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Nonlinear square patterns in Rayleigh-Bénard convection
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PACS. 47.20.Bp – Buoyancy-driven instability.
PACS. 47.54.+r – Pattern selection; pattern formation.

Abstract. – We numerically investigate nonlinear asymmetric square patterns in a horizontal
convection layer with up-down reflection symmetry. As a novel feature we find the patterns
to appear via the skewed varicose instability of rolls. The time-independent nonlinear state
is generated by two unstable checkerboard (symmetric square) patterns and their nonlinear
interaction. As the bouyancy forces increase, the interacting modes give rise to bifurcations
leading to a periodic alternation between a nonequilateral hexagonal pattern and the square
pattern or to different kinds of standing oscillations.

Pattern formation occurs in a wide variety of extended physical systems and is an area of
active research. One of the most frequently studied pattern-forming systems is the Rayleigh-
Bénard convection, i.e., a bouyancy-driven convection in a fluid layer heated from below [1].
Recent experiments in Boussinesq Rayleigh-Bénard convection show unexpected patterns
which appear in a range where only rolls were known to be stable. These patterns do not occur
near the threshold for convection and emerge when the roll pattern disappears. Assenheimer
and Steinberg [2] observed patterns consisting of domains of upflow hexagons (with rising
motion in the cell center) coexisting with domains of downflow hexagons, which appear via a
core instability of spirals and targets. The main feature of the observed hexagonal patterns
is that the wavelength of the hexagons is significantly larger than that of rolls at the same
Rayleigh number. Using an appropriate Galerkin ansatz for steady Boussinesq convection,
Clever and Busse [3] calculated hexagon solutions and proved them to be stable in the re-
gions of Rayleigh-wave number space where they were observed in the experiment. In [4]
Busse and Clever showed that a similar property holds for convection flows in the form of
squares. So called asymmetric squares with rising or with descending motion in the center
(and descending or rising motion near the boundary) become stable at elevated Rayleigh
numbers. An experimental observation indicating a tendency towards coexisting up- and
downflow square and hexagonal cells is also shown in [4]. In the studies [2–4] the material
properties and the boundary conditions are symmetric about the midplane of the convective
layer. Usually, hexagons and asymmetric squares are observed in convection lacking up-down
reflection symmetry, namely in fluids with strongly temperature-dependent viscosity [5] or
in Bénard-Marangoni convection. They are also found in other systems, for instance among
the standing wave patterns observed in the Faraday experiment, in which waves on the free
surface of a fluid layer are produced by subjecting the layer to vertical oscillations, if a two-
frequency excitation is used [6,7]; in similar experiments with magnetically driven ferrofluids
already a single-frequency forcing (which, however, simultaneously excites two spatial wave
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numbers) can generate the patterns [8]. In [6] the observation of asymmetric squares in a
two-frequency Faraday experiment with forcing frequencies in the ratio 3/5 is reported. For
this kind of “odd/odd” forcing the Faraday system resembles Boussinesq convection with up-
down reflection symmetry in that quadratic terms in the relevant amplitude equation (valid
near the primary bifurcation of the basic state) are excluded by symmetry; in the case of
non-Boussinesq convection (convection with temperature-dependent viscosity) such quadratic
terms are present and enable triadic wave vector interactions that can explain, for instance,
the occurrence of hexagonal patterns. In the case of Bénard-Marangoni convection, a time-
independent square pattern can be observed to evolve from a hexagonal planform [9–11]. The
transition takes place via a merging of pairs of threefold vertices into single fourfold vertices
(see fig. 5 below).
The qualitative behavior of these kinds of patterns is not well understood at present.

To gain insight into the appearance and properties of the asymmetric square pattern, we
investigate a fluid layer with up-down symmetry. In our simulations the square pattern appears
via the skewed varicose instability of rolls (see, e.g., [12]). It is determined by modes with two
different wave numbers that are simultaneously excited and the nonlinear interaction between
them. In the Faraday experiment a simultaneous excitation of two different wave numbers is
reached by two-frequency forcing, and many of the patterns observed for this forcing can be
explained by nonlinear interactions of modes whose wave vectors form resonant triads [13,14].
We find the nonlinear square pattern to exhibit interesting spatial and temporal behavior.
Mode interaction gives rise to a bifurcation that leads to an oscillation consisting of a periodic
alternation between a hexagonal pattern and a square pattern due to a dynamical version
of the instability of a fourfold vertex, known as T1 process [15]. This oscillatory behavior
of dynamical side swapping in square convection was observed by Ondarçuhu et al. [16] in a
Bénard-Marangoni convection experiment in a small aspect ratio square vessel. The pattern
can also undergo bifurcations to other kinds of oscillatory solutions. So a special case of a
double Hopf bifurcation with strong resonance, induced by symmetry, is observed where two
kinds of standing oscillations bifurcate simultaneously.
We consider buoyancy-driven convection in a plane fluid layer of thickness d heated from

below. Using the Oberbeck-Boussinesq approximation, the governing system of partial differ-
ential equations reads as follows:

∂v

∂t
+ (v · ∇)v = −∇p+ P �v + PR θez , (1)

∇ · v = 0 , (2)
∂θ

∂t
+ v · ∇θ = vz +�θ . (3)

Here v is the fluid velocity and p and θ represent the deviations of pressure and temperature
from their values in the pure conduction state. We use Cartesian coordinates x, y and z with
the z axis in the vertical direction parallel to the gravitational force. ez is the unit vector
in the vertical direction. Equations (1)-(3) are given in dimensionless form where the units
of length and time are d and d2/κ, respectively, with κ being the thermal diffusivity. θ is
measured in units of the temperature difference δT between the lower and upper boundaries
of the fluid layer. There are two dimensionless parameters, the Prandtl number P and the
Rayleigh number R, defined by

P = ν

κ
, R =

αgd3

νκ
δT, (4)
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Fig. 1 – Shadowgraph images of the vertical velocity component vz in the horizontal midplane for
L = 4. Bright areas refer to positive values, where the motion of the fluid is upwards. (a) Asymmetric
square pattern for R=2000, (b) unstable checkerboard pattern for R=1010.

where ν is the kinematic viscosity, α the volumetric expansion coefficient and g the gravita-
tional acceleration. The Rayleigh number R measures the strength of the buoyancy forces.
We fix P to a value of 6.8 and apply periodic boundary conditions with spatial period L in the
horizontal directions x and y. The top and bottom planes are assumed to be impenetrable,
stress-free and isothermal:

∂vx

∂z
=

∂vy

∂z
= vz = θ = 0 at z = 0, 1 . (5)

We wish to emphasize that the qualitative bifurcation behavior of our system is determined by
its symmetry and is thus the same as for identical rigid-wall conditions at the top and bottom
(though the critical Rayleigh numbers at which the bifurcations occur are different). We
restrict ourselves to the case of a vanishing mean horizontal flow (corresponding to vanishing
Fourier coefficients of vx and vy for wave number k = 0) since such flows can be removed
by a Galiliean transformation. In our numerics we used a pseudospectral method [17, 18] as
described in [19]. The spatial resolution was 32 points in each direction, with the exception
of (non-simulative) eigenvalue and eigenvector calculations, where only 16 points in each
direction were used. Time integration was performed using an eighth-order Runge-Kutta
scheme as described in [20].

An example of steady down-square convection is shown in fig. 1a. Results of a stability
analysis are shown in fig. 2. The square pattern appears via the skewed varicose instability of
rolls. Most of the calculations were carried out in the aspect ratio range 3.5 ≤ L ≤ 5, where
one finds a pattern with just one square in the periodic box. In additional calculations for
aspect ratios between 5 and 8 patterns with two square cells (lying under 45◦ in the box) or
four cells, respectively, were found (two cells for 5 � L � 7 and four cells for L � 7, where the
L intervals for different numbers of cells overlap at the ends). For aspect ratios smaller than
about 3 the skewed varicose instability is suppressed and no squares appear. In this case the
primary rolls are stable up to significantly higher Rayleigh numbers and lose then stability to
traveling waves along the roll axis [19].

For 3.5 ≤ L ≤ 5 and close to the onset of convection, we find two pairs of purely two-
dimensional, straight, stable, stationary convection rolls lying under 45◦ in the box. When
the Rayleigh number crosses the instability line specified as a dashed line in fig. 2, four equal
real eigenvalues become positive and the roll pattern becomes unstable to perturbations with
the characteristic skewed varicose appearance of the disturbed pattern, caused by a periodic
thickening and thinning of the convection rolls. This (transient) deformation is followed by a
transition to a stable stationary square pattern in combination with a jump to a significantly
higher Nusselt number (measuring the rate of heat transfer through the convection layer). The
latter indicates that the stable squares do not bifurcate supercritically from the roll-solution
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Fig. 2 – The region of stable squares in the L-R plane. The dashed line specifies the skewed varicose
instability for rolls and indicates the transition from a roll pattern to a square pattern for increasing
Rayleigh number. The back transition from the squares to the rolls for decreasing R is shown by the
solid line, with + signs marking the calculated points. The dashed-dotted line indicates instability
of the squares for increasing R, diamonds denoting a double Hopf bifurcation and triangles a single
Hopf bifurcation. For reference, the linear stability boundary of the nonconvective ground state to
rolls is shown by the dotted line.

branch. Cells with rising motion as well as cells with descending motion in the center can
appear —this must be so since the system is symmetric with respect to up-down reflections.
The skewed varicose instability of the rolls can lead to different branches of asymmetric

squares which seem to bifurcate simultaneously. In simulations starting from a superposition
of the unperturbed rolls with a small perturbation one always observes a transient skewed
varicose pattern, but, depending on the perturbation added to the rolls, the final square solu-
tion may or may not be symmetric with respect to the dihedral group D4 of all rotations and
reflections of a square in a plane which leave the square invariant. In the following we report
results for the D4 symmetric branch. When looking at the spectrum of the excited Fourier
modes of solutions on this branch, one sees that to lowest order they can be represented by

A
(
eik1x + eik2x

)
+B

(
ei(k1+k2)x + ei(k1−k2)x

)
+ c.c. , (6)

where k1 and k2 are horizontal wave numbers, k1⊥k2, and |k1| = |k2| = k is the dominating
wave number of the square pattern (2π/k is the side length of the asymmetric squares). The
coefficients A and B are of the same order of magnitude, while the coefficients of all other
Fourier modes are smaller by at least one order of magnitude. Each of the two summands in
eq. (6) describes a checkerboard pattern as shown in fig. 1b (with either upward or downward
motion over a whole square), the summand with the coefficient A one with the dominating
wavelength and the summand with the coefficient B another one, rotated by an angle of π/4,
with a side length smaller by the factor 1/

√
2. Both checkerboard patterns are unstable, in

contrast to their superposition, the asymmetric square pattern. The second wave number,
q = |k1 + k2| =

√
2k, is the wave number of the roll solution that becomes unstable to the

skewed varicose instability; for Rayleigh numbers above the critical one for the instability this
roll state exists as an unstable solution. Rolls with the smaller wave number k are stable in
the region where we observe stable asymmetric squares. The periodic boundary conditions
with fixed aspect ratio admit only discrete values of the angle between the rolls and (say)
the y-axis and of the wave number of the rolls —since even integer numbers of rolls have to
cross the sides of the periodic box (cf. [21]). q and k are two admitted wave numbers that
are in resonance through the condition q = |k1 ± k2|, |k1| = |k2| = k. As a consequence
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Fig. 3 – Successive shadowgraph images of the vertical velocity component vz in the horizontal
midplane for a time-periodic state at Rayleigh number R= 8000 in a cell of aspect ratio L = 4.1.
Snapshots are taken at t=0 (a), t=τ/4 (b), t=τ/2 (c) and t=3τ/4 (d), where τ is the time period.

of the discreteness, they do not vary with R but are fixed. Assenheimer and Steinberg [2]
experimentally observed coexisting rolls and hexagons with a wave number ratio of 1.2 to 1.3
between rolls and hexagons. The aspect ratio of the experimentally studied layer was large
and rolls and hexagons were seen in the same pattern. In our calculations, for small aspect
ratio, pure roll or square patterns are found as time-asymptotic states.

The nonlinear interaction between the two ckeckerboard solutions (with wave numbers k
and q, respectively) determines the stationary state and leads to a square pattern with upflow
(downflow) motion in the centers and downflow (upflow) boundaries. This is contained in the
Galerkin ansatz for a steady three-dimensional solution in [4]. An ansatz like eq. (6) was also
used by Proctor and Matthews [22] in a study of square cells in non-Boussinesq convection
near onset, while Dawes [23] analysed a 1 :

√
2 resonance between an oscillatory and a steady

mode in magnetoconvection.
The stability boundary of the asymmetric squares towards lower values ofR, where there is

a back transition to stable rolls of wave number q, is obtained by following the path backwards
and calculating the eigenvalues and eigenvectors of the linear stability problem close to the
Rayleigh number where the squares appeared. The critical unstable eigenvector (correspond-
ing to a single real eigenvalue) is found to contain only q-dependent modes. Furthermore,
during the transition from asymmetric squares to rolls, a transient checkerboard pattern with
the wavelength q of the rolls can be observed (fig. 1b). As is seen in fig. 2, the stable squares
can be traced to Rayleigh numbers below the critical one for the skewed varicose instability
of the rolls. There is a bistable region (between the solid and the dashed line in fig. 2) where
both stable rolls and stable asymmetric squares exist (i.e., depending on the initial conditions,
the system can converge to a roll pattern with wave number q or to a square pattern). This
hysteretic behavior indicates that the bifurcation of the squares from the rolls is subcritical.

We have also traced the square pattern solution for increasing values of the Rayleigh
number and have observed two different kinds of Hopf bifurcation, depending on the aspect
ratio L. These bifurcations are apparently supercritical since neither a jump in the Nusselt
number nor hysteresis are observed. For smaller L two identical pairs of complex conjugate
eigenvalues pass the imaginary axis (denoted by diamonds in fig. 2). This is a special case of a
double Hopf bifurcation with strong resonance, induced by the D4 symmetry [24,25]. Several
solutions can bifurcate simultaneously here. We find two stable solutions that correspond to
standing oscillations. One of them, shown in fig. 3, appears like the superposition of two
standing waves, one with oscillations in the x-direction and the other with oscillations in the
y-direction, the vertex points of the square pattern being located at the nodes of the standing
waves. The time period in our time units (thermal diffusion times) is τ = 0.11. The spatial
symmetry D4 is broken down to Z4 (the cyclic group). For the second standing oscillation,
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Fig. 4 – Successive shadowgraph images of the vertical velocity component vz in the horizontal
midplane for a time-periodic state at Rayleigh number R=10500 in a cell of aspect ratio L = 3.75.
Snapshots are taken at t=0 (a), t=τ/4 (b), t=τ/2 (c) and t=3τ/4 (d), where τ is the time period.

shown in fig. 4, the D4 symmetry is broken down to a reflection symmetry with respect
to a diagonal line and the four vertex points of the square pattern oscillate with maximum
amplitude and in phase parallel to the invariant diagonal.
A further kind of oscillation results from a single Hopf bifurcation, indicated by triangles

in fig. 2. It consists of a periodic alternation between two nonequilateral hexagonal patterns,
seen in fig. 5a and c. These are at right angles to each other and during the transition be-
tween them the square pattern is passed through. The topology and dynamics of the whole
pattern transformation can be described by a dynamical version of an elementary topological
transformation in two dimensions, the T1 process or side swapping. The spatial symmetry
is broken from D4 to D2 (the dihedral group generated by two reflections). The oscillation
period, determined by the imaginary part of the critical eigenvalues, is τ = 0.23 in our time
units. This oscillatory behavior of dynamical side swapping in square convection was observed
by Ondarçuhu et al. [16] in a Bénard-Marangoni convective experiment in a small aspect ratio
square vessel (L = 4.46). They observed a sequence of qualitative changes in a convection
pattern consisting of four square cells, which are determined by the dynamics of one vertex.
In [26] this behavior is described by the nonlinear interaction between different critical modes
whose linear superposition generates the experimentally observed pattern. Transformation
from a hexagonal pattern into a square pattern via a merging of cell knots has been observed
in [9, 11] and [27]. These experiments were done for Bénard-Marangoni convection, but they
exhibit instabilities for patterns with a square symmetry in general. The symmetry deter-
mines which kinds of patterns can appear through instabilities and bifurcations. Once the
asymmetric squares have appeared in our Boussinesq system, the up-down reflection symme-
try is broken and the behavior can be expected to resemble that of asymmetric squares in
Bénard-Marangoni convection.

(a) (b) (c) (d)

Fig. 5 – Successive shadowgraph images of the vertical velocity component vz in the horizontal
midplane for a time-periodic state at Rayleigh number R= 5800 in a cell of aspect ratio L = 4.5.
Snapshots are taken at t=0 (a), t=τ/4 (b), t=τ/2 (c) and t=3τ/4 (d), where τ is the time period.
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In conclusion, we have numerically investigated the appearance and properties of nonlinear
asymmetric square patterns in Boussinesq Rayleigh-Bénard convection with up-down symme-
try. The squares were found to appear via the skewed varicose instability of rolls, without
controlled initial conditions and without any special ansatz. They result from the nonlinear
interaction of two unstable checkerboard (symmetric square) patterns with a sidelength ra-
tio of 1 :

√
2. A jump in the Nusselt number indicates that stable squares do not bifurcate

supercritically from the primary roll-solution branch. Hysteresis of the transition points to a
subcritical bifurcation. Towards higher Rayleigh numbers the square pattern loses stability
to different kinds of oscillations. To a large part the qualitative behavior of the calculated
solutions has been seen in experiments.
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