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Abstract-We have studied bifurcation phenomena for the incompressible Navier-Stokes equations 
in two space dimensions with periodic boundary conditions. Fourier representations of velocity and 
pressure have been used to transform the original partial differential equations into systems of 
ordinary differential equations (ODE), to which numerical methods for the qualitative analysis of 
systems of ODE have then been applied, supplemented by the simulative caiculation of solutions for 
selected initial conditions. Invariant sets, notably steady states, have been traced for varying 
Reynolds number or strength of the imposed forcing, respectively. A complete bifurcation sequence 
leading to chaos is described in detail, including the calculation of the Lyapunov exponents that 
characterize the resulting chaotic branch in the bifurcation diagram. 

1. INTRODUCTION 

The study of t~n~ations of the fluid dyn~ic equations began with the seminal paper of 
Lorenz [l], who studied a three-mode model for Rayleigh-Benard convection. 

In 1979 Franceschini and his co-workers started a systematic investigation of the 
qualitative behaviour of solutions to truncations of the 2D incompressible Navier-Stokes 
equations (NSE) with periodic boundary unctions [2-51. They applied a special, constant 
and real, forcing at one selected Fourier mode and analysed the bifurcations occurring 
when the strength of the forcing is varied. Beginning with a rather strong truncation, 
namely a five-mode model, they included more and more modes in their study (up to 
1000). In particular, they investigated the influence of the number of modes on the 
bifurcation structure, with the aim of estimating the minimal number of modes to be 
retained in a truncation model. More recently Franceschini and Zanasi [6] turned to the 
study of the 31) NSE, applying the same forcing as in the 2D case, but hitherto only for a 
seven-mode truncation. 

Jolly [7] used the concept of approximate inertial manifolds (AIMS) to study the 
bifurcation structure of the 2D NSE. He found that the AIM concept, also referred to as 
nonlinear Galerkin method, reduces the number of modes needed to capture certain 
bifurcations compared with the traditional Gale&in method. 

The up to now most detailed bifurcation study of the 2D NSE is due to Lee [8], who 
used a forcing different from that applied by Franceschini and his co-workers. The changes 
in the solution behaviour which he observed for varying Reynolds number or strength of 
the forcing, respectively, are extremely complex. It is the aim of the present paper to 
continue Lee’s study and to describe the bifurcation behaviour on a systematic base. 

In Section 2 we transform the 2D NSE into spectral form. Analytic expressions for the 
Jacobian matrix of the resulting system of ordinary ~fferenti~ equations (ODE), useful for 
the application of numerical methods of bifurcation analysis, such as path following in the 
bifurcation diagram, are given in the Appendix. 
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Then in Sections 3 and 4 the complete bifurcation sequence leading to chaos is 
presented. The appearance of a chaotic state is verified by calculating the Lyapunov 
exponents. 

Section 5, finally, contains a brief discussion of our results. 

2. BASIC EQUATIONS AND TRUNCATION MODEL 

We start from the non-dimensional equations for an incompressible fluid with constant 
material properties, 

i3V - + (v*grad)v = R-‘Av - gradp + f, 
at 

(1) 

divv = 0, (2) 

where v and p denote the dimensionless fluid velocity and thermal pressure, R the 
Reynolds numbers, and f a yet-unspecified body force. 

We restrict ourselves to the 2D case and apply periodic boundary conditions on a square 
region of side length 2n, which is equivalent to considering the motion on the torus 
T2 = [0,2~] x [0,2rr]. The mean values of v and consequently also of f are assumed to 
vanish, 

I 
vd2x = 0, 

I 
fd2x = 0. (3) 

T= T* 

The periodicity assumption implies that the Fourier representations of v, p and f, 

v(x) = c vk exp (ik * x), 
kd 
k#O 

(4) 

p(x) = 2 pk exp (ik - x)9 
keZ* 

f(x) = 2 fk exp (ik * x), 
keZ* 
k#O 

(5) 

can be differentiated term by term with respect to the spatial coordinates. In the Fourier 
space the incompressibility condition, equation (2), takes the form 

Vk’k = 0 (6) 

and is automatically satisfied if we write 

vk = vkek for Ik # 0, 

with (real) ‘polarization’ vectors ek perpendicular to k, 

e,*k = 0, et = 1, e-k = eka 

(7) 

03) 

The last condition in equation (8) ensures that 

v-k = v; (9) 
for real v(x). By using this representation for vlr we furthermore easily get rid of the 
pressure term in equation (1) and arrive at the following infinite-dimensional system of 
ODE: 

dvk - = -Re1k2vk - i 
dt 

c (ep * k)(e, * ek)vpvq + .fk* 

P.WZ2 
p&O;p+q=k 

(10) 
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fk on the r.h.s. equation (10) is defined by 

fk = fk.ek. (11) 

For our numerical calculations on a vectorizing computer (CRAY YMP-EL) it has been 
advantageous to replace the double sum in equation (10) by a simple sum by means of the 
substitution q = k - p, so that 

Because of the reality condition (9), we can restrict ourselves to k vectors in a subset K* 
of iZ* defined by 

K* Ef {k E Z* : kl > 0} U {k E 2’ : k, = 0 A k, > 0). 

In the following we shall use the additional definitions 

(13) 

(k) tif 
k : k E K* 

-k:kc$K* 
(14) 

and 

def k . (k) sgn(k) = -. 
k* 

(15) 

From equation (12) we then obtain our final equations for the time evolution of the real 
and imaginary parts Of ok in the fOIXIS 

du,R’ 
- = - R-‘k*u? + pz2(ep * k){(etk-,) . %)[sgn (k - p)uyu$-,) + u~u~~-~)] 

dt 
p++ 

+ fp”, 06) 

du;“’ 
- = -R-‘k2uLm - Dz2(ep * k){(e(,-,) *ek)[~Fayi-pj - sgn(k - p)ub%E-,j] 
dt 

-p+k 

+ ftm. (17) 

We have used an isotropic truncation in wavenumber space, following Lee [9,8], who 
segmented the k-space into successive rings n* - n < k* s n* + n, n = 1, 2, . . . . If not 
indicated differently, the rings up to n = 8 have taken into account in our numerical 
calculations, altogether 112 k-vectors, which amounts to studying a system of 224 ODE. 

Because of the periodic boundary conditions, the total energy flow through the boundary 
of the region considered vanishes, so that in order to compensate for viscous losses some 
kind of external forcing has to be applied. We have used a constant, single-mode forcing at 
k = (4, l), with equal strength in the real and imaginary parts: 

f + 
fk= o. 

t. 

if : k = (4,l) 

k # (4,l). 
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For this special type of forcing the NSE remain G’ invariant with respect to translations 
perpendicular to the k-vector of the forced mode. f on the right of equation (18) is our 
bifurcation parameter, while the Reynolds number R was kept fixed at a value of 50 
throughout the calculations. 

3. BIFURCATIONS OF STEADY STATES AND TRAVELLING WAVES 

We now begin the description of the complex bifurcation sequence, which eventually 
leads to chaos. Figure 1 gives an overview of the steady states and their bifurcations, 
showing the dependence of the modulus of the forced velocity mode (vertical axis) on the 
bifurcation parameter f. Thick lines indicate stable branches. The solution branches have 
been continued by means of a predictor-corrector method. In each step the eigenvalues of 
the Jacobian matrix were calculated to detect bifurcation points. 

Unstable steady-state branches have been followed only in a certain neighbourhood of 
the stable branch. Each unstable branch showed a complex sequence of tertiary bifurca- 
tions (not shown in Fig. l), in which the degree of instability, namely the number of 
eigenvalues of the Jacobian matrix with positive real parts, increased. None of the unstable 
branches was observed to return to the stable branch. 

For very small values of f the forced mode is the only one present in the steady state. 
The streamlines of the resulting velocity field are straight lines perpendicular to the 
wave-vector of the forced mode. This trivial steady state loses its stability at 
f = fi = 0.0206, w h ere two eigenvalues go through zero. The degeneracy results from the 
translational symmetry mentioned in Section 2, and the bifurcation breaks the symmetry of 
the original steady state. The new stable solutions are no longer symmetric, and one 
eigenvalue of the Jacobian matrix is permanently equal to zero along the solution branch. 
Now more modes than one, but not yet all, are excited. The remaining modes become 
different from zero in the next bifurcation at f = fi = 0.0301. 

Fig. 1. Bifurcation diagram for the steady states. 
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The stable steady-state branch ends up in a special bifurcation at f = f3 = 0.0706, leading 
to travelling waves (TW). At this bifurcation point a second eigenvalue, in addition to that 
already vanishing along the whole branch, becomes zero, whereby the eigenvectors 
belonging to these two eigenvalues align with one another. An analogous phenomenon has 
been observed by Kevrekidis ef al. [lo] for the Kuramoto-Sivashinsky equation. With the 
exception of the forced mode and the modes with wave vectors parallel to that of the 
forced mode, all modes describe circles in the planes spanned by their respective real and 
imaginary parts, with rational ratios between the rotation frequencies for different modes. 
The latter can be seen from Lissajous figures as shown in Fig. 2. The forced mode and the 
other non-rotating modes are constant in time. Rotating modes with parallel k-vectors have 
equal ratios 3/k2, o denoting the rotation frequency, so that their superposition is even a 
solution of the linear wave equation. For the resulting TW the whole velocity field is 
moving with a constant speed in the direction of the translational invariance of the 
equations. 

The TW solution loses stability in a bifurcation at f = f4 = 0.087, where also the forced 
mode begins to oscillate, causing the transition to a modulated travelling wave (MTW), 
which represents a first, nongeneric torus solution. 

4. TORUS SOLUTIONS, PHASE LOCKINGS AND A TRANSITION TO CXL4OS 

The branch opened by the transition to the MTW at f = f4 is shown schematically in 
Fig. 3. Now also the forced mode and the total energy in the velocity field, both constant 
up to this bifurcation, vary in time. 

The following figures show, for different values of the forcing parameter f, system 
trajectories in projection on two selected planes, spanned by the real and imaginary parts 
of the k = (2, -2) mode and of the forced mode, respectively (cf. Lee [S]). In Fig. 4, 
where the (2, -2)-mode is drawn for a parameter value only slightly above f4, two 

0.3 

-0.3 

-0.01 

Re v(k=(2,-2)) 
0.01 

Fig. 2. Lissajous figure produced by the projection of a trajectory onto the plane spanned by the real parts of two 
different modes for f = 0.08. 
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torus Interrupted by 
phase lockings 
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lmw torus 
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Fig. 3. Schematic bifurcation diagram for the torus, phase locking and chaotic solutions. 

Re v(k=(2,-2))t 

a 

0.01 

Fig. 4. Projection of the torus solution for f = 0.089 onto the plane spanned by the real and imaginary parts of the 
k = (2, -2) mode. 

frequencies are plainly recognizable. The lower of them corresponds to the oscillation of 
the mode already present for the TW, caused by the wave propagation in connection with 
the periodic boundary conditions. The other is the oscillation frequency of the forced 
mode, which is purely periodic at this stage (see Fig. 5), at which also the moduli of the 
other modes are purely periodic with the same frequency. This property distinguishes an 
MTV from a generic torus. 
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0.047 

Re v(k=(4,1)) 
0.050 
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Fig. 5. Projection of the torus solution for f = 0.089 onto the plane spanned by the real and imaginary parts of the 
forced mode (k = (4,l)). 

At f = fS = 0.092 the forced mode becomes non-periodic. The appearance of a new 
frequency leads to the generation of a generic torus. A further increase of the forcing leads 
to a phase-locking (f = fs = 0.0929) and a completely periodic orbit arises (Figs 6 and 7). 

This periodic solution was followed up to f = f, = 0.1092 and could then no longer be 

0.01 

Re v(k=(2,-2)) 

Fig. 6. Projection of the phase-locking periodic solution for f = 0.1072 onto the plane spanned by the real and 
imaginary parts of the k = (2, -2) mode (lower branch in Fig. 3). 
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Re v(k=(4,1)) 
0.055 

Fig. 7. Projection of the phase-locking periodic solution for f = O,:LO72 onto the plane spanned by the real and 
imaginary parts of the forced (k = (4, I)) mode (lower branch in Fig. 3). 

observed. But for f = fs = 0.1071 a new periodic orbit was detected (Figs 8 and 9), 
coexisting with the former one. Because of the similardty of both solutions (cf. Figs 6 and 7 
with Figs 8 and 9) we suppose a connection of both branches over two turning points with 
an unstable solution in between, as indicated in Fig. 3. A more detailed anlysis of this 
parameter range is under way. 

-0.01 

Re v(k=(2,-2)) 
0.01 

Fig. 8. Projection of the coexisting periodic solution for f = 0.1072 onto the plane spanned by the real and 
imaginary parts of the k = (2, -2) mode (upper branch in Fig. 3). 
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0.044 

Re v(k=(4,1)) 
0.055 

Fig. 9. Projection of the coexisting periodic solution for f = 0.1072 onto the plane spanned by the real and 
imaginary parts of the forced (k = (4,1)) mode (upper branch in Fig. 3). 

The new periodic orbit in turn bifurcates to a torus solution at f = f9 = 0.1080. This 
torus branch exists for a larger interval of f, interrupted by several phase lockings. In Figs 
10 and 11 a trajectory belonging to this branch is drawn. It seems to show phase-locking 
with a large frequency ratio. For other values of the bifurcation parameter the torus is 
completely filled. 

-0.01 

Re v(k=(2,-2)) 
0.02 

Fig, 10. Projection of the phase-locking periodic solution for f = 0.11 onto the plane spanned by the real and 
imaginary parts of the k = (2, -2) mode (upper branch in Fig. 3). 
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Re v(k=(4,1)) 

Fig. 11. Projection of the phase-locking periodic solution for f = 0.11 onto the plane spanned by the real and 
imaginary parts of the forced (k = (4,1)) mode (‘upper branch in Fig. 3). 

With a further increase of the forcing parameter, finally, the torus disappears and chaos 
occurs. In Figs 12 and 13 the chaotic trajectory is drawn for the parameter value f = 0.14, 
for which, in order to verify the chaotic character of the solution, the ten largest Lyapunov 
exponents have been calculated. The largest of them is positive, the next two are equal to 

Re v(k=(2,-2)) 
Fig. 12. Projection of the chaotic solution for f = 0.14 onto the plane spanned by the real and imaginary parts of 

the k = (2, -2) mode. 
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0.040 

Re v(k=(4,1)) 
0.065 

Fig. 13. Projection of the chaotic solution for f = 0.14 onto the plane spanned by the real and imaginary parts of 
the forced (k = (4,l)) mode. 

zero, and the following are negative. One of the vanishing exponents belongs to the 
direction of the trajectory, the other results from the continuous symmetry of the system. 

The Lyapunov exponents can be used to calculate the Kaplan-Yorke dimension D,, of 
the attractor, which is a good approximation of its Hausdorff dimension [ll]. If the 
Lyapunov exponents ili are ordered descendingly and i is the largest index satisfying 

iAi a 0, (19) 
i=l 

then 

D KY+- 

We have found DKy = 4.33. 

5. DISCUSSION 

We have studied the incompressible 2D Navier-Stokes equations truncated on a torus 
and described in detail a way into chaos for this system. The periodic boundary conditions 
necessitate some kind of external forcing to enable non-trivial asymptotic states. In 
accordance with previous work in the field, we have used a forcing in a single Fourier 
mode. The strength of this forcing has been our bifurcation parameter. We must leave 
open the question how far our results depend on the special choice of the forcing. 

For increasing strength of the forcing the system exhibits a rather complex sequence of 
bifurcations of steady states, travelling waves, periodic solutions and solutions on two- 
dimensional tori, leading to chaos. The appearance of a chaotic attractor was verified by 
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calculating the Lyapunov exponents, of which (just) one becomes positive. Our results 
seem to confirm the Ruelle-Takens scenario for the transition to turbulence. 

Finally, it must be mentioned that we cannot be entirely sure that there is a direct 
transition from the solution on the two-dimensional I:OI-US to the chaotic one, and not 
perhaps a solution on a three-dimensional torus between both. This question can be 
clarified only by future calculations with a refined step size for the variation of the 
bifurcation parameter. 
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torus solution is actually a modulated traveHing wave. We also would like to thank Ulrike Feudel for her help in 
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APPENDIX 

For testing the stability of stationary states of our fluid system, as well as for tracing the corresponding 
stationary-solution, or equilibrium, branches in the bifurcation diagram, the Jacobian matrix of the system of 
equations (16) (17) is needed, for whose elements one finds 

a(dc$/dt) 

a@ 
= -R-‘k*@ + sgn(k - j)Al,uR-j) + &ukj, 

J 

a(dt$/dt) 

adm 
= Akup&jj - BkuEzj, 

J 

a(duim/dt) 

a+ 
= -AkuP;+ - B&,, 

J 
a(duim/dt) 

aup 
= -R-‘k*$ + sgn(k - j)Atu& - Btu~~“+j, 

where the abbreviations 

have been used. 

Ak = (ej *k)(e(k-j) ‘4) + (e(k-j) ,k)(ej .d, 
BI, = (ej * k)(%+j * 4) + (ek+j * h.)(ej * ek), 

(A.5) 

(‘4.6) 


