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Abstract 

We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with 
periodic boundary conditions and a temporally constant external forcing. Fourier representations of velocity, pressure and 
magnetic field have been used to transform the original partial differential equations into a system of ordinary differential 
equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, 
supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order 
to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying 
(increasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, 
notably stable stationary solutions, have been traced. A primary non-magnetic steady state loses, in a Hopf bifurcation, stability 
to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on 
the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by further, symmetry-breaking, 
bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is only 
observed if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, 
and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory. 

1. Introduct ion 

A prominent  objective in the theory of  electrically conducting fluids is the explanation of  the origin of  
the cosmical  magnetic fields, such as those of  the Earth and the Sun (for a recent account of  the subject, see, 
e.g., Ref. [ 17]). The majority of  studies in this field has been kinematic. Kinematic dynamo theory studies 
the conditions under which a prescribed velocity field can amplify, or at least prevent from decaying, some 
seed magnetic field, completely disregarding the equations governing the motion of  the fluid. The hitherto 
most  successful branch of  kinematic dynamo theory is the theory of  the turbulent dynamo [9,13,15,21]. 
The central mechanism in this theory is the generation of  a mean, or large-scale, electromotive force by 
turbulently fluctuating, or small-scale, parts of  velocity and magnetic field. It has been found that the 
presence of  kinetic and magnetic helicities is favourable for a turbulent dynamo effect. With v, B and A 
denoting fluid velocity, magnetic field and a magnetic vector potential, the densities per unit volume of 
kinetic, magnetic and current helicity are defined by 
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HK = v ' c u r l v ,  HM : A . B ,  Hc : B . c u r l B .  (1) 

Simple examples of strongly helical flows are provided by the so-called ABC flows (named after Arnold, 
Beltrami and Childress), 

V : VAB C : (A sin z + C cos y, B sin x + A cos z, C sin y + B cos x), (2) 

where A, B and C denote constant coefficients. By satisfying curl v = v, they have the Beltrami property, 
curly × v = 0, and in general (if A B C  :~ 0), there are domains in the flow where the streamlines are 
chaotic. For these reasons, they have received much interest [2,3,7], notably as candidates for fast dynamos 
(kinematic dynamos for which the growth rate of the magnetic field remains bounded away from zero as 
the magnetic diffusivity tends to zero). The ABC flows are steady solutions of the incompressible (constant 
density) Euler equations. They are also steady solutions of the incompressible Navier-Stokes equations 
(NSE) if an external body force 

f = - - 1 3 A V A B  C = VVAB C (3) 

just compensating for viscous losses (see Eq. (4) below) is applied; in this case they are stable below and 
unstable above a certain critical strength of the forcing or critical Reynolds number, respectively [8,16]. 

Imposing this kind of forcing, Galanti et al. [6] studied the complete system of the (incompressible) 
magnetohydrodynamic (MHD) equations. Numerically simulating the system for selected Reynolds num- 
bers and selected initial conditions, they observed that at some critical value of the Reynolds number a 
stable ABC flow without magnetic field loses stability to a time-periodic state with a magnetic field. In the 
present paper we continue the study of Galanti et al. [6] by systematically applying numerical methods of 
bifurcation analysis. By applying an alternative forcing with zero mean helicity, we also test the role of 
helicity for a dynamo effect. 

In Section 2 we cast the 3D MHD equations, which contain the 3D NSE as a special case, into spectral 
form and explain the kind of truncation used, while Section 3 deals with the applied external forcing and 
the symmetries of the system associated with it. Then in Sections 4 and 5 we present the results of our 
calculations, namely in Section 4, a bifurcation sequence leading to chaos for the ABC forcing (Eq. (3)) 
and in Section 5 results for our alternative forcing. 

2. Basic equations and truncation 

We start from the equations for a non-relativistic, incompressible, electrically conducting fluid with 
constant material properties (cf., e.g., Roberts [18]), 

Ov 
+ (v • V)v = v A v -  gradp - ½ gradB 2 + (B- V)B + f ,  (4) 

0--t- 
OB 
- -  + (v. V)B = TAB + (B. V)v, (5) 
Ot 

div v = 0, div B : 0, (6) 

where v, p and B denote fluid velocity, thermal pressure and magnetic field, v and r/the kinematic viscosity 
and magnetic diffusivity, respectively, and f  is a yet unspecified body force. The third and fourth terms on 
the right-hand side of Eq. (4) constitute the Lorentz force. 
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We apply periodic boundary conditions on a cube of  side length 27r, which is equivalent to considering 
the motion on the torus T 3 -- [0, 2:r] x [0, 2:r] x [0, 2:r]. The mean values of  v and B, and consequently 
also o f f ,  are assumed to vanish, 

fvd3x=O, /.d3x---0, ffd3x:O. (7) 

T 3 T 3 T 3 

The periodicity assumption implies that the Fourier representations of  v, B, p and f ,  

v(x) = ~ vk exp(ik • x), B(x) = y ~  Bl` exp(ik,  x), (8) 
kE13 kE~ 3 
k#0 k#0 

p(x)  = ~ pl` exp(ik,  x), f ( x )  = ~ fl, exp(ik,  x), (9) 
kEzZ 3 keg 3 

k#0 

can be differentiated term by term with respect to the spatial coordinates. In Fourier space Eq. (6) takes the 
form 

vl` . k  = 0, Bk . k  = 0 (10)  

and is automatically satisfied if we write 

vk = vl`(l)ek(1) + v(2)e(2)l̀  k , Bl, = Ok'l(1)ek(1) + t~l̀ n(2)el̀ (2) fo rk  # 0, (11) 

i = 1, 2. (12) 

for real v(x) and B(x) (an asterisk indicates the complex conjugate)• By using these representations for vk 
and Bk we furthermore easily get rid of  both the thermal, grad p, and magnetic, grad ½B 2, pressure terms 
in Eq. (4) and arrive at the following infinite-dimensional system of ODE: 

2 
( j ) , ,  (fl) • k~ r ,(a). (fl) _ B(a)B(fl) 1 f (J ) ,  dvkJ) vk2vl  j ) - i  Z Z (e(p a) "el, )tel,_, ,t~,p " k - ,  + __ (14) 

dt = - 1, l,-pJ 
pe~'3 ~, f l=l  
p#O,k 

2 . (J)'~ (fl) k~rB(a)v(fl) _ v(a)B(fl) 1 (15) dB(J~) -- ~k2Bk j ) - i  Z Z (e(~) el, , te l ,_ , .  ,t  t, k-p p k-p," 
dt ,eZ3 ot,fl=l 

f(k j) on the right-hand side of  Eq. (14) is defined by 

f~J) ---fk" e~ j), j = 1, 2. (16) 

In our numerical calculations, we have used an isotropic truncation in wave number space, following 
Lee [10,11], who segmented k space into successive shells n 2 - n < k 2 ~< n 2 + n, n = 1, 2 . . . .  In most of  

with 

e(i) . k - - O ,  e~ 1)-e  ( 2 ) = 0 ,  e (i).e(k i) = 1, 

The last condition in Eq. (12) ensures that 

* B-k = B~ 13_ k = Vk, 

(real) "polarization" unit vectors ek (1), ek (2) perpendicular to k, 

= e ? ,  

(13) 
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our calculations we have taken into account three shells, corresponding to 89 k-vectors, which amounts to 
studying a system of  712 ODE. But partially, to test the influence of the degree of truncation, up to 9 shells 
were included in the computations, corresponding to 1847 k-vectors and 14 776 ODE, respectively. 

In order to improve for a given truncation the quality of  the approximation, we also used the concept 
of  approximate inertial manifolds (AIMs) [4,5,20] in a part of the calculations. An inertial manifold (IM) 
represents, in the form of  a map z = q~(y), an exact interaction law between the small-scale components 
z (also called slaved modes) and the large-scale components y of  a solution to an infinite-dimensional 
dynamical system. The existence of an IM for the 3D MHD equations, as also for the 3D NSE, is an open 
question.^Generalizing methods developed for the NSE [20], we have constructed and used in place of ~b 
an AIM q~, a map representing the modes belonging to higher-order shells in k space by those belonging to 
lower-order shells. 

3. Forcing and symmetries 

Because of  the periodic boundary conditions, the total energy flow through the boundary of  our cube 
vanishes, so that in order to compensate for viscous and ohmic losses some kind of  external forcing has to 
be applied. We have used a forcing according to Eqs. (3) and (2) with 

A = B = C = f .  (17) 

For this forcing the MHD equations are equivariant with respect to a discrete symmetry group which 
contains 24 elements and is isomorphic to the octahedral group O (the rotation group of  the cube) [1,3]. A 
number of  bifurcations observed in the system are related to these symmetries. 

Let a prime denote transformed quantities. Each symmetry transformation T is a combination of  a rigid 
rotation with a translation and can be written as 

x r = I x  = O x  + a ,  (18) 

where D is an orthogonal 3 x 3 matrix and a a constant vector. The whole symmetry group is, for instance, 
generated by the two transformations 

TI" /9 = 0 0 , a = - --Tr (19) 
0 --1 2 7r 

and 

I°°11 T2: D =  0 1 0 a = g  zr . (20) 
1 0 0 - r r  

Associated with the transformation of  the position vector x given by Eq. (18) is a transformation of the 
vector field v (x )  ( B ( x )  is transformed in the same way) according to 

vt (x)  : D v ( T - l x ) .  (21) 

In Fourier space Eq. (21) takes the form 

i _= Dv~  • exp(--ik • a), (22) v k 
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where 

t: = D-Lk, (23) 

d) and vk (2) one obtains and for the quantities v k 

2 
v'k =exp(-ik.a)  v~ tue~ )" (24) 

ot:l 

By using this relation (and the corresponding one for the magnetic field) it can be checked with respect 
to which transformations of the symmetry group, if any, a particular solution is symmetric, provided this 
solution is sufficiently regular, for example time-periodic. 

Following Galanti et al. [6], we have defined kinetic and magnetic Reynolds numbers R and R m  by 

R = f / v ,  R m  = f / o .  (25) 

While restricting ourselves to the case v = ~ (magnetic Prandtl number equal to unity), R has been our 
bifurcation parameter. 

In order to test the role played by helicity, alternatively also a forcing in the form 

f = lv(vAB C -'[- VABC) (26) 

with 

VAB C = (--A cos Z -- C sin y, - B cos x - A sin z, - C  cos y - B sin x) (27) 

has been applied. VAB C satisfies curl VAB C = --VAB c, and its addition in the forcing term "kills" the helicity 
on average in the volume. Namely, 

curl(VABC + VABC) • (VABC + VAB c)  = v2BC -- (VABC)2 

= 2[sin(z - y) + sin(x - z) + sin(y - x)]. (28) 

4. Bifurcation sequence for ABC forcing 

The results presented now refer to the positive-helicity forcing given by Eq. (3). 
For weak forcing (small R), there exists a stable stationary solution, namely the ABC flow (given by 

Eq. (2)) with vanishing magnetic field, and all system trajectories are attracted by this solution, which is 
symmetric with respect to all the 24 transformations of the symmetry group O. For varying R, we have 
traced the steady-solution branch by means of a predictor-corrector method. Thereby, in each step, in order 
to detect bifurcation points, the eigenvalues of the Jacobian matrix have been calculated. The steady state 
loses stability in a Hopf bifurcation, leading to a periodic solution with a magnetic field as the only time- 
asymptotic state. Table 1 summarizes the values of the Reynolds number at which the Hopf bifurcation 
appeared for different truncations. The upper part of the table gives the values for ordinary truncation 
in Fourier space, whereas in the lower part results obtained by using the inertial-manifold method are 
represented, the two numbers in columns 1 and 2 referring to master (first number) and slaved modes, 
respectively. 
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Table 1 
Reynolds number at which the Hopf bifurcation was observed for different truncations m wave number space. The lower part 
refers to the inertial-manifold method (see text) 
Number of Number of Critical R for 
shells in k space modes (equations) Hopf bifurcation 

2 40 (320) 4.6 
3 89 (712) 5.7 
4 194 (1552) 12.7 
5 369 (2952) 8.2 
6 594 (4752) <12.5 
7 895 (7160) <11.0 
9 1847 (14776) <12.0 

3/1 89/105 (712) 7.5 
3/2 89/280 (712) 7.6 
3/3 89/505 (712) 8.0 
4/1 194/175 (1552) 7.8 
4/2 194/400 (1552) 9.2 
4/3 194/701 (1552) 9.6 
4/4 194/1082 (1552) 10.0 

Discernible in Table 1 is a dependence of the critical Reynolds number on the degree of  truncation, 
with a tendency to higher values for weaker truncation. The latter may be due to an increase of the energy 
dissipation with increasing number of modes. 

Because of  a very long run time of  the programme calculating the eigenvalues of  the Jacobian matrix, 
for the cases with more than 5 shells in k space only upper bounds for the critical Reynolds number are 
given, obtained from simulations of  single trajectories. 

Quite generally, the ordinary-truncation and inertial-manifold methods revealed identical generic bifur- 
cation properties of  the system. Merely shifts of  the bifurcation values of  R were observed between the two 
methods. The case "4/1" in Table 1 may serve as an example of  how the inertial-manifold method takes into 
account the influence of  the exterior shells (slaved modes): The relatively low value of  the critical Reynolds 
compared to the four-shell case in ordinary truncation reflects the destabilizing influence of  the fifth shell 
(see upper part of  the table). 

In the following we present results obtained by applying the (simple) three-shell truncation. Since the 
Hopf  bifurcation leading to a dynamo effect seems to be generic, these results are likely to be representative 
of  the system at least for Reynolds numbers not too far above the Hopf  value. 

In Fig. 1 the instability of  the ABC flow is demonstrated for a Reynolds number only slightly above 
the Hopf  value. It can be seen how a trajectory escapes the originally stable fixed point and approaches a 
periodic orbit. 

The Hopf  bifurcation is non-degenerate. Just one pair of complex conjugate eigenvalues crosses the 
imaginary axis, the derivative of  their real part with respect to R being different from zero thereby. Con- 
sequently just one periodic solution originates, which is still symmetric with respect to the full group O. 
But for R = 7.7 three new stable periodic solutions appear, which can be transformed into each other by 
certain elements of  O. The three new solutions do not bifurcate from the stable symmetric cycle, which 
co-exists with them. We suppose that they are generated in (due to the symmetry simultaneous) saddle-node 
bifurcations. 
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Fig. 1. Example of a trajectory demonstrating the instability of  the primary steady state after the Hopf bifurcation for R = 5.8. 
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Fig. 2. Torus solution for R = 16. 
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Fig. 3. Trajectory on chaotic attractor for R = 20. 

For R = 11.55 also the symmetric branch loses part of  its symmetry. The cycle bifurcates into four new 
periodic solutions, which can be transformed into one another by elements of  O. Thus now altogether 7 
stable periodic solutions co-exist. 

Both branches, the four-solution one and the three-solution one, lead finally to chaotic states if R is further 
increased. Here we describe the transition for the three-solution branch. In a second Hopf  bifurcation at 
R = 16, a torus solution, as shown in Fig. 2, is generated (more precisely: three stable tori, namely from 
each of  the three periodic solutions of  the considered branch just one). At R = 20 the toms decays to 
a chaotic attractor, depicted in Fig. 3. The appearance of chaos has been verified by calculating the 5 
largest Lyapunov exponents. For this calculation we have used the algorithm of  Shimada and Nagashima 
[19]. Fig. 4 shows the Lyapunov exponents in dependence on the integration time. A good convergence is 
discernible, as well as that at least the largest exponent is positive. 

After the first Hopf  bifurcation the magnetic energy increases to a value of about 10 % of  the total energy. 
A similar ratio between magnetic and kinetic energies was observed by Meneguzzi et al. [! 2] in 3D MHD 
simulation experiments. 

We have also calculated relative kinetic and magnetic helicities HK and/4M as defined by Galanti et al, [6], 

#K ---- fT 3 V" curl v d3x /4M = fT 3 A • B d3x (29) 

~/ fT3vad3x  f r3 (cur lv )2d3x  ' x f jT3A2d3x  f r 3 B Z d 3 x  ' 

and found that they depend on the Reynolds number only very weakly. In the time-periodic states both are 
constant in time, the value of/~K being slightly decreased compared to that in the non-magnetic state (/~M 
is not defined in the non-magnetic state). 
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Fig. 5. Trajectory for forcing with zero mean helicity at R = 18.5. 
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Fig, 6. Example of the evolution of kinetic (upper curve) and magnetic energies for zero-mean-helicity forcing (R : 13.5). 

5. Results for forcing with zero mean helicity 

When applying the forcing given by Eq. (26), for small Reynolds numbers again a stable non-magnetic 
steady solution was found. At R ---- 16 the steady-solution branch loses stability in a probably degenerate 
bifurcation. Two real eigenvalues pass extremely slowly through zero. Above the bifurcation value for R 
an only very weakly attractive stable periodic solution with vanishing magnetic field was found, followed, 
for further increased R, by an apparently chaotic, also non-magnetic solution, as depicted in projection to 
a plane in Fig. 5. The form of  the trajectory is reminiscent of  a textbook picture of  Shilnikov chaos (see, 
e.g., Ref. [14]), which is the result of  a global bifurcation. However, this problem, as well as the character 
of  the first bifurcation of  the primary steady state, are still under investigation presently. 

For the zero-mean-helici ty forcing we never observed a dynamo effect. This has been checked by sim- 
ulations up to R = 80. As shown in an example in Fig. 6, any initial magnetic field diffuses away. This 
seems to confirm results f rom traditional kinematic mean-field dynamo theory. 
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