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ABSTRACT

Context. Reliable measurements of the solar magnetic field are restricted to the phoptosphere. As an alternative to measurements,
the field in the higher layers of the atmosphere is calculated from the measured photospheric field, mostly under the assumption
that it is force-free. However, the magnetic field in the photosphere is not force-free. Moreover, most methods for the extrapolation
of the photospheric magnetic field into the higher layers prescribe the magnetic vector on the whole boundary of the considered
volume, which overdetermines the force-free field. Finally, the extrapolation methods are very sensitive to small-scale noise in the
magnetograph data, which, however, if sufficienly resolved numerically, should affect the solution only in a thin boundary layer close
to the photosphere.
Aims. A new method for the preprocessing of solar photospheric vector magnetograms has been developed that, by improving their
compatibility with the condition of force-freeness and removing small-scale noise, makes them more suitable for extrapolations into
three-dimensional nonlinear force-free magnetic fields in the chromosphere and corona.
Methods. A functional of the photospheric field values is minimized whereby the total magnetic force and the total magnetic torque
on the considered volume above the photosphere, as well as a quantity measuring the degree of small-scale noise in the photospheric
boundary data, are simultaneously made small. For the minimization, the method of simulated annealing is used and the smoothing
of noisy magnetograph data is attained by windowed median averaging.
Results. The method was applied to a magnetogram derived from a known nonlinear force-free test field to which an artificial noise
had been added. The algorithm recovered all main structures of the magnetogram and removed small-scale noise. The main test was
to extrapolate from the noisy photospheric vector magnetogram before and after the preprocessing. The preprocessing was found to
significantly improve the agreement of the extrapolated with the exact field.
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1. Introduction

Reliable measurements of the solar magnetic field are still re-
stricted to the level of the photosphere. The situation here is
improving only very slowly due to elementary difficulties in
unambiguously deriving the magnetic field from polarimetric
measurements in chromospheric or coronal spectral lines. As an
alternative to measurements in these superphotospheric layers,
for about half a century attempts have been made to calculate the
field there from the measured photospheric field using physically
plausible assumptions. The procedure is known as magnetic field
extrapolation.

The simplest assumption was to consider the magnetic
field B above the photosphere as a vacuum field or current-free
field or potential field, satisfying ∇×B = 0. Potential field mod-
els were devised both for the field above limited photospheric
areas, in particular active regions (Schmidt 1964; Teuber et al.
1977), and for the global field above the spherical photosphere
(Schatten et al. 1969; Altschuler & Newkirk 1969).

A next step was to include chromospheric and coronal elec-
tric currents into the models. Such currents are needed as the
energy source for explosive events like flares and coronal mass

ejections. For typical plasma parameters in the superphoto-
spheric parts of active regions, except for the times of the ex-
plosive events, the magnetic energy density dominates over the
thermal, kinetic and gravitational energy densities. This implies
that, if appreciable currents are present, these must be aligned
with the magnetic field, otherwise the resulting Lorentz forces
could not be balanced by the non-magnetic forces. Thus, the
magnetic field must be approximately force-free, characterized
by the equations

∇ × B = α(r) B, (1)

∇ · B = 0, (2)

where α(r) denotes a scalar function of position r which, because
of Eq. (2), is constant along the magnetic field lines. This ap-
proximation is presumably valid from the upper chromosphere
up to heights of ∼R� above the level of the photosphere in the
corona (see Gary 2001, for a careful study of the height variation
of the plasma β, i.e. the ratio between the thermal and magnetic
pressures or energy densities).

Solutions to Eqs. (1)–(2) for the special case of a spa-
tially constant α were given by Nakagawa & Raadu (1972),
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Chiu & Hilton (1977), Seehafer (1978), Alissandrakis (1981),
and Semel (1988); see also reviews by Seehafer & Staude
(1983), Gary (1989), and Sakurai (1989). The practical appli-
cation to solar active regions has been largely confined to these
constant-α or linear force-free fields, whose determination leads
to boundary value problems for a linear partial differential equa-
tion. The extrapolations with constant-α force-free fields, as well
as those with current-free fields, have provided new insights into
the physics of the activity phenomena. In particular, results were
obtained on magnetic topologies favourable for flares, and on
magnetic and current helicities. One example is the potential
role of separatrices made up of magnetic field lines touching the
photospheric boundary from above for the formation of electric
current sheets, and the fast release of stored magnetic energy by
magnetic reconnection (Seehafer 1986). These topological ele-
ments have been termed bald patches (Titov et al. 1993; Bungey
et al. 1996; Titov & Démoulin 1999). Another finding is the
hemispheric sign rule for the current helicity B · (∇×B), namely
that this quantity is predominantly negative in the northern hemi-
sphere and positive in the southern hemisphere (Seehafer 1990).

The extrapolation methods for current-free and constant-α
force-free fields require only line-of-sight magnetograms (with
α remaining as a free parameter in the case of the constant-α
fields). Since the early 80s, different methods for calculating
non-constant-α or nonlinear force-free fields from photospheric
vector magnetograms have been proposed, and presently great
efforts are being made to refine them and to improve their appli-
cability. These methods include:

– Direct vertical integration (Wu et al. 1985, 1990; Cuperman
et al. 1990; Démoulin et al. 1992; Song et al. 2006). A
Cauchy or initial value problem is solved with the vertical
coordinate z playing the role of time, and using the pho-
tospheric boundary conditions as the initial conditions. In
addition to the photospheric field components, their hori-
zontal derivatives are also used. However, this initial value
problem is mathematically ill-posed, since the solutions do
not depend continuously on the photospheric initial values.
Therefore, the methods proposed here involve regularization
or smoothing schemes. The problem of ill-posedness also
occurs for constant-α and current-free fields if these are de-
termined, for instance, from the values of the vertical field
component Bz and its vertical derivative ∂Bz/∂z (which by
use of Eq. (2) can be expressed in terms of the horizontal
derivatives of the horizontal components Bx and By) at the
photosphere (Seehafer & Staude 1983; Amari et al. 1998).

– Grad-Rubin methods (Grad & Rubin 1958; Sakurai 1981;
Amari et al. 1997, 1999, 2006; Wheatland 2004, 2006). An
electric current-magnetic field iteration is applied with field-
aligned currents calculated according to j = (1/µ0)∇ × B =
(α/µ0) B, and magnetic fields calculated by using the Bio-
Savart law. The normal field component Bn is prescribed
on the whole boundary and α on a part of the boundary
where Bn is either positive or negative. A modification of the
method for global fields was proposed by Aly & Seehafer
(1993), with the additional condition that the field be radial
at an exterior source surface; this condition is usual in global
potential-field extrapolations and simulates the effect of the
solar wind. Convergence of the iteration and existence of
the solution can be proven for sufficiently small |α| (Bineau
1972; Kaiser et al. 2000; Boulmezaoud & Amari 2000). Such
existence proofs are not available for the other methods listed
here.

– Boundary-integral methods (Yan & Sakurai 1997, 2000; Yan
2003; Yan & Li 2006; He & Wang 2006). The magnetic field
is represented by an integral over the boundary of the con-
sidered volume involving an auxiliary function. The problem
is solved iteratively whereby the auxiliary function has to be
determined such that a remaining volume integral vanishes.
The magnetic vector on the photospheric boundary is used
as input.

– Relaxation methods (Yang et al. 1986; Mikic & McClymont
1994; Roumeliotis 1996; Valori et al. 2005). The magneto-
hydrodynamic equations are simulated, generally in a sim-
plified or modified form. The equation for the fluid velocity
contains a viscous dissipation term but no external forcing
terms, and the pressure term is neglected. If some energy
inflow through the boundary is allowed, this must be ex-
ceeded by the dissipative losses. Asymptotically in time, a
quiescent state with a force-free magnetic field is reached.
Photospheric vector magnetograms are used as boundary
data.

– Optimization methods (Wheatland et al. 2000; Wiegelmann
2004). A positive semidefinite functional L of the magnetic
field is minimized using a prescription for evolving B. If
L = 0 is reached, ∇ · B = 0 and (∇× B)× B = 0 are satisfied
throughout the volume considered. Again, photospheric vec-
tor magnetograms are used as boundary data. An adaption
of the method for the calculation of global force-free fields
in spherical geometry was proposed by Wiegelmann (2007),
while extensions to non-force-free fields, with pressure gra-
dients and gravity included, were developed by Wiegelmann
& Inhester (2003) and Wiegelmann & Neukirch (2006).

Discussions of the nonlinear extrapolation methods are found
in Aly (1989), Sakurai (1989), Amari et al. (1997), McClymont
et al. (1997) and Schrijver et al. (2006).

With the exception of the direct vertical integration schemes,
the nonlinear extrapolation methods impose boundary condi-
tions on the whole boundary of the volume in which the so-
lution is calculated, in practice usually a rectangular box over
the magnetogram area. For the Grad-Rubin methods, the corre-
sponding boundary value problem is well posed (at least for suf-
ficiently small |α| and perhaps up to the uniqueness of the solu-
tion). However, these methods do not exploit the full information
content of vector magnetograms. The boundary-integral, relax-
ation and optimization methods prescribe the magnetic vector on
the boundary. Vector magnetograms provide the boundary val-
ues for the lower, photospheric part of the boundary, while some
assumption is made for the remaining parts, e.g. keeping the val-
ues of an initial potential field there fixed, so that altogether the
full magnetic vector is prescribed on the whole closed boundary.
This overdetermines the force-free field. Therefore, the calcula-
tions will lead to correct solutions only if the prescribed bound-
ary values are consistent with the condition of force-freeness.
This cannot be expected, however, for several reasons. First of
all, the magnetic field is not force-free in the photosphere and in
the lower chromosphere (possibly with the exception of sunspot
areas, where the field is strongest). Furthermore, there are mea-
surement errors, in particular in the transverse field components
(perpendicular to the line of sight of the observer), that would
destroy the compatibility of a magnetogram with the condition
of force-freeness.

One way to alleviate these problems is a preprocessing of the
magnetograph data as suggested by Wiegelmann et al. (2006).
The vector components of the total magnetic force and the to-
tal magnetic torque on the volume considered are given by six
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boundary integrals that have to vanish if the magnetic field is
force-free in the full volume (Molodenskii 1969; Aly 1984,
1989; Low 1985). The preprocessing changes the boundary val-
ues of B within the error margins of the measurement in such
a way that the moduli of the six boundary integrals are mini-
mized. The resulting boundary values are expected to be more
suitable for an extrapolation into a force-free field than the orig-
inal values.

In the practical calculations, the convergence properties of
the used iterations or evolutions, as well as the calculated fields
themselves, are very sensitive to small-scale noise and appar-
ent discontinuities in the photospheric magnetograph data. This
problem should, in principle, disappear if small spatial scales
were sufficiently resolved. However, the numerical effort for that
would be enormous. Also, the small-scale fluctuations in the
magnetograms are presumed to affect the solutions only in a
very thin boundary layer close to the photosphere. Therefore,
a smoothing of the data is included in the preprocessing.

In this paper, we follow the suggestion of Wiegelmann et al.
(2006) and expand their method of preprocessing photospheric
vector magnetograms. The paper is organized as follows: in
Sect. 2 we describe a new method for the preprocessing; then,
in Sect. 3, we apply it to a known nonlinear force-free test field;
finally, in Sect. 4, we draw conclusions and discuss our results.

2. Procedure

The strategy of preprocessing is to define a functional L of the
boundary values of B, such that on minimizing L the total mag-
netic force and the total magnetic torque on the considered vol-
ume, as well as a quantity measuring the degree of small-scale
noise in the boundary data, are simultaneously made small. Each
of the quantities to be made small is measured by an appropri-
ately defined subfunctional included in L. The different subfunc-
tionals are weighted in order to control their relative importance.
Furthermore, domain borders are implemented so that the field
is only allowed to change within these borders that are defined
by the error margins of the magnetographic measurement.

2.1. The objective quantities

The total magnetic force on a volume V is given by

F =
∫

V
j × B dV

=
1
µ0

∫
V

(∇ × B) × B dV

=

∫
V

div T dV

=

∮
∂V

T dS, (3)

where ∂V is the surface of V , and in the last step Gauss’ theorem
was used; T is the magnetic stress tensor,

Ti j = − B2

2µ0
δi j +

1
µ0

BiB j, (4)

and div T its divergence,

[div T]i = ∂ jTi j (5)

(we use the summation convention). Quite analogously, the total
magnetic torque on V can be written as

N =
∫

V
r × ( j × B) dV =

∫
V

div T̂ dV =
∮
∂V

T̂ dS (6)

with

T̂i j = εiklrkTl j. (7)

If, as in our case, the magnetic field is force-free in V , the sur-
face integrals in Eqs. (3) and (6) have to vanish. These inte-
grals are over the whole boundary of V , but we approximate
them by integrals just over the photospheric magnetogram area.
This will only be justified if the net magnetic flux through the
magnetogram area vanishes (Wiegelmann et al. 2006). Actually,∫
∂V

B dS = 0, F = 0 and N = 0 are fully independent condi-
tions, and the vanishing of the volume integrals of higher-order
moments of j × B would give additional independent condi-
tions. Our intention is that all relevant magnetic flux is closed
on the photosphere, and the field on the rest of the boundary is
so weak that its contribution to the surface integrals for F and
N is negligible.

With S denoting the magnetogram area in the plane r3 = 0,
F andN , given by Eqs. (3) and (6), are then approximated by

F = −
∫

S
Te3 dr2 dr3; Fi = −

∫
S

Ti3 dr2 dr3, (8)

N = −
∫

S
T̂e3 dr2 dr3; Ni = −

∫
S

T̂i3 dr2 dr3, (9)

where e3 is the unit vector in the positive r3 direction, pointing
upward in the atmosphere. Writing x, y, z for the components of
r, the condition of force-freeness reads

µ0 Fx = −
∫

S
BxBz dx dy = 0, (10)

µ0 Fy = −
∫

S
ByBz dx dy = 0, (11)

2µ0 Fz =

∫
S

(
B2

x + B2
y − B2

z

)
dx dy = 0, (12)

while the condition of torque-freeness is expressed by

2µ0Nx =

∫
S
y
(
B2

x + B2
y − B2

z

)
dx dy = 0, (13)

2µ0Ny =
∫

S
x
(
−B2

x − B2
y + B2

z

)
dx dy = 0, (14)

µ0Nz =

∫
S

(
yBxBz − xByBz

)
dx dy = 0 (15)

(see Molodenskii 1969; Aly 1989). The better these integral con-
ditions are fulfilled, the higher is the expected compatibility of
the boundary data with the requirement that the magnetic field be
force-free in the volume V . However, due to their integral char-
acter and their finite number, the conditions are only necessary,
not sufficient.

Another task is to decrease the amount of small-scale irreg-
ularities in the data, which we call smoothing. One possibility
here is to calculate the horizontal second-order derivatives of the
photospheric field, combined in the two-dimensional Laplacian
∆xy = ∂

2/∂x2 + ∂2/∂y2. The square of ∆xyB(x, y, z = 0) can be
used to estimate the smoothness of the photospheric boundary
data because the second-order derivatives measure the curvature
of the surfaces Bx(x, y, z = 0), By(x, y, z = 0) and Bz(x, y, z = 0).
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Minimizing the integral of
[
∆xyB(x, y, z = 0)

]2
over the magne-

togram area S is one method of averaging the field. The dis-
advantage here is that, if the modulus of ∆xyB(x, y, z = 0) is de-
creased to zero on S , all global or local maxima or minima of the
three field components on S are removed, including the physi-
cally significant ones, and the total energy content of the field
may be strongly reduced. Therefore, this method of smoothing
can only be applied with great care.

A different method of smoothing a vector magnetogram,
which we prefer here, is the windowed median (see, e.g., Press
et al. 1989). In this method one chooses a small window around a
given point, calculates the median of the field values in the win-
dow, and then minimizes the difference between the field value
at the point and the median of the window. Calculating the me-
dian is a more stable way of averaging than the normal mean,
which corresponds to minimizing the Laplacian, because it is
much less influenced by strong disturbances in a small number
of points. After several iterations the method will stabilize the
changes; this way, the structures of the measurement are con-
served even if the quantity minimized here is decreased to zero.

2.2. The functional

In discretized form, the squares of the total magnetic force and
the total magnetic torque are given by

L1 =

⎛⎜⎜⎜⎜⎜⎝
∑

P

BxBz

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
∑

P

ByBz

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
∑

P

(
B2

x + B2
y − B2

z

)⎞⎟⎟⎟⎟⎟⎠
2

, (16)

L2 =

⎛⎜⎜⎜⎜⎜⎝
∑

P

x
(
B2

x + B2
y − B2

z

)⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
∑

P

y
(
B2

x + B2
y − B2

z

)⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
∑

P

yBxBz − xByBz

⎞⎟⎟⎟⎟⎟⎠
2

, (17)

where the summation is over the points P of a photospheric grid.
Since there is no obvious reason to weight L1 and L2 differently,
they are combined to

L12 = L1 + L2. (18)

This can only be done if the two quantities have been made di-
mensionless beforehand. We normalize L1 to

NL1 =

⎡⎢⎢⎢⎢⎢⎣
∑

P

(
B(0)
)2⎤⎥⎥⎥⎥⎥⎦

2

= B4
meanN2, (19)

where B(0) is the original, magnetographically measured pho-
tospheric field, Bmean the mean value of

∣∣∣B(0)
∣∣∣ over the magne-

togram, and N the number of photospheric grid points, and we
normalize L2 to

NL2 =

⎡⎢⎢⎢⎢⎢⎣
∑

P

√
x2+y2

(
B(0)
)2⎤⎥⎥⎥⎥⎥⎦

2

=h2

⎡⎢⎢⎢⎢⎢⎢⎣
Nx∑

k=1

Ny∑
l=1

√
k2+l2

(
B(0)

kl

)2⎤⎥⎥⎥⎥⎥⎥⎦
2

, (20)

with Nx and Ny denoting the numbers of grid points in the x
and y directions (Nx · Ny = N), h the grid spacing (assumed to
be equal in the x and y directions) and B(0)

kl the elements of the
magnetogram matrix. With these normalizations, L1 and L2 are
independent of the units of length and magnetic field and both
are ∼1 for a field that is neither force-free nor torque-free.

The smoothing functional is defined as1

L4 =
∑

i=x,y,z

∑
P

{
Mn
[
Bi(x − n · h, y − n · h), . . .

. . . , Bi(x + n · h, y + n · h)
] − Bi(x, y)

}2 , (21)

where n is a positive integer number and Mn the median of a rect-
angular window with (2n+1) ·(2n+1) grid points centered about
the point (x, y). The values at the boundary of the magnetogram,
where the method does not work, are left unchanged; these val-
ues are expected to be small in general. Also, in the practical ex-
trapolations an artificial margin where the field vanishes is very
often added to the magnetogram. L4 is normalized to

NL4 =
∑

i=x,y,z

∑
P

{
Mn

[
B(0)

i (x − n · h, y − n · h), . . .

. . . , B(0)
i (x + n · h, y + n · h)

]
+ B(0)

i (x, y)
}2
, (22)

so that L4 ∼ 1 for a field of maximum roughness.
Since just the relative weighting of the different subfunction-

als is important for the minimization, the weighting of one of
them can be set as equal to unity. We choose the form

L = L12 + µ4 · L4 (23)

for the total functional to minimize. Like the number n determin-
ing the window size for the smoothing, the weighting factor µ4
is yet undetermined.

2.3. Minimization algorithm

Minimizing a simple functional with just one minimum can be
easily done by fast methods like Newton-Raphson iteration, but
here we have a more complex functional and, to our knowledge,
there is no way of knowing how many local minima exist or
if there actually exists a global minimum. The success of the
Newton-Raphson method strongly depends on the initial field
for the iteration, since it just finds the nearest local minimum.

We use here the method of simulated annealing (see, e.g.,
Press et al. 1989; Rutenbar 1989; Corana et al. 1987; Siarry et al.
1997), which also finds the nearest local minimum, but opens a
chance to leave it and to find a deeper one, within given domain
borders. Simulated annealing works as follows: start with a given
field and change the values of the vector components at one grid
point randomly within a small interval (for example 0.5% around
the initial values). Then calculate the functional that has to be
minimized both for the initial and the changed field. If the new
value of the functional, Lnew, is smaller than the old one, Lold,
then take the new field. If the new value is larger than the old
one, then take the new field with a probability ∝exp

{
− Lnew−Lold

T

}
,

where the “temperature” T is used to control the behaviour of
the algorithm. A sweep through the whole magnetogram is one
iteration. Use the chosen field as the initial field for the next iter-
ation. Start the algorithm with small values of T ; this way, only
smaller values of L will be accepted. After some iterations a first
minimum is reached. Increase the value of T ; this way one opens
a chance of leaving the first minimum. If the minimum has been
left, decrease T again and the algorithm will again find the near-
est local minimum. In this way, the whole domain, as defined
by the domain borders, will be scanned (changes to field values
outside the domain borders defined before are not allowed).

1 In the nomenclature for the different subfunctionals of L we follow
Wiegelmann et al. (2006). Their subfunctional L3 is not used by our
method.
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Fig. 1. Top row: magnetogram derived from the Low & Lou test field. From left to right the three components Bx, By, Bz are shown. Middle row: the
same magnetogram as in the first row, but with noise added (for details see the main text). Bottom row: magnetogram resulting from preprocessing
of the disturbed magnetogram shown in the second row.

3. Application to the Low and Lou test field

In order to test our preprocessing technique, we used one of
the semi-analytical solutions found by Low & Lou (1990).
These have become standard test cases for extrapolations of
nonlinear force-free magnetic fields (cf. Wheatland et al. 2000;
Wiegelmann 2004; Wiegelmann et al. 2006; Amari et al. 2006;
Schrijver et al. 2006; Valori et al. 2007). We chose a frequently
used special solution, characterized by the parameters n = 1,
m = 1, l = 0.3 and Φ = π/4; for details see Low & Lou
(1990). The field was given in the cubic volume −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1, 0 ≤ z ≤ 2, so the test field is identical to FF1
in Amari et al. (2006) and Case I in Schrijver et al. (2006) and
Valori et al. (2007). We used a numerical resolution of 643 grid
points, and the unit for the magnetic field was chosen such that
the maximum strength of the photospheric normal component is
1000 G.

3.1. Contours of the magnetogram

In the top row of Fig. 1, from left to right the three compo-
nents Bx, By, Bz of a vector magnetogram derived from the
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Fig. 2. Evolution of the total functional L (left) and of the subfunctionals L12 (center) and L4 (right) in the course of the minimization on a
logarithmic scale. All three quantities are normalized to their initial values.
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Fig. 3. Contours of the function α(x, y, z = 0) for the undisturbed magnetogram (left; magnetogram shown in top row of Fig. 1), the disturbed
magnetogram (center; magnetogram shown in middle row of Fig. 1) and the preprocessed magnetogram (right; magnetogram shown in bottom
row of Fig. 1).

Low & Lou test field are shown. The middle row shows the
same magnetogram, but now with artificial noise. At every grid
point of the magnetogram white noise was added, based on a
relative error of 30% in the horizontal field components and
5% in the normal component, corresponding to the fact that
the measurement of the transverse field components is much
less accurate than that of the line-of-sight component (we con-
sider a case where the z direction coincides with the line of
sight). Additionally, we assumed a field-independent error com-
ponent (also white noise) with an absolute (maximum) ampli-
tude of 35 G in all three field components. Starting from the dis-
turbed magnetogram we applied our preprocessing as described
in Sect. 2. The smoothing was weighted with a factor of µ4 = 0.1
in the functional L (see Sect. 3.4 for a discussion of how to find
an optimal value for µ4) and carried out using the windowed
median method with n = 1. The domain borders for the mini-
mization by the method of simulated annealing were chosen to
be 85 G for the transverse components and 35 G for the normal
component.

In the bottom row of Fig. 1 the preprocessed magnetogram is
shown. Comparison with the original undisturbed magnetogram
(top row of the figure) shows that the method works remarkably
well. The neutral lines where the respective field components
change sign, as well as the poles (minima and maxima), are
mainly recovered. Also, the small-scale noise in the disturbed
magnetogram (middle row of the figure) has been removed.

In Fig. 2 the evolutions of L and of the two subfunction-
als L12 and L4 (cf. Sect. 2) in the course of the minimization are
shown. All three quantities are normalized to their initial values
in order to show, in particular, the decrease related to the initial
values. As one can see, after 100 iterations the algorithm first
found a local minimum of L, but then it drove the system out of
this minimum to find one where, in particular, L12 is smaller by
an order of magnitude.

3.2. The function α(x , y , z = 0 )

The function α(r) defined by Eq. (1) contains much information
on the topology of the magnetic field lines since these lie in the
surfaces α = constant. In particular, the values of α at any two
points in the photosphere that are connected by a field line above
the photosphere must be identical. For the level of the photo-
sphere, α can be calculated from the magnetogram according to

α(x, y, z = 0) =
∂xBy(x, y, z = 0) − ∂yBx(x, y, z = 0)

Bz(x, y, z = 0)
· (24)

Obviously, since one has to combine three noisy quantities and,
moreover, to differentiate two of them, α(x, y, z = 0) is more sen-
sitive to noise in the magnetographic measurement than the field
components themselves. In Fig. 3, from left to right the func-
tion α(x, y, z = 0) is shown as calculated from the undisturbed
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magnetogram derived from the Low & Lou field, the disturbed
magnetogram and the preprocessed magnetogram (cf. Sect. 3.1).
The noise overshadows the signal of α strongly. However, the
preprocessing is even able to recover the main structures of this
heavily disturbed function.

3.3. Figures of merit for extrapolated fields

A critical test of the effect of the preprocessing is to extrapolate
from disturbed photospheric vector magnetograms before and
after the preprocessing, and compare the results with those of
extrapolations starting from the exact photospheric values of the
Low & Lou test solution, as well as with the exact field values of
this solution in the volume above the photosphere. We used the
magneto-frictional relaxation method of Valori et al. (2005) (see
also Valori et al. 2007) for corresponding extrapolations.

To assess the quality of extrapolations, Schrijver et al. (2006)
developed a number of figures of merit (hereafter FoM). The
FoM are measures of the discrepancy between an exactly known
test field, B, and the extrapolated field, b, namely

Cvec =

∑
i Bi · bi(∑ |Bi|2∑i |bi|2

)1/2 , (25)

CCS =
1
M

∑
i

Bi · bi

|Bi||bi| , (26)

En =

∑
i |bi − Bi|∑

i |Bi| ; E′n = 1 − En, (27)

Em =
1
M

∑
i

|bi − Bi|
|Bi| ; E′m = 1 − Em, (28)

ε =

∑
i |bi|2∑
i |Bi|2 , (29)

where M is the number of grid points in the considered three-
dimensional domain and the summation is over these grid points.
Cvec is the scalar product between the unit vectors corresponding
to B and b, respectively, in the 3M-dimensional space spanned
by the field values of the whole grid, and CCS is the mean value
over the grid of the scalar products between the unit vectors of
the two fields in three-dimensional space. En and Em measure
the vector error |B − b| with a global and a local normalization,
respectively, and ε is the ratio between the magnetic energies of
the extrapolated and exact fields.

In Fig. 4, the FoM are shown for three-dimensional fields ex-
trapolated from a magnetogram containing the exact field values
of the Low & Lou solution, a noisy magnetogram obtained from
this as described in Sect. 3.1, and a magnetogram obtained by ap-
plying our preprocessing procedure to the noisy magnetogram.
Instead of En and Em, E′n (see Eq. (27)) and E′m (see Eq. (28)) are
shown, so that all displayed measures are equal to unity in the
case of a full match. Naturally, the extrapolation of the original
magnetogram reproduces the exact field best. The agreement is
markedly worse for the extrapolation of the noisy magnetogram,
but is again significantly improved for the extrapolation using
the preprocessed magnetogram. Only the energy ratio ε shows a
deviating behaviour. The reduced energy content of the field ex-
trapolated from the preprocessed magetogram compared to that
extrapolated from the noisy magnetogram can be explained by
the smoothing procedure, which removes a part of the energy
in the small spatial scales. That the noisy magnetogram gives a
higher energy content of the field than the undisturbed one seems
to be mainly a result of our addition of a noise component with
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Fig. 4. Figures of merit Cvec, CCS, E′n, E′m and ε (from left to right) for
three-dimensional fields extrapolated from the original magnetogram
with the exact field values of the Low & Lou solution (blue; magne-
togram shown in top row of Fig. 1), the disturbed magnetogram (green;
magnetogram shown in middle row of Fig. 1) and the preprocessed
magnetogram (red; magnetogram shown in bottom row of Fig. 1).

field-independent amplitude (cf. Sect. 3.1), which increases, in
particular, the energy in the weak-field regions.

3.4. Searching for an optimal µ4

The expression for the minimization functional L, given by
Eq. (23), contains the free parameter µ4. If µ4 = 0, the sub-
functional L12, measuring the deviation from force-freeness and
torque-freeness, is minimized very effectively. For our noisy test
magnetogram generated from the Low & Lou solution and with
the chosen domain borders for the minimization, the value of
the subfunctional L12 is decreased to zero (within machine ac-
curacy) relatively quickly. For µ4 � 0, L12 = 0 is no longer
reached. This results from a competition between two different
minimization objectives. Increasing µ4 gives L4 a higher weight
and, thus, enforces the smoothing and inhibits the decrease of
L12. On the other hand, decreasing µ4 gives L12 the possibility
to reach values close to zero, but inhibits the smoothing. So L12
and L4 are competitive functionals, and finding the right µ4 is an
optimization problem on its own.

Unfortunately, there is no simple way to determine an op-
timum µ4. One could extrapolate from magnetograms derived
from a test field and compare the extrapolated fields with the
exact solution. However, the numerical effort for this would be
very high and the result would only be valid for the test field.

Since L (see Eq. (23)) depends on µ4, it seems better to
look at a different functional that is independent of µ4 to in-
vestigate the influence of different weightings on the minimiza-
tion process. The simplest choice for such a functional is the
sum L12+L4. It is then, in principle, possible to find an optimal µ4
by the method of simulated annealing. Thus, one can minimize L
for different values of µ4 and then compare the values of L12+L4
for the associated photospheric magnetic fields that minimize L,
i.e., one compares the sums L(final)

12 (µ4) + L(final)
4 (µ4) of the final

values of L12 and L4 reached by the minimization of L for differ-
ent values of µ4. At the same time, in view of the arbitrariness of
the choice L12 + L4, the µ4 dependence of the final values of the
two individual subfunctionals L12 and L4 should be considered.

In Fig. 5, the dependence of the final values of L12, L4 and
L12 + L4 on µ4 is shown. The calculations were done using the
noisy magnetogram generated from the Low & Lou test solution
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parameter µ4 on a doubly logarithmic scale. The values were calculated
by applying the minimization procedure for L to the noisy magnetogram
(shown in middle row of Fig. 1) generated from the Lou & Lou test
solution.

(cf. Sect. 3.1). One can see that L(final)
12 (µ4) + L(final)

4 (µ4) reaches a
broad minimum in the interval 0.1 <∼ µ4 <∼ 10. We have chosen
µ4 = 0.1, a value at the left border of this interval, for our cal-
culations (cf. Sect. 3.1), in doing this a low final value of L12 is
found and the final value of L4 has reached a saturation, decreas-
ing only slightly for further increased values of µ4.

4. Conclusions

We have developed a new method for the preprocessing of solar
photospheric vector magnetograms that makes them more suit-
able for extrapolations into three-dimensional nonlinear force-
free magnetic fields in the chromosphere and corona. The prin-
ciple of the method is the one suggested by Wiegelmann et al.
(2006), namely, to minimize a functional, L, of the photospheric
field values whereby the total magnetic force and the total mag-
netic torque on the considered volume above the photosphere, as
well as a quantity measuring the degree of small-scale noise in
the photospheric boundary data, are simultaneously made small.

For the minimization we use the method of simulated anneal-
ing. Compared to methods like Newton-Raphson iteration, this
method has the advantage of finding not only the local minimum
closest to the chosen initial field, but also of absolutely mini-
mizing the functional L. The smoothing of noisy magnetograph
data is performed by windowed median averaging. Compared to
other methods in use, this method of averaging better conserves
the real structures in the measurements.

We have applied our method of preprocessing to a mag-
netogram derived from one of the semi-analytical nonlinear
force-free magnetic fields devised by Low & Lou (1990). The
magnetogram was exposed to an artificial noise. The algorithm
recovered all main structures of the magnetogram and removed
small-scale noise. Even quantities that are very sensitive to
noise, like the function α(r) in the plane of the magnetogram,
could be reproduced very well. The main test of the effect of the
preprocessing was to extrapolate from the noisy photospheric
vector magnetogram before and after the preprocessing, and
compare the results with those of extrapolations starting from
the exact photospheric values of the Low & Lou test solution,
as well as with the exact field values of this solution itself. To
assess the quality of the extrapolations, the figures of merit de-
veloped by Schrijver et al. (2006) were used. The preprocessing

was found to significantly improve the agreement of the extrap-
olated field with the exact field.

The method of minimization by simulated annealing is easy
to adjust to special requirements, such as changed or new min-
imization objectives, since the functional L is treated directly,
i.e., only the values of the functional itself have to be calculated.
In contrast with, e.g., Newton-Raphson iteration, derivatives of
L are not needed.

Our minimization functional contains a free weighting pa-
rameter, µ4, that controls the relative influence of the require-
ments of force-freeness and torque-freeness on the one hand, and
smoothness of the photospheric field on the other hand. We have
outlined a way to find an optimal value of µ4.

The original motivation for the preprocessing was to make
vector magnetograph data more suitable for extrapolation meth-
ods that prescribe the full magnetic vector on the whole closed
boundary of the considered volume, such as the relaxation and
optimization methods, since prescribing the full vector overde-
termines the force-free field. Making the the magnetograms
more compatible with the condition of force-freeness can also be
useful for extrapolations with Grad-Rubin methods since, e.g.,
the values of the function α(r), which are determined from the
magnetogram on a part of the photospheric boundary, must be
identical at the photospheric end points of a field line. Moreover,
the determination of α(r) is very sensitive to noise, so that a
smoothing of the data, as done by our method, also appears ad-
visable. Finally, smoothing of the magnetograms is an indispens-
able part of extrapolations by direct vertical integration, since
small-scale errors can grow exponentially with height. Thus,
our method of smoothing could also be useful for this kind of
extrapolation.
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