux rope (Qiu et al. 2007).

The conjecture of helicity shedding by CMEs is observa-
tionally supported (Démoulin et al. 2002; Green et al. 2002) and
widely accepted, although, to our knowledge, the effectiveness
of erupting flux ropes at shedding helicity has not yet been inves-
tigated quantitatively. A preliminary simulation study of helicity
shedding by a highly twisted, kink-unstable flux rope yielded a
rather low effectiveness: only approximately one-fifth of the ini-
tial helicity was shed (Kliem et al. 2011). As many active regions
experience only one CME in their lifetime, this effectiveness
might be too small to prevent an unrealistic accumulation of
helicity.
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Here, we perform the first systematic investigation of helicity
shedding by simulating the eruption and ejection of flux ropes
susceptible to the far more relevant torus instability, and com-
paring this with the helicity shedding by a kink-unstable flux
rope and by the flux rope in a data-constrained model of a spe-
cific solar event. Specifically, we focus on the dependence of the
shedding on the initial partition into self- and mutual helicity.

2. Numerical methods

We model CMEs as ideal magnetohydrodynamic (MHD)
instability of a force-free flux rope (Sakurai 1976;
van Tend & Kuperus 1978; Kliem & Török 2006). The one-fluid
ideal MHD equations are integrated numerically in the zero-beta
limit, neglecting any thermodynamic effects, which are of only
secondary importance for the helicity shedding, and neglecting
gravity. Ohmic resistivity is also neglected to approach the
almost ideal MHD conditions in the corona as closely as possi-
ble. Magnetic reconnection, required for a CME (Lin & Forbes
2000), is enabled by numerical diffusion in the vertical current
sheet that steepens as the unstable flux rope rises. The resulting
reconnection rate has been found to lie quite close (within a
factor 2) to the observationally estimated one for two carefully
modeled solar eruptions (Kliem et al. 2013; Hassanin & Kliem
2016), although the magnetic diffusion is only numerical and
exceeds the coronal magnetic diffusion by many orders of
magnitude. The equations are given in Török & Kliem (2003)
for example, where the adopted numerical scheme is also
detailed.

Our modified Lax-Wendroff scheme replaces the numeri-
cally stabilizing but highly diffusive Lax step by artificial dif-
fusion (Sato & Hayashi 1979) which is of similar structure. The
coefficient of the artificial diffusion is tailored for each simula-
tion as a function of time, and if necessary also as a function of
space, resulting in a reduced numerical diffusion of the magnetic
field compared to the Lax term by a factor 103. For numerical
stability, the scheme also includes a small kinematic viscosity.

As the initial condition, we employ the analytical, approxi-
mate force-free equilibrium of a toroidal current channel and flux
rope (the tokamak equilibrium) in the specific form suggested
by Titov & Démoulin (1999) as a basic model for solar active
regions. The current channel of major radius R and minor radius
a is situated in the vertical (y−z) plane, with the center of the
torus at r = (0, 0,−d). The stabilizing external poloidal (“strap-
ping”) field is provided by a pair of magnetic point sources, ±q,
located at r = (±L, 0,−d), respectively, whose resulting flux
concentrations in the photosphere, {z = 0}, at x ≈ ±L model
a bipolar solar active region. An external toroidal (“guide” or
“shear”) field component is introduced by adding an antiparallel
pair of dipoles under the footpoints of the flux rope. Their depth
is ≈2.7R, determined such that the field line passing through the
footpoints of the flux rope axis closely follows the axis in the
corona. The model for the initial density is derived from the ini-
tial field through ρ0(x) = B0(x)1.5, a choice implying a slow
upward and sideward decrease of the initial Alfvén velocity from
the core of the model active region, as on the Sun, and found to
enable the modeling of CMEs in close quantitative agreement
with observations (e.g., Török & Kliem 2005; Kliem et al. 2012,
2013). The initial velocity is set to zero, u0 = 0.

This configuration is discretized on a Cartesian grid with a
closed bottom boundary at z = 0, closed side boundaries at
x = ±lx and y = ly, and an open upper boundary at z = lz.
Point-symmetric mirroring about the z axis of the variables in
the boundary at y = 0 takes advantage of the symmetry in the

configuration which is preserved throughout the evolution. Pho-
tospheric motions are negligible during the short timescales of
solar eruptions, and so we set u(x, y, 0, t) = 0, which implies that
the vertical photospheric field, Bz(x, y, 0), is conserved. The side
boundaries are chosen to be closed for numerical convenience,
as open boundaries can introduce numerical artifacts, especially
if inflows develop; this requires the boundaries to be placed suf-
ficiently far away such that the erupting flux never reaches them.
Here u = 0 in the boundary, which preserves the normal field
component and the density in the boundary, while the tangential
field components are allowed to vary to minimize the influence
of the boundary on the rising flux rope. The fluid advects freely
across the upper boundary; this is implemented by using extrap-
olation of the velocity onto the ghost layers of the grid.

The MHD variables are normalized in the natural way (e.g.,
Török & Kliem 2003) by using the apex height of the geomet-
ric flux rope axis, ha = R − d, as the length unit, the initial
Alfvén velocity (and field strength; density) at the apex point
of the flux rope axis, VA0 = B0(0, 0, ha)/(µ0ρ0(0, 0, ha))1/2, as
the velocity (and field; density) unit, and the resulting Alfvén
time, τA = ha/VA0, as the unit of time. A core set of configu-
rations uses a uniform geometry of the current channel, given
by d = 0.1 and a = 0.6. To evaluate the influence of the geome-
try, two further sets, one with varying d, the other with varying a,
are also included. For each configuration, L is numerically deter-
mined such that the initial configuration is close to marginal sta-
bility (slightly supercritical) with respect to the torus instability,
with the lower and upper bounds on the critical value, Lcr, dif-
fering by less than 5%. For the kink-unstable comparison run, a
smaller a yields a supercritical twist and L is chosen to be mod-
erately subcritical. For each set of these parameters, the source
strength, q, of the strapping field is given by the analytical equi-
librium condition. The guide field strength is a free parameter
and varied from run to run, as detailed in Sect. 4.2. The grid of
251 × 180 × 240 points for the half cube is stretched outward
from the origin to permit a large box size, lx = ly = 32 and
lz = 40, while the central volume, which fully includes the ini-
tial flux rope, is well resolved, ∆x,y,z = 0.04. The stretching also
very efficiently damps any outward traveling perturbation (e.g.,
that from the initial relaxation of the analytical equilibrium), so
that we do not observe any reflection of perturbations at the side
boundaries.

3. Computation of helicities

We calculate the relative magnetic helicity (Berger & Field
1984; Finn & Antonsen 1985) in the rectangular box V =
{x, y, z : − lx ≤ x ≤ lx, −ly ≤ y ≤ ly, 0 ≤ z ≤ lz} according
to

H =

∫
Box volume

A · B d3r

+

∫
Side faces

φC AC dS +

∫
Topface

(A × AC) dS, (1)

where A and AC are special vector potentials for B and for the
current-free field with the same normal component at the box
boundary, BC, and φC is a scalar potential for BC, that is
B = ∇ × A, BC = ∇ × AC = −∇φC, (2)
∆φC = 0, ∇φC · n̂|∂V = −Bn|∂V , (3)
where n̂ is the exterior unit normal at the boundary ∂V of V . The
two vector potentials are given by

A = AC(x, y, 0) − ẑ ×
∫ z

0
B(x, y, z′) dz′ (4)
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and

AC = ẑ × ∇
(∫ z

0
φC(x, y, z′) dz′ + gC(x, y)

)
, (5)

where ẑ is the unit vector in the vertical (z) direction and gC(x, y)
is a solution of the two-dimensional Poisson equation(
∂2

x + ∂2
y

)
gC(x, y) = Bz(x, y, 0). (6)

Our procedure for calculating H is an extension of that
derived by DeVore (2000) for the half space z ≥ 0, where H
is given by the first line in Eq. (1). The adaption of the method
of DeVore (2000), characterized in particular by the gauge A· ẑ =
AC · ẑ = 0 of the vector potentials, to the case of a finite rectan-
gular box was first proposed by Valori et al. (2012); Eqs. (1)–(6)
are easily obtained from their expressions (see Appendix A).
Other algorithms for calculating the relative magnetic helicity
in a rectangular box as a functional of the field B in the box
were suggested, for instance, by Rudenko & Myshyakov (2011),
Thalmann et al. (2011), and Yang et al. (2013, 2018). A review
of helicity calculation methods for finite volumes was given by
Valori et al. (2016).

Defining the closed field in V ,

Bcl = B − BC, (7)

and its vector potential, Acl = A−AC, the helicity can be decom-
posed into self helicity of the closed field,

Hself =

∫
V

Acl · Bcl d3r, (8)

and mutual helicity between the closed and open potential field,

Hmutual = 2
∫

V
AC · Bcl d3r; (9)

see Berger (1999). The relation H = Hself + Hmutual is satisfied
by our numerically computed helicities to better than 0.3%. The
closed field Bcl is identical to the current-carrying part of the
field, and therefore the self helicity is also referred to as the
current-carrying helicity.

4. Helicity shedding

4.1. Reference run: no guide field

First, we describe the evolution of a torus-unstable configura-
tion with vanishing guide field, which sheds helicity quite effec-
tively and is taken to be our reference (Run T1). For d = 0.1
and a = 0.6, marginal stability with respect to the torus instabil-
ity is given for a “sunspot distance” slightly above the value of
L = 1.3, which is chosen for this run to initiate the eruption. The
threshold of the torus instability is given in terms of the decay
index of the external poloidal field, n(z) = −d ln Bep(z)/d ln z,
at the apex point of the flux rope’s magnetic axis, which is
slightly offset from the geometric axis, hm = 1.1. Experience
with many different systems has shown that the threshold value
lies in the range ncr ∼ 1−2 and depends on various parameters
of the equilibrium (in ways yet to be determined). The canon-
ical value of ncr ∼ 3/2 (Bateman 1978) appears to provide
a reasonable representative value for approximately semicircu-
lar flux ropes in the absence of a guide field (Török & Kliem
2007; Aulanier et al. 2010; Fan 2010; Zuccarello et al. 2015).
For L = 1.3, we have n(z = hm) = 1.29, which is slightly
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Fig. 1. Rise profile of the flux rope apex in the reference run T1, show-
ing height, h(t), and velocity, log uz(t).

above the numerically determined threshold for the given con-
figuration and is also close to the value of the full analytical
expression for n(R) in Kliem & Török (2006). The twist, aver-
aged over the cross-section of the current channel, is |Φ| = 2.45π,
and sufficiently small for stability against the helical kink mode
(Hood & Priest 1981; Török et al. 2004).

Figure 1 shows the rise profile of the fluid element at the apex
point of the flux rope axis. The run starts with a phase of numer-
ical relaxation that attempts to reach a numerical equilibrium
from the initial approximate analytical equilibrium. The torus
instability develops out of this equilibrium from t ≈ 18, initiated
by the velocities that develop during the relaxation and act as
a small perturbation. The occurrence of instability is clear from
the initially nearly perfect exponential rise up to t ≈ 50. The
flux rope reaches a rise velocity of uz ≈ 0.6, and its apex point
leaves the box at t ≈ 133. Figures 2 and 3 show snapshots of the
flux rope, the initial current channel, the vertical current sheet
spawned by the eruption, and the remaining volume currents.
The latter are concentrated in the area of the two prominent flux
bundles in the re-closed field of the model active region. These
remain from the initial flux rope after the rope has reconnected
with ambient flux in the vertical current sheet and connect the
flux rope footpoints with the opposite-polarity sunspots (see the
snapshots at t ≥ 82 in Fig. 2), which is close to the potential field
(see, e.g., Fig. 6e in Hassanin & Kliem 2016). Such reconnection
has been observed in many eruptions of a Titov-Démoulin flux
rope (e.g., Török & Kliem 2005) and other models of solar erup-
tions (Aulanier & Dudík 2019) and certainly occurs on the Sun,
although the frequency of its occurrence is yet to be determined.

Figure 4 shows the relative magnetic helicity in the box
(Eq. (1)), normalized by the unsigned flux in the magnetogram
area, F = (F+ − F−)/2, versus time for this run. The helicity
begins to decrease rapidly when the upper edge of the current-
carrying flux rope reaches the upper boundary at t ≈ 127, and
levels off after the top part of the flux rope has nearly completely
left the box at t ≈ 200. A major part (64%) of the initial helic-
ity is shed by t ≈ 300 (the very slow subsequent increase in
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Fig. 2. Snapshots of the unstable flux rope in Run T1 visualized by rainbow-colored field lines. Green field lines are started at the z-axis (with
uniform spacing) to visualize the overlying flux and the vertical current sheet that forms under the rising flux rope. Pink field lines visualize the
ambient flux in the vicinity of the flux rope, which recloses after the eruption. The magnetogram, Bz(x, y, 0), is shown in gray scale; a logarithmic
scaling is used because the sunspot flux is rather concentrated due to the small value of d.

Fig. 3. Isosurfaces of current density, J, for Run T1 showing, from left to right: the initial flux rope; the vertical current sheet during the evolution
of the instability (also wrapping around the bottom part of the flux rope legs in the form of a sigmoid); and the currents remaining after the eruption
(which are already visible at t = 82).

the helicity is considered to be due to the development of weak
current density ripples in the central-difference numerical inte-
gration and is disregarded).

The initial helicity, H0, in this configuration is partitioned
into self- and mutual helicity as Hself,0 = 0.33 H0 and Hmutual,0 =
0.67 H0. The initial self helicity due to the twist in the initial
flux rope completely leaves the system with the flux of the CME
bubble (Fig. 2); there is even a slight overshoot (buildup of a
small opposite self helicity) in this run, which is not essential
in the total helicity budget. Of the initial mutual helicity, 41%
is shed by the eruption, and the rest is carried by the volume
currents in and around the two flux bundles that remain from the
flux rope (Fig. 3 at t = 299).

The computation of the helicity was checked by extending
the integrals in Eq. (1) to a lower part of the box only, z = 0−10.
The initial helicity was found to be identical to the one in Fig. 4
(to within 1 × 10−3); that is, in the top part of the box, the com-
puted potential field is nearly identical to the ambient field of the
Titov-Démoulin flux rope, so that the contribution to the total
relative helicity is negligible. The helicity versus time was found

to follow the curve in Fig. 4 up to the arrival of the top part of the
flux rope at the virtual boundary at t ≈ 73 and to show a slightly
more rapid decrease by the same amount, ∆H/F2 = 0.13, by
t ≈ 155, i.e., the same shedding effectiveness.

4.2. Parametric study

4.2.1. Effect of the guide field

The strong difference in the effectiveness of helicity shedding
between the torus-unstable configuration of Sect. 4.1 and the
kink-unstable configuration in Kliem et al. (2011) motivates us
to study the dependence of the shedding on the partition into
mutual- and self helicity of the initial configuration. The twist
and corresponding self helicity of the flux rope play at most a
secondary role in the dynamics of the former case, but are the
driver of the initial instability in the latter. First we study the
effect of the partition on purely torus-unstable configurations,
which are most likely relevant for the majority of CMEs. To
this end, we take advantage of the fact that the strength of the
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Fig. 4. Flux-normalized relative magnetic helicity in the box vs. time
for the key runs analyzed in this paper (absolute values are shown).
The initial helicity of Run S is scaled, placing it in the middle between
H0/F2 for Runs T2 and T3 based on the similarity of the parameters.
The length unit and resulting Alfvén time of Run S are rescaled from
the values in Kliem et al. (2013) to conform to the choice for the other
runs here (the apex height of 0.1 R� at the onset of instability is used
as length unit). The curves are labeled with the respective values of
the ratio of external toroidal (guide) and external poloidal (strapping)
field, Bet/Bep, decay index, n, at the initial flux rope apex, and twist
averaged over the cross-section of the current channel, Φ. The range of
the conjectured base level of the mutual helicity in the configurations
T1–T3, ≈0.06−0.08, is shaded in light blue.

external toroidal field component in the initial equilibrium can be
varied freely without significantly changing the residual forces.
In two further runs, we keep the geometry from Run T1 and set
the strength of the external toroidal field such that its ratio to
the equilibrium value of the external poloidal field at the apex of
the flux rope axis is Bet/Bep = 0.2 (Run T2) and Bet/Bep = 0.5
(Run T3). As the external toroidal field has a stabilizing effect on
the torus and helical kink instabilities, we must simultaneously
reduce the sunspot distance L in order to raise the decay index
at the position of the flux rope apex. The critical decay index for
the two configurations is numerically found to lie slightly below
n = 1.40 and 1.80, which respectively correspond to L = 1.2 and
0.9 chosen here. It should be noted that the stabilizing effect of
the guide field is presumably somewhat overemphasized in the
analytical equilibrium compared to the conditions in the solar
corona because the observations of the shear in flare loops indi-
cate that the guide field decreases strongly already above a few
initial flux rope heights (e.g., Su et al. 2006; Warren et al. 2011).
The parameters defining this core set of equilibria and of several
configurations considered for comparison purposes are compiled
in Table 1, together with the (absolute values of the) resulting
helicities.

Figure 4 shows that the initial helicity decreases for increas-
ing Bet/Bep in Runs T1–T3. The mutual helicity decreases as
the flux rope is more aligned with the ambient flux, and the self
helicity decreases as the twist in the flux rope is reduced by the
higher external toroidal field (Table 1). Here the mutual helicity
contributes only slightly more to the overall decrease than the
self helicity.

The fraction of helicity shed by the eruption decreases as
well, which is due to two effects. First, as in Run T1, almost all
of the initial self helicity is shed in Runs T2 and T3, but self
helicity makes up a progressively smaller fraction of the initial
helicity in these runs. Second, mutual helicity is shed less effec-
tively, which appears to result from an inability to shed mutual

helicity beyond a certain base level (see the rather similar final
helicities for T1–T3 in Fig. 4). In other words, the system cannot
fully approach the potential field. This base level of normalized
mutual helicity in the configurations T1–T3 is ≈0.06−0.08, but
its value differs for other configurations. It is smaller in Run K
presented below, but is expected to be higher if the legs of the
flux rope do not reconnect in the vertical current sheet (as in the
2D standard flare model). In this case, the strongest flux bundles
corresponding to the potential field, that is, those connecting the
flux rope footpoints with the sources of the strapping field, do
not form.

The complete or nearly complete shedding of the initial self
helicity from our configurations does not mean that the post-
eruption state does not possess any remaining current density,
helicity, or free energy. Currents remain in the two prominent
flux bundles that connect the main polarities similarly to the
potential field (Fig. 3 at t = 299). These flux bundles have
the same handedness as the original flux rope. However, their
ambient flux has built up a weak opposite handedness in a large
volume (different from the purely potential ambient field of the
original configuration), and so contributes self helicity of oppo-
site sign. Opposing contributions to the total remaining self
helicity are found in all of our runs. These cancel out nearly per-
fectly in Runs T3 and S and yield a weak self helicity opposite to
the initial one in Runs T1, T2, and K. Their underlying currents
permit a significant mutual helicity.

4.2.2. Kink-unstable case

For comparison, we include a kink-unstable run (Run K in
Table 1), whose parameters are similar to the run in Kliem et al.
(2011); except for a flatter flux rope shape (d = 0.83) and a
somewhat larger minor radius, a = 0.33, in that run. A minor
fraction of solar eruptions appear to be initiated by the onset of
the helical kink instability (see, e.g., the event in Ji et al. 2003
and its modeling in Hassanin & Kliem 2016 and Hassanin et al.
2016, which yielded an estimate of Φ ≈ 4π for the average flux
rope twist). As the helical kink saturates already for moderate
displacements of the current channel, the subsequent onset of
the torus instability is required for evolution into a CME; other-
wise a confined eruption is produced. The helical kink lifts the
flux rope into the torus-unstable height range in such CMEs; this
is also the case in our simulation. For Run K, we keep the ratio
Bet/Bep = 0.5 from Run T3 and reduce the minor radius a to
raise the twist. The sunspot distance L is set to a moderately
subcritical value in order to initially stabilize the torus mode but
allow its occurrence after the development of the helical kink.
Both parts of the initial helicity are further reduced due to the
smaller flux content of the thinner flux rope. This run also con-
tinues the trends in the effectiveness of the shedding found for
Runs T1–T3: (1) self helicity, although shed completely, con-
tributes less because it makes up an even smaller fraction of
the initial helicity, and (2) the effectiveness of shedding mutual
helicity is further reduced. As a result, the fraction of total helic-
ity shed is only about one-quarter, which is comparable to the
value of about one-fifth or less estimated for the configuration in
Kliem et al. (2011).

4.2.3. Effect of flux rope geometry

To cover a broader range of the conditions on the Sun, we also
consider two sets of very weakly torus-unstable equilibria with
varying geometric parameters of the flux rope. The kink-unstable
configuration of Run K indicates that the ratio of the flux in the
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Table 1. Parameter values of the Runs T0–T4, K, and S.

Run T0 T1 T2 T3 T4 K S

Bet/Bep 0 0 0.2 0.5 0.5 0.5 ∼0.4
d 0.1 0.1 0.1 0.1 0.375 0.1 . . .

a 0.9 0.6 0.6 0.6 0.6 0.27 . . .

L 1.3 1.3 1.2 0.9 0.65 1.0 . . .

n(z = hm) 1.45 1.29 1.40 1.80 1.73 1.53 1.5–1.75
Φ/π 1.7 2.5 2.3 2.1 2.4 4.9 ∼0.5
H0/F2 0.29 0.21 0.15 0.11 0.10 0.063 0.028
Hself,0/F2 0.084 (29%) 0.068 (33%) 0.044 (29%) 0.022 (20%) 0.020 (19%) 0.010 (16%) 0.008 (28%) (a)

Hmutual,0/F2 0.21 (71%) 0.14 (67%) 0.11 (71%) 0.086 (80%) 0.084 (81%) 0.053 (84%) 0.021 (72%) (a)

∆H/F2 0.20 (70%) 0.13 (64%) 0.081 (54%) 0.043 (39%) 0.040 (38%) 0.015 (24%) 0.012 (42%) (b)

∆Hself/F2 0.084 (100%) 0.075 (100%) 0.044 (100%) 0.022 (100%) 0.021 (100%) 0.012 (100%) 0.007 (87%) (b)

∆Hmutual/F2 0.118 (57%) 0.057 (41%) 0.037 (34%) 0.021 (24%) 0.019 (23%) 0.003 (6%) 0.005 (25%) (b)

Notes. (a)Percentage of H0/F2 is given in parentheses. (b)Shedding effectiveness is given in parentheses as a percentage of the initial value.
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Fig. 5. Same as Fig. 4 for the additional sets of weakly torus-unstable
runs with varying minor radius (blue curves) and flatness (red curves)
of the initial current channel.

current channel, Fcc, and external poloidal flux, Fep, which is
small in this run due to the small minor radius, may consider-
ably influence both the initial helicity and the conjectured base
level of the mutual helicity, and therefore the effectiveness of
the shedding. To study these effects, the minor radius is var-
ied in the range a = 0.45−1. This corresponds to a flux ratio
R = Fcc/Fep = 0.26−1.06 (R = 0.42 in Run T1). In the
second set, the rope is made flatter by setting d = 0.375 and
d = 0.833, which raises the half-separation of its footpoints
from Df = 1.1 in Run T1 to Df = 1.3 and 1.6, respectively.
Both sets of runs use Bet/Bep = 0, and are to be compared to
Run T1.

Figure 5 shows a significant increase in the normalized helic-
ity with increasing flux ratio, up to a value of H0/F2 = 0.29 for
a = 0.9, which we refer to as Run T0. The helicity remaining
after the ejection of the flux rope shows only a weak increase
with R. Consequently, the effectiveness of helicity shedding
increases from ∆H/F2 = 0.084 (54%) for a = 0.45 to ∆H/F2 =
0.20 (70%) for a = 0.9. As in Run T1, all of the self helicity
but only part of the mutual helicity (17−57%) is shed. These
configurations possess a very weakly varying critical “sunspot
distance”, lying in the range 1.3 < Lcr < 1.35 for a = 0.45−0.9
and within 1.35 < Lcr < 1.4 for a = 1. The decay index val-
ues n(z = hm) given in Fig. 5 correspond to the lower edges of
these ranges and vary slightly more than L because the position

of the magnetic flux rope axis increases slightly with increasing
flux rope thickness (the large-aspect-ratio approximation under-
lying the expression for the tokamak equilibrium degrades as a
increases).

The highest normalized helicity of a stable configuration in
our parametric study is H0/F2 = 0.27, found for a = 0.9 with
d = 0.1 and L = 1.35. When analyzed with higher spatial res-
olutions of ∆x,y,z = 0.02 and 0.01, this value reduces slightly to
H0/F2 = 0.25 and appears to converge at this value. (It is worth
noting that a decrease in the box size by factors of 2 and 4 in each
direction, keeping the resolution at ∆x,y,z = 0.04, does not change
the computed helicities). The corresponding values of other rele-
vant parameters are Hself,0/H0 = 0.315 and R = Fcc/Fep = 0.94.
To our knowledge, these are the highest values of H/F2 and R
found so far for stable force-free flux rope equilibria. However,
such high-arching and simultaneously very thick flux ropes (fill-
ing all space between the flux rope axis and the photosphere)
may be rare on the Sun. The observations of extreme ultravio-
let (EUV) hot channels indicate smaller cross-sections, typically
of the order of a ∼ 0.5, when the channel arches high up in the
corona before erupting (e.g., Reeves & Golub 2011; Cheng et al.
2013; Patsourakos et al. 2013).

Both parts of the normalized helicity decrease as flatter
flux ropes are considered. At first sight, this is counter-intuitive
because the longer flux rope has a higher twist combined with
the same toroidal flux and because the area under the flux rope,
through which the external flux Fep links with the flux rope,
increases with Df . Both self and mutual helicity indeed increase
with increasing d, but the flux also increases (because the larger
distance to the sources of the strapping field requires a higher
source strength in the adopted normalization) and both normal-
ized helicities decrease. This can perhaps be best understood by
envisioning a normalization to R, that is, a fixed torus with a
fixed helicity in the whole space. Increasing d raises the pho-
tospheric level toward the upper edge of the torus, so that a
progressively smaller fraction of the helicity remains in the coro-
nal half space. The initial partition into self and mutual helic-
ity is the same as in Run T1, but the critical sunspot distance
decreases, and the decay index increases (both do so weakly
in the considered range), because the larger footpoint area of
the flatter flux ropes increases the stabilizing effect of the line-
tying.

Again, the self helicity is shed completely, indicating the
existence of a base level of mutual helicity. This level also
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decreases weakly from the one in Run T1, meaning that the
effectiveness of helicity shedding decreases moderately from
64% in Run T1 to 53% for the flattest flux rope in our set of
equilibria. Within the range of parameters considered, changing
the flatness of the flux rope has a weaker influence on the effec-
tiveness of helicity shedding than changing the guide field or the
flux content of the rope.

Finally, in Run T4, we include a guide field in one of the
weakly twisted, flatter flux rope equilibria in order to obtain
a more reliable estimate of the minimum helicity shedding by
torus-unstable flux ropes. Here we choose Bet/Bep = 0.5 and
d = 0.375 because the equilibrium with d = 0.833 is completely
stable for this guide field strength. The shedding effectiveness of
38% is found to be only slightly lower than in Run T3, and the
remaining mutual helicity also stays in the range of ∼0.06−0.08
obtained in Runs T1–T3 (see Table 1 and Fig. 5).

4.3. Model of a solar event

To judge the parametric study against the conditions on the Sun,
we repeat the modeling of the CME on 2010 April 8 from Active
Region NOAA 11060 (Kliem et al. 2013) with an open upper
boundary. This was a weak event (a relatively slow CME with
a projected velocity of ≈520 km s−1, associated with a weak
flare of magnitude B3.7) from a decaying, approximately bipo-
lar active region. Due to the simplicity of the source region, the
event should be comparable to our model runs above. It was esti-
mated that the eruption was driven by the torus instability from
a threshold value of n ≈ 1.5−1.75, similar to the range of thresh-
olds in Runs T2 and T3. The modeling of the source region mag-
netic field indicated a flux rope with a weak to moderate guide
field, also similar to runs T2 and T3, and a very small average
twist of ∼0.5π. Approximating the external field by the poten-
tial field, Bet/Bep ∼ 0.4 at the axis of the flux rope in the center
of the active region. For this simulation (Run S in Table 1), we
obtain a helicity shedding of 0.42 H0, similar to Runs T2–T3 as
well.

The brief increase of the helicity in this run during t ≈
100−130 is a signature of the steepening of the current layer in
front of the erupting flux rope (see Fig. 5 in Hassanin & Kliem
2016 for the visualization of a similar configuration). By Lenz’s
law, the toroidal direction of the current in this layer is oppo-
site to the toroidal flux rope current. However, the toroidal field
direction is the same as inside the rope. Therefore, the current
layer locally changes the handedness of the field to the oppo-
site of the flux rope’s handedness. When this flux leaves the box,
the total helicity increases weakly and briefly until the flux rope
begins to leave the box.

It is noteworthy that the normalized initial helicity lies far
below the values in our model configurations. This results from
the fact that the solar active region contains a large amount
of dispersed and rather remote flux that does not contribute to
the equilibrium of the flux rope. Such “exterior flux” does not
exist in the Titov-Démoulin equilibrium, where all external flux
passes over the polarity inversion line that hosts the flux rope.
Exterior flux exists typically in the source regions of solar erup-
tions, except during the early stage of active-region emergence,
which on the other hand does not (yet) launch CMEs. The typ-
ical existence of exterior flux can also be seen from the small
maximum value of ≈0.022 for the normalized helicity injected
into solar active regions through the photosphere prior to erup-
tions (LaBonte et al. 2007). Our configuration in T1 contains an
approximately ten times higher normalized helicity very near the
marginal stability state.

5. Discussion

The ratio Bet/Bep of the external toroidal (guide) to the external
poloidal (strapping) field is a key parameter in determining self-
and mutual helicity of force-free flux rope equilibria and their
stability against the torus mode. Here, both Bet/Bep and n are
varied in ranges that appear to be representative of a large frac-
tion of solar eruptions (e.g., Cheng et al. 2020), and so may be
the range of helicity shedding found, ∼(0.4−0.65)H0.

The geometric range covered should be representative as
well. Flux ropes forming in filament channels tend to be thick
(e.g., Savcheva & van Ballegooijen 2009; Su et al. 2011), as in
our studied range, and flat, flatter than can reasonably be studied
using the Titov-Démoulin equilibrium. However, the slow rise of
filaments or EUV hot channels up to the onset height of eruption
always yields a considerably arched shape (Nindos et al. 2015;
Cheng et al. 2020), with a semicircular shape being not uncom-
mon (e.g., Schrijver et al. 2008; Cheng et al. 2013).

The essentially complete shedding of the initial self helicity
in our simulation runs is facilitated by the open top boundary.
When the top part of the flux rope has left the box completely, the
legs can untwist freely. On the Sun, such untwisting is possible if
the flux rope reconnects with open ambient flux. However, even
if the flux rope remains intact, nearly all of its twist propagates
into the interplanetary space. A significant but still minor part
of the initial twist and self helicity remain in the corona only if
the flux rope legs reconnect with each other (Hassanin & Kliem
2016; Hassanin et al. 2016) or with closed ambient flux.

The incomplete shedding of mutual helicity in our runs sug-
gests that a base level of mutual helicity may exist that limits the
fraction of helicity that can be shed by erupting flux ropes. This
level appears to be weakly dependent on the parameters of the
initial equilibrium, falling in the range Hmutual/F2 ∼ 0.06−0.08
for typical source region parameters of solar eruptions. An
incomplete shedding of helicity is indeed typically indicated by
the considerable shear of the first forming flare loops (Su et al.
2007) and has also been found in simulations of long-term coro-
nal evolution (Mackay & Yeates 2012). Further study is needed
to understand its origin.

Overall, we find that a significant part of the initial relative
helicity is shed by a typical flux rope eruption. However, the
remaining part is significant as well, on the order of H0/2. There-
fore, further mechanisms may be relevant in regulating the helic-
ity budget of the corona (Sect. 1) and merit a quantitative study.

6. Conclusions

Our parametric simulation study of flux rope eruption by
ideal MHD instability of a line-tied tokamak equilibrium
(Titov & Démoulin 1999) demonstrates the helicity shedding
conjectured for CMEs. For the most relevant case of torus-
unstable flux ropes in bipolar source regions and expected typi-
cal partitions of the initial relative helicity into mutual and self
helicity in the range Hmutual,0/Hself,0 = 2.1−3.9 (corresponding
to ratios of the equilibrium guide and strapping field compo-
nents in the range Bet/Bep = 0−0.5), we find that a fraction
of ∼(0.4−0.65)H0 of the initial helicity H0 is shed. A data-
constrained simulation of a solar eruption (from Active Region
NOAA 11060 on 2010 April 8) yields a shedding of 0.42 H0,
which is consistent with the model results.

While the initial self helicity (flux rope twist) is completely
or nearly completely shed, the effectiveness of shedding mutual
helicity decreases with a decreasing initial flux-normalized value
of this component. This appears to result from an inability to
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shed mutual helicity beyond a certain base level, which depends
on the parameters of the initial equilibrium and is in the range of
∼0.06−0.08 for our torus-unstable model configurations.

The parametric study yields stable equilibria up to a normal-
ized helicity of H/F2 = 0.25, which, to our knowledge, is higher
than what has been found so far (Fan 2010). For this equilib-
rium, the ratio of the flux in the current channel to the exter-
nal poloidal flux, R = Fcc/Fep = 0.94, is significantly higher
than previous estimates of the limiting flux ratio, which lie in
the range of ∼0.1−0.5 (Bobra et al. 2008; Savcheva et al. 2012;
Kusano et al. 2020). The corresponding ratio of self (current-
carrying) helicity to total helicity is Hself/H = 0.315, which is
only slightly higher than a previously suggested limit of '0.29±
0.01 for torus-unstable flux ropes (Zuccarello et al. 2018), but
lower than a limit of ∼0.45 for eruptions from newly emerging
flux (Pariat et al. 2017).

The flux-normalized helicity in solar data depends strongly
on the amount of exterior flux in the magnetogram, that is, flux
that is not part of the flux rope equilibrium. Such flux must be
separated in order to find a reliable estimate of H/F2.
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Appendix A: Derivation of Eqs. (1)–(6)

We start from Eqs. (19–22) in Valori et al. (2012), which can be
written as

A = b + ẑ ×
∫ z2

z
B dz′, AC = bC + ẑ ×

∫ z2

z
BC dz′, (A.1)

where

b =

bx(x, y)
by(x, y)

0

 , bC =

bC,x(x, y)
bC,y(x, y

0

 (A.2)

satisfy

∇ × b = ∇ × bC = Bz(x, y, z2) ẑ. (A.3)

With the choice z2 = 0 and b = bC, Eq. (A.1) becomes

A = bC − ẑ ×
∫ z

0
B dz′, AC = bC − ẑ ×

∫ z

0
BC dz′, (A.4)

where bC obeys

∇ × bC = Bz(x, y, 0) ẑ. (A.5)

As

bC(x, y) = AC(x, y, 0), (A.6)

the first equation in Eq. (A.4) is identical to Eq. (4).
As suggested by Valori et al. (2012), we choose bC

solenoidal, which is possible because both the curl (given by
Eq. (A.5)) and the divergence of bC can be prescribed. There-
fore, bC can be represented in the form

bC =

−∂ygC
∂xgC

0

 = ẑ × ∇gC (A.7)

by means of a stream function gC(x, y). The second equation in
Eq. (A.4) then becomes

AC = ẑ × ∇gC +

∫ z

0
∇φC dz′ = ẑ × ∇

(
gC +

∫ z

0
φC dz′

)
, (A.8)

which is identical to Eq. (5), while Eq. (A.5) takes the form of
the Poisson equation(
∂2

x + ∂2
y

)
gC(x, y) = Bz(x, y, 0), (A.9)

which is identical to Eq. (6).
The relative magnetic helicity in the box volume V is calcu-

lated using the formula of Finn & Antonsen (1985):

H =

∫
V

(A + AC) · (B − BC) d3r =

∫
V

A · B d3r

−

∫
V

AC · BC d3r +

∫
V

(AC · B − A · BC) d3r. (A.10)

For the first integral in the second line of Eq. (A.10) we have∫
V

AC · BC d3r = −

∫
V
∇φC · AC d3r

= −

∫
V
∇ · (φC AC) d3r

= −

∫
∂V
φC AC · dS

= −

∫
Side faces

φC AC · dS, (A.11)

where we make use of ∇ · AC = 0 and AC · ẑ = 0. The second
integral in the second line of Eq. (A.10) can finally be rewritten
as∫

V
(AC · B − A · BC) d3r =

∫
V
∇ · (A × AC) d3r

=

∫
∂V

(A × AC) · dS

=

∫
Top face

(A × AC) · dS, (A.12)

where we take advantage of the fact that A × AC is purely verti-
cal (parallel to the z axis) and A(x, y, 0) = AC(x, y, 0). Inserting
Eqs. (A.11) and (A.12) into Eq. (A.10) leads to Eq. (1).
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