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Abstract. Models of the magnetic field in the solar chromosphere and corona are still mainly based on 
theoretical extrapolations of photospheric measurements. For the practical calculation of the global field, 
the so-called source-surface model has been introduced, in which the influence of the solar wind is described 
by the requirement that the field be radial at some exterior (source) surface. Then the assumption that the 
field is current-free in the volume between the photosphere and this surface allows for its determination from 
the photospheric measurement. In the present paper a generalization of the source-surface model to 
force-free fields is proposed. In the generalized model the parameter e (= 7 x B" B/B 2) must be non- 
constant (or vanish identically) and currents are restricted to regions with closed field lines. A mathematical 
algorithm for computing the field from boundary data is devised. 

1. Introduction 

Reliable measurements of solar magnetic fields still being restricted to the photosphere, 
models of the magnetic field in the chromosphere and in the corona are mainly based 
on theoretical extrapolations of photospheric measurements. When, instead of the 
near-surface configuration above-limited photospheric regions, the global field con- 
figuration is considered, the interaction of the solar wind with the solar magnetic field 
must be taken into account. This interaction has been treated selfconsistently only for 
the case of a photospheric dipole field (Pneuman and Kopp, 1971; Weber, 1978; 
Steinolfson, Suess, and Wu, 1982). For modelling more complex fields, Schatten, 
Wilcox, and Ness (1969) and Altschuler and Newkirk (1969) introduced the so-called 
source-surface model, in which the plasma-magnetic field coupling is expressed by the 
requirement that the field be radial at some spherical surface r = R x (between 1.5 R o 
and 2.5 RG). The magnetic field in the volume between the photosphere and this surface 
is assumed to be current-free, thus allowing for its determination from the measured 
photospheric line-of-sight component. 

Some mathematical aspects of this model have been considered by Aly (1987). 
Concerning the computational technique, improvements have been proposed by Adams 
and Pneuman (1976), Altschuler e t  al. (1977), and Riesebieter and Neubauer (1979). 
Also non-spherical source-surfaces are used (Schulz, Frazier, and Boucher, 1978; 
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Levine, Schulz, and Frazier, 1982). Yeh and Pneuman (1977) modelled, starting from 
a current-free field, the effect of current sheets between closed and open field lines and 
between oppositely directed open field lines on the magnetic field. 

Volume currents, on the other hand, must be force-free, at least in the inner part of 
the atmosphere, where the magnetic pressure dominates over both the gas pressure and 
the kinetic energy density of the plasma flow. That is, electric currents must be aligned 
with the magnetic field and we have 

V x B = ~ B ,  

with c~ denoting a pseudo-scalar function. 
Models of global force-free fields have been restricted to spatially constant c~. 

Nakagawa (1973) and Nakagawa, Wu, and Tandberg-Hanssen (1978) assumed the 
magnetic field to be force-free with spatially constant ~ in the whole exterior of the 
photospheric surface. This, however, is an inappropriate assumption since a magnetic 
field being force-free with constant e ( ¢  0) in the whole exterior of a bounded volume 
cannot have a finite energy content (Seehafer, 1978). 

Elwert et  al. (1982) put tangential planes at centres of strong magnetic fields, computed 
the constant-c~ force-free field above each center by using a Green's function solution 
for the half space given by Chiu and Hilton (1977) (for the current-free field, e = 0, the 
solution of Schmidt (1964) was used) and added these individual fields. This model 
suffers from bad discontinuities of the total field across the boundary planes of the half 
spaces in those regions where different half spaces overlap (for the individual fields of 
overlapping half spaces the value of e must be the same since otherwise the total field 
is not force-free). Barbosa (1978) proposed to prescribe in addition to the photospheric 
boundary condition the normal field component on an outer spherical surface and to 
calculate the constant-or force-free field in the volume between the two surfaces. But the 
required information on the normal field component at the outer surface is presently not 

available. 
Durrant (1989), who tried to generalize the source-surface model to constant-c~ 

force-free fields, noticed that the condition of a purely radial field at r = R s plus the 
further condition on the photosphere overdetermine the problem. He proposed to 
minimize the horizontal field on the outer boundary in the least-squares sense, subject 
to the constraint provided by the inner boundary condition. Indeed a constant-c~ 
force-free field which is perpendicular to some spherical surface must be a potential field 
(e = 0). This is part of a more general statement derived in Section 2.3. 

In the present paper we propose a generalization of the source-surface model to 
non-constant-e ('nonlinear') force-free fields. We also devise a mathematical method for 
computing the field from boundary data. In this point we adapt previous work of Bineau 
(1972) and Sakurai (1981). 
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2. Statement of the Problem 

2.1. ASSUMPTIONS 

(i) Let the corona be defined as the fixed domain D bounded  by a sphere S~ of  radius 

R 1 and an outer simple closed regular surface S 2 and let fi denote the interior unit normal  

on the boundary  ~D = S~ w S 2 o l d  (on S 1 then fi = f, where f is the unit vector in the 
radial direction with respect  to an origin in the center of  S~). On ~?D, a vector x is 
decomposed  into its normal  and tangential components  x n = xnfi and xt: 

x.  = (x'fi)fi on 0D,  (1) 

x t = x - x  nfi on 0D.  (2) 

(ii) The magnetic field B is assumed to be force-free in D, i.e., to satisfy 

V x  B =  ~B in D ,  (3) 

V ' B = 0  in O.  (4) 

Equations (3) and (4) imply B. Vct= 0 in D, i.e., c~ is constant  along the field lines or 

the field lines lie in the surfaces e = constant,  respectively. 

(iii) The normal  componen t  B r = B~ of  B on S~ is equal to a given function ql : 

B,  = q l  on S 1, (5) 

f ql da = O. (6) 
St 

Here and in the following, do" denotes a surface element. 

(iv) The tangential component  B t of  B on S 2 is assumed to vanish: 

B , = 0  on S 2, (7) 

i.e., B £ S 2 on S 2. 

2.2. F IELD LINES OF B 

We define as ~(r)  the field line o r b  passing through the point r. The function q2 denotes 
the values of  Bn on S 2, which, in contrast  to the values q~ of  B~ on S 1, are not prescribed 

but depend on B: 

q2 : B n  o n  S 2 . (8) 

Furthermore,  we define the following subsets of  S~ and S 2 (Figure 1): 

S, + = { r f r ~ g i ,  q i ( r )>O } ,  i=  1 ,2 ,  (9) 

S i  = { r l r ~ S e ,  q~-(r )<0},  i =  1 , 2 ,  (10) 

Sg + = { r l r ~ S  + ,  ~ ( r ) c u t s S ~ } ,  i =  1 , 2 ,  (11) 

S~+p = { r [ r e S z  +, ~ ( r ) c u t s S ~ ( ~ , } ,  i =  1,2, j ( 1 ) = 2 ,  j ( 2 ) =  1. (12) 
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Like q2, also S f ,  S + and Si+p depend on B. 

Finally, two subvolumes of  D are defined, which depend on B as well: 

Dic = { r ] r  e D, ,~(r) cuts S~ and S 7 },  i = 1, 2 .  (13) 

Fig. 1. Schematic view of a possible configuration in our model. The magnetic corona is represented by 
the space between the two surfaces $1 (photosphere) and S 2 (source surface). It is divided into two parts: 
one containing lines connecting S 1 and S 2 (or, more precisely, connecting either S~-op to S£op or S~-o~ to S2+op) 
and one (D~,,) containing lines connecting the two parts S/~ and Sic of S I . Lines with arrows symbolize 

magnetic field lines. 

2.3. A BASIC PROPERTY OF B 

For any field B on any surface it is 

V × B = ( V t + V n )  x ( B  t + B . ) = V ~ x B t + V ~ x  B n + 7  n x B~, (14) 

since 

V. × B n fi 0 0B~ = - - x B n f i = f i ×  f i = O .  
0n On 

For  the normal component  of  V x B we then have 

~ - ( v  × B) = ~ . ( v ,  × B,), (15) 

since 

l l ' ( V  t × 8 n )  = fl" (V t × B n l l  ) = I I ' ( V t B  n X Ii) = 0 
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and 

. . . .  × B  t = f i "  f i × - -  B t = 0 ,  
& On 

Because of  the assumption (7), Equation (15) implies 

f i ' ( 7 × B ) = 0  on S2. (16) 

Consequently, according to Equation (3), 

~ B , = 0  on S 2. (17) 

On $2, Bn can vanish only on a set of  measure zero. Otherwise, we would have B = 0 

on a finite part of  S 2. I fB  vanishes on some surface, however, then the three-dimensional 
force-free extension of  the field from this surface must identically vanish (cf. Aly, 1989). 

Therefore, 

= 0 on S 2 (18) 

and, because of  B" 7 e  = 0, 

= 0 on S~op. (19) 

2 . 4 .  B O U N D A R Y  VALUE P R O B L E M  F O R  B 

Let h be a given function defined on S~-. We impose on B the supplementary condition 

(compatible with the result of  Section 2.3) 

= h on S L [ B ] ,  

= 0 in D \ D I c [ B  ] . 

Then B must  be a solution of  the following boundary value problem (BVP): 

V × B =  ~B in D ,  (20a) 

7 ' B  = 0 in D ,  (20b) 

B,  = ql on S 1 , (20c) 

B, = 0 on $2,  (20d) 

: h on S1+~[B], (20e) 

= 0 in D \ D I c [ B ] .  (20f) 

3. Associated Linear Problems 

3.1. POTENTIAL FIELD 

(i) The potential field B o is defined as the solution of  the BVP: 

7 × B o = 0 in D ,  (21a) 
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V.B o = 0 

Bon = ql 

Bo, = 0 
(ii) We can write 

Bo = V~po, 

where 4o is a solution of the BVP: 

A~bo=0 in D ,  

04o - ql o n  S 1 , 
On 

q~o = 0 o n  S 2 , 
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in D,  

o n  S 1 , 

on $2. 

(21b) 

(21c) 

(21d) 

(22) 

(23a) 

(23b) 

(23c) 

Thus 

f B2dV= f ( B ~ + b 2 ) d V  >- fB~dV,  q.e.d. 
D D D 

(27) 

By making use of the divergence theorem and of the conditions (24b), (24c), and (23c) 
we obtain for the second term on the right-hand side of Equation (25) 

fBo.bdV=fVOo.bdV=fv.(Oob)dV=-f ,obndV= 
D D D aD 

S l  $ 2  

(24a) 

(24b) 

(24c) 

(25) 

B = B o + b = V q ) o + b  in D ,  

V . b = 0  in D ,  

b n = 0 on Sx. 

For the magnetic energy we have 

fB2dV=f(B +b2)dV+2fBo'b 
D D D 

P r o o f . "  

We write 

dV. 

The solution of this mixed BVP is well known to exist and to be unique. 
(iii) The energy of B o is the minimum value of the energies of all fields B satisfying 

Bn = ql on S 1. (Note that no condition is imposed on B on $2! ) 
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(iv) The sets Sfc[Bo] are empty. 

Proof." 
Assume that $2 + and S£. are not empty and consider a field line Z~ of B o connecting 
$2 + to $2~ (then ] Bo] > 0 on ~1)- Let ~ denote a line on $2 connecting the endpoints 
of cgl, so that (~ + ~ is closed. According to Stokes' theorem and condition (21a) 

f Bo'ds + f Bo,.ds = 0, (28) 

where ds is a line element. Because of condition (21d) then 

f B o ds = 
% 

B o -= 0 on 

in contradiction to the 

0,  (29) 

% ,  (30) 
assumption made, q.e.d. 

(v) The energy of B o in D may be expressed by 

fB~dV= f(Vd?°)2dV:- f ~°AO°dV+ 1- 2 f AO2dV: 
D D D D 

f f e~°do=-feoqld~. (31) = 1 Aq~ZdV= - qb° ~n 
2 

D ~3D Sl  

3 . 2 .  F I E L D  G E N E R A T E D  BY G I V E N  C U R R E N T S  

(i) The electric current density j is assumed to be prescribed in D, with 

V . j = 0  in D (32a) 
and 

J n = 0  on S 2 (32b) 

according to Equation (18). 
We wish to determine B as solution of the BVP: 

47~ 
V x  B = - -  j in D ,  (33a) 

C 

v .  B = o (336) 

B,, = ql (33c) 

B, = 0 (33d) 

in D ,  

on S 1 , 

on S 2 . 
This linear BVP has at most one solution since any solution of the associated homo- 
geneous problem has to satisfy the same equations as Bo, namely Equations (2 ia-d) ,  
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but with q~ replaced by 0 on the right-hand side of  Equation (21c), and therefore must  

vanish identically. 

(ii) To construct  a solution B we first arbitrarily fix the values q2 of  B,  on S a and solve 

the BVP: 

4 r e .  
7 x B  1 = - -  I in D ,  (34a) 

C 

~7" B 1 = 0 in  D ,  (34b) 

Bl .  = qa on S 1 , (34c) 

B1. = q2 o n  S 2 . (34d) 

This BVP is well known to admit a unique solution. Because of  Equation (32b), 

Therefore, 

4yr 
f i ' V x B  1 = -  j . = 0  on S a.  (35) 

C 

B1, = V, 41 o n  S 2 

with some function 41 defined on $2. 

We next consider the BVP: 

(36) 

A42  = 0 in  D ,  (37a) 

&P2 _ 0 on S 1 , 
8n 

(37b) 

42 = -- 41 o n  $ 2 ,  

which admits a unique solution 42- 
N o w  we set 

(37c) 

Then 

B = B~ + V42. (38) 

47Z . 
7 x B = T x B 1  = - -  I in D ,  (39a) 

C 

7 ' B  = 7 " B  1 + z142 = 0 in D ,  (39b) 

042 B. = B1. + = ql on S 1 , (39c) 
On 

B , = B l , + 7 , 4 2 = 7 , ( 4 1  + 4 2 ) = 0  o n S  2. (39d) 

Thus the field B defined by Equation (38) is the uniquely determined solution of  our 

original BVP, Equations (33a-d) .  
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4. Iterative Calcu la t ion  of  the Force-Free  Fie ld in O 

4.1. ITERATIVE SCHEME 

We define the following iteration for B, assuming B C'~ to be known. First we determine 

~(,o in D by solving 

B ('>' Vc6 ") = 0 in D I ~ [ B  (')] , (40a) 

~(~) = h on $1+~ [ B ( ' ) ] ,  (40b) 

~(') = 0 in D \ D I ~ [ B ( ' ) ]  . (40c) 

N o w  we are able to calculate B (" + 1) by solving 

7 x B (n+l> = ~( '°B( ')  in D ,  (41a) 

V . B  °~+1~ = 0 in D ,  (41b) 

B~" + 1) = ql on $1 , (41c) 

B } . + I )  = 0 o n S 2 .  (41d) 

This BVP 

a unique solution B ( '+  1). Equation (40c) ensures that  cd "> = 0 on $2. 

4.2. CONVERGENCE OF THE ITERATION 

We start the iteration from the potential field, 

B (o) = B o . 

is formally equivalent to that  defined by Equations (33a -d )  and so admits 

(42) 

Our iterative scheme is a modification of  a scheme due to Bineau (l  972), who considered 

the field in a bounded domain  D, as do we (whereas Sakurai (1981) calculated it in a 
half space), with B,  prescribed everywhere on 6D and c~ prescribed on a part  of  ~?D. He  
was able to prove convergence under the following restricting assumptions:  

(1) The values of  c~ are prescribed on a connected part  S~ of  ~D on which B,  _> b > 0, 

and c~ # 0 only on a connected subset S'~ strictly included in S~. 

(2) ] Bo(r)[ > b o > 0 in all points o l D  connected to S~ by a field line o f B  o (from which 
the iteration starts). 

(3) re] must  be sufficiently small. More  precisely, if we write 

~(r) = 2 &(r) (43) 

with a spatially constant  parameter  Z, then convergence of  the iteration sequence (and 
existence of  a solution) is proven only in the neighborhood of  2 = 0. 

That  is, electric currents are restricted to one simple magnetic flux tube that  does not 
contain singular (null, neutral) points and on the end faces of  which the normal  field 
componen t  does not change sign, and for small enough [ Z] this is guaranteed for all B ~') 
and for the limit field of  the iteration sequence. (Bineau explicitly requires the field lines 

of  B o starting from S~ to have their extremities on 8D, i.e., to be of  finite length in D. 
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We ensure this by prescribing the values of c~ only on S~c. ) 
As to these restrictions and our modification of the scheme we make the following 

remarks: 

(i) The proof of convergence remains valid if currents are allowed in a finite number 
of well separated simple flux tubes, viz., if the values of ~ are prescribed on a finite 
number of disjunct subsets S ~  ), k = 1 . . . . .  K, ofaD (in our case ofS(c ) with the above 
properties (1) and (2). 

(ii) Instead of prescribing B n on both S 1 and S 2 we prescribe B n on S~ and require 
B, = 0 on S 2. This does not influence Bineau's proof of convergence provided field lines 
along which currents flow are kept away from S 2. If we prescrib e e ¢ 0 (h ¢ 0) only on 
some disjunct subsets S~ k) strictly included in S(c [B o ], then for sufficiently small 121 the 
S ~  ) will stay inside S1 + [B (n) ] during the iteration and we are still in Bineau's context. 

(iii) Without the requirements (1) and (2), difficulties may arise at separatrix surfaces 
across which the mapping from 0D to aD defined by the field lines is discontinuous. Such 
discontinuities may be due to the presence of magnetic null points in D or of field lines 
tangential to aD (cf. Seehafer, 1986). Two field lines on opposite sides of a separatrix 
may have arbitrarily close endpoints on aD though they start from points on ~?D 
separated by a finite distance. If then different values of ~ are prescribed at the starting 
points, this must lead to a discontinuity of e across the separatrix. Even if the boundary 
values of e are prescribed in such a way that their continuation along the field lines of 
the potential field B o does not lead to discontinuities, these will be observed already after 
the first iteration step, since the correspondence between points on ~D defined by the 
field lines and the location of the separatrices change during the iteration, in contrast 
to the prescribed boundary values of e. 

(iv) If such discontinuities of c~ and consequently of j  appear, the iteration sequence 
can nevertheless be built: Let c~ n (and j ~n) = (~n)/(4rc/c))B~n)) be bounded and piecewise 
continuous in D. Then B can be calculated by solving Equations (41a-d) and will be 
continuous and even differentiable (but not continuously differentiable). It seems likely 
that also in this case the iteration sequence will converge, of course not to a classical 
but to a generalized, or weak, solution, viz., one with a finite number of surfaces across 
which the current density is discontinuous. 

5. Discussion 

(i) Under the approximation of a force-free magnetic field in the atmosphere, as shown 
in Section 2.3, the field must be current-free at the source surface. This implies that all 
open field lines originate from current-free regions in the lower atmosphere. Currents 
can then still flow along (1)closed field lines (field lines with two photospheric 
endpoints), (2) field lines leading from the photosphere to a singular point of the field 
and (3) field lines detached from both the photosphere and the source surface. In our 
model only currents along field lines of type (1) are allowed whereas field lines of 
types (2)-(3), if they should be present, are current-free. 

(ii) The boundary surfaces between closed and open regions, e.g., in streamers, may 
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or may not touch the source surface. In the second case the field lines forming these 

surfaces must each end in a magnetic null point situated in the interior of the volume 

between photosphere and source surface. 
(iii) Since the solar wind escapes along open field lines, its source region must be 

current-free. One should note however that this is strictly valid only if the field is strictly 

force-free throughout the atmosphere. 
(iv) Note also in this context that field lines terminating on the source surface do 

not necessarily start from the photosphere, that is, do not necessarily belong to one of 
the sets S f o  p defined in Section 2.2. They can also connect the source surface with a 
singular point of the field or have two endpoints on the source surface, though the latter 

kind of field lines is excluded for the potential field (cf. Section 3.1.). 
(v) The finding thatj  = 0 on a surface to which a force-free B is perpendicular cannot 

be generalized to non-force-free magnetohydrostatic equilibria, characterized by the 

equation 

j x B = V p ,  (44) 

where p is the gas pressure. A simple counter-example is the 0-pinch (cf., e.g., Shercliff, 
1965, p. 75). In this cylindrical system the current flow is azimuthal and produces an 
axial magnetic field. B is perpendicular to the cross-sectional surfaces of the cylinder, 
though these are not current-free. 

(vi) We suppose that the iterative procedure for the calculation of the field does work 
even if currents are allowed to flow along field lines that are close to the separatrix 
surfaces across which the mapping from the boundary •D = S 1 w S 2 to itself defined 
by the field lines is discontinuous. Then the current density may become discontinuous 
across these surfaces. Such surfaces, e.g., separate regions with closed field lines (which 
have two photospheric endpoints) from regions with open field lines connecting the 
photosphere with the source surface. Since the location of the separatrices changes 
during the iteration, jumps of c~ from finite values in a closed-field region to zero in an 
open-field region will hardly be avoidable (unless the prescribed boundary values of 
are changed in the course of the iteration). 

(vii) Finally a remark about the specification of the photospheric boundary data 
seems in order. In principle, both B n and e on $1 can be obtained from vector 
magnetograms; c~ can be calculated according to 

c~ = f i . (7  t x B , ) / B  n . (45) 

For the determination of the tangential field from the measurements the 180 ° ambiguity 
must be resolved somehow (see discussion of this problem by Aly, 1989). Also the 
numerical differentiation required in Equation (45) seems problematic since the accuracy 
of the horizontal field measurements is still rather low. In this context it may be helpful 
that the method proposed does not fully exhaust the information content of vector 
magnetograms so that there are some 'redundances' in the data. In contrast to ~, B,~ has 
to be specified on the whole photosphere. So if measurements are available only for a 
limited photospheric region and one is interested only in the local field above this region, 
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never theless  the entire global  field mus t  be  ca lcula ted  and,  in par t icular ,  some a s sum p-  

t ion  be m a d e  on  B,, on  the rest  of  the photosphere ,  in such a way  that  the total  magnet ic  

flux th rough the pho tosphe re  vanishes .  (Note ,  however ,  tha t  any  m e t h o d  to calculate  

local  fields f rom local m e a s u r e m e n t s  requires add i t iona l  a s sumpt ions . )  
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