Stars and stellar evolution

Veronika Schaffenroth

WS 2021/22

Master of Science Astrophysics - Module 750
Institute for Physics and Astronomy
Email: schaffenroth@astro.physik.uni-potsdam.de Haus 28, Room: 2.118

Structure

Two sessions from 14:15-15:45 and 16:15-17:45 on Wednesday
Blocks of lectures, exercises and seminar according to the detailed schedule Exercises: Two groups

- first group: 12:00-15:00, tutor: Judy Chebly
- second group: 15:00-18:00, tutor: Harry Dawson
- (third group: 12:00-15:00 online, Judy Chebly)
27.10.21 Lecture: group 1
03.11.21 Lecture: group 2
10.11.21 Lecture: group 1
17.11.21 Lecture: online
24.11.21 Exercises
01.12.21 Exercises
08.12.21 Lecture: group 2
15.12.21 Lecture: group 1
05.01.21 Exercises
12.01.21 Exercises
19.01.21 Lecture: group 2
26.01.21 Lecture: group 1
02.02.21 Exercises
09.02.21 Seminar: group 1
16.02.21 Seminar: group 2
23.02.21 Exam: 13:30-14:30: 2.27.0.01

Requirements to reach the final exam

- Hand in the exercises in time and reach more than 50% of the points (groups of two persons)
- Give a talk about a modern topic related to stellar astrophysics in the seminar and actively contribute to the discussion

Final exam

- written exam of one hour duration on Wednesday 23.02.2020?, 13:30-14:30
- Grade on this exam combined with part II will be grade of Modul 750

Based on recent review papers on modern topics. Up to two speakers per topic, about 20 minutes per individual talk

- Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
- Near-Field Cosmology with Extremely Metal-Poor Stars
- Hypervelocity Stars
- Hot Subluminous Stars
- Observational Clues to the Progenitors of Type la Supernovae
- Multiple Stellar Populations in Globular Clusters
- Red Clump Stars
- Asteroseismology of Solar-Type and Red-Giant Stars
- Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars
- The Most Luminous Supernovae
- Masses, Radii, and the Equation of State of Neutron Stars
- Microarcsecond Astrometry: Science Highlights from Gaia
- Evolution and Mass Loss of Cool Aging Stars: A Daedalean Story
- Astrochemistry During the Formation of Stars
- Probing the interior physics of stars through asteroseismology

Seminar talks

Audience: Members of the class
\rightarrow Basics can be expected, but no in-depth knowledge about details
Talk should be as simple and easy to understand as possible!
\rightarrow Of course not all topics are simple ... this is the challenge here
Stay in time!
\rightarrow Talk must be practised several times before delivering it in class
Use material from the review papers, references therein, textbooks, the internet (always with proper citations)

Papers can be downloaded using a UP account from the SAO/NASA Astrophysics Data System (ADS) webpage
http://adsabs.harvard.edu/abstract_service.htm
Using the HTML version allows to download all the images and plots in highresolution

Seminar talks

Basic structure:

- Introduction should be sufficient for the audience to get the context (about one third of the time)
- Methods should be described in a general way avoiding too many details
- Results must be clearly summarized and put into context \rightarrow the abstract and conclusions session of a paper are very helpful here, also press releases related to the articles

Each talk needs to tell a story, which is self-contained!

Common mistakes

- Too many details - People who really get interested in the topic of their talk sometimes forget who is listening
- Showing off - Some people think, they can impress the lecturer and the other students with an extra complicated talk (lots of formulae, unexplained jargon etc.)
- Trying to show off - See above, but for the reason that they don't understand the topic and try to hide that. This never works!
- Underestimating the effort - Compared to other tasks, giving such a talk might look easy and doable within a day or so. It is not and requires preparation and practice!
- Kippenhahn, R., Weigert, D., \& Weiss, A., Stellar Structure and Evolution, 2012
- de Boer, K. S., \& Seggewiss, W., Stars and Stellar Evolution, 2008
- Prialnik, D., An Introduction to the Theory of Stellar Structure and Evolution, 2010

Slides of the lecture, seminar topics and exercise sheet and solution can be found on Moodle.UP

Introduction

NASA/SXS
Cosmology

NASA, Harvard CfA, Illustris Collaboration

Exoplanet

NASA Ames/SETI Institute/JPL-Caltech
Nucleosynthesis

NASA/CXC/SAO/STScI/JPL-Caltech

Massive binary star progenitors

ESO
Stars needed to understand galaxies

Studied by effects on host stars

ESA/ATG medialab
nuclear processes, stellar evolution

adapted from Sneden et al. 2003

- Stars are an important constituent of visible matter in the universe
$\rightarrow 10^{11}$ stars per galaxy $\times 10^{10}$ galaxies in the observable universe
$\rightarrow 0.5 \%$ of the mass of the universe
- Stars synthesise all heavy elements
- Stars are well-studied and can be used to calibrate distance and to unravel structures
- Stars host planetary systems and dominate their evolution
\rightarrow Sun is crucial for life on Earth
- Stars are laboratories to study all kinds of physics
\rightarrow Thermodynamics, general relativity, nuclear and particle physics

A star can be defined as a body that satisfies two conditions:

- It is bound by self-gravity.
- It radiates energy supplied by an internal source.

There is a certain range of masses stars can have:

- Objects below $\sim 0.08 \mathrm{M}_{\odot}$ are no longer stars but brown dwarfs or planets because they shine (mostly) by reflection of stellar light instead of radiating it on their own.
- Stars with more than several hundred M_{\odot} are not possible because their strong radiation-driven stellar winds prevent them from accumulating more material.

Our sun \odot as reference star

radius	R_{\odot}	696000 km
mass	M_{\odot}	$1.989 \times 10^{30} \mathrm{~kg}$
luminosity	L_{\odot}	$3.86 \times 10^{26} \mathrm{~W}$
effective		
temperature	$T_{\text {eff }}$	5780 K
central		
temperature	T_{c}	$15 \times 10^{6} \mathrm{~K}$
age	t_{\odot}	$4.5 \times 10^{9} \mathrm{yr}$

The Sun
All features drawn to scale

Historical overview

Ancient times	E.g., Anaxagoras, Aristotle: Stars are "flaming stones"
1600	Heliocentric models identify the Sun as gigantic heat source in space
1695	Christiaan Huygens compared the brightness of stars with the Sun to calculate their distances
~ 1800	William Herschel speculated, that the Sun might be inhabitated under a thick mat of clouds
1814	Joseph von Fraunhofer discovers absorption lines in the Sun and some stars \rightarrow Spectral classification in the early 20th century
1838	Friedrich Bessel, Friedrich Struve and Thomas Henderson measure the first parallax distances of stars \rightarrow Distinction between giant and dwarf stars
Pre-1848	E.g., Kant, Laplace: Stars are "fire balls"

1842/43 Julius Robert Mayer (surgeon!) and James Prescott Joule propose conservation of energy as physical law (thermodynamics)
1848 Mayer: First proposal of a specific heat mechanism for the power supply of stars, namely the infall of meteors
$1854+1861$ Helmholtz \& Kelvin: Power supply by contraction (gravity)
\rightarrow Lifetime of less than 100 million years
\leftrightarrow Charles Darwin and geologists (billions of years)
1861 Lane: Stars get hotter as they radiate and shrink ("Lane's law")
1865 Herve Faye suggested that sunspots are regions, where the glowing surface is blown aside
1869 Lane: Theory of polytropic gas spheres
1878 Ritter: First theory of stellar evolution based on Lane's law
~ 1880 Assuming that stars derive energy from contraction, A. Ritter calculated the lifetime of the Sun to less than 6 million years, after which contraction should cease and cooling start

1880 Norman Lockyer proposes that stars are formed by gravitational contraction of meteoritic particles

N. Lockyer, The Meteoritic Hyphothesis, 1890, 375
\rightarrow Spectroscopic classes are different phases of contraction
\rightarrow Origin of the classification as early and late-type stars
(owstory

1913 Henry Norris Russell
\rightarrow Giant stars are contracting towards the main sequence
\rightarrow Main sequence stars stop contracting and cool down along the sequence

Figure 8.10 Henry Norris Russell's first diagram, with spectral types listed along the top and absolute magnitudes on the left-hand side. (Figure from Russell, Nature, 93, 252, 1914.)

1907 Emden: Systematic work on polytropes, i.e., stellar models where heat is transported solely by convection (book: Gaskugeln)
1926 F. J. M. Stratton: Spectroscopic similarities between early-type stars and planetary nebula, late-type stars and spiral nebula
$\rightarrow \mathrm{O}, \mathrm{B}$ stars and planetary nebula come from diffusive nebulosity
$\rightarrow \mathrm{M}$ giants come from condensations in the arms of spiral nebula
1926 Eddington: The Internal Constitution of Stars
Perfect gas, uniform terrestrial (!) composition, constant opacity, constant energy generation, Theory of radiative heat transport (first suggested by Sampson in 1895 \& K. Schwarzschild in 1906)
\rightarrow Prediction of the mass-luminosity relation, opacity problem (debated)
1925 Cecilia Payne, PhD thesis: Stellar Atmospheres, A Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars \rightarrow First application of Sahas ionization theory to spectral lines of stars Strength and presence of lines depends more on temp. than on abundance
\rightarrow Stars consist mainly of hydrogen (highly debated)

Metal lines are more abundant and stronger in the solar spectrum + Meteroids consist of rock and metals

Modern philosophy: Law of nature are universal
\rightarrow Stars have terrestrial composition

My dear Miss Payne:
Here, at last, are your notes on relative abundance which you were so good as to send me some time ago....
You have some very striking results which appear to me, in general, to be remarkably consistent. Several of the apparent discrepancies can be easily cleared up. [Here Russell discusses $\mathrm{Mg}, \mathrm{Mg}+$, and K in some detail.]
There remains one very much more serious discrepancy, namely, that for hydrogen, helium and oxygen. Here I am convinced that there is something seriously wrong with the present theory. It is clearly impossible that hydrogen should be a million times more abundant than the metals, and I have no doubt that the number of hydrogen atoms in the two quantum state is enormously greater than is indicated by the theory of Fowler and Milne. Compton and I sent a little note to 'Nature' about metastable states, which may help to explain the difficulty....

Gingerich 1995
Very sincerely yours,
Henry Norris Russell

1932 Eddington and Bengt Strömgren resolve opacity problem with hydrogen-rich stellar models

1937 Strömgren: Determination of hydrogen content in stellar core

1904 Rutherford: radioactive energy to resolve age issue
1920s Quantum mechanics becomes the standard in atomic physics
1928 Gamow: Theory of Coulomb barrier penetration (major breakthrough for considering nuclear reactions as energy source in stars)
1929 Atkinson and Houtermans apply Gamows theory of the tunnel effect to stellar interiors \rightarrow Most effective interactions by light elements
1931 Theory of nucleosynthesis of heavy elements in stars
\rightarrow fusion of hydrogen to helium as energy source for the sun
\rightarrow Quadruple collision of hydrogen atoms unlikely
\rightarrow Successive absorption of protons
1938-39 Bethe and von Weizsäcker find the proper channels for the fusion of hydrogen to helium ($p-p$ chain and CNO-cycle)
\rightarrow Nuclear fusion as energy source of stars confirmed
1940/50s Nuclear reaction rates could finally be computed due to intensive laboratory work in nuclear physics

1916 Ernst Öpik derives the density of the recently discovered new luminosity class of white dwarfs to be 25000 times higher than the one of the Sun \rightarrow "Impossible", Eddington: "Shut up. Don't talk nonsense."
1926 Fowler applies quantum mechanics and explains the high densities as degenerate matter
1930 Chandrasekhar derives a limiting mass for white dwarfs
1934 Baade and Zwicky: propose existence of neutron stars
\rightarrow Binding energy powers the newly identified class of supernova explosi
1952 Sandage and Schwarzschild show that the contraction of the core due to hydrogen exhaustion leads to an expansion of the envelope
\rightarrow Red giants are evolved stars
\rightarrow Explanation for connection between giants and dwarfs in cluster HRD
1951-54 Öpik, Salpeter and Hoyle show that carbon fusion by the triple-alpha process occurs in red giant cores

Christensen-Dalsgaard 1984, SRSPS Conf., 11

Unsöld 1942, ZA, 21, 10
1939 Unsöld performs the first detailed spectroscopic analysis of a star other than the Sun \rightarrow Quantitative spectral analysis
1980s Multi-mode pulsating stars are studied for the frist time
\rightarrow Helio- and asteroseismology

1950s Stellar evolution modelling became a field of computational astrophysics
1958 Schwarzschild: Presentation of numerical models (based on hand integration techniques) that consistently account for energy production and energy transfer; breakthrough in model building
1967 Jocelyn Bell and Anthony Hewish discover the first pulsar
1972 Bolton, Luise Webster and Murdin discover the first stellar mass black hole in an X-ray binary
2014 LIGO detector discovers merging black holes from their gravitational wave signal
2017 LIGO and VIRGO detect neutron star merger, prove the connection to gamma ray bursts and the synthesis of heavy elements in this process

Observables of stars

Observables of stars

- Stars are observed as point sources (except our Sun)
- Electromagnetic radiation of very different wavelengths is emitted by stars
- The intensity I_{0} of this radiation is transformed to the signal S measured by several wavelength dependent functions

$$
\begin{equation*}
S(\lambda)=I_{0}(\lambda) A(\lambda) O(\lambda) F(\lambda) Q(\lambda) \tag{4.1}
\end{equation*}
$$

$A(\lambda)$ Extinction by the interstellar medium and the Earth atmosphere
$O(\lambda)$ Absorption by the telescope optics
$F(\lambda)$ Transmission function of the filter
$Q(\lambda)$ Quantum efficiency of the detector

Photometric filters

- measured brightness in a certain filter X is given as apparent magnitude

$$
\begin{equation*}
m_{X}=-2.5 \log _{10} \frac{F_{X}}{F_{X, 0}} \tag{4.2}
\end{equation*}
$$

F_{X} flux density using filter $X F_{X, 0}$ reference flux (zero-point) for this filter (Vega or AB-system)

- Magnitudes in different filters can be combined to determine colours

$$
\begin{equation*}
m_{X}-m_{Y} \rightleftarrows X-Y \tag{4.3}
\end{equation*}
$$

- system bases on the flux of Vega, $m_{\text {Vega }} \equiv 0$ at all wavelengths
- AB system: object with constant flux per unit frequency interval has zero color

$$
\begin{equation*}
m_{\mathrm{AB}}=-2.5 \log (f(\lambda))-48.6 \tag{4.4}
\end{equation*}
$$

$m_{A B}=V$ for a flat-spectrum source.

EA

- Absolute magnitude M_{X} can be calculated from the apparent magnitude, if the distance d is known

$$
\begin{equation*}
m_{X}-M_{X}=5 \log _{10} d-5 \tag{4.5}
\end{equation*}
$$

distance modulus

- most direct distance measurement is using the parallax π

$$
\begin{equation*}
d=1 / \pi \tag{4.6}
\end{equation*}
$$

d in pc, π in arcsec

- bolometric magnitude $M_{b o l}$ is the integrated absolute magnitude over all wavelengths

$$
\begin{equation*}
M_{b o l}=-2.5 \log _{10} \int_{0}^{\infty} I_{\lambda} \mathrm{d} \lambda \tag{4.7}
\end{equation*}
$$

- to transform to bolometric magnitude a bolometric correction is necessary, which is calculated from stellar model fluxes for each stellar type

$$
\begin{equation*}
M_{b o l} \equiv M_{X}-B . C . \tag{4.8}
\end{equation*}
$$

- luminosity of a star is related to the bolometric magnitude

$$
\begin{equation*}
\frac{L}{L_{\odot}}=10^{\left(M_{\text {bol }}-M_{\text {bol, }, \mathrm{O}} / 2.5\right.} \tag{4.9}
\end{equation*}
$$

Extinction A_{V}

- absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer
- shorter wavelengths (blue) are more heavily reddened than longer (red) wavelengths
- measure colour index $B-V$

$$
\begin{gather*}
E(B-V)=(B-V)-(B-V)_{0} \tag{4.10}\\
A_{V}=3.2 E(B-V) \tag{4.11}
\end{gather*}
$$

- true distance

$$
\begin{equation*}
d=10^{0.2\left(m-M+5-A_{v}\right)} \tag{4.12}
\end{equation*}
$$

Reddening and Extinction
 light makes it through. The original light is "de-blued."

Most of the short wavelength light is scattered away from its orginal direction.

- $V=V_{0}+\kappa(\lambda) X(z)$ $\kappa(\lambda)$ is the extinction coefficient
z is the zenith distance
X is the air mass $X(z) \approx \cos ^{-1} z$
- extinction greater for blue than for red

Standard stars to correct for atmospheric extinction and calibrate the sensitivity of the instrument

- $V=V_{0}+\kappa(\lambda) X(z) \kappa(\lambda)$ is the extinction coefficient z is the zenith distance X is the air mass $X(z) \approx \cos ^{-1} z$
- extinction wavelengthdependent
- blue stars are getting weaker compared to red stars

Definition

- in thermal equilibrium with its surroundings
- emits a continuous spectrum whose
 spectral shape is defined solely by its temperature \rightarrow Planck function

Realisation in nature

- well recovered if photons are frequently absorbed and emitted, i.e., if the photons' mean free paths are short
- fulfilled in the stellar interior due to the high densities
- not fulfilled in stellar atmospheres where the densities are low
- useful first approximation

Derivation of the Planck function

closed box coupled to a heat bath
\rightarrow photon gas inside is in thermal equilibrium
\rightarrow energy density U of photons of frequency $\nu(h$ is the Planck constant, c speed of light, k Boltzmann constant)

$$
\begin{equation*}
u(\nu)=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{\exp (h \nu /(k T)))-1} \tag{4.13}
\end{equation*}
$$

To derive Planck function $B(\nu)$ compute energy per unit area and unit time escaping through a tiny hole at, e.g., the bottom of the box:

$$
\begin{equation*}
B(\nu)=\frac{\text { escaping energy }}{\text { per unit area and unit time }}=\frac{\epsilon(\nu)}{\mathrm{d} A t} \tag{4.14}
\end{equation*}
$$

$\epsilon(\nu, \theta) \mathrm{d} \theta$ is the energy of photons with frequency ν escaping through the hole in unit time from all directions inclined at angle θ

$$
\begin{equation*}
\epsilon(\nu, \theta) \mathrm{d} \theta=u n(\theta) V(\theta) \stackrel{F i g}{=} u \frac{2 \pi \sin \theta}{4 \pi} \mathrm{~d} A c \mathrm{~d} t \cos \theta \tag{4.15}
\end{equation*}
$$

$n(\theta)$ fraction of photons in prescribed cone, $V(\theta)$ volume occupied by those pho-

Derivation of the Planck function

Integration over angle yields the Planck function $\boldsymbol{B}(\nu)$:

$$
\begin{equation*}
B(\nu)=\int_{0}^{\pi / 2} \epsilon(\nu, \theta) \mathrm{d} \theta /(\mathrm{d} A \mathrm{~d} t)=\frac{1}{4} c u(\nu)=\frac{2 \pi h \nu^{3}}{c^{2}} \frac{1}{\exp (h \nu /(k T))-1} \tag{4.16}
\end{equation*}
$$

Properties of the Planck function

- $B(\nu)$ is energy per unit area per unit time per unit frequency interval. Often Planck function per wavelength interval is useful. $\rightarrow B(\lambda) \mathrm{d} \lambda=B(\nu) \mathrm{d} \nu$:

$$
\begin{equation*}
B(\lambda)=B(\nu)\left|\frac{\mathrm{d} \nu}{\mathrm{~d} \lambda}\right| \stackrel{\lambda \nu=c}{=} B\left(\frac{c}{\lambda}\right) \frac{c}{\lambda^{2}}=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{\exp (h c /(\lambda k T))-1} \tag{4.17}
\end{equation*}
$$

- Integration over all wavelengths gives us the luminosity per area

$$
\begin{equation*}
\frac{L}{A} \stackrel{\text { sphere }}{=} \frac{L}{4 \pi R^{2}}=\int_{0}^{\infty} B(\lambda) \mathrm{d} \lambda=S=\sigma T^{4} \tag{4.18}
\end{equation*}
$$

$\sigma=\frac{2 \pi^{5} \kappa^{4}}{15 c^{2} h^{3}}=5.6705 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}$ is the Stefan-Boltzmann constant

- Wien's displacement law states that the blackbody radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \lambda} B\left(\lambda_{\max }\right) \stackrel{!}{=} 0 \rightarrow \lambda_{\max } T=2.898 \times 10^{7} \text { ÅK } \tag{4.19}
\end{equation*}
$$

Wien approximation $\frac{h \nu}{k T} \gg 1 \rightarrow B_{\nu}(T) \simeq \frac{2 h \nu^{3}}{c^{2}} \exp (-h \nu /(k T))$
Rayleigh-Jeans approximation $\frac{h \nu}{k T} \ll 1 \rightarrow B_{\nu}(T) \simeq \frac{2 \nu^{2} k T}{c^{2}}$

Planck function

Definition of the effective temperature:
The effective temperature of a star is defined as the temperature of a blackbody having the same radiated power per unit area.

$$
\begin{equation*}
\int_{0} F(\lambda) \mathrm{d} \lambda \stackrel{!}{=} \sigma T_{\text {eff }}^{4} \tag{4.20}
\end{equation*}
$$

Observed quantities

Mass M_{\star} : Except for massive stars with strong stellar winds or stars in interacting multiple systems, the stellar mass is constant throughout a star's lifetime.
Possible range: 0.08 to several hundred M_{\odot}
Radius R_{\star} : stellar radius is a probe for the evolutionary status.
Possible range: 0.5-1000 R_{\odot}
Luminosity L_{\star} : total power radiated by the star: $L_{\star}=4 \pi R_{\star}^{2} F=4 \pi R_{\star}^{2} \sigma T_{\text {eff }}^{4}$ Possible range: $10^{-2}-10^{7} L_{\text {。 }}$
Age τ_{\star} : age of the star. More massive stars have shorter lifetimes because
Typical range: millions to billions of years
Mass and radius linked via the surface gravity $g=G M_{\star} R_{\star}^{-2} \rightarrow$ spectroscopy

Determination of fundamental parameters: Mass

Direct measurements of masses are only possible when stars occur in binary systems and when their orbital motion is known

$M_{\star, 1 / 2}$: Mass of component 1 and 2
P : Orbital period (measured)
d : distance to the system (somehow known)
i : Orbital inclination against the line of sight (somehow known).
$a_{1,2}$ Semimajor axis of the two stars' angular motion relative to center of mass
(measured) $-a_{\text {observ }}=a_{\text {real }} \sin i$

- Keplers's third law with $a=a_{1}+a_{2}$:

$$
\begin{equation*}
\frac{G\left(M_{1}+M_{2}\right)}{4 \pi^{2}}=\frac{a^{3}}{P^{2}} \tag{4.21}
\end{equation*}
$$

- center-of-mass law

$$
\begin{equation*}
M_{1} a_{1}=M_{2} a_{2} \tag{4.22}
\end{equation*}
$$

double-lined spectroscopic binary in circular orbit:

$$
\begin{equation*}
K_{1,2}=\frac{2 \pi a_{1 / 2}}{P} \sin i \tag{4.23}
\end{equation*}
$$

$K_{1 / 2}$ is the radial velocity amplitude
\rightarrow three unknowns: i, M_{1}, M_{2}; two equations !
\rightarrow inclination can be derived for eclipsing binaries ($i \sim 90^{\circ}$)

- momentum conservation:

$$
\begin{equation*}
M_{1} K_{1}=M_{2} K_{2} \tag{4.24}
\end{equation*}
$$

- Keplers's third law with $a=a_{1}+a_{2}$:

$$
\begin{equation*}
\left(M_{1}+M_{2}\right) \sin ^{3} i=\frac{P}{2 \pi G}\left(K_{1}+K_{2}\right)^{3} \tag{4.25}
\end{equation*}
$$

Determination of fundamental parameters: Radius

Determination of fundamental parameters: Radius and luminosity

$F=F\left(T_{\text {eff }}\right)$ is the surface flux of the star, f is the flux arriving on Earth

$$
4 \pi d^{2} f=4 \pi R^{2} F \Rightarrow R=d \sqrt{f / F}
$$

Luminosity L using Stefan-Boltzmann law

$$
L=4 \pi R^{2} \sigma T_{\mathrm{eff}}^{4}
$$

parallax $\pi(\operatorname{arcsec})=1 / d(p c)$

evolution tracks: circles give the age in Myr \rightarrow (model dependent) mass and age from position in spectroscopic HRD

Hertzsprung-Russell diagram

Observational:

Colour-Magnitude diagram (CMD)

Theoretical: Temperature-Luminosity

ESO

Observabels of stars
\qquad

- Why are the stars distributed in that way?
- How can we learn about the temporal evolution of stars from such snapshots?

Angelo Secchi (1863): Stars have different spectra emitted from the visible stellar surface layers \rightarrow Stellar atmosphere.
Annie Cannon introduced the Harvard classification scheme with seven spectral types (O, B, A, F, G, K, M) in 1901.

Energy from the stellar interior flows outward and leaves the star as radiation

- Hydrostatic equation
\rightarrow Pressure/temperature distribution in the surface layers
- Radiation transport equation
\rightarrow Emergence of radiative energy at the surface
\rightarrow Temperature distribution in the surface layers
\Rightarrow Stellar atmosphere model
\Rightarrow Model spectrum compared to observed spectrum
Main model parameters
- Effective temperature $T_{\text {eff }}$
- Surface gravity $g=\frac{G M}{R^{2}}$, usually used $\log g$
- Chemical composition: abundance of hydrogen X, helium Y and the other elements (metals) Z

de Boer \& Seggewiss 2008

Radiative intensity I_{ν}

$$
I_{\nu}(\theta, \phi)=\frac{\mathrm{d} E_{\nu}}{\cos \theta \mathrm{d} t \mathrm{~d} \nu \mathrm{~d} \omega \mathrm{~d} \sigma}
$$

Energy $\mathrm{d} E_{\nu}$ within a frequency interval $\mathrm{d} \nu$ passing per unit time $\mathrm{d} t$ through a surface $\mathrm{d} \sigma$ and being directed into solid angle $\mathrm{d} \omega$

Integrated radiative intensity
\rightarrow integrated over all frequencies
$I(\theta, \phi)=\int_{0}^{\infty} I_{\nu} \mathrm{d} \nu$

Mean intensity $J \rightarrow$ average of I_{ν} over all solid angles ω

$$
J_{\nu}=\frac{1}{4 \pi} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} I_{\nu}(\theta, \phi) \cos \theta \sin \theta \mathrm{d} \phi \mathrm{~d} \theta=\frac{1}{4 \pi} \int I_{\nu}(\omega) \mathrm{d} \omega
$$

Radiative flux $\overrightarrow{F_{\nu}}$

$$
\vec{F}_{\nu}=\int I_{\nu} \mathrm{d} \nu \cos \theta \mathrm{~d} \omega
$$

\rightarrow net energy in the interval $\mathrm{d} \nu$ passing each second through a unit area in the direction of the vertical axis
$\rightarrow F_{\nu}=F_{\nu}^{+}+F_{\nu}^{-}, F_{\nu}^{+}$outward flux, F_{ν}^{-}inward flux
\rightarrow Spherical star $J_{\nu}=\frac{1}{\pi} F_{\nu}$
\rightarrow Isotropic radiation field $F_{\nu}=0 \Rightarrow F_{\nu}^{+}=-F_{\nu}^{-}$
Radiation density U_{ν}

$$
U_{\nu}=\int \frac{\mathrm{d} E_{\nu}}{\mathrm{d} V} \mathrm{~d} \omega=\frac{1}{c} \int I_{\nu} \mathrm{d} \omega
$$

\rightarrow Radiation energy $\mathrm{d} E_{\nu}$ passes in a time interval $\mathrm{d} t$ through a volume element $\mathrm{d} V=\mathrm{d} \sigma \mathrm{d} s$, where $\mathrm{d} s=c \mathrm{~d} t$. Energy density found by integrating over all solid angles $\mathrm{d} \omega$
\rightarrow Isotropic radiation $U_{\nu}=\frac{4 \pi}{c} I_{\nu}$
\rightarrow Total radiation density $U=\int U_{\nu} \mathrm{d} \nu=\frac{4 \pi}{c} I$

de Boer \& Seggewiss 2008

- Optical depth τ_{ν}

$$
\tau_{\nu}=\int_{0}^{s} \kappa_{\nu} \mathrm{d} s
$$

the mean free path of photons is $\Delta \tau_{\nu}=1$

Intensity per volume element $d V$ of length $d s$ can change

- Emission \rightarrow emission coefficient j_{ν}

$$
j_{\nu}=\frac{\mathrm{d} E_{\nu}}{\mathrm{d} t \mathrm{~d} V \mathrm{~d} \nu \mathrm{~d} \omega}
$$

Energy emitted per volume element $d V$ in a unit of time $\mathrm{d} t$ and frequency $\mathrm{d} \nu$ into a solid angle $\mathrm{d} \omega$

- Absorption \rightarrow absorption coefficient κ_{ν}

$$
\mathrm{d} I_{\nu}=-\kappa_{\nu} I_{\nu} \mathrm{d} s
$$

Change in intensity due to absorption in the material over the path ds

Solving the differential equation

$$
\begin{aligned}
\mathrm{d} I_{\nu} & =-\kappa_{\nu} I_{\nu} \mathrm{d} s=-I_{\nu} \mathrm{d} \tau_{\nu} \\
\Rightarrow I_{\nu} & =I_{\nu}^{0} e^{-\tau_{\nu}}=I_{\nu}^{0} e^{-\int \kappa_{\nu} \mathrm{d} s}
\end{aligned}
$$

$$
\rightarrow \tau=1 \Rightarrow I_{\nu}=I_{\nu}^{0} / e
$$

Large optical depth $\tau \gg 1$:
\rightarrow Material opaque $I_{\nu} \ll I_{\nu}^{0}$
Small optical depth $\tau \ll 1$:
\rightarrow Material transparent $I_{\nu} \simeq I_{\nu}^{0}$
Total change in intensity gives the radiative transport equation

$$
\begin{gathered}
\mathrm{d} l_{\nu}=-\kappa_{\nu} I_{\nu} \mathrm{d} s+j_{\nu} \mathrm{d} s \\
\frac{\mathrm{~d} I_{\nu}}{\kappa_{\nu} \mathrm{d} s}=\frac{\mathrm{d} I_{\nu}}{\mathrm{d} \tau_{\nu}}=-I_{\nu}+\frac{j_{\nu}}{\kappa_{\nu}}=-I_{\nu}+S_{\nu}
\end{gathered}
$$

Source function S_{ν} dependent on material: $S_{\nu}<0$ more absorption than emission, $S_{\nu}>0$ more emission than absorption

Solution for constant S_{ν}

$$
I_{\nu}=I_{\nu}^{0} e^{-\tau_{\nu}}+S_{\nu}\left(1-e^{-\tau_{\nu}}\right)
$$

V intensity entering the volume and intensity produced inside the box are diluted by the optical depth

- no background intensity $I_{\nu}^{0}=0$
$\Rightarrow I_{\nu}=S_{\nu}\left(1-e^{-\tau_{\nu}}\right)$
- no background intensity $I_{\nu}^{0}=0$ and $\tau_{\nu} \ll 1$ $\Rightarrow I_{\nu}=\tau_{\nu} S_{\nu}$
All produced radiation can be seen by an observer
- no background intensity $I_{\nu}^{0}=0$ and $\tau_{\nu} \gg 1$ $\Rightarrow I_{\nu} \simeq S_{\nu}$
No photons can escape (they are immediately scattered or absorbed)
- background intensity $I_{\nu}^{0} \neq 0$
$\Rightarrow I_{\nu}=S_{\nu}+\left(I_{\nu}^{0}-S_{\nu}\right) e^{-\tau_{\nu}}$
Applicable to stellar atmospheres
- background intensity $I_{\nu}^{0} \neq 0$ and $\tau_{\nu} \ll 1$
$\Rightarrow I_{\nu}=I_{\nu}^{0}-\tau_{\nu}\left(I_{\nu}^{0}-S_{\nu}\right)$
${ }_{\nu}^{0}>S_{\nu} \rightarrow$ spectral absorption of an existing continuum
$I_{\nu}^{0}<S_{\nu} \rightarrow$ spectral emission superimposed
on an existing continuum
- background intensity $I_{\nu}^{0} \neq 0$ and $\tau_{\nu} \gg 1$
$\Rightarrow I_{\nu} \simeq S_{\nu}$

In a stellar atmosphere, effects of geometry have to be considered

$$
\mathrm{d} I_{\nu}(r, \theta)=-\kappa_{\nu} I_{\nu}(r, \theta) \mathrm{d} s+j_{\nu} \mathrm{d} s
$$

$\mathrm{d} r=\mathrm{d} s \cos \theta$ and $r \mathrm{~d} \theta=-\mathrm{d} s \sin \theta$:
General equation of radiative transport

$$
\begin{equation*}
\frac{\partial I_{\nu}}{\partial r} \cos \theta-\frac{\partial I_{\nu}}{\partial \theta} \frac{\sin \theta}{r}=-\kappa_{\nu} I_{\nu}+j_{\nu} \tag{4.28}
\end{equation*}
$$

de Boer \& Seggewiss 2008
radiative flux $\overrightarrow{F_{\nu}}$

$$
\begin{aligned}
\vec{F}_{\nu} & =\int I_{\nu}(r, \theta) \mathrm{d} \nu \cos \theta \mathrm{~d} \omega \\
& \Rightarrow \frac{1}{4 \pi} \frac{\mathrm{~d} F_{\nu}}{\mathrm{d} r}=\kappa_{\nu}\left(I_{\nu}-S_{\nu}\right)
\end{aligned}
$$

Energy transport only by radiation $\rightarrow \frac{\mathrm{d} F}{\mathrm{~d} r}=0$ Continuity equation

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{0}^{\infty} \kappa_{\nu} F_{\nu} \mathrm{d} \nu=\int_{0}^{\infty} \kappa_{\nu} S_{\nu} \mathrm{d} \nu \tag{4.29}
\end{equation*}
$$

connection between the frequency dependent transport equations and the total radiative energy transport

Thermodynamic equilibrium (TE)

- radiation is isotropic and in balance with the material
- all processes (absorption, emission) in balance
- no changes in time
- $I_{\nu}=S_{\nu}=B_{\nu}$ Black-body continuum \rightarrow does not exist in the real universe

Local thermal equilibrium (LTE)

- locally, in small regions of the star TE (almost) fullfilled
- if the gas is not in LTE \rightarrow non-LTE (NLTE)
- $S_{\nu}=B_{\nu}$ and $\frac{\mathrm{d} l_{\nu}}{\mathrm{d} \tau_{\nu}}=0 \Rightarrow B_{\nu}=j \nu / \kappa_{\nu}$
- LTE can be assumed for some stellar atmospheres (high density, low temperature \rightarrow radiation-matter interactions in balance)

Plane parallel atmosphere

de Boer \& Seggewiss 2008

Atmosphere with large radius
\rightarrow Plane parallel atmosphere approximation

$$
\mathrm{d} \theta=0 \text { and } \mathrm{d} \tau_{\nu}=-\kappa_{\nu} \mathrm{d} r
$$

\rightarrow General energy transport equation

$$
\frac{\mathrm{d} I_{\nu}}{\mathrm{d} \tau_{\nu}} \cos \theta=I_{\nu}-S_{\nu}
$$

\rightarrow total radiative flux F does not depend on the depth $r(F=$ const $=$ energy conservation $)$

$$
F=\sigma T^{4}(r)=\sigma T_{\mathrm{eff}}^{4}
$$

Limb darkening

Edge of stellar atmosphere
\rightarrow Radiation field not isotropic
\rightarrow Angular aspect θ relevant $(\sec \theta=1 / \cos \theta)$

$$
l e^{-\tau \sec \theta}=-\int_{\tau} \operatorname{Se}^{-\tau^{\prime} \sec \theta} \mathbf{d} \tau^{\prime} \sec \theta
$$

Outward component

$$
I_{\nu}(0, \theta)=-\int_{0}^{\infty} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau^{\prime} \sec \theta} \mathrm{d} \tau^{\prime} \sec \theta
$$

\rightarrow Edge of visible disk: $\theta=\frac{\pi}{2}, \sec \theta \rightarrow \infty$

$$
I_{\nu}\left(0, \frac{\pi}{2}\right)=0
$$

\rightarrow Center of visible disk: $\theta=0, \sec \theta=1$

$$
I_{\nu}(0,0)=\int_{0}^{\infty} S_{\nu}\left(\tau_{\nu}\right) e^{-\tau_{\nu}} \mathrm{d} \tau_{\nu}
$$

Gray atmosphere

Simplified expression for the absorption coefficient $\kappa_{\nu} \sim \bar{\kappa}$
\rightarrow Rosseland opacity: flux-weighted mean opacity ($F=\int F_{\nu} \mathrm{d} \nu, \mathrm{d} \tau=\bar{\kappa} \mathrm{d} s$)

$$
\frac{1}{\bar{\kappa}}=\frac{\int_{0}^{\infty} \frac{1}{k_{\nu}} \frac{\mathrm{d} B_{\nu}}{\mathrm{d} T} \mathrm{~d} \nu}{\frac{\mathrm{~d}}{\mathrm{~d} T} \int_{0}^{\infty} B_{\nu} \mathrm{d} \nu}
$$

Stellar Atmosphehtstp://cdsweb.u-strasbg.fr/topbase/OpacityTables.html)
\rightarrow Simplified equation of radiation transport

$$
\cos \theta \frac{\mathrm{d} /(\tau, \theta)}{\mathrm{d} \tau}=I(\tau, \theta)-S(\tau)
$$

\rightarrow Simplified continuity equation

$$
S(\tau)=\frac{1}{4 \pi} F(\tau) \rightarrow S(\tau)=\frac{3}{4 \pi} F \cdot(\tau+q(\tau))
$$

$q(\tau) \simeq 0.7104-0.1331 e^{-3.4488 \tau}$ numerical function
\rightarrow Simple limb darkening law can be derived

$$
\frac{I(0, \theta)}{I(0,0)}=\frac{2}{5}\left(1+\frac{3}{2} \cos \theta\right)
$$

Temperature structure

- LIE ($S_{\nu}=B_{\nu}$) using Stefan-Boltzmann law

$$
\pi S(\tau)=\sigma T^{4}(\tau)
$$

- gray atmosphere

$$
T^{4}(\tau)=\frac{3}{4} T_{\mathrm{eff}}^{4} \cdot\left(\tau+q_{\tau}\right)
$$

- at the surface $(\tau \rightarrow 0)$ with $q_{\tau}=2 / 3$

$$
T_{0}=\frac{1}{2^{1 / 4}} T_{\mathrm{eff}} \rightarrow T_{0, \odot}=4860 \mathrm{~K}
$$

Gray atmosphere
T vs. $\log (\tau)$

pressure structure

- ideal gas $P_{\text {gas }}=n k T$, gas pressure $\mathrm{d} P_{\text {gas }}=-\rho g \mathrm{~d} s$

$$
\frac{\mathrm{d} P_{\mathrm{gas}}}{\mathrm{~d} \bar{\tau}}=\frac{g}{\bar{\kappa}_{m}}
$$

$\bar{\kappa}_{m}(T, P, X Y Z)$ mass absorption coefficient \rightarrow Numerical solution

- gray atmosphere and approximation $P_{\text {gas }}=\left(g / \bar{\kappa}_{m}\right) \bar{\tau}$
\rightarrow Geometric structure

$$
\frac{\mathrm{d} P_{\text {gas }}}{P_{\text {gas }}}=\mathrm{d} \ln P_{\text {gas }}=-\frac{\mathrm{d} r}{H_{\mathrm{p}}}
$$

with $H_{\mathrm{P}}=\frac{k T}{\bar{\mu} g}$ the pressure scale height and $\bar{\mu}(T, P, X Y Z)$ the mean molecular weight

Opacity = ability of stellar material to absorb radiation

\rightarrow True absorption is dominant in most stellar gases

Sources of opacity - bound-bound transitions

atom absorbs a photon and becomes excited

ionizing absorption: if a photon has enough energy, its absorption can knock an electron free from an atom and send it off with the leftover energy in kinetic form

When a free electron happens to be passing by a nucleus, it may absorb a photon (as opposed to scattering it). We call this a "free-free" or bremsstrahlung process.

Sources of opacity - (Thomson) scattering

A single, isolated electron cannot absorb a passing photon, but it can scatter it into some other direction. Scattering can also happen at atoms, ions and molecules.

Absorption due to ionization

- Atoms are ionized by photons with $E_{\gamma}=h \nu>E_{\text {ion }}$
$\rightarrow E_{\gamma}=E_{\text {ion }}+\frac{1}{2} m_{e} v_{e}^{2}+\frac{1}{2} m_{\text {ion }} v_{\text {ion }}^{2}$
$\rightarrow E_{\text {ion }}$ depends on excitation state of atom
\rightarrow bound-free (b-f) transition
- reverse process: recombination (f-b), photon produced
- ionization takes place for
$\nu>\nu_{\text {ion }}=E_{\text {ion }} / h$
\rightarrow sharp depression of continuum: ionization edge

- ionization takes place for $\nu>\nu_{\text {ion }}=E_{\text {ion }} / h$
\rightarrow sharp depression of continuum: ionization edge
\rightarrow Hydrogen-like atoms:

$$
\nu_{\text {edge }}=R Z^{2} \frac{1}{n^{2}}
$$

R Rydberg constant, Z nuclear charge
\rightarrow Helium: $\nu_{\text {edge }} \simeq \frac{4}{n^{2}}$
\rightarrow Hydrogen: $\nu_{\text {edge }} \simeq \frac{1}{n^{2}}$
$T \geq 20000 \mathrm{~K}$: hydrogen fully ionized, ionization edges disappear
$T \leq 6000 \mathrm{~K}$: hydrogen not ionized to level $n=2$ Balmer and higher n absorption edges not present

Metals are less abundant in most stars and have lots of transitions and excitation stages \rightarrow ionization edges weaker

At temperature of 5000 to 6000 K most of the metals singly ionized

- Lots of electrons freed
- H^{-}anions created: $n\left(H^{-}\right) \simeq 3 \times$ $10^{-8} n(H)$
- binding energy $0.75 \mathrm{eV} \rightarrow$ easily dissociated
\rightarrow Important source of absorption in the infrared range (around $16500 \AA$)

At low temperatures <
5000 K molecules ($\left.\mathrm{H}_{2}, \mathrm{CO}, \mathrm{TiO}, ..\right)$ present in the stellar atmospheres

- molecules are dissociated by photons with $E_{\gamma}=h \nu>E_{\text {diss }}$
- molecule $A B$ is dissociated into atoms A and $B: A B+h \nu_{\text {diss }} \rightarrow A+B$
- Energy is taken up to dissociate and kinetic energy as well as excitation energy: $E_{\gamma}=E_{\text {diss }}+E_{\text {kin }}+E_{\text {exc }}$
- Probability given by the dissociation constant

$$
K_{A B}=\frac{P_{A} P_{B}}{P_{A B}}=k T \frac{n_{A} n_{B}}{n_{A B}}
$$

assuming ideal gas $P V=n k T$

At higher temperatures and higher electron densities, electrons passing by ions are accelerated in the Coulomb field and then radiate Coulomb-Bremsstrahlung

- Free-free (f-f) transition \rightarrow free-free radiation
- energy can also be absorbed from the photon-field leading to acceleration (free-free absorption)
- Absorption coefficient (fully ionized gas (stellar interior), solar composition):

$$
\kappa_{\nu, f f}=1.32 \times 10^{-2} \frac{n_{e}^{2}}{T^{3 / 2}} \frac{1}{\nu^{2}} g
$$

$g \simeq 1$ Gaunt correction factor

Resonant scattering on atoms and ions: absorption and instantaneous reemission of the photon around the frequency of an transition ν_{0} (absorption line)

$$
\sigma_{\nu, \mathrm{R}}=\frac{8 \pi e^{4}}{3 m_{e}^{2} c^{4}}\left(\frac{\nu}{\nu_{0}}\right)^{4} N
$$

Photon scattered by electrons (Thomson scattering) or molecules (Rayleigh scattering)

$$
\sigma_{e}=\frac{8 \pi e^{4}}{3 m_{e}^{2} c^{4}} n_{e}=6.65 \times 10^{-25} n_{e}
$$

\rightarrow Thomson scattering important in hot atmospheres because of the higher electron density n_{e}

Compton scattering: Photons scattered by relativistic electrons gain energy
\rightarrow important in stellar interiors

Total opacity

Frequency v

de Boer \& Seggewiss 2008

Radiation continuum emitted by hot gas, can be described by Planck function inside the star as gas is in LTE

$$
j_{\nu}=B_{\nu}(T)
$$

Further sources:

- Free-free transitions or Coulomb-Bremsstrahlung
\rightarrow Electrons are accelerated and emit radiation
- Free-bound transitions or recombination radiation

Emission only significant, if the gas deviates from LTE

https://reddwarfs.wordpress.com/tag/spectra/

The shape of spectral lines is determined by quantum mechanics and the bulk properties of the gas
de Boer \& Seggewiss 2008

Line broadening mechanisms - Natural broadening

Natural broadening: Lifetime of an excited state related to the uncertainty of the energy (uncertainty principle $\Delta E \Delta t=h \Delta \nu \Delta t \geq \frac{h}{4 \pi}$)
\rightarrow Lorentzian line profile with very small width $\Delta \lambda \approx 10^{-4} \AA$

Line broadening mechanisms - Pressure broadening

Pressure broadening: Interaction of the emitting atom with the electric field of the surrounding plasma. Transition changed due to the Stark effect
\rightarrow Lorentzian line profile width depends on pressure $\Delta \lambda \approx<0.1 \ldots>1000 \AA$

Niemczura, Smalley \& Pych 2014
$H \beta$ for
$T_{\text {eff }}=7000,10000$, 250000 K and $\log g=2.0$ (black), 3.0 (red), 4.0 (green), 5.0 (blue)

Dependent on the surface gravity of the stars
\rightarrow Distinction between dwarfs and giants possible

Line broadening mechanisms - thermal Doppler broadening

Wikipedia
Thermal Doppler broadening: Emitting atoms have a velocity distribution dependent on the plasma conditions
\rightarrow Doppler effect causes Gaussian line broadening mostly dependent on temperature

Voigt profile (α, \boldsymbol{w}) : Convolution of Gaussian (thermal) function $\phi(\Delta \nu)$ and Lorentzian (pressure) function $\Psi(\nu)$

$$
\begin{aligned}
& \phi(\Delta \nu)=\frac{1}{\Delta \nu_{D} \sqrt{\pi}} e^{-\left(\frac{\Delta \nu}{\Delta \nu_{D}}\right)^{2}} \\
& \psi(\nu)=\frac{1}{\pi} \frac{\gamma / 4 \pi}{\left(\nu-\nu_{0}\right)^{2}+(\gamma / 4 \pi)^{2}}
\end{aligned}
$$

$$
\int_{-\infty}^{+\infty} \psi(\nu \Delta \nu) \circledast \phi(\Delta \nu) \mathrm{d}(\Delta \nu)
$$

$$
=\frac{1}{\Delta \nu_{D} \sqrt{\pi}}\left[\frac{\gamma}{4 \pi^{2}} \int_{-\infty}^{+\infty} \frac{e^{-\left(\frac{\Delta \nu}{\Delta \nu_{D}}\right)^{2}}}{\left(\nu-\nu_{0}-\Delta \nu\right)^{2}+(\gamma / 4 \pi)^{2}} \mathrm{~d}(\Delta \nu)\right]=\frac{1}{\Delta \nu_{D} \sqrt{\pi}} H(\alpha, w)
$$

$$
\alpha=\frac{\gamma}{4 \pi \Delta \nu_{D}} \quad w=\frac{\nu-\nu_{0}}{\Delta \nu_{D}}
$$

γ damping constant (pressure dependent), $\Delta \nu_{D}=\frac{\nu}{c} \sqrt{\frac{2 k t}{\mu}}$ Doppler broadening

shape due to frequency dependent absorption coefficient of the absorption line

$$
\kappa_{\nu}^{\text {line }}=\frac{\pi e^{2}}{m c} n_{l} f_{l u} \frac{1}{\Delta \nu_{D} \sqrt{\pi}} H(\alpha, w)
$$

n_{l} number density of atoms in the lower state I
$f_{l u}$ probability for a transition from the lower state $/$ to the upper state u with $\Delta E=E_{u}-E_{l}=h \nu \rightarrow$ oscillator strength

Continuum intensity / cont is absorbed

$$
I_{\nu}=I_{\nu}^{\text {cont }} e^{-\tau} \quad \tau \sim H(\alpha, w)
$$

Strength of spectral lines measured as equivalent width

$$
W_{\lambda}=\int \frac{\rho^{\text {cont }}-I_{\lambda}}{I^{\text {cont }}} \mathrm{d} \lambda
$$

$$
\frac{W_{\lambda}}{\lambda}=\frac{W_{\nu}}{\nu} \rightarrow W_{\nu}=\int_{\text {line }}^{\nu} 1-e^{-\tau_{\nu}} \mathrm{d} \nu
$$

small optical depth in the line ($\tau \ll 1$ and/or $\alpha \ll 1$)
$\rightarrow 4 \pi \Delta \nu_{D} \gg \gamma$:
Doppler- broadening is much more important than the effect of the damping \rightarrow absorption profile shows, only the central part, the Doppler core of the line

$$
W_{\nu}=\int_{\text {line }} 1-e^{-\tau_{\nu}} \mathrm{d} \nu=(\text { for small } \tau)=\int \tau_{\nu} \mathrm{d} \nu=\int_{0}^{+\infty} \int_{s_{1}}^{s_{2}} \kappa_{\nu} \mathrm{d} s \mathrm{~d} \nu
$$

\rightarrow assuming material doing the absorption to be constant over the line of sight

$$
W_{\nu}=\int \tau_{\nu} \mathrm{d} \nu=\int_{0}^{+\infty} \frac{\kappa_{\nu}}{n_{l}} \mathrm{~d} \nu \cdot \int_{s_{1}}^{s_{2}} n_{l} \mathrm{~d} s=\frac{\pi e^{2}}{m c} f_{l l} \cdot n_{l} L=\frac{\pi e^{2}}{m c} N_{l} f_{l u}
$$

$\int n_{l} \mathrm{~d} s=n_{l} L=N_{l}$ column density of the material, wavelength $\lambda=c / \nu$

$$
\rightarrow \frac{W_{\lambda}}{\lambda}=\frac{\pi e^{2}}{m c^{2}} N_{l} f_{l u} \lambda
$$

very large optical depth in the line ($\tau \gg 1$ and/or $\alpha \gg 1$)
\rightarrow damping more important than Doppler broadening
\rightarrow shape shows wide damping wings: $H(\alpha, w) \simeq \frac{\alpha}{\sqrt{\pi} w^{2}}$

$$
\tau_{\nu}=\int_{s_{1}}^{s_{2}} \frac{\pi e^{2}}{m c} n_{l} f_{l u} \frac{1}{\Delta \nu_{D} \sqrt{\pi}} \frac{\alpha}{\sqrt{\pi} w^{2}} \mathrm{~d} s
$$

\rightarrow Separating integration over line of sight and frequency

$$
\begin{equation*}
\frac{W_{\lambda}}{\lambda}=\frac{\pi^{2} e^{2}}{m c^{2}} \sqrt{\frac{8}{3 \lambda}} \sqrt{N_{I} f_{l u} \lambda} \tag{4.31}
\end{equation*}
$$

Equivalent width proportional to square root of the amount of material and the line constant $f \lambda$
Intermediate τ and/or $\alpha \rightarrow$ Numerical integration: $\frac{W_{\lambda}}{\lambda}=\approx \log N_{l} f_{l u} \lambda$
\rightarrow Equivalent width proportional to logarithm of the amount of material and the line constant $f \lambda$

$b=2 \sqrt{2} \Delta \nu_{D}\left(c / \nu_{0}\right)$ half width half maximum of Doppler broadening

In (local) thermodynamic equilibrium all processes are in balance
\rightarrow Population of energy levels determined by statistics
\rightarrow Distribution of particles in the possible energetic states A and B given by Boltzmann equation

$$
\begin{equation*}
\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}}=\frac{g_{\mathrm{A}}}{g_{\mathrm{B}}} e^{-\frac{\Delta \mathrm{E}_{\mathrm{AB}}}{k T}} \tag{4.32}
\end{equation*}
$$

$n_{\mathrm{A} / \mathrm{B}}$ number density, $g_{\mathrm{A} / \mathrm{B}}$ statistical weight, $\Delta E_{\mathrm{AB}}=E_{\mathrm{A}}-E_{\mathrm{B}}$
Ratio of particles in a given state to all particles of that kind

$$
n_{\text {total }}=\sum_{i}=\frac{n_{1}}{g_{1}} \cdot\left(g_{1}+g_{2} e^{-\frac{\Delta E_{12}}{k T}}+g_{3} e^{-\frac{\Delta E_{13}}{k T}}+\ldots\right) \equiv \frac{n_{1}}{g_{1}} Q(T) e^{\frac{E_{1}}{k T}}
$$

$Q(T)=\sum_{i} g_{i} e^{-E_{i} / k T}$ partition function

$$
\Rightarrow \frac{n_{j}}{n}=\frac{g_{j}}{Q(T)} e^{-\frac{E_{j}}{k T}}
$$

population number of a given state j relative to total population

Distribution of particles in two different ionization stages a and b is given by

Saha equation

$$
\begin{equation*}
\frac{n_{\mathrm{b}}}{n_{\mathrm{a}}} n_{e}=2 \frac{Q_{\mathrm{b}}(T)}{Q_{\mathrm{a}}(T)} \cdot\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}} e^{\frac{-x_{\mathrm{ab}}}{k T}} \tag{4.33}
\end{equation*}
$$

χ_{ab} ionization energy, n_{e} electron number density

- equivalent width of a spectral lines depends on $N_{l} f_{l u} \lambda$
- fraction of the strength of two spectral lines with similar $f_{l u} \lambda$ in different excitation/ionization stages depends (mostly) on T
\rightarrow Excitation/Ionization temperature can be determined
- Curve of growth (COG) analysis
rotation

vibration

- In cool stellar atmospheres atoms can form molecules, which contribute to the continuous (dissociation) and line opacity
- Molecules have additional energy levels due to vibration and rotation and form bands instead of single lines (e.g. G-band of CH molecule)
- In dense atmospheres, atoms can continuously form short-lived quasimolecules, which quickly dissolve (e.g. $H_{2}, H_{2}^{+}, H e_{2}$), but cause spectral features

Wavelength

Amen
25

In stellar atmospheres with strong magnetic fields, spectral lines split based on interaction of the field and the electron spin (Zeeman effect)

$$
\begin{equation*}
\delta \lambda=g \frac{e \lambda^{2}}{4 \pi m c^{2}} H \tag{4.34}
\end{equation*}
$$

H magnetic field strength
${ }_{4}$ Magnetic white dwarfs with
${ }^{12}$ strong magnetic fields

Gray 2008

Gray 2008

Gray 2008

Gray 2008

Stellar rotation leads to Doppler-shifts of the spectral lines across the stellar surface
\rightarrow Integration over the entire visible surface leads to rotational broadening of the spectral lines

$$
b=\frac{\lambda}{c} R \omega \sin i \rightarrow \frac{b}{\lambda}=\frac{v_{\mathrm{rot}}}{c} \sin i
$$

b maximum FWHM broadening, ω angular rotational velocity, $V_{\text {rot }}$ rotational velocity at equator, i inclination angle of the rotation axis

P Cygni profiles: signs of stellar wind

Figure 4. H-alpha profiles of P Cygni from Oak Ridge Observatory.

- Characteristic P Cygni profiles caused by optically thick stellar winds
- $\Delta \lambda / \lambda_{0}=v_{\infty} / c$, terminal wind velocity v_{∞}
- Mass loss rate \dot{M} determined with detailed models
- temperature and density stratification of a model atmosphere is calculated by solving the basic equations of radiative transfer, hydrostatic equilibrium, radiative equilibrium, statistical equilibrium, charge and particle conservation iteratively
- Approximations have to be made dependent on the type of atmosphere (geometry, LTE/NLTE, static/wind, opacity sources)
- spectrum synthesis code take a previously computed atmospheric structure and solve, frequency-by-frequency, the radiative transfer equation, with a sufficiently high resolution in the frequency space to provide a reliable predicted spectrum to be compared with observations.
- Extended line lists containing of the order of $10^{7}-10^{9}$ of spectral line data are necessary

Przybilla et al. 2011, A\&A, 445, 1099
4

Model atmosphere calculation

Models are fitted to observed spectra
Multidimensional model grids or individual models
Spectroscopic parameters (model dependent):
$T_{\text {eff }} \quad$ Effective temperature
$\log g \quad$ Surface gravity
$n(X) / n(H)$ Elemental abundances
[M/H] Scaled metallicity (w.r.t Sun)
$V_{\text {rot }} \sin i \quad$ Projected rotational velocity
v_{∞}
$\dot{M} \quad$ Mass loss rate
H

Stellar classification

Annie Cannon introduced the Harvard classification scheme with seven spectral types (O, B, A, F, G, K, M) in 1901.

The Harvard classification is based on the presence/absence and strength of absorption lines in low-resolution optical spectra:

It turned out later that the spectral classes are actually a temperature sequence:

Class	Most prominent spectral features	Temperature
O	Ionized helium	$45000-25000 \mathrm{~K}$
B	Neutral helium lines	$25000-11000 \mathrm{~K}$
A	Hydrogen lines	$11000-7500 \mathrm{~K}$
F	lonized metals	$7500-6000 \mathrm{~K}$
G	lonized and neutral metals	$6000-5000 \mathrm{~K}$
K	Neutral metals and molecules	$5000-3500 \mathrm{~K}$
M	Molecular bands	$3500-2200 \mathrm{~K}$

The ordering of the letters is due to historic reasons. Also for historic reasons, the hotter stars are sometimes called "early-type stars" while the cooler ones are called "late-type stars". This has nothing to do with age.

- Spectral classes based on absorption lines in optical spectra
- atom in ionization stage r and absorption line from transition from lower state
$\epsilon_{\mathrm{r}, \mathrm{I}}$ to upper state $\epsilon_{\mathrm{r}, \mathrm{u}}$
\rightarrow strength S of line scales with number of absorbers $n_{r, 1}: S \propto n_{r, l}$
- likelihood to find an atom in state given by Boltzmann distribution $\epsilon_{r, 1}$:
$n_{\mathrm{r}, \mathrm{I}} \propto n_{r} \exp \left(-\epsilon_{\mathrm{r}, \mathrm{I}} /(k T)\right)$
- degree of ionization given by the Saha equation:

$$
\frac{n_{e} n_{r+1}}{n_{r}} \propto \frac{\left(2 \pi m_{e} k T\right)^{3 / 2}}{h^{3}} \exp \left(-\frac{\left(\epsilon_{r+1}-\epsilon_{r}\right)}{k T}\right) \rightarrow n_{r}=n_{r}(T)
$$

$$
\begin{equation*}
S \propto n_{r}(T) \exp \left(-\epsilon_{l} /(k T)\right) \tag{4.35}
\end{equation*}
$$

\rightarrow interplay between excitation and ionization effect

- Link between spectral class and temperature - Hydrogen as example -

- Optical transitions only if first excited state is populated
- low temperatures, most atoms are in the ground state (Lyman series, UV)
- with increasing temperature first excited state gets populated (Balmer series, optical)
- for high temperatures hydrogen atoms get ionized, less atoms in first excited state

Stellar Classification

Stellar classification

Stellar structure equations

Gradient of scalar field

Scalar field: scalar value to every point in a space (e.g. temperature, gravitational potential)

Divergence of a vector field

$$
\nabla \cdot \overrightarrow{\mathbf{v}}<0
$$

$$
\nabla \cdot \overrightarrow{\mathbf{v}}>0
$$

$$
\nabla \cdot \overrightarrow{\mathbf{v}}=0
$$

vector field: vector to each point in a subset of space (e.g. velocity field in a fluid)

Spherical polar coordinates: scalar field V and vector field \mathbf{F}

$$
\begin{equation*}
\mathbf{F}=F_{r} \mathbf{a}_{r}+F_{\theta} \mathbf{a}_{\theta}+F_{\phi} \mathbf{a}_{\phi} \tag{5.1}
\end{equation*}
$$

gradient of V

$$
\begin{equation*}
\nabla V=\frac{\partial V}{\partial r} \mathbf{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} \tag{5.2}
\end{equation*}
$$

divergence of \mathbf{F}

$$
\begin{equation*}
\operatorname{div} \mathbf{F}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta F_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi} \tag{5.3}
\end{equation*}
$$

Laplacian of $V: \nabla^{2} V=\operatorname{div}(\nabla V)$

$$
\begin{equation*}
\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \phi}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}} \tag{5.4}
\end{equation*}
$$

horizontal component of vector \mathbf{F}

$$
\begin{equation*}
\mathbf{F}_{\mathrm{h}}=F_{\theta} \mathbf{a}_{\theta}+F_{\phi} \mathbf{a}_{\phi} \tag{5.5}
\end{equation*}
$$

Coordinates and symmetries

Stars are clumps of gas, which are stabilized by the equilibrium of self-gravity and pressure
\rightarrow Spherically symmetric configuration
\rightarrow 3D problem reduces to 1D problem
\rightarrow To characterize the full star and its evolution, one needs a temporal coordinate t and a spatial coordinate

Coordinates and symmetries

Eulerian description

- Spatial coordinate is distance r from the stellar center $\Rightarrow 0 \leq r \leq R$
- $m(r, t)$ mass of sphere of radius r at the time t

$$
\Rightarrow \mathrm{d} m=4 \pi r^{2} \rho \mathrm{~d} r-4 \pi r^{2} \rho v \mathrm{~d} t
$$

$\rho(r, t)$ density, v radial velocity
Conservation of mass

Coordinates and symmetries

- Mass in sphere $r+\mathrm{d} r$ at constant t

$$
\begin{equation*}
\frac{\partial m}{\partial r}=4 \pi r^{2} \rho \tag{5.6}
\end{equation*}
$$

- Mass flow out of sphere $r+\mathrm{d} r$ due to radial velocity v within $\mathrm{d} t$

$$
\begin{equation*}
\frac{\partial m}{\partial t}=-4 \pi r^{2} \rho v \tag{5.7}
\end{equation*}
$$

Conservation of mass (basic equation)

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\frac{\partial m}{\partial r}\right)=\frac{\partial}{\partial t} 4 \pi r^{2} \rho \\
\frac{\partial}{\partial r}\left(\frac{\partial m}{\partial t}\right)=\frac{\partial}{\partial r}\left[-4 \pi r^{2} \rho v\right]
\end{gathered}
$$

Symmetry

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\partial m}{\partial r}\right) & =\frac{\partial}{\partial r}\left(\frac{\partial m}{\partial t}\right) \\
\Rightarrow 4 \pi \frac{\partial}{\partial t} r^{2} \rho & =-4 \pi \frac{\partial}{\partial r} r^{2} \rho v
\end{aligned}
$$

r independent of t

$$
\begin{equation*}
\Rightarrow \frac{\partial \rho}{\partial t}=-\frac{1}{r^{2}} \frac{\partial\left(\rho r^{2} v\right)}{\partial r}=-\nabla \cdot(\rho v) \tag{5.8}
\end{equation*}
$$

Continuity equation of hydrodynamics

Advantageous as the mass of a star varies much less than the radius during stellar evolution $\frac{M_{\text {max }}}{M_{\text {min }}} \sim 2-10, \frac{R_{\text {max }}}{R_{\text {min }}} \sim 10^{3}-10^{8}$

Lagrangian description

- Spatial coordinate is mass m contained in a concentric sphere

$$
\Rightarrow m(r, t), 0 \leq r \leq R
$$

- $m(0, t)=0$ mass at the center, $m(R, t)=M$ total mass

Coordinate transformation from (r, t) to (m, t)

$$
\begin{gathered}
\frac{\partial}{\partial m}=\frac{\partial}{\partial r} \cdot \frac{\partial r}{\partial m} \\
\left(\frac{\partial}{\partial t}\right)_{m}=\frac{\partial}{\partial r} \cdot\left(\frac{\partial r}{\partial t}\right)_{m}+\left(\frac{\partial}{\partial t}\right)_{r}
\end{gathered}
$$

transformation between operators

$$
\frac{\partial r}{\partial m}=\frac{1}{4 \pi r^{2} \rho} \Rightarrow \frac{\partial}{\partial m}=\frac{1}{4 \pi r^{2} \rho} \frac{\partial}{\partial r}
$$

Inside a spherically symmetric body, the absolute value of gravitational acceleration g
 at r does not depend on the mass elements outside r
The gravitational potential Φ is a solution of the Poisson equation

$$
\begin{aligned}
\nabla^{2} \Phi= & \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=4 \pi G \rho \\
& \Rightarrow g=\frac{\partial \Phi}{\partial r}=\frac{G m}{r^{2}}
\end{aligned}
$$

with G the gravitational constant

$$
\Rightarrow \Phi(r)=\int_{0}^{r} \frac{G m}{r^{2}} \mathrm{~d} r+\text { constant }
$$

$$
\Phi \rightarrow 0 \text { for } r \rightarrow \infty
$$

Gravitational force acting on shell at r with
 thickness dr inward

$$
f_{\mathrm{G}}=\frac{F_{\mathrm{G}}}{\mathrm{~d} A}=-g \frac{\mathrm{~d} m}{\mathrm{~d} A}=-g \rho \mathrm{~d} r
$$

Balanced by buoyancy force due to pressure difference outward

$$
F_{\mathrm{B}}=P_{e} \mathrm{~d} A-P_{i} \mathrm{~d} A=-\mathrm{d} A \frac{\partial P}{\partial r} \mathrm{~d} r
$$

In equilibrium, the sum of the two forces has to be zero $\left(F_{\mathrm{G}}+F_{\mathrm{B}} \stackrel{!}{=} 0\right)$

$$
\begin{equation*}
\rightarrow \frac{\partial P}{\partial r}=-g \rho \Leftrightarrow \frac{\partial P}{\partial m}=-\frac{g}{4 \pi r^{2}} \tag{5.9}
\end{equation*}
$$

Equation of hydrostatic equilibrium (basic equation)

Star undergoes accelerated radial motion

$$
0 \neq-\frac{\partial P}{\partial m}-\frac{g}{4 \pi r^{2}}
$$

Mass shell will be accelerated

$$
\begin{align*}
& \frac{\mathrm{d} m}{4 \pi r^{2}} \frac{\partial^{2} r}{\partial t^{2}}=f_{\mathrm{G}}+f_{\mathrm{B}}=-\frac{\partial P}{\partial m} \mathrm{~d} m-g \frac{\mathrm{~d} m}{4 \pi r^{2}} \\
& \frac{1}{4 \pi r^{2}} \frac{\partial^{2} r}{\partial t^{2}}=-\frac{\partial P}{\partial m}-\frac{g}{4 \pi r^{2}} \tag{5.10}\\
& \text { Equation of motion }
\end{align*}
$$

Reaction of the star to vanishing pressure

$$
\frac{1}{4 \pi r^{2}} \frac{\partial^{2} r}{\partial t^{2}}=-\frac{g}{4 \pi r^{2}}
$$

Exercise sheet III
Calculation of free-fall timescale $\tau_{\text {ff }}$

Reaction of the star to vanishing gravity

$$
\frac{1}{4 \pi r^{2}} \frac{\partial^{2} r}{\partial t^{2}}=-\frac{\partial P}{\partial m}
$$

Lagrangian/Eulerian transformation

$$
\begin{gathered}
4 \pi r^{2} \frac{\partial P}{\partial m}=\frac{\partial P}{\partial r} \frac{1}{\rho}=\frac{\bar{P}}{R \bar{\rho}} \\
\Rightarrow \frac{\partial^{2} r}{\partial t^{2}}=-\frac{\bar{P}}{R \bar{\rho}}
\end{gathered}
$$

Defining the characteristic explosion timescale $\tau_{\text {expl }}$

$$
\begin{aligned}
& \left|\frac{\partial^{2} r}{\partial t^{2}}\right|=\frac{R}{\tau_{\text {expl }}^{2}}=\frac{\bar{P}}{R \bar{\rho}} \\
& \Rightarrow \tau_{\text {expl }} \approx R\left(\frac{\bar{\rho}}{\bar{P}}\right)^{1 / 2}
\end{aligned}
$$

$\tau_{\text {expl }}$ of the order of the time a sound wave needs to travel from center to surface
$\mathbf{P}_{\mathrm{e}} \quad$ In near hydrostatic equilibrium

$$
\tau_{\mathrm{expl}} \approx \tau_{\mathrm{ff}}=\tau_{\mathrm{hydr}}
$$

$\tau_{\text {hydr }}$ hydrostatic time-scale typical time in which a (dynamically stable) star reacts on a slight perturbation of hydrostatic equilibrium

$$
\tau_{\text {hydr }} \approx\left(\frac{R^{3}}{G M}\right)^{1 / 2} \approx \frac{1}{2}(G \bar{\rho})^{-1 / 2}
$$

Much shorter than stellar evolution times $10^{8}-10^{10} \mathrm{yr}$

see Exercise sheet III

Integrating the basic equation of hydrostatic equilibrium $\frac{\partial P}{\partial m}=-\frac{g}{4 \pi r^{2}}$ over $\mathrm{d} m$ from center to surface and multiplying by the Volume $V=4 / 3 \pi r^{3}$

$$
\begin{equation*}
\Rightarrow \int_{0}^{M} \frac{G m}{r} \mathrm{~d} m=3 \int_{0}^{P} \frac{P}{\rho} \mathrm{~d} m \tag{5.11}
\end{equation*}
$$

Derivation Exercise sheet III

E_{G} gravitational energy: Potential energy of all mass elements $\mathrm{d} m$ of the star due to the gravitational field

$$
E_{\mathrm{G}}:=-\int_{0}^{M} \frac{G m}{r} \mathrm{~d} m
$$

Energy needed to expand all mass shells to infinity

What is the meaning of $3 \int_{0}^{P} \frac{P}{\rho} \mathrm{~d} m$?
Assuming an ideal gas with equation of state

$$
P=n k T=\frac{R}{\mu} \rho T
$$

with $\rho=n \mu m_{\mathrm{u}}, n$ number of particles per volume, μ mean molecular weight, m_{u} atomic mass unit, k Boltzmann constant, $R=\frac{k}{m_{u}}$ universal gas constant

$$
\left.\rightarrow \frac{P}{\rho}=\frac{R}{\mu} T=\left(c_{\mathrm{P}}-c_{V}\right) T=(\gamma-1) c_{V}\right) T
$$

with $\mathcal{C}_{V, P}$ specific heat capacities for constant V or $P, \frac{R}{\mu}=C_{P}-C_{V}, \gamma=\frac{C_{P}}{Q_{V}}$ for monoatomic gas: $\gamma=\frac{5}{3}$

$$
\Rightarrow \frac{P}{\rho}=\frac{2}{3} u
$$

with $u=\varrho_{\checkmark} T$ internal energy per unit mass

Virial theorem for monoatomic gas

$$
\begin{gather*}
\int_{0}^{M} \frac{G m}{r} \mathrm{~d} m=2 \int_{0}^{M} u \mathrm{~d} m \\
E_{\mathrm{G}}=-2 E_{\mathrm{i}} \tag{5.12}
\end{gather*}
$$

E_{i} internal energy $:=\int_{0}^{M} u \mathrm{~d} m$
E_{G} gravitational energy $:=-\int_{0}^{M} \frac{G m}{r} \mathrm{~d} m$
General virial theorem

$$
\begin{equation*}
\zeta E_{\mathrm{i}}+E_{\mathrm{G}}=0 \tag{5.13}
\end{equation*}
$$

where $\zeta u=3 \frac{P}{\rho}$
Ideal gas $\zeta=3(\gamma-1)$, monoatomic $\zeta=2$

W Total energy

$$
W=E_{i}+E_{G}
$$

for gravitationally bound systems $W<0$

$$
W=(1-\zeta) E_{\mathrm{i}}=\frac{\zeta-1}{\zeta} E_{\mathrm{G}}
$$

All energy forms are coupled!
Energy loss via radiation with luminosity L

$$
\begin{gathered}
\frac{\mathrm{d} W}{\mathrm{~d} t}+L=0 \\
\Rightarrow L=(\zeta-1) \frac{\mathrm{d} E_{\mathrm{i}}}{\mathrm{~d} t}=-\frac{\zeta-1}{\zeta} \frac{\mathrm{~d} E_{\mathrm{G}}}{\mathrm{~d} t}
\end{gathered}
$$

Contraction $\frac{d E_{G}}{d t}<0$ and ideal monoatmoic gas $L=-\frac{1}{2} \frac{\mathrm{~d} E_{G}}{\mathrm{~d} t}=\frac{\mathrm{d} E_{\mathrm{i}}}{\mathrm{d} t}$
\rightarrow Half of the energy radiated away, half heats the star
\rightarrow Stars in hydrostatic equilibrium have a negative heat capacity, become hotter upon losing energy

Evolutionary time for a contracting and cooling star

$$
\tau_{\mathrm{KH}}:=\frac{\left|E_{\mathrm{G}}\right|}{L} \approx \frac{E_{\mathrm{i}}}{L}
$$

Rough estimate for $\left|E_{\mathrm{G}}\right| \approx \frac{G \bar{m}^{2}}{\bar{r}} \approx \frac{G M^{2}}{2 R}$

$$
\tau_{\mathrm{KH}} \approx \frac{G M^{2}}{2 R L}
$$

For the Sun $\tau_{\mathrm{KH}} \approx 1.6 \times 10^{7} \mathrm{yr}$

First law of thermodynamics

$$
\begin{equation*}
\mathrm{d} q=\mathrm{d} u+P \mathrm{~d} V \tag{5.14}
\end{equation*}
$$

q heat per unit mass, u internal energy per unit mass, $V=1 / \rho$ specific volume per unit mass
General equations of state $\rho=\rho\left(P, T,\left(X_{i}\right)\right), u=u\left(\rho, T,\left(X_{i}\right)\right)$
$\rightarrow \mathrm{d} \rho / \rho=\alpha \mathrm{d} P / P-\delta \mathrm{d} T / T$
Derivatives with respect to P, T, other quantity stays constant

$$
\begin{aligned}
\alpha & =\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T}=-\frac{P}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\
\delta & =\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}=-\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

c_{P}, c_{V} specific heats

$$
\begin{gather*}
\mathbf{c}_{P}=\left(\frac{\mathrm{d} q}{\mathrm{~d} T}\right)_{P}=\left(\frac{\partial u}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P} \tag{5.15}\\
c_{V}=\left(\frac{\mathrm{d} q}{\mathrm{~d} T}\right)_{V}=\left(\frac{\partial u}{\partial T}\right)_{V}
\end{gather*}
$$

Thermodynamic relations

Total derivative

$$
\mathrm{d} u=\left(\frac{\partial u}{\partial V}\right)_{T} \mathrm{~d} V+\left(\frac{\partial u}{\partial T}\right)_{V} \mathrm{~d} T
$$

\rightarrow change of the specific entropy $\mathrm{d} s=\mathrm{d} q / T$

$$
\mathrm{d} s=\frac{\mathrm{d} q}{T}=\frac{1}{T}\left[\left(\frac{\partial u}{\partial V}\right)_{T}+P\right] \mathrm{d} V+\frac{1}{T}\left(\frac{\partial u}{\partial T}\right)_{V} \mathrm{~d} T
$$

Symmetry of total derivative: $\partial^{2} s / \partial T \partial V=\partial^{2} s / \partial V \partial T$

$$
\frac{\partial}{\partial T}\left[\frac{1}{T}\left(\frac{\partial u}{\partial V}\right)_{T}+\frac{P}{T}\right]=\frac{1}{T} \frac{\partial^{2} u}{\partial T \partial V} \Rightarrow\left(\frac{\partial u}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

analogue you can derive $\left(\frac{\partial u}{\partial T}\right)_{P}$ and use it for calculating the specific heats:

$$
c_{P}-c_{V}=\left(\frac{\partial u}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}-\left(\frac{\partial u}{\partial T}\right)_{V}=\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V} T
$$

using the definitions for α and δ

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=-\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}}=\frac{P \delta}{T \alpha} \Rightarrow c_{P}-c_{V}=T\left(\frac{\partial V}{\partial T}\right)_{P} \frac{P \delta}{T \alpha}=\frac{P \delta^{2}}{\rho T \alpha}=\frac{R}{\mu} \text { (perfect gas) }
$$

rewrite the first law of thermodynamics in Terms of T and P
$\mathrm{d} q=\mathrm{d} u+P \mathrm{~d} V=\left(\frac{\partial u}{\partial T}\right)_{V} \mathrm{~d} T+\left[\left(\frac{\partial u}{\partial V}\right)_{T}+P\right] \mathrm{d} V=\left(\frac{\partial u}{\partial T}\right)_{V} \mathrm{~d} T+T\left(\frac{\partial P}{\partial T}\right)_{V} \mathrm{~d} V$
using the previous relations and use $\rho=1 / V$ instead of V (Kippenhahn \& Weigert 2012 for more details)

$$
\begin{equation*}
\mathrm{d} q=C_{P} \mathrm{~d} T-\frac{\delta}{\rho} \mathrm{d} P \tag{5.16}
\end{equation*}
$$

next we define the adiabatic temperature gradient $\nabla_{\text {ad }}$:

$$
\nabla_{\mathrm{ad}}:=\left(\frac{\partial \ln T}{\partial \ln P}\right)_{s}
$$

valid for constant entropy $\rightarrow \mathrm{d} s=\mathrm{d} q / T=0$

$$
\begin{gather*}
0=\mathrm{d} q=c_{P} \mathrm{~d} T-\frac{\delta}{\rho} \mathrm{d} P \Rightarrow\left(\frac{\mathrm{~d} T}{\mathrm{~d} P}\right)_{s}=\frac{\delta}{\rho c_{P}} \\
\nabla_{\mathrm{ad}} \equiv\left(\frac{P}{T} \frac{\mathrm{~d} T}{\mathrm{~d} P}\right)_{s}=\frac{P \delta}{T \rho c_{P}} \tag{5.17}
\end{gather*}
$$

Equation of state for perfect gas consisting of n particles per unit volume with molecular weight μ having a density of $\rho=n \mu m_{\mathrm{u}}\left(R=\frac{k}{m_{u}}\right)$

$$
P=n k T=\frac{R}{\mu} \rho T
$$

Gas in stellar interiors is usually fully ionized \rightarrow Mixture of nuclei and free electron gas, can be treated like a one-component gas, if all gases are perfect Mixture of i kinds of fully ionized nuclei with weight fractions X_{i}, molecular weight μ_{i}, charge number Z_{i}, number of nuclei per volume n_{i}, and partial density ρ_{i} (Mass of the electrons is neglected here)

$$
X_{i}=\rho_{i} / \rho \quad n_{i}=\frac{\rho_{i}}{\mu_{i} m_{\mathrm{u}}}=\frac{\rho}{m_{\mathrm{u}}} \frac{X_{i}}{\mu_{i}}
$$

Total pressure P is sum of the partial pressures due to the nuclei P_{i} and the electrons P_{e}

$$
P=P_{e}+\sum_{i} P_{i}=\left(n_{e}+\sum_{i} n_{i}\right) k T
$$

Contribution of one completely ionized atom to the total number of particles is one nucleus and Z_{i} electrons

$$
\Rightarrow n=n_{e}+\sum_{i} n_{i}=\sum_{i}\left(1+Z_{i}\right) n_{i}=\sum_{i}\left(1+Z_{i}\right) \frac{\rho}{m_{\mathrm{u}}} \frac{X_{i}}{\mu_{i}}
$$

\rightarrow Equation of state

$$
\begin{equation*}
P=n k T=\sum_{i} \frac{k}{m_{\mathrm{u}}} \frac{X_{i}\left(1+Z_{i}\right)}{\mu_{i}} \rho T=\frac{R}{\mu} \rho T \tag{5.18}
\end{equation*}
$$

Mean molecular weight μ :

$$
\begin{equation*}
\mu=\left(\sum_{i} \frac{X_{i}\left(1+Z_{i}\right)}{\mu_{i}}\right)^{-1} \tag{5.19}
\end{equation*}
$$

Internal energy is kinetic energy of translational motion of the particles only

$$
\begin{gathered}
u=\frac{3}{2} k T \frac{n}{\rho} \\
C_{P}=\frac{5}{2} \frac{R}{\mu} \quad c_{V}=\frac{3}{2} \frac{R}{\mu} \\
\nabla_{\mathrm{ad}}=\frac{R}{\mu c_{P}}=\frac{2}{5} \quad \alpha=\delta=1
\end{gathered}
$$

adiabatic changes

$$
\begin{equation*}
\gamma_{\mathrm{ad}}:=\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{s}=\frac{c_{P}}{c_{V}}=\frac{1}{\alpha-\delta \nabla_{\mathrm{ad}}}=\frac{5}{3} \tag{5.20}
\end{equation*}
$$

Net energy $I(r)$ per second passing outward through a sphere with radius r $I(0)=0$ at center, $I(R)=L$ at surface \rightarrow in between dependent of distribution of sources and sinks of energy

Stationary case $\mathrm{d} /$ due to release of nuclear energy only, ϵ nuclear energy per unit mass and second

$$
\mathrm{d} l=4 \pi r^{2} \rho \epsilon \mathrm{~d} r=\epsilon \mathrm{d} m \Rightarrow \frac{\partial I}{\partial m}=\epsilon
$$

Non-Stationary case d/ can change its internal energy and exchange mechanical work

$$
\mathrm{d} q=\left(\epsilon-\frac{\partial I}{\partial m}\right) \mathrm{d} t
$$

$\mathrm{d} q$ heat per unit mass added to shell in $\mathrm{d} t$

Stellar structure equations

$$
\begin{align*}
& \mathrm{d} u+P \mathrm{~d} V \stackrel{5.14}{=} \mathrm{d} q=\left(\epsilon-\frac{\partial I}{\partial m}\right) \mathrm{d} t \stackrel{5.16}{=} c_{P} \mathrm{~d} T-\frac{\delta}{\rho} \mathrm{d} P \\
& \Rightarrow \frac{\partial I}{\partial m}= \epsilon-\frac{\partial u}{\partial t}-P \frac{\partial V}{\partial t} \stackrel{V=1 / \rho}{=} \epsilon-\frac{\partial u}{\partial t}-\frac{P}{\rho^{2}} \frac{\partial \rho}{\partial t} \\
& \Rightarrow \frac{\partial I}{\partial m}=\epsilon-c_{P} \frac{\partial T}{\partial t}+\frac{\delta}{\rho} \frac{\partial P}{\partial t} \tag{5.21}
\end{align*}
$$

Conservation of energy (basic equation)
terms containing the time derivatives combined in a source function

$$
\begin{gathered}
\epsilon_{\mathrm{g}}:=-T \frac{\partial s}{\partial t} \stackrel{\mathrm{~d} s=\mathrm{d} q / T}{=}-c_{P} \frac{\partial T}{\partial t}+\frac{\delta}{\rho} \frac{\partial P}{\partial t} \stackrel{5.17}{=}-c_{P} T\left(\frac{1}{T} \frac{\partial T}{\partial t}-\frac{\nabla_{\mathrm{ad}}}{P} \frac{\partial P}{\partial t}\right) \\
\frac{\partial I}{\partial m}=\epsilon+\epsilon_{\mathrm{g}}
\end{gathered}
$$

Neutrino losses have to be considered. Formed by nuclear energy reactions or other reactions, but do not interact with stellar material and act as energy sink. Complete energy equation:

$$
\begin{equation*}
\frac{\partial I}{\partial m}=\epsilon-\epsilon_{\nu}+\epsilon_{\mathrm{g}} \tag{5.22}
\end{equation*}
$$

The energy per second carried away from the star by neutrinos is often called the neutrino luminosity:

$$
L_{\nu}:=\int_{0}^{M} \epsilon_{\nu} \mathrm{d} m
$$

Star balances its energy loss L essentially by release of nuclear energy. If L is constant this can go on for a nuclear timescale τ_{n} :

$$
\begin{equation*}
\tau_{\mathrm{n}}:=\frac{E_{\mathrm{n}}}{L} \tag{5.23}
\end{equation*}
$$

E_{n} total nuclear energy
Example Sun completely consisting of hydrogen:
$E_{\mathrm{n}}=Q M_{\odot}=6.3 \times 10^{18} \mathrm{erg} \mathrm{g}^{-1} M_{\odot}=1.25 \times 10^{52} \mathrm{erg}, L=4 \times 10^{33} \mathrm{erg} / \mathrm{s}$
$\Rightarrow \tau_{\mathrm{n}}=10^{11} \mathrm{yr}$
For stars with stable nuclear burning of hydrogen or helium

$$
\tau_{\mathrm{n}} \gg \tau_{\mathrm{KH}} \gg \tau_{\text {hydr }}
$$

In this case, the equation of energy conservation simplifies to

$$
\frac{\partial I}{\partial m} \approx \epsilon
$$

- energy the star radiates away replenished from reservoirs situated in the very hot central region \rightarrow effective transfer of energy through the stellar material
- possible due to a non-vanishing temperature gradient in the star
- Depending on the local physical situation, transfer can occur mainly via radiation, conduction, and convection
- "particles" (photons, atoms, electrons, "blobs" of matter) are exchanged between hotter and cooler parts
- their mean free path together with the temperature gradient of the surroundings will play a decisive role

_Energy transport by radiation

Mean free path $I_{\text {ph }}$ of a photon in the stellar interior

$$
\begin{equation*}
\mathrm{I}_{\mathrm{ph}}=\frac{1}{\kappa \rho} \tag{5.24}
\end{equation*}
$$

κ average absorption coefficient
For sun: $\kappa \approx 1 \mathrm{~cm}^{2} \mathrm{~g}^{-1}, \rho_{\odot} \approx 3 \mathrm{M}_{\odot} / 4 \pi \mathrm{R}_{\odot}^{3} \Rightarrow I_{\mathrm{ph}} \approx 2 \mathrm{~cm}$
Stellar interiors are extremely opaque
Mean free path of photons is much smaller than stellar radius
\rightarrow Energy transport can be simplified as diffusion process
typical Temperature gradient

$$
\begin{equation*}
\frac{\Delta T}{\Delta r} \approx \frac{T_{\text {center }}-T_{\text {surface }}}{R_{\odot}} \approx \frac{10^{7} \mathrm{~K}-10^{4} \mathrm{~K}}{R_{\odot}} \approx 1.4 \times 10^{-4} \mathrm{~K} \mathrm{~cm}^{-1} \tag{5.25}
\end{equation*}
$$

differences of temperature very small \rightarrow in stellar interiors very close to thermal equilibrium, radiation very close to black body energy density of radiations $u \sim T^{4}$
\rightarrow relative anisotropy $4 \Delta T / T \sim 10^{-10}$: carrier of the stars' huge luminosity
diffusive flux \mathbf{j} of particles (per unit area and time) between different particle densities n

$$
\begin{equation*}
\mathbf{j}=-D \nabla n \tag{5.26}
\end{equation*}
$$

Coefficient of diffusion $D=\frac{1}{3} v l_{p}$ with v mean velocity and l_{p} mean free path of the particles transition from particles to radiation

$$
\begin{aligned}
n & \rightarrow U=a T^{4} \\
\mathbf{j} & \rightarrow \mathbf{F} \\
I_{p} & \rightarrow I_{\mathrm{ph}} \\
v & \rightarrow \mathrm{c}
\end{aligned}
$$

Energy density of radiation U (a radiation density constant), \mathbf{F} radiative flux
Spherical symmetry

$$
\begin{gathered}
F_{r}=|\mathbf{F}|=F \\
\nabla U \rightarrow \frac{\partial U}{\partial r}
\end{gathered}
$$

Energy transport by radiation

$$
\Rightarrow \frac{\partial U}{\partial r}=4 a T^{3} \frac{\partial T}{\partial r}
$$

with 5.24 and 5.26 follows for the flux:

$$
\begin{equation*}
F=-\frac{4 a c}{3} \frac{T^{3}}{\kappa \rho} \frac{\partial T}{\partial r} \tag{5.27}
\end{equation*}
$$

using the local luminosity $I=4 \pi r^{2} F$ we can solve for the temperature gradient

$$
\begin{equation*}
\frac{\partial T}{\partial r}=-\frac{3}{16 \pi a c} \frac{\kappa \rho l}{r^{2} T^{3}} \Leftrightarrow \frac{\partial T}{\partial m}=-\frac{3}{64 \pi^{2} a c} \frac{\kappa l}{r^{4} T^{3}} \tag{5.28}
\end{equation*}
$$

Basic equation for radiative transport of energy
Only valid in the stellar interior!
κ needs to be a mean over all frequencies (e.g. Rosseland mean)

$$
\begin{align*}
& \frac{\partial T}{\partial P}=\frac{\partial T / \partial m}{\partial P / \partial m} \stackrel{\frac{\partial P}{\partial m}=-\frac{G m}{4 \pi \pi^{4}}}{16 \pi a c G} \frac{\kappa l}{m T^{3}} \\
& \nabla_{\mathrm{rad}}=\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{rad}}=\frac{3}{16 \pi a c G} \frac{\kappa I P}{m T^{4}} \tag{5.29}
\end{align*}
$$

Gradient describing the temperature variation with depth

Heat conduction: Energy transfer via collisions of particles (electrons, nuclei or atoms, molecules) in random thermal motion
\rightarrow mean free paths and velocities several orders of magnitude less than for photons
\rightarrow in "ordinary" stellar matter negligible
\rightarrow Important for degenerate matter(high densities), e.g. interiors of white dwarfs: increases velocities and mean free path of electrons
\rightarrow Diffusion approximation can be used as well

$$
\begin{gather*}
F_{\mathrm{cond}}=-\frac{4 a c}{3} \frac{T^{3}}{\kappa_{\mathrm{cond}} \rho} \frac{\partial T}{\partial r} \tag{5.30}\\
\Rightarrow \mathbf{F}=\mathbf{F}_{\mathrm{rad}}+\mathbf{F}_{\mathrm{cd}}
\end{gather*}
$$

Heat and mass transfer occurs via streams of stellar gas
\rightarrow Hot gas bubbles rise, while cooler material sinks down
\rightarrow Whether or not convection is driven in certain regions of the star depends on the stability of the material against small perturbations and give rise to macroscopic local (non- spherical) motions that are also statistically distributed over the sphere

$$
\begin{array}{lr}
\rho(r+\mathrm{d} r), & \text { slightly hotter element } \\
T(r+\mathrm{d} r), & D T>0 \\
P(r+\mathrm{d} r)
\end{array} \quad D T>
$$

No increase in pressure, because elements will expand immediately

$$
D P=0
$$

perfect gas with $\rho \sim P / T$:

$$
D \rho<0
$$

\Rightarrow Element is lighter than surrounding material
$\rho(r), T(r), P(r) \Rightarrow$ Buoyancy force will lift it upward

$$
\begin{aligned}
& \rho(r+\mathrm{d} r), \\
& T(r+\mathrm{d} r), \\
& P(r+\mathrm{d} r)
\end{aligned}
$$

Density difference at new position

$$
D \rho=\left[\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{e}}-\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{s}}\right] \mathrm{d} r
$$

For $D \rho<0$:
Boyancy force $K_{r}=-g D \rho>0$ is directed upward
\rightarrow perturbation is increased
Unstable!
For $D \rho>0$:
Boyancy force $K_{r}=-g D \rho>0$ is di-
rected downward
$\rho(r), T(r), P(r) \rightarrow$ perturbation is removed

Stable!

Stability criterion

$$
\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{e}}-\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{s}}>0
$$

$\rho(r+\mathrm{d} r)$,
$T(r+\mathrm{d} r)$,
$P(r+\mathrm{d} r)$
Density gradient not part of basic equations
\rightarrow Transformation to temperature gradients:
Equation of state $\rho(P, T, \mu)$ in differential form

$$
\frac{\mathrm{d} \rho}{\rho}=\alpha \frac{\mathrm{d} P}{P}-\delta \frac{\mathrm{d} T}{T}+\varphi \frac{\mathrm{d} \mu}{\mu}
$$

Perfect gas $\alpha=\delta=\varphi=1$

$$
\begin{equation*}
\rho(r), T(r), P(r) \quad \alpha=\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T, \mu} \delta=\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P, \mu} \tag{5.31}
\end{equation*}
$$

$$
\varphi=\left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{P, T}
$$

$$
\begin{gathered}
\frac{\mathrm{d} \rho}{\rho}=\alpha \frac{\mathrm{d} P}{P}-\delta \frac{\mathrm{d} T}{T}+\varphi \frac{\mathrm{d} \mu}{\mu} \\
\rightarrow \frac{\mathrm{~d} \rho}{\mathrm{~d} r}=\rho\left(\frac{\alpha}{P} \frac{\mathrm{~d} P}{\mathrm{~d} r}-\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}+\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{~d} r}\right) \\
\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{e}}-\left(\frac{\mathrm{d} \rho}{\mathrm{~d} r}\right)_{\mathrm{s}}>0
\end{gathered}
$$

$\rightarrow\left(\frac{\alpha}{P} \frac{\mathrm{~d} P}{\mathrm{~d} r}\right)_{\mathrm{e}}-\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{\mathrm{e}}+\left(\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{d} r}\right)_{\mathrm{e}}-\left(\frac{\alpha}{P} \frac{\mathrm{~d} P}{\mathrm{~d} r}\right)_{\mathrm{s}}+\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{\mathrm{s}}-\left(\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{d} r}\right)_{\mathrm{s}}>0$

- $\mathrm{d} \mu$ change in chemical composition: $\mathrm{d} \mu_{\mathrm{e}}=0$ for moving element
- $D P=0 \rightarrow\left(\frac{\alpha}{P} \frac{\mathrm{~d} P}{\mathrm{~d} r}\right)_{\mathrm{e}}=\left(\frac{\alpha}{P} \mathrm{~d} P\right)_{\mathrm{s}}$

Introducing the scale height of pressure H_{P}

$$
\begin{equation*}
H_{P}=\frac{\mathrm{d} r}{\mathrm{~d} \ln P}=-P \frac{\mathrm{~d} r}{\mathrm{~d} P} \tag{5.32}
\end{equation*}
$$

with hydrostatic equilibrium $\frac{\partial P}{\partial r}=-g \rho \Rightarrow H_{P}=\frac{P}{\rho g}$

$$
\begin{aligned}
& {\left[-\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{\mathrm{e}}+\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{\mathrm{s}}-\left(\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{~d} r}\right)_{\mathrm{s}}\right] \overbrace{\frac{\mathrm{d} r}{\mathrm{~d} \ln P}}>0 } \\
\Rightarrow & {\left[-\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} \ln P}\right)_{\mathrm{e}}+\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}-\left(\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}\right]>0 } \\
& \Rightarrow-\left(\delta \frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{e}}+\left(\delta \frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}-\left(\varphi \frac{\mathrm{d} \ln \mu}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}>0
\end{aligned}
$$

Condition for stability

$$
\begin{gather*}
\Rightarrow\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}<\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{e}}+\frac{\varphi}{\delta}\left(\frac{\mathrm{d} \ln \mu}{\mathrm{~d} \ln P}\right)_{\mathrm{s}} \tag{5.33}\\
\nabla:=\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{s}} \quad \nabla_{\mathrm{e}}:=\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{\mathrm{e}} \quad \nabla_{\mu}:=\left(\frac{\mathrm{d} \ln \mu}{\mathrm{~d} \ln P}\right)_{\mathrm{s}}
\end{gather*}
$$

∇, ∇_{μ} variation of T and μ in the surrounding material with depth (P taken as measure of depth)
∇_{e} variation of T in the moving element, position is measured by P

$$
\begin{equation*}
\nabla<\nabla_{\mathrm{e}}+\frac{\varphi}{\delta} \nabla_{\mu} \tag{5.34}
\end{equation*}
$$

Stability of radiative layer $\nabla=\nabla_{\text {rad }}$ with adiabatic change of elements: $\nabla_{\mathrm{e}}=$ $\nabla_{a d}$

$$
\begin{equation*}
\nabla_{\mathrm{rad}}<\nabla_{\mathrm{ad}}+\frac{\varphi}{\delta} \nabla_{\mu} \tag{5.35}
\end{equation*}
$$

Ledoux criterion for dynamical stability ($\Delta_{\mu}>0$ is stabilizing) region with homogeneous chemical composition: $\nabla_{\mu}=0$

$$
\begin{equation*}
\nabla_{\mathrm{rad}}<\nabla_{\mathrm{ad}} \tag{5.36}
\end{equation*}
$$

Schwarzschild criterion for dynamical stability
Dynamically stable layers with different chemical compositions can become unstable under nonadiabatic conditions ($D T \neq 0, D \mu \neq 0, \nabla_{\mu}=0$)
\rightarrow Specific weight is temperature dependent
Secular or thermal instability

$$
\begin{aligned}
\frac{\partial T}{\partial r} & \approx \nabla_{\mathrm{ad}} \frac{T}{P} \frac{\partial P}{\partial r} \text { (convection) } \\
\frac{\partial T}{\partial r} & =-\frac{3}{16 \pi a c} \frac{\kappa \rho l}{r^{2} T^{3}} \text { (Radiation) }
\end{aligned}
$$

Energy transport by convection

Theoretical treatment of convective motions and transport of energy is extremely difficult

- Hydrodynamic equations cannot be solved easily
- Conditions in stellar interiors are unfavorable: turbulent motion transports enormous fluxes of energy in a very compressible gas (differences in properties over many orders of magnitude)
- Full 3D numerical simulations are demanding in terms of computer power
\rightarrow Mixing-length theory provides a simple model, which is still used today

Energy transport by convection

Mixing length theory:

- Convective element with

$$
\rho(r+\mathrm{d} r), \quad D T>0 \text { and } D P=0
$$

$$
T(r+\mathrm{d} r),
$$

$$
P(r+\mathrm{d} r)
$$

- Local convective flux

$$
F_{\mathrm{con}}=\rho v c_{P} D T
$$

- Average convective flux: vDT must be replaced by mean value over the full concentric sphere and all elements
- All elements started as small perturbations

$$
D T_{0}=0 \text { and } v_{0}=0
$$

$\rho(r), T(r), P(r) \quad$ Due to differences in temperature gradients and buoyancy force $D T$ and v increase

$$
\rho(r+\mathrm{d} r),
$$

$$
T(r+\mathrm{d} r)
$$

$$
P(r+\mathrm{d} r)
$$

Upward displacement
Adiabatic expansion

- After a distance I_{m} the elements dissolves and mixes with the surroundings (Im mixing length)
- Assuming that the average element moved $I_{\mathrm{m}} / 2$ in the sphere

$$
\frac{D T}{T}=\frac{1}{T} \frac{\partial(D T)}{\partial r} \frac{I_{\mathrm{m}}}{2}=\left(\nabla-\nabla_{\mathrm{e}}\right) \frac{I_{\mathrm{m}}}{2} \frac{1}{H_{P}}
$$

- Density difference ($D P=D \mu=0$)

$$
\frac{D \rho}{\rho}=-\frac{\delta D T}{T}
$$

- Buyoncy force
$\rho(r), T(r), P(r)$

$$
k_{r}=-g \frac{D \rho}{\rho}
$$

- Half of the buoyancy force may have acted on the element over its motion \rightarrow work done is

$$
\frac{1}{2} k_{r} \frac{I_{\mathrm{m}}}{2}=g \delta\left(\nabla-\nabla_{\mathrm{e}}\right) \frac{I_{\mathrm{m}}^{2}}{8 H_{P}}
$$

- Half of the work goes into kinetic energy

$$
v^{2}=g \delta\left(\nabla-\nabla_{\mathrm{e}}\right) \frac{l_{\mathrm{m}}^{2}}{8 H_{P}}
$$

- convective flux
$F_{\text {con }}=\rho c_{P} T \sqrt{g \delta} \frac{I_{\mathrm{m}}^{2}}{4 \sqrt{2}} H_{P}^{-3 / 2}\left(\nabla-\nabla_{\mathrm{e}}\right)^{3 / 2}$
- I_{m} or mixing-length parameter $\alpha_{\mathrm{MLT}}=\frac{I_{m}}{H_{P}}$ are free parameters estimated by plausible assumptions and comparison with observations

The chemical composition of stellar matter is very important, since it directly influences basic properties

- absorption by radiation
- generation of energy by nuclear reactions
\rightarrow reactions also alter the composition: record of the nuclear history
- composition is extremely simple compared to that of terrestrial bodies: no chemical compounds, atoms mostly ionized because of high temperature and pressure \rightarrow sufficient to count different types of nuclei
- X_{i} fraction of a unit mass which consists of nuclei of type i

$$
\sum_{i} x_{i} \stackrel{!}{=} 1
$$

- chemical composition of a star at time $t: X_{i}=X_{i}(m, t), 0<m<M$
- particle number n_{i} in a volume of nuclei with mass m_{i} is related to mass abundance

$$
X_{i}=\frac{m_{i} n_{i}}{\rho}
$$

- only few X_{i} to consider: most elements too rare, not important or constant
- sufficient to specify mass fraction of hydrogen, helium, "rest" (metals)

$$
X \equiv X_{H} \quad Y \equiv X_{\text {He }} \quad Z \equiv 1-X-Y
$$

- relative distribution of the elements Z necessary (especially C, N and O)
- most stars in their envelopes, contain an overwhelming amount of hydrogen and helium:

$$
X=0.65 \ldots 0.75 \quad Y=0.30 \ldots 0.25 \quad Z=0.05 \ldots 0.0001
$$

In radiative regions, no exchange of matter between different mass shells, if we can neglect diffusion
\rightarrow frequency of a certain reaction is described by the reaction rate $r_{l m}$: number of reactions per unit volume and time that transform nuclei from type $/$ into m

$$
\frac{\partial X_{i}}{\partial t}=\frac{m_{i}}{\rho}\left[\sum_{j} r_{j i}-\sum_{k} r_{i k}\right], \quad i=1 \ldots l
$$

$r_{j i}$ reaction rates for creation and change of n_{i} per second
$r_{k i}$ reaction rates for destruction and change of n_{i} per second
reaction $p \rightarrow q$ may release energy $e_{p q}$: energy generation rate ϵ per unit mass

$$
\epsilon=\sum_{p, q} \epsilon_{p, q}=\frac{1}{\rho} \sum_{p, q} r_{p q} e_{p q}
$$

energy generated when one mass unit of type p nuclei is transformed to type q :

$$
q_{p q}=\frac{e_{p q}}{m_{p}}
$$

I different nuclei simultaneously subject to nuclear transformations form a set of I differential equations, called a "nuclear reactions network"

For hydrogen burning:

$$
\begin{equation*}
\frac{\partial X}{\partial t}=-\frac{\epsilon_{\mathrm{H}}}{q_{\mathrm{H}}} \Leftrightarrow \frac{\partial Y}{\partial t}=-\frac{\partial X}{\partial t} \tag{5.37}
\end{equation*}
$$

Reaction rates and energies are calculated or measured

Diffusion:

microscopic effects can also change the chemical composition in a star

- concentration diffusion tends to smooth out the differences
- heavier atoms can migrate towards the regions of higher temperature due to temperature diffusion
- Heavier nuclei diffuse towards higher pressure due to pressure diffusion (gravitational settling, sedimentation)

$$
j_{D}=c v_{D}=-D \nabla c \Rightarrow v_{D}=-\frac{1}{c} D\left(\nabla c+k_{T} \nabla \ln T+k_{P} \nabla \ln P\right)
$$

v_{D} diffusion velocity

- In the the outer regions, where atoms are formed, radiative levitation can lead to enrichment of heavy elements
mixing due to turbulent convective motion very rapid compared to change of the chemical composition by nuclear reactions
\rightarrow composition in a convective region remains homogeneous

$$
\frac{\partial X_{i}}{\partial m}=0
$$

- Boundaries of convective layers can be different and change with time
\rightarrow composition can still change if the boundaries move into a region of inhomogeneous composition, e.g. "ashes" of earlier nuclear burnings may be brought to the surface, fresh fuel may be carried into a zone of nuclear burning, or discontinuities can be produced that drastically influence the later evoIution.

M

Due to interaction of photons emitted from the photosphere with atoms (radiation driven wind), molecules, or dust grains (dust-driven wind) in the atmosphere stellar winds are formed and lead to mass loss

- mass loss of the sun: $10^{-14} \mathrm{M}_{\odot} / \mathrm{yr}$
- AGB stars: $10^{-4} \mathrm{M}_{\odot} / \mathrm{yr}$
- Evidence for mass loss and estimates of its size from direct detection of circumstellar matter and from spectral signatures, such as Doppler shifts and spectral line shapes
- wind velocities: few km / s up to a few thousand km / s
- Complicated radiation-hydrodynamics problem
\rightarrow Only empirical formulations, e.g. Reimers law

$$
\dot{M}_{\mathrm{R}}=-4^{-13} \eta \frac{L}{g R} \cdot \frac{\mathrm{~g}_{\odot} \mathrm{R}_{\odot}}{\mathrm{L}_{\odot}}
$$

parameter η varies between 0.2...1, lower for metal-poor stars

Mass conservation: $\quad \frac{\partial m}{\partial r}=4 \pi r^{2} \rho \quad \frac{\partial r}{\partial m}=\frac{1}{4 \pi r^{2} \rho}$
Hydrostatic equilibrium: $\quad \frac{\partial P}{\partial r}=-\frac{G m \rho}{r^{2}} \quad \frac{\partial P}{\partial m}=-\frac{G m}{4 \pi r^{4}}$

$$
\begin{equation*}
\text { Energy production: } \quad \frac{\partial I}{\partial m}=\epsilon_{\mathrm{n}}-\epsilon_{\nu}-c_{P} \frac{\partial T}{\partial \rho}+\frac{\delta \partial P}{\rho} \frac{\partial P}{\partial t} \tag{5.39}
\end{equation*}
$$

Energy transport: $\frac{\partial T}{\partial r}=-\rho \frac{G m T}{r^{2} P} \nabla_{\text {conv } / \mathrm{rad}} \quad \frac{\partial T}{\partial m}=-\frac{G m T}{4 \pi r^{4} P} \nabla_{\text {conv } / \mathrm{rad}}$
temperature gradient: $\nabla=\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)$

$$
\begin{gather*}
\nabla_{\mathrm{rad}}=\frac{3}{16 \pi a c G} \frac{\kappa I P}{m T^{4}} \quad \nabla_{\mathrm{conv}} \approx \nabla_{\mathrm{ad}}=(\nabla)_{S} \\
\frac{\partial X_{i}}{\partial t}=\frac{m_{i}}{\rho}\left(\sum_{j} r_{j i}-\sum_{k} r_{i k}\right), i=1, \ldots, l \tag{5.42}
\end{gather*}
$$

change in chemical composition

Full set of stellar structure equations

Equations 5.38 to 5.42 contain functions which describe properties of the stellar material such as $\rho, \epsilon_{\mathrm{n}}, \epsilon_{\nu}, \kappa, C_{P}, \nabla_{\mathrm{ad}}, \delta$ and reaction rates $r_{i j}$
If we assume them to be known functions of P, T and the chemical composition by functions $X_{i}(m, t)$, we have the equations of state:

$$
\begin{equation*}
\rho=\rho\left(P, T, X_{i}\right) \tag{5.43}
\end{equation*}
$$

and equations for the other thermodynamic properties of the stellar matter

$$
\begin{gather*}
c_{P}=c_{P}\left(P, T, X_{i}\right) \tag{5.44}\\
\delta=\delta\left(P, T, X_{i}\right)=\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P, \mu} \tag{5.45}\\
\nabla_{\mathrm{ad}}=\nabla_{\mathrm{ad}}\left(P, T, X_{i}\right) \tag{5.46}
\end{gather*}
$$

as well as the Rosseland mean of the opacity (including conduction)

$$
\begin{equation*}
\kappa=\kappa\left(P, T, X_{i}\right) \tag{5.47}
\end{equation*}
$$

Full set of stellar structure equations

and nuclear reaction rates and the energy production and energy loss via neutrinos:

$$
\begin{align*}
& r_{j k}=r_{j k}\left(P, T, X_{i}\right) \tag{5.48}\\
& \epsilon_{\mathrm{n}}=\epsilon_{\mathrm{n}}\left(P, T, X_{i}\right) \tag{5.49}\\
& \epsilon_{\nu}=\epsilon_{\nu}\left(P, T, X_{i}\right) \tag{5.50}
\end{align*}
$$

X_{i} stand for all types of nuclei $(i=1, \ldots, I)$
I different types of nuclei being affected by reactions form a set of $4+I$ differential equations for the $4+I$ variables $r, P, T, I, X_{1}, \ldots, X_{I}$.

Independent variables m and t. If total mass of the star M is constant and time of start of evolution $t=t_{0}$: solutions in the interval $0 \leq m \leq M, t \geq t_{0}$ set of non-linear, partial differential equations \rightarrow Boundary conditions necessary
For full problem: specification of $r\left(m, t_{0}\right), \dot{r}\left(m, t_{0}\right), s\left(m, t_{0}\right)$ and $X_{i}\left(m, t_{0}\right)$
Stellar model: solution $r(m), P(m), \ldots, X_{i}(m)$ for given time t in interval [0, M]

Central conditions

- $m=0: r=0 I=0$
- $m \rightarrow 0$
$-\mathrm{d}\left(r^{3}\right)=\frac{3}{4 \pi \rho_{\mathrm{c}}} \mathrm{d} m \rightarrow r=\left(\frac{3}{4 \pi \rho_{\mathrm{c}}}\right)^{1 / 3} m^{1 / 3}$
$-I=\left(\epsilon_{\mathrm{n}}-\epsilon_{\nu}+\epsilon_{\mathrm{g}}\right)_{\mathrm{c}} m$
$-\frac{\mathrm{d} P}{\mathrm{dm}}=-\frac{G}{4 \pi}\left(\frac{4 \pi \rho_{\mathrm{c}}}{3}\right)^{4 / 3} m^{-1 / 3} \rightarrow P-P_{\mathrm{c}}=-\frac{3 G}{8 \pi}\left(\frac{4 \pi}{3} \rho_{\mathrm{c}}\right)^{4 / 3} \mathrm{~m}^{2 / 3}$
- radiative case: $\frac{\mathrm{d} T}{\mathrm{dm}}=-\frac{3}{64 \pi^{2} a} \frac{k l}{r^{4} T^{3}}$
$\rightarrow T^{4}-T_{\mathrm{c}}^{4}=-\frac{1}{2 \mathrm{ac}}\left(\frac{3}{4 \pi}\right)^{2 / 3} \kappa_{\mathrm{c}}\left(\epsilon_{\mathrm{n}}-\epsilon_{\nu}+\epsilon_{\mathrm{g}}\right)_{\mathrm{c}} \rho_{\mathrm{c}}^{4 / 3} m^{2 / 3}$
- convective case: $\ln T-\ln T_{\mathrm{c}}=-\left(\frac{\pi}{6}\right) G \frac{\nabla_{\text {ad. } \mathrm{c}} \rho_{\mathrm{c}}{ }^{4 / 3}}{\rho_{\mathrm{c}}} m^{2 / 3}$

Numerical approaches needed to solve the system of equations: e.g. Shooting method, Henyey method

Surface conditions

- naive "zero conditions" - $m \rightarrow M: P \rightarrow 0, T \rightarrow 0$
- more real: extended transition to the finite values of P, T of the diffuse interstellar medium
- find "surface" that defines total stellar radius $r=R$: photosphere, from where the bulk of the radiation is emitted into space: $\tau:=\int_{R}^{\infty} \kappa \rho \mathrm{d} r=\bar{\kappa} \int_{R}^{\infty} \rho \mathrm{d} r=2 / 3$
- $P_{r=R} \int_{R}^{\infty} g \rho \mathrm{~d} r=g_{0} \int_{R}^{\infty} \rho \mathrm{d} r \stackrel{\tau=2 / 3}{=} \frac{G M 2}{R^{2}} \frac{1}{3} \frac{1}{\bar{k}}$
- temperature of the photosphere equal to effective temperature $T_{r=R}=T_{\text {eff }}$
$\rightarrow L=4 \pi R^{2} \sigma T_{\text {eff }}^{4}, \sigma=a c / 4$
- temperature dependency of κ : Eddington approximation - grey atmosphere
$T^{4}(\tau)=\frac{3}{4}\left(L / 4 \pi R^{2} \sigma\right)\left(\tau+\frac{2}{3}\right) \Rightarrow T=T_{\text {eff }}$ for $\tau=2 / 3$
- $\mathrm{d} r / \mathrm{d} \tau=-1 /(\kappa \rho) \quad \mathrm{d} P / \mathrm{d} r=-g \rho \quad \rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} \tau}=\frac{\mathrm{Gm}}{r^{2} \kappa}$
- generally: interior solution should fit smoothly to solution of the stellaratmosphere problem

Properties of stellar matter

- basic variables: m, r, P, T, I
- differential equations also contain density, nuclear energy generation, or opacity \rightarrow describe properties of stellar matter for given P, T and chemical composition, do not depend on m, r, I at given point in the star, could be determined in a laboratory
\rightarrow position in the star not necessary to describe them
\rightarrow dependence of density ρ on P, T : equation of state
- simple if we have a perfect gas
- but! radiation and ionization also influence the pressure and the internal energy \rightarrow have to be included

Radiation pressure

- pressure in a star not only given by that if the gas but photons in the stellar interior contribute significantly
- radiation is practically that of a black body

$$
P_{\mathrm{rad}}=\frac{1}{3} U=\frac{a}{3} T^{4} \Rightarrow P=P_{\mathrm{gas}}+P_{\mathrm{rad}}=\frac{R}{\mu} \rho T+\frac{a}{3} T^{4}
$$

- importance of the radiation pressure

$$
\beta:=\frac{P_{\mathrm{gas}}}{P}, \quad 1-\beta=\frac{P_{\mathrm{rad}}}{P}
$$

$$
\rightarrow \beta=1 \Rightarrow P_{\mathrm{rad}}=0, \beta=0 \Rightarrow P_{\mathrm{gas}}=0
$$

Thermodynamic Quantities

$$
\stackrel{5.31}{\Rightarrow} \alpha=\frac{1}{\beta} \quad \delta=\frac{4-3 \beta}{\beta} \quad \varphi=1
$$

internal energy per unit mass

$$
u=\frac{3}{2} \frac{R}{\mu} T+\frac{a T^{4}}{\rho}=\frac{R T}{\mu}\left[\frac{3}{2}+\frac{3(1-\beta)}{\beta}\right]
$$

specific heat

$$
c_{P} \stackrel{5.15}{=} \frac{R}{\mu}\left[\frac{3}{2}+\frac{3(4+\beta)(1-\beta)}{\beta^{2}}+\frac{4-3 \beta}{\beta^{2}}\right]
$$

adiabatic gradient

$$
\nabla_{\mathrm{ad}} \stackrel{5.17}{=}\left(1+\frac{(1-\beta)(4+\beta)}{\beta^{2}}\right) /\left(\frac{5}{2}+\frac{4(1-\beta)(4+\beta)}{\beta^{2}}\right)
$$

perfect gas without radiation see 5.20
gas dominated by pressure $\quad \Rightarrow \quad \gamma_{\mathrm{ad}} \rightarrow \frac{4}{3}, \quad \nabla_{\mathrm{ad}} \rightarrow \frac{1}{4}$

Adiabatic coefficients (Chandrasekkar)

$$
\begin{equation*}
\Gamma_{1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln \rho}\right)_{\mathrm{ad}}=\gamma_{\mathrm{ad}} \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Gamma_{2}}{\Gamma_{2}-1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln T}\right)_{\mathrm{ad}}=\frac{1}{\nabla_{\mathrm{ad}}} \tag{6.2}
\end{equation*}
$$

$$
\Rightarrow \frac{\Gamma_{1}}{\Gamma_{3}-1}=\frac{\Gamma_{2}}{\Gamma_{2}-1}
$$

cores of massive stars: ionized, ideal gas plus photon field

Adiabatic coefficients (Chandrasekkar)

$$
\begin{equation*}
\Gamma_{1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln \rho}\right)_{\mathrm{ad}}=\gamma_{\mathrm{ad}} \tag{6.4}
\end{equation*}
$$

$$
\frac{\Gamma_{2}}{\Gamma_{2}-1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln T}\right)_{\mathrm{ad}}=\frac{1}{\nabla_{\mathrm{ad}}}
$$

$$
\begin{equation*}
\Rightarrow \frac{\Gamma_{1}}{\Gamma_{3}-1}=\frac{\Gamma_{2}}{\Gamma_{2}-1} \tag{6.5}
\end{equation*}
$$

$\log \left(P / T^{4}\left(\right.\right.$ dynes $\left.\left.\mathrm{cm}^{-2} \mathrm{~K}^{-4}\right)\right)$

- complete ionization of all atoms good approximation in the very deep interior, where T and P sufficiently large
- in outer regions and stellar atmospheres atoms can only be partially ionized
- mean molecular weight and thermodynamic properties such as c_{p}, Γ_{2} depend on degree of ionization
- Ionization fraction given by Saha equation

b

[^0]
Adiabatic coefficients (Chandrasekkar)

$$
\begin{align*}
& \Gamma_{1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln \rho}\right)_{\mathrm{ad}}=\gamma_{\mathrm{ad}} \tag{6.7}\\
& \frac{\Gamma_{2}}{\Gamma_{2}-1}:=\left(\frac{\mathrm{d} \ln P}{\mathrm{~d} \ln T}\right)_{\mathrm{ad}}=\frac{1}{\nabla_{\mathrm{ad}}} \tag{6.8}\\
& \Rightarrow \frac{\Gamma_{1}}{\Gamma_{3}-1}=\frac{\Gamma_{2}}{\Gamma_{2}-1} \\
& \Gamma_{3}:=\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln \rho}\right)_{\mathrm{ad}}+1 \tag{6.9}
\end{align*}
$$

stellar envelopes of low-mass stars: Γ_{2} dominated by ionization effects on H

Limitation of Saha formula for high pressure, when pressure ionization sets in
\rightarrow Saha equation will underestimate the degree of ionization once this effect becomes important enough

- gas with sufficiently high density in volume $\mathrm{d} V$: fully pressure ionized
- free electrons of number density n_{e}
- velocity distribution given by Boltzmann statistics $\rightarrow E_{\text {kin,mean }}=3 / 2 k T$
- in momentum space p_{x}, p_{y}, p_{z} each electron in a given volume $\mathrm{d} V$ represented by a point, points forming a spherical symmetric "cloud" around the origin
- p is the absolute value of the momentum ($p^{2}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2}$)
- number of electrons in spherical shell $[p, p+\mathrm{d} p]$ given by Boltzmann distribution function

$$
f(p) \mathrm{d} p \mathrm{~d} V=n_{\mathrm{e}} \frac{4 \pi p^{2}}{\left(2 \pi m_{\mathrm{e}} k T\right)^{3 / 2}} \exp \left(-\frac{p^{2}}{2 m_{\mathrm{e}} k T}\right) \mathrm{d} p \mathrm{~d} V
$$

- for constant electron density: $p_{\max }=\left(2 m_{\mathrm{e}} k T\right)^{1 / 2}$
\rightarrow smaller T, maximum of distribution $p_{\max }$ at smaller p, maximum of $f(p)$ higher $\left(n_{\mathrm{e}} \sim \int_{0}^{\infty} f(p) \mathrm{d} p\right)$

Degenerate electron gas

Kippenhahn, Weigert \& Weiss 2012

Pauli principle

- electrons are fermions
\rightarrow Pauli's exclusion principle: each quantum cell of the six-dimensional phase space ($x ; y ; z ; p_{x} ; p_{y} ; p_{z}$) cannot contain more than two electrons
- $x ; y ; z$ are the space coordinates of the electrons with $\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
- volume of quantum cell is $\mathrm{d} p_{x} \mathrm{~d} p_{y} \mathrm{~d} p_{z} \mathrm{~d} V=h^{3}$ (h is Planck's constant)
\rightarrow in shell $[p, p+\mathrm{d} p]$ are $4 \pi p^{2} \mathrm{~d} p \mathrm{~d} V / h^{3}$ quantum cells with two electrons per cell
- quantum mechanics demands:

$$
f(p) \mathrm{d} p \mathrm{~d} V \leq 8 \pi p^{2} \mathrm{~d} p \mathrm{~d} V / h^{3}
$$

- Boltzmann distribution is in contradiction with quantum mechanics for too low temperatures or too high densities
- electrons become degenerate

Completely degenerate electron gas:

- all electrons have the lowest energy without violating Pauli's principle
- all phase cells up to p_{F} are filled, all other phase cells above p_{F} empty

$$
\begin{array}{r}
f(p)=\frac{8 \pi p^{2}}{h^{3}} \text { for } p \leq p_{F} \\
f(p)=0 \text { for } p>p_{F}
\end{array}
$$

Total number of electrons in $\mathrm{d} V$

$$
\begin{equation*}
n_{\mathrm{e}} \mathrm{~d} V=\mathrm{d} V \int_{0}^{p_{\mathrm{F}}} \frac{8 \pi p^{2} \mathrm{~d} p}{h^{3}}=\frac{8 \pi}{3 h^{3}} p_{\mathrm{F}}^{3} \mathrm{~d} V \tag{6.10}
\end{equation*}
$$

Fermi momentum $p_{\mathrm{F}} \sim n_{\mathrm{e}}^{1 / 3}$

Kippenhahn, Weigert \& Weiss 2012 $\longrightarrow p$
\qquad

Completely degenerate electron gas:

- temperature of electron gas is zero

- but, electrons have energies up to finite Energies E_{F}
- for sufficiently large electron densities:
p_{F} so high that fastest electrons have

$$
v \sim c
$$

$$
p=\frac{m_{\mathrm{e}} v}{\sqrt{1-v^{2} / c^{2}}}
$$

$$
\begin{equation*}
E_{\mathrm{tot}}=\frac{m_{\mathrm{e}} c^{2}}{\sqrt{1-v^{2} / c^{2}}}=m_{\mathrm{e}} c^{2} \sqrt{1+\frac{p^{2}}{m_{\mathrm{e}}^{2} c^{2}}} \tag{6.11}
\end{equation*}
$$

$\Rightarrow \frac{1}{c} \frac{\partial E_{\text {tot }}}{\partial p}=\frac{p /\left(m_{\mathrm{e}} c\right)}{\left[1+p^{2} /\left(m_{\mathrm{e}}^{2} c^{2}\right)\right]^{1 / 2}}=\frac{v}{c}$
Kinetic energy $E=E_{\text {tot }}-m_{\mathrm{e}} c^{2}$

Degenerate electron gas

Derive equation of state

Completely degenerate electron gas:

\rightarrow pressure needed: flux of momentum through a unit surface per second
\rightarrow Number of electrons with momentum between $[p, p+\mathrm{d} p]$ per second going through $\mathrm{d} \sigma$ into solid angle $\mathrm{d} \Omega_{\mathrm{S}}$ around direction \mathbf{s}
$\rightarrow f(p) \mathrm{d} p \mathrm{~d} \Omega_{\mathrm{S}} /(4 \pi)$ electrons per unit volume at the location of the surface element with right momentum $[p, p+\mathrm{d} p]$
$\rightarrow f(p) \mathrm{d} p \mathrm{~d} \Omega_{S} v(p) \cos \vartheta \mathrm{d} \sigma /(4 \pi)$ electrons per second move through the surface element $\mathrm{d} \sigma$ into the solid-angle element $\mathrm{d} \Omega_{\mathrm{S}}$
\rightarrow momentum in direction $\mathbf{n}: p \cos \vartheta$

Electron pressure by integration over all directions \mathbf{s} and all values of p

$$
P_{\mathrm{e}}=\int_{2 \pi} \int_{0}^{\infty} f(p) v(p) p \cos ^{2} \vartheta \mathrm{~d} p \mathrm{~d} \Omega_{\mathrm{S}} /(4 \pi)=\frac{4 \pi}{3} \frac{8 \pi}{h^{3}} \int_{0}^{p_{\mathrm{F}}} p^{2} p v(p) \mathrm{d} p /(4 \pi)
$$

$$
P_{\mathrm{e}}=\frac{8 \pi}{3 h^{3}} \int_{0}^{p_{\mathrm{F}}} p^{3} v(p) \mathrm{d} p=\frac{8 \pi c}{3 h^{3}} \int_{0}^{p_{\mathrm{F}}} p^{3} \frac{p /\left(m_{\mathrm{e}} c\right)}{\left[1+p^{2} /\left(m_{\mathrm{e}}^{2} c^{2}\right)\right]^{1 / 2}} \mathrm{~d} p
$$

with $\xi=\frac{p}{m_{e} c}$ and $x=\frac{p_{F}}{m_{e} c}$

$$
\begin{gathered}
P_{\mathrm{e}}=\frac{8 \pi m_{\mathrm{e}}^{4} c^{5}}{3 h^{3}} \int_{0}^{x} \frac{\xi^{4} \mathrm{~d} \xi}{\left(1+\xi^{2}\right)^{1 / 2}}=\frac{\pi c^{5} m_{\mathrm{e}}^{4}}{3 h^{3}} f(x) \\
f(x)=x\left(2 x^{2}-3\right)\left(1+x^{2}\right)^{1 / 2}+3 \ln \left[x+\left(1+x^{2}\right)^{1 / 2}\right] \\
\stackrel{6.10}{\Rightarrow} n_{\mathrm{e}}=\frac{\rho}{\mu_{\mathrm{e}} m_{\mathrm{u}}}=\frac{8 \pi m_{\mathrm{e}}^{3} c^{3}}{3 h^{3}} x^{3}
\end{gathered}
$$

Completely degenerate electron gas
$\lg P_{e}$
20

Completely degenerate electron gas

Internal energy:

$$
\begin{aligned}
& U_{\mathrm{e}}=\int_{0}^{p_{\mathrm{F}}} f(p) E(p) \mathrm{d} p=\frac{8 \pi}{h^{3}} \int_{0}^{p_{F}} E(p) p^{2} \mathrm{~d} p \stackrel{6.11}{=} \frac{\pi m_{\mathrm{e}}^{4} c^{5}}{3 h^{3}} g(x) \\
& g(x)=8 x^{3}\left[\left(x^{2}+1\right)^{1 / 2}-1\right]-f(x)
\end{aligned}
$$

numerical values of $f(x), g(x)$ can be found in Chandrasekhar 1939, Table 23.
x : importance of relativistic effects for electrons with the highest momentum

$$
x=\frac{p_{\mathrm{F}}}{m_{\mathrm{e}} c}=\frac{v_{\mathrm{F}} / c}{\left(1-v_{\mathrm{F}}^{2} / c^{2}\right)^{1 / 2}} \quad \text { or } \quad \frac{v_{\mathrm{F}}^{2}}{c^{2}}=\frac{x^{2}}{1+x^{2}}
$$

For $x \ll 1 \Rightarrow v_{F} / c \ll 1$: Non-relativistic case
For $x \gg 1 \Rightarrow v_{F} / c \approx 1$: Relativistic case

Completely degenerate electron gas

Non-relativistic case

$$
\begin{gathered}
x \rightarrow 0: f(x) \rightarrow \frac{8}{5} x^{5}, \quad g(x) \rightarrow \frac{12}{5} x^{5} \\
\Rightarrow P_{\mathrm{e}}=\frac{8 \pi m_{\mathrm{e}}^{4} c^{5}}{15 h^{3}} x^{5}
\end{gathered}
$$

equation of state for a completely degenerate non-relativistic electron gas:

$$
P_{\mathrm{e}}=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{\mathrm{e}}} n_{\mathrm{e}}^{5 / 3}=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{\mathrm{e}} m_{\mathrm{u}}^{5 / 3}}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{5 / 3}
$$

degeneracy pressure:

$$
\begin{gathered}
P_{\mathrm{e}}=1.0036 \times 10^{13}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{5 / 3}(\mathrm{cgs}) \\
P_{\mathrm{e}}=\frac{2}{3} U_{\mathrm{e}}
\end{gathered}
$$

Extreme relativistic case

see exercise sheet III

equation of state for a completely degenerate extreme relativistic electron gas:

$$
\begin{gathered}
P_{\mathrm{e}}=1.2435 \times 10^{15}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{4 / 3}(\mathrm{cgs}) \\
P_{\mathrm{e}}=\frac{1}{3} U_{\mathrm{e}}
\end{gathered}
$$

Partial Degeneracy of the Electron Gas

For finite temperatures, degeneracy not complete
\rightarrow transition to Boltzmann distribution

Fermi-Dirac statistics

$$
f(p) \mathrm{d} p \mathrm{~d} V=\frac{8 \pi p^{2} \mathrm{~d} p \mathrm{~d} V}{h^{3}} \frac{1}{1+e^{E / k T-\psi}}
$$

$$
n_{\mathrm{e}}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{p^{2} \mathrm{~d} p}{1+e^{E / k T-\psi}}
$$

$$
P_{\mathrm{e}}=\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} p^{3} v(p) \frac{\mathrm{d} p}{1+e^{E / k T-\psi}}
$$

$$
U_{\mathrm{e}}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{E p^{2} \mathrm{~d} p}{1+e^{E / k T-\psi}}
$$

degeneracy parameter $\psi=\psi\left(\frac{n_{e}}{T^{3 / 2}}\right)$

Kippenhahn, Weigert \& Weiss 2012
\rightarrow equation of state in the case of partial degeneracy cannot be derived analytically, analytical approximations are possible for the non-relativistic and extreme relativistic case
For details see: Kippenhahn, Weigert \& Weiss 2012, p. 145-150

Partial Degeneracy of the Electron Gas

Number of available states \rightarrow

- low-density gas (red) behaves like ideal gas: Maxwell-Boltzmann distribution
- high-density gas (cyan) highly degenerate, i.e., all low energetic states are occupied and electrons are forced into high-lying states causing degeneracy pressure
- in complete degeneracy, all states up to the Fermi energy are filled

In real stellar matter all components, which are ions, electrons and radiation are mixed

$$
\begin{gathered}
P=P_{\text {ion }}+P_{\mathrm{e}}+P_{\mathrm{rad}}=\frac{R}{\mu_{0}} \rho T+\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} p^{3} v(p) \frac{\mathrm{d} p}{1+e^{E / k T-\psi}+\frac{a}{3} T^{4}} \\
\rho=\frac{4 \pi}{h^{3}}\left(2 m_{\mathrm{e}}\right)^{3 / 2} m_{\mathrm{u}} \mu_{\mathrm{e}} \int_{0}^{\infty} \frac{E^{1 / 2} \mathrm{~d} E}{1+e^{E / k T-\psi}}, v(p)=\frac{\partial E}{\partial p}, E=m_{\mathrm{e}} c^{2}\left(\sqrt{1+\frac{p^{2}}{m_{\mathrm{e}}^{2} c^{2}}}-1\right)
\end{gathered}
$$

- Local equation of state depends on the conditions in the plasma
- Both electron and ion gas can become degenerate at low temperatures and/or high densities
\rightarrow Critical density for ions $\left(m_{\text {ion }} / m_{\mathrm{e}}\right)^{3 / 2} \sim 10^{5}$ times higher
\rightarrow Electron gas can be degenerate and ion gas ideal at the same time
- For high densities and low temperatures, the ions start to interact with each other via Coulomb interactions
\rightarrow Perfect gas approximation breaks down

In real stellar matter all components, which are ions, electrons and radiation are mixed

$$
\begin{gathered}
P=P_{\text {ion }}+P_{\mathrm{e}}+P_{\mathrm{rad}}=\frac{R}{\mu_{0}} \rho T+\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} p^{3} v(p) \frac{\mathrm{d} p}{1+e^{E / k T-\psi}}+\frac{a}{3} T^{4} \\
\rho=\frac{4 \pi}{h^{3}}\left(2 m_{\mathrm{e}}\right)^{3 / 2} m_{\mathrm{u}} \mu_{\mathrm{e}} \int_{0}^{\infty} \frac{E^{1 / 2} \mathrm{~d} E}{1+e^{E / k T-\psi}}, v(p)=\frac{\partial E}{\partial p}, E=m_{\mathrm{e}} c^{2}\left(\sqrt{1+\frac{p^{2}}{m_{\mathrm{e}}^{2} c^{2}}}-1\right)
\end{gathered}
$$

- ions start to form a lattice to minimize total energy as soon as the thermal energy $\frac{3}{2} k T$ becomes similar to the Coulomb energy per ion of charge: $-Z e$
- This crystallization is not important in normal stars, but becomes important at the late stages of stellar evolution
- Other real gas effects (e.g. van der Waals forces: attractive forces of electrically neutral, but polarized particles important at low temperatures; electron shielding: clouds of electrons gather around ions from distance the ion electron cloud appears electrically neutral, low densities) have to be taken into account in modern equations of state for stellar models

Equation of state of stellar matter

- The material function $\kappa(\rho, T)$ for stellar-structure calculations is nowadays computed numerically for different chemical mixtures
- main opacity mechanisms have already been introduced in the stellar atmosphere part of this course:
- Electron scattering
- Absorption due to free-free, bound-free and bound-bound transitions
- Absorption due to H^{-}dissociation
- Absorption due to dissociation of molecules
- Conduction (for white dwarfs only)
- Groups spezialised on different aspects published extensive tables for different chemical mixtures, temperatures and densities
- Atomic absorption (OPAL, Opacity Project)
- Molecular and dust absorption below $10^{4} \mathrm{~K}$ (Alexander \& Ferguson 1994)
- Electron conduction (Itoh et al.)
- The tables must be combined to cover the whole stellar structure
- To find $\kappa\left(\rho, T, X_{i}\right)$ for a given point in a star, the value has to be interpolated from the grid points
- Stars produce energy through thermonuclear fusion
\rightarrow Thermal motions induce fusions of lighter elements to form a heavier one
- Before the reaction, the nuclei j have a total mass $\sum M_{j}$, which is different from the mass of the reaction product $M_{y}{ }^{j}$

$$
\Delta M=\sum_{j} M_{j}-M_{y}
$$

ΔM is called mass defect
\rightarrow this mass is released as energy $E=\Delta M c^{2}$ (Einstein's formula)

- Binding energy E_{B} of a nucleus with mass $M_{\text {nuc }}$ and atomic mass number A : Z protons of mass m_{p} and $(A-Z)$ neutrons of mass m_{n}

$$
E_{\mathrm{B}}=\left[(A-Z) m_{\mathrm{n}}+Z m_{\mathrm{p}}-M_{\mathrm{nuc}}\right] c^{2}
$$

- Average binding energy per nucleon f

$$
f=\frac{E_{\mathrm{B}}}{A}
$$

Abdullah 2014, Fundamentals in nuclear physics

Increase for $A<56$
surface effect: particles at the surface of the nucleus experience less attraction by nuclear forces than those in the interior
\rightarrow volume rises faster than surface area
$f\left({ }^{56} \mathrm{Fe}\right)=8.5 \mathrm{MeV}$
\rightarrow increasing repulsion
by the Coulomb forces for
A>56

Energy generation: Fusion of light nuclei $A<56$ and Fission of heavy nuclei $A>56$

But The (Residual) Strong Nuclear Force Holds the Nucleus Together

Matt Strassler 2013

Nuclear energy production

Hofer 2013, Journal of Physics Conference Series 504, 1

For fusion two particles with charges Z_{1} and Z_{2} must be close enough to overcome the repulsive Coulomb forces

$$
\begin{equation*}
E_{\text {Coul }}=\frac{Z_{1} Z_{2} e^{2}}{r} \tag{6.12}
\end{equation*}
$$

Distances smaller than $r_{\mathrm{S}} \approx A^{1 / 3} 1.44 \times 10^{-13} \mathrm{~cm}$:
attractive nuclear forces dominate
\rightarrow Sharp drop in potential energy
Coulomb barrier with height of $E_{\text {Coul }}\left(r_{\mathrm{s}}\right) \approx Z_{1} Z_{2} \mathrm{MeV}$

Classical case

Kinetic energy of particle (given by
Maxwell-Boltzmann statistics) must be higher than Coulomb barrier
e.g. center of the sun $T \approx 10^{7} \mathrm{~K}$
$\Rightarrow E_{\text {kin }} / E_{\text {Coul }} \approx 10^{-3}$
(no fusion possible)
Quantum mechanics
Small probability P_{0} to tunnel the
Coulomb barrier

$$
\begin{aligned}
& P_{0}=p_{0} E^{-1 / 2} e^{-2 \pi \eta} \\
& \eta=\left(\frac{m}{2}\right)^{1 / 2} \frac{Z_{1} Z_{2} e^{2}}{\hbar E^{-1 / 2}}
\end{aligned}
$$

m reduced mass, p_{0} parameter depends on properties of colliding nuclei

Example: Hydrogen fusion in center of the Sun $T \approx 10^{7} \mathrm{~K}, Z_{1} Z_{2}=1$

$$
\Rightarrow P_{0} \approx 10^{-20}
$$

Probability increases with E and decreases with $Z_{1} Z_{2}$
\rightarrow Lightest elements fuse first
\rightarrow Heavy element require much higher energies

Small probability P_{0} to tunnel the Coulomb barrier

$$
P_{0}=p_{0} E^{-1 / 2} e^{-2 \pi \eta}
$$

Gamow factor $\hat{T} \equiv e^{-2 \pi \eta}$
thermonuclear reaction rates have to be computed to get the fusion rates
reaction of the nucleus X with the particle a by which the nucleus Y and the particle b are formed:

$$
\mathrm{a}+\mathrm{X} \longrightarrow \mathrm{Y}+\mathrm{b} \quad \Leftrightarrow \quad X(a, b) Y
$$

velocity-dependent cross section σ of the reaction

$$
\sigma(v)=\frac{\text { number of reactions per nucleus } X \text { per unit time }}{\text { number of incident particles a per unit area per unit time }}
$$

name cross section:
comes from assuming that each nucleus X has a cross-sectional area and that a reaction occurs each time an a particle strikes that area (symmetric in type of particle)
\rightarrow not physically correct picture, but helpful for understanding

Thermonuclear reaction rate

thermonuclear reaction rate r per unit volume with the relative velocity (between a and $X) v$ in range $[v, v+\mathrm{d} v$] given by the velocity distribution $P(v)$:

$$
r=\sigma(v) v n_{a} n_{X} \Rightarrow r_{a X}=\frac{1}{1+\delta_{a X}} n_{a} n_{X} \int_{0}^{\infty} v \sigma(v) P(v) \mathrm{d} v=\frac{1}{1+\delta_{a} X} n_{a} n_{X}\langle\sigma v\rangle
$$

Replacing particle number n_{i} by mass fractions $X_{i} \rho=n_{i} m_{i}$ and introducing the energy released per reaction Q
\rightarrow Energy generation per unit mass

$$
\epsilon_{a X}=\frac{1}{1+\delta_{a x}} \frac{Q}{m_{a} m_{X}} \rho X_{a} X_{X}\langle\sigma v\rangle
$$

\rightarrow nuclear lifetime $\tau_{a}(X)$

$$
\left(\frac{\partial n_{X}}{\partial t}\right)_{a}=-\frac{n_{X}}{\tau_{a}(X)}, \quad \tau_{a}(X)=\frac{1}{1+\delta_{a X}} \frac{n_{X}}{r_{a X}} \rightarrow \frac{1}{\tau(X)}=\sum_{i} \frac{1}{\tau_{i}(X)}
$$

nuclear cross section

- inversely proportional to the number of incident particles per unit time and react more often with each other when they spend more time close to each other $\sigma(v) \sim v^{-2} \stackrel{E=\frac{1}{2} m v^{2}}{\sim} E^{-1}$
- Nuclear reactions only when the particles can penetrate the Coulomb barrier
- nuclear structure of the involved particles will play a role $\rightarrow S$-factor
$f(E)$

Effective center-of-mass energy E (keV)
${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \underset{\text { energy }}{\text { production }}{ }^{4} \mathrm{He}+2 \mathrm{p}$ measured by LUNA (Junker etal. 1997, Bonetti e al. 9999)

The product (black) of rapidly falling Maxwell-Boltzmann exponential (blue) and increasing Gamow penetration factor (red) has a sharp peak, the Gamow peak, at energy $E_{0}=\left(\frac{2 \pi \eta}{\sqrt{E}} \frac{k T}{2}\right)^{2 / 3}=\left(\frac{\sqrt{2 m} \pi Z_{1} Z_{2} e^{2}}{\hbar} \frac{k T}{2}\right)^{2 / 3} \approx 5-100 \times k T$

Maximum and area of Gamow peak extremely dependent on temperature

$$
\langle\sigma v\rangle \sim \int_{0}^{\infty} e^{-E / k T-2 \pi \eta} \mathrm{~d} E \approx\langle\sigma v\rangle_{0}\left(\frac{T}{T_{0}}\right)^{\nu}, \quad \nu \approx \frac{E_{0}}{k T}, \nu \approx 5-20
$$

Each reaction has a well defined energy range separate from other reactions
\rightarrow Separate burning stages dependent mostly on temperature
\rightarrow The heavier the nuclei, the higher the temperature dependence

Distance r

- Right after a particle is absorbed by the nucleus, a new compound nucleus is formed for a short time
\rightarrow Similar to the energy levels of atoms, this nucleus has certain energy levels
\rightarrow if energy of absorbed particle matches one of those energy levels: resonance

Resonant reactions

- if configuration of the compound nucleus is similar to a stable excited state of the newly formed nucleus, the reaction is said to be resonant.
- respective cross sections vary strongly with energy (since the energy uncertainty of a stable state is small) and are relatively large

Non-resonant reactions

- If configuration of the compound nucleus is far from any stable excited state of the newly formed nucleus, the reaction is said to be non-resonant.
- compound nucleus is, by definition, not stable and decays or de-excites instantaneously
- cross sections are roughly constant with energy (since the energy uncertainty of an unstable state is huge) and are relatively small

Nuclear reactions

Energy dependence of reaction cross section $\sigma(E)$ has another factor of typical resonance form around the resonance energy $E_{\text {res }}$ in resonance case

$$
\xi(E) \sim \frac{1}{\left(E-E_{\mathrm{res}}\right)^{2}+(\Gamma / 2)^{2}}
$$

$\Gamma=\hbar / \tau$ energy width of the level, τ lifetime on this level
Introducing the de Broglie wavelength of the particle with relative momentum p and reduced mass $m=m_{1} m_{2} /\left(m_{1} m_{2}\right)$

$$
\begin{aligned}
\lambda & =\frac{\hbar}{p}=\frac{\hbar}{(2 m E)^{1 / 2}} \\
\sigma(E) \sim \pi \lambda^{2} P_{0}(E) \xi(E) & =\xi(E) \frac{\pi p_{0} \hbar^{2} E^{-1 / 2}}{2 m} \frac{e^{-2 \pi \eta}}{E} \equiv \frac{S(E)}{E} e^{-2 \pi \eta}
\end{aligned}
$$

"Astrophysical factor" $S(E)$ contains all intrinsic nuclear properties of the reaction, $\xi(E) \rightarrow 1$ away from resonances
\rightarrow Can in principle be calculated, but is more reliable when measured
\rightarrow Problem: energies in stellar interiors very small $\approx 10 \mathrm{keV}: \sigma(E)$ very small

[^1]Hydrogen is the lightest and most abundant element
\rightarrow Fusion reactions are happening at the lowest energies
fusion of hydrogen to helium liberates 26.64 MeV of total energy due to the mass defect Δm
\rightarrow not all of this energy converted to thermal energy
\rightarrow some fraction (2 to 30%) carried by neutrinos, which are created by the conversion of two protons into two neutrons via the β^{+}decay
\rightarrow low cross sections with matter, almost all neutrinos escape from the star without interaction and their energy is lost ($2 \times 0.262 \mathrm{MeV}$)
\rightarrow detection of solar neutrinos was the verification of nuclear energy generation in stars
$4 \mathrm{H} \longrightarrow{ }^{4} \mathrm{He}$: requires fusion of 4 protons at the same time
\rightarrow reaction extremely unlikely
\rightarrow Chain of reactions necessary
\rightarrow Two different reaction processes: p-p chains and CNO cycle
backbone of the $\mathrm{p}-\mathrm{p}$ chain - proton-proton reaction:

$$
{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \longrightarrow{ }^{2} \mathrm{D}+\mathrm{e}^{+}+\nu_{e}
$$

\rightarrow liberated energy via the mass defect Δm is 0.420 MeV , annihilation of the positron and an electron brings the total energy release to 1.442 MeV
\rightarrow close encounter between two protons and a simultaneous decay of a proton into a neutron
\rightarrow cross section extremely small, never possible to measure it in the laboratory $\left(\tau_{p}(p) \approx 10^{10} \mathrm{yr}\right)$
\rightarrow theoretical understanding good enough: $S\left(E_{0}\right) \approx 3.78^{-22} \mathrm{keV}$ barns
cross-section of deuterium-deuterium reaction very small \rightarrow deuterium reacts with protons:

$$
{ }^{2} \mathrm{D}+{ }^{1} \mathrm{H} \longrightarrow{ }^{3} \mathrm{He}+\gamma
$$

$\rightarrow \tau_{\mathrm{p}\left({ }^{2} \mathrm{D}\right)} \approx 2.8 \mathrm{~s}$ for conditions in center of the Sun
\rightarrow created deuterium atom will almost immediately be converted to ${ }^{3} \mathrm{He}$, deuterium-deuterium reaction can be neglected

Reaction rate determined by the slowest reaction: p-p reaction ($10^{10} \mathrm{yr}$)

Chemical composition similar to center of the $\operatorname{Sun}(X=0.35, Y=0.6465)$

- relative contribution of the chains depends on the temperature, density and abundances
- Energy released: $Q \approx 25 \mathrm{MeV}$; reaction rate $\langle\sigma v\rangle \sim \rho T^{4.6}$
C, N and O are present with relatively small abundances in all stars
\rightarrow These nuclei can induce another chain of reactions to transform hydrogen to helium acting as catalysts only

乙-
In massive stars also the CNO3 and CNO4 cycle becomes significant

- Slowest reaction: ${ }^{14} \mathrm{~N}+\mathrm{H} \longrightarrow{ }^{15} \mathrm{O}+\gamma$: pace of the CN cycle, and its energy generation rate, is given by the decay of ${ }^{14} \mathrm{~N}$ against protons
- non-resonant reaction, contribution of ON cycle negligible
- Energy released: $Q=\left[4 m_{\mathrm{p}}-M_{4} \mathrm{He}\right] c^{2}-E_{\nu_{\mathrm{e}}} \approx 26 \mathrm{MeV}$
- reaction rate $\langle\sigma v\rangle \sim \rho T^{16.7}$

- Slowest reaction: ${ }^{14} \mathrm{~N}+\mathrm{H} \longrightarrow{ }^{15} \mathrm{O}+\gamma$
\rightarrow overabundance of N w.r.t. C and O indication for CNO cycle as most of ${ }^{12} \mathrm{C},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ will be converted to ${ }^{14} \mathrm{~N}$
- isotopic ratio ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C} \approx 0.3$ important observational signature of CNO cycle

- Energy generation in massive stars sharply peaked at the stellar center where temperatures are largest
- very steep temperature gradients to get rid of the huge amounts of energy
\rightarrow convective core

CNO bi-cycle

$\langle\sigma v\rangle_{\text {pp }} \sim \rho T^{4.6}$ at $10 \times 10^{6} \mathrm{~K} \quad \Leftrightarrow \quad\langle\sigma \mathrm{~V}\rangle_{\mathrm{CNO}} \sim \rho \mathrm{T}^{16.7}$ at $25 \times 10^{6} \mathrm{~K}$

- CNO cycle dominates for stars of mass $\gtrsim 1.5 \mathrm{M}_{\odot}$

Helium burning often written as a triple alpha reaction: $3^{4} \mathrm{He} \longrightarrow{ }^{12} \mathrm{C}+\gamma$

- two succesive reactions: creation of unstable isotope ${ }^{8} \mathrm{Be}$ by

$$
{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \longrightarrow{ }^{8} \mathrm{Be}
$$

and an instantaneous catch of a third alpha particle via a resonant reaction

$$
{ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \longrightarrow{ }^{12} \mathrm{C}+\gamma
$$

- lifetime of ${ }^{8} \mathrm{Be}: \tau_{8} \mathrm{Be}=2.6 \times 10^{-16} \mathrm{~s}$, still longer than mean collision time with an alpha particle at $T \sim 10^{8} \mathrm{~K}$
- Helium burning becomes important only for high helium mass fractions Y and for very high temperatures ($T \gtrsim 10^{8} \mathrm{~K}$)
- at later stages of stellar evolution when the temperature of the helium core increases via gravitational contraction
- if helium burning is ignited in a stellar core supported by electron degeneracy, i.e., the pressure is independent of temperature, an explosive event, the socalled helium flash, is expected to occur.

As soon as enough carbon has accumulated another alpha-capture reaction is possible

$$
{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \longrightarrow{ }^{16} \mathrm{O}
$$

- probabilities for other alpha-captures is very unlikely due to the Coulomb barrier
- products of He-burning by the triple-alpha process are C and O
- Energy released by the net reactions

$$
\begin{aligned}
& Q=\left[3 m_{\alpha}-M_{1{ }^{12}} \mathrm{C}\right] c^{2}=7.275 \mathrm{MeV} \\
& Q=\left[4 m_{\alpha}-M_{16}\right] c^{2}=7.162 \mathrm{MeV}
\end{aligned}
$$

- very strong temperature dependence $\langle\sigma v\rangle \sim \epsilon_{3 \alpha} \sim T^{40}$ near $T \approx 10^{8} \mathrm{~K}$

In all massive stars $\left(M \gtrsim 8 \mathrm{M}_{\odot}\right)$, helium burning in the core is succeeded by carbon and (for ($M \gtrsim 12 \mathrm{M}_{\odot}$)) oxygen burning

- Fusion of carbon is possible for temperatures higher than $5 \times 10^{8} \mathrm{~K}$

$$
\begin{aligned}
{ }^{12} \mathrm{C}+{ }^{12} \mathrm{C} & \longrightarrow{ }^{24} \mathrm{Mg}+\gamma \\
& \longrightarrow{ }^{23} \mathrm{Mg}+\mathrm{n} \\
& \longrightarrow{ }^{23} \mathrm{Na}+\mathrm{p} \\
& \longrightarrow{ }^{20} \mathrm{Ne}+\alpha \\
& \longrightarrow{ }^{16} \mathrm{O}+2 \alpha
\end{aligned}
$$

- Fusion of oxygen is possible for temperatures higher than $10^{9} \mathrm{~K}$

$$
\begin{aligned}
&{ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \longrightarrow{ }^{32} \mathrm{~S}+\gamma \\
& \longrightarrow{ }^{31} \mathrm{~S}+\mathrm{n} \\
& \longrightarrow{ }^{31} \mathrm{P}+\mathrm{p} \\
& \longrightarrow{ }^{28} \mathrm{Si}+\alpha \\
& \longrightarrow{ }^{24} \mathrm{Mg}+2 \alpha \\
& \hline
\end{aligned}
$$

Core carbon burning

Iliadis 2015

- Energy released by the net reactions between 13 MeV and 16 MeV
- The particles produced in those reactions lead to the formation of many different isotopes by secondary reactions \rightarrow Major reaction product is ${ }^{28} \mathrm{Si}$
- for temperatures $T>10^{9} \mathrm{~K}$ photodisintegration of nuclei that are not too strongly bound get important, e.g. neon disintegration dominating over inverse reaction for $T>1.5 \times 10^{9} \mathrm{~K}$

$$
\begin{array}{ccc}
{ }^{20} \mathrm{Ne}+\gamma & \rightleftharpoons & { }^{16} \mathrm{O}+\alpha,
\end{array} \begin{gathered}
Q=-4.73 \mathrm{MeV} \\
2^{20} \mathrm{Ne}+\gamma \\
{ }^{24} \mathrm{Mg}+\alpha
\end{gathered}{ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}+\gamma, \quad \begin{gathered}
\\
\\
{ }^{24}=+4.583 \mathrm{MeV}
\end{gathered}
$$

- near end of oxygen burning: photodisintegration of ${ }^{28} \mathrm{Si}$ and eject n, p and α particles followed by a large number of reactions
- created nuclei (Al, Mg, Ne) also subject to photodisintegration leading to the existence of an appreciable amount of free n, p and α particles
- react with the remaining ${ }^{28}$ Si building up gradually heavier nuclei, until ${ }^{56} \mathrm{Fe}$ is reached
- forward and reverse reactions achieve equilibrium, with increasing temperature and progressing time several pairs of nuclides link together to form quasi-equilibrium clusters ($24 \leq A \leq 40, A>45 \rightarrow A>24$)
\rightarrow photodisintegration rearrangement
- ${ }^{56}$ Fe so strongly bound, it may survive this melting pot as the only (or dominant) species
- ultimately net-conversion of two ${ }^{28}$ Si into ${ }^{56} \mathrm{Fe}$: Silicon burning

$$
\begin{array}{rcc}
{ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si} \longrightarrow & { }^{56} \mathrm{Ni}+\gamma \\
{ }^{56} \mathrm{Ni} & \longrightarrow{ }^{56} \mathrm{Co}+\mathrm{e}^{+}+\nu_{\mathrm{e}} \\
{ }^{56} \mathrm{Ni} \longrightarrow & { }^{56} \mathrm{Fe}+2 \mathrm{e}^{+}+2 \nu_{\mathrm{e}}
\end{array}
$$

- at the end of silicon burning, the temperature in the stellar core increases steadily \rightarrow nonequilibrated reactions in the $A<24$ region come into equilibrium as well: Nuclear Statistical Equilibrium
- for $T>5 \times 10^{9} \mathrm{~K}$ photodisintegration breaks up even the ${ }^{56} \mathrm{Fe}$ into α particles: supernova explosions

At high temperatures compositium can be aproximated by Nuclear Statistical Equilibrium

- Composition is given by a minimum of the Free Energy: $F=U-T S$ conservation of number of nucleons and charge neutrality

$$
\mathrm{A}(\mathrm{Z}, \mathrm{~N}) \rightleftharpoons \mathrm{Zp}+\mathrm{Nn}+\gamma
$$

- It is assumed that all nuclear reactions operate in a time scale much shorter than any other timescale in the system
- favors free nucleons at high temperatures and iron group nuclei at low temperatures
- nuclei follow Boltzmann statistics, results in a Saha equation

$$
\begin{gathered}
{ }^{20} \mathrm{Ne}+\gamma \rightleftharpoons{ }^{16} \mathrm{O}+\alpha \\
\frac{n_{\mathrm{O}} n_{\alpha}}{n_{\mathrm{Ne}}}=\frac{1}{h^{3}}\left(\frac{2 \pi m_{\mathrm{O}} m_{\alpha} k T}{m_{\mathrm{Ne}}}\right)^{3 / 2} \frac{G_{\mathrm{O}} G_{\alpha}}{G_{\mathrm{Ne}}} e^{-Q / k T}
\end{gathered}
$$

At high temperatures compositium can be aproximated by Nuclear Statistical Equilibrium

- Composition is given by a minimum of the Free Energy: $F=U-T S$ conservation of number of nucleons and charge neutrality

$$
\mathrm{A}(\mathrm{Z}, \mathrm{~N}) \rightleftharpoons \mathrm{Zp}+\mathrm{Nn}+\gamma
$$

- It is assumed that all nuclear reactions operate in a time scale much shorter than any other timescale in the system
- favors free nucleons at high temperatures and iron group nuclei at low temperatures
- nuclei follow Boltzmann statistics, results in a Saha equation

$$
Y(Z, A)=\frac{G_{Z, A}(T) A^{3 / 2}}{2^{A}}\left(\frac{\rho}{m_{u}}\right)^{A-1} Y_{\mathrm{p}}^{Z} Y_{n}^{A-Z}\left(\frac{2 \pi \hbar^{2}}{m_{\mathrm{u}} k T}\right)^{3(A-1) / 2} e^{B(Z, A) / k T}
$$

$G_{Z, A}=\sum_{i}\left(2 J_{i}+1\right) e^{-E_{i}(Z, A) / k T}$ partition function
Composition depends on two parameters: $Y_{\mathrm{p}}, Y_{\mathrm{n}}$
solar abundances

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html

- nuclear burning able to produce only elements up to iron: creation of elements heavier than the "iron peak" is endothermic, electrostatic repulsion increasing with nuclear charge
- peaks in abundances reflect stability of isotopes against further addition of neutrons and protons: due to the structure of the nuclei - shell model of nuclear physics
- isotopes with even and equal numbers of neutrons and protons very stable \rightarrow more abundant
- during hydrostatic burning phases, elements beyond the iron peak produced only if other reactions with lighter nuclei provide enough energy and, by the capture of neutrons (electrically neutral), heavier isotopes: unstable
general sequence of reactions is

$$
\begin{array}{lc}
(Z, A)+n \longrightarrow & (Z, A+1)+\gamma \\
(Z, A+1) \longrightarrow & (Z+1, A+1)+e^{-}+\nu_{e}
\end{array}
$$

- neutron-capture time is long compared to the β-decay time: slow neutroncapture process or simply the s-process - close to the line of β-stability in the nuclear chart
- neutron-capture time is very short compared to the β-decay time: rapid neutron-capture process or r-process - Subsequent neutron captures and β decays will lead to the creation of heavy elements

s-process

- taking place in stars of intermediate mass ($M \approx 2 . . .5 \mathrm{M}_{\odot}$) in an advanced phase of evolution: shell burning on the asymptotic giant branch:
$\rightarrow{ }^{13} \mathrm{C}(\alpha, \mathbf{n}){ }^{16} \mathrm{O},{ }^{22} \mathrm{Ne}(\alpha, \mathbf{n}){ }^{25} \mathrm{Mg}$
- short-lived isotopes of heavy elements (e.g. ${ }^{99} \mathrm{Tc}, \tau_{1 / 2}=211,000 \mathrm{y}$) found in the atmospheres, could only have been created in the stars themselves
- unimportant for the energy budget and the structure of stars, mainly due to the extremely low abundances

r-process

- astrophysical site for the r-process is not clearly identified, but is probably to be found in supernova explosions and/or neutrino-driven winds after neutron star mergers
- very high neutron fluxes \rightarrow neutron capture until nuclear shell closure, stable against more neutron capture: β - decay
proton capture: responsible for proton-rich nuclei (p-process, rp- process, $\nu \mathrm{p}$ process): supernovae, neutrino driven winds

Simple stellar models

Accurate stellar models need to be calculated numerically
\rightarrow simple analytic models can be useful to understand general rules and dependencies
\rightarrow earliest such models are called polytropes
Temperature does not appear in the mechanical equations of stellar structure. Assuming hydrostatic equilibrium

$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\frac{G m}{r^{2}} \rho \stackrel{\frac{\mathrm{~d} \phi}{\mathrm{~d} r}=\frac{\mathrm{G} m}{r^{2}}}{\Rightarrow} \frac{\mathrm{~d} P}{\mathrm{~d} r}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} r} \rho
$$

together with Poisson's equation

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right)=4 \pi G \rho
$$

Temperature enters via equation of state $\rho=\rho(P, T)$, simplest case: $\rho=\rho(P)$
\rightarrow two equations can be solved for P and Φ without the other equations

Assuming such a simple relation between P and ρ of the form

$$
\begin{equation*}
P=K \rho^{\gamma}=K \rho^{1+\frac{1}{n}}, \quad n=\frac{1}{\gamma-1} \tag{7.1}
\end{equation*}
$$

polytropic relation: K polytropic constant, γ polytropic exponent, n polytropic index

$$
\Rightarrow \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-K \rho^{\gamma-2} \frac{\mathrm{~d} \rho}{\mathrm{~d} r}
$$

If $\gamma \neq 1$ and $\Phi=0$ at the surface ($\rho=0$), integration gives

$$
\rho=\left(\frac{-\Phi}{(n+1) K}\right)^{n}
$$

With the Poisson equation, we obtain an ordinary differential equation for Φ

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Phi}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=4 \pi G\left(\frac{-\Phi}{(n+1) K}\right)^{n} \tag{7.2}
\end{equation*}
$$

define dimensionless variables Z, W and $\Phi_{\mathrm{C}}, \rho_{\mathrm{c}}$ at the center

$$
z=A r, \quad A^{2}=\frac{4 \pi G}{(n+1)^{n} K^{n}}\left(-\phi_{\mathrm{c}}\right)^{n-1}=\frac{4 \pi G}{(n+1) K}\left(\rho_{\mathrm{c}}\right)^{\frac{n-1}{n}}, w=\frac{\Phi}{\Phi_{\mathrm{c}}}=\left(\frac{\rho}{\rho_{\mathrm{c}}}\right)^{1 / n}
$$

Lane-Emden equation

$$
\begin{equation*}
\frac{1}{z^{2}} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{2} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)+w^{n}=0 \tag{7.3}
\end{equation*}
$$

interested in solutions that are finite at the centre, $z=A r=0 \rightarrow \mathrm{~d} w / \mathrm{d} z \equiv$ $w^{\prime}=0$

$$
\begin{aligned}
& \rho(r)=\rho_{\mathrm{c}} w^{n}, \quad \rho_{\mathrm{c}}=\left[\frac{-\Phi_{\mathrm{c}}}{(n+1) K}\right]^{n} \\
& \Rightarrow P(r)=P_{\mathrm{c}} w^{n+1}, \quad P_{\mathrm{c}}=K \rho_{\mathrm{c}}^{\gamma}
\end{aligned}
$$

regular singularity at $z=0$, expand into a power series:
$w(z)=1+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\ldots, \quad \quad \stackrel{\text { Lane-Emden }}{\Rightarrow} w(z)=1-\frac{1}{6} z^{2}+\frac{n}{120} z^{4}+\ldots$
with $a_{1}=w^{\prime}(0), 2 a_{2}=w^{\prime \prime}(0), \ldots$ Analytical solutions only for three values of

- $n=0: w(z)=1-\frac{1}{6} z^{2}$
- $n=1: w(z)=\frac{\sin z}{z}$
- $n=5: w(z)=\frac{1}{\left(1+z^{2} / 3\right)^{1 / 2}}$

Surface of the polytrope of index n defined by value $z=z_{n}$, for which $\rho=p=0$ and $w=0$

$$
\Rightarrow z_{0}=\sqrt{6}, \quad z_{1}=\pi, \quad z_{5}=\infty
$$

\rightarrow Only polytropes with $n<5$ have finite radii
\rightarrow In general, values of z_{n} and related functions have to be calculated numerically
\rightarrow published in tabular form

Lane-Emden equation

n	$R_{n} \equiv z_{n} M_{n} \equiv\left(-z^{2 d w(z)} \frac{d z}{d z}\right.$		$D_{n} \equiv-\left.\left(\frac{3 \mathrm{~d} w(z)}{\mathrm{z} z}\right)^{-1}\right\|_{z}$	$B_{n} \equiv \frac{R_{n}^{n_{n}^{n-3}\left(3 D_{n}\right)^{\frac{3}{3} n}}}{(n+1) n_{n}^{n} n_{n}^{n}}$
0	2.44949	4.89898	1.00000	undefined
0.5	2.75270	3.78865	1.83514	0.27432
1	3.14159	3.14159	3.28987	0.23310
1.5	3.65375	2.71407	5.99066	0.20558
2	4.35287	2.41113	11.40216	0.18538
2.5	5.35528	2.18721	23.40630	0.16957
3	6.89685	2.01824	54.18229	0.15654
	8.01894	1.94983	88.15187	0.15076
3.5	9.53581	1.89060	152.88022	0.14534
5	∞	1.73205	∞	∞

$$
D_{n} \equiv\left(\frac{\rho_{c}}{\bar{\rho}}\right)_{z=z_{n}}
$$

polytropic models for a given index $n<5$ and for given values of M_{\star} and R_{\star}

$$
m(r)=\int_{0}^{r} 4 \pi \rho r^{2} \mathrm{~d} r=4 \pi \rho_{\mathrm{c}} \int_{0}^{r} w^{n} r^{2} \mathrm{~d} r \stackrel{z=A r}{=} 4 \pi \rho_{\mathrm{c}} \frac{r^{3}}{z^{3}} \int_{0}^{z} w^{n} z^{2} \mathrm{~d} z
$$

Using the Lane-Emden equation

$$
-\frac{\mathrm{d}}{\mathrm{~d} z}\left(z^{2} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)=w^{n} z^{2} \Rightarrow m(r)=4 \pi \rho_{\mathrm{c}} r^{3}\left(-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)
$$

At the surface $z=z_{n}$

$$
\begin{equation*}
M_{\star}=4 \pi \rho_{\mathrm{c}} R_{\star}^{3}\left(-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)_{z=z_{n}}=-4 \pi A^{-3} \rho_{\mathrm{c}}\left(z^{2} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)_{z=z_{n}} \tag{7.4}
\end{equation*}
$$

introducing the mean density $\bar{\rho}=3 M_{\star} /\left(4 \pi R_{\star}^{3}\right)$

$$
\frac{\bar{\rho}}{\rho_{\mathrm{c}}}=\left(-\frac{3 \mathrm{~d} w}{z} \frac{w}{\mathrm{~d} z}\right)
$$

higher $n \rightarrow$ smaller $\frac{\bar{\rho}}{\rho_{c}} \Rightarrow$ higher density concentration in the center

1. Measuring or assuming values for M_{\star} and R_{\star}
2. Pick the appropriate polytropic index n
\rightarrow Numerical solution of Lane-Emden equation $\left(R_{n}, M_{n}, D_{n}, B_{n}\right)$
3. Calculating $\bar{\rho}=\frac{3 M_{t}}{4 \pi R_{t}^{3}}$ and $\rho_{\mathrm{C}}=-z_{n} /(3 \mathrm{~d} w / \mathrm{d} z)_{z=z_{n}} \bar{\rho}$
4. turning the dimensionless z scale to r scale with $A=z_{n} / R_{\star}$
5. density distributon: $\rho(r)=\rho_{\mathrm{c}} \boldsymbol{w}^{n}(z)$
6. From $A^{2}=\frac{4 \pi G}{(n+1) K} \rho_{\mathrm{c}}^{\frac{n-1}{n}}$ follows $K=\frac{4 \pi G}{(n+1) A^{2}} \rho_{\mathrm{c}}^{\frac{n-1}{n}}$
7. Pressure distribution: $P(r)=K \rho_{\mathrm{c}}^{(n+1) / n} w^{n+1}$
$\rightarrow P_{\mathrm{c}}=(4 \pi)^{\frac{1}{3}} \frac{R_{n}^{n-3}{ }^{\frac{-3}{n}}\left(3 D_{n}\right)^{\frac{3-n}{3} n}}{(n+1) M_{R}^{n-1}} G M_{\star}^{\frac{2}{3}} \rho_{\mathrm{c}}^{\frac{4}{3}} \equiv(4 \pi)^{\frac{1}{3}} B_{n} G M_{\star}^{\frac{2}{3}} \rho_{\mathrm{c}}{ }^{\frac{4}{3}}=K \rho_{\mathrm{c}}^{\gamma}$.
polytropic constants R_{n}, M_{n}, D_{n}, and B_{n} see table
8. Mass distribution: $m(r)=4 \pi \rho_{\mathrm{c}} r^{3}\left(-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)$

Polytropic model - Sun

Example: Sun

1. $M_{\odot}=1.989 \times 10^{3} 3 \mathrm{~g}, R_{\odot}=6.96 \times 10^{10} \mathrm{~cm}$
2. Polytropic index $n=3 \rightarrow z_{3}=6.897$
3. $\bar{\rho}=1.41 \mathrm{~g} \mathrm{~cm}^{-1}, \rho_{\mathrm{c}}=76.39 \mathrm{~g} \mathrm{~cm}^{-1}$
4. $A=9.91 \times 10^{-11}$
5. $\rho(r)=\rho_{\mathrm{c}} \boldsymbol{w}^{3}(z)$
6. $K=3.85 \times 10^{14}$
\rightarrow central pressure $P_{\mathrm{c}}=1.24 \times 10^{17} \mathrm{dyncm}^{-2}$
Assuming an ideal gas with $X=0.7$ and $Y=0.3 \Rightarrow \mu=0.62$
\rightarrow central temperature $T_{\mathrm{c}}=1.2 \times 10^{7} \mathrm{~K}$
\rightarrow detailed calculations $T_{\mathrm{c}}=1.5 \times 10^{7} \mathrm{~K}$
\rightarrow Polytropic model does work quite well

\Rightarrow Eddingtons "standard model"
Ideal gas with radiation pressure, $\beta=P_{\text {gas }} / P$

$$
P=\frac{R}{\mu} \rho T+\frac{a}{3} T^{4}=\frac{R}{\mu \beta} \rho T
$$

Assuming β to be constant throughout the star $(0>\beta>1)$

$$
\Rightarrow 1-\beta=\frac{P_{\mathrm{rad}}}{P}=\frac{a T^{4}}{3 P} \Rightarrow T^{4} \sim P
$$

Equation of state becomes a polytropic relation with $n=3$

$$
\begin{equation*}
P=\left(\frac{3 R^{4}}{a \mu^{4}}\right)^{1 / 3}\left(\frac{1-\beta}{\beta^{4}}\right)^{1 / 3} \rho^{4 / 3}=K \rho^{1+\frac{1}{n}} \tag{7.5}
\end{equation*}
$$

$\rightarrow K$ free parameter, which depends on choice of β : two free parameters: ρ_{c}, β
\rightarrow can be replaced by $M_{\star}, R_{\star} \Rightarrow P_{\mathrm{c}}=P_{\mathrm{c}}\left(M_{\star}, R_{\star}\right), T_{\mathrm{C}}=T_{\mathrm{c}}\left(M_{\star}, R_{\star}\right)$
$P_{\mathrm{C}}=1.24 \times 10^{17}\left(\frac{M_{\star}}{M_{\odot}}\right)^{2}\left(\frac{R_{\odot}}{R_{\star}}\right)^{4} \mathrm{dyncm}^{-2}, \quad \mathrm{~T}_{\mathrm{C}}=19.5 \times 10^{6} \mu \beta \frac{\mathrm{M}_{\star}}{\mathrm{M}_{\odot}} \frac{\mathrm{R}_{\odot}}{\mathrm{R}_{\star}} \mathrm{K}$
with 7.5, 7.4 and the definition of A we get the Eddington quartic equation:

$$
1-\beta=\frac{a}{3 R^{4}} \frac{(\pi G)^{3}\left(3 D_{3} / 4 \pi\right)^{2}}{z_{3}^{6}} M^{2} \mu^{4} \beta^{4}=0.003\left(\frac{M_{\star}}{M_{\odot}}\right)^{2} \mu^{4} \beta^{4}, \rightarrow \beta=\beta\left(\mu, M_{\star}\right)
$$

Polytropic model for radiative and fully convective stars

from the radiative temperature gradient we can derive the radiation pressure gradient $\frac{\mathrm{d} P_{\mathrm{r}}}{\mathrm{dr}}=\frac{4}{3} a T^{3} \frac{\mathrm{~d} T}{\mathrm{dr}}=-\frac{k \rho L}{4 \pi c r^{2}}$, and obtain for $n=3$:

$$
\frac{\mathrm{d} P_{\mathrm{r}} \frac{\mathrm{dP} P=-\frac{G M_{\rho}}{\mathrm{dr}}=\frac{\kappa L}{r^{2}}}{\mathrm{~d} P}=1-\beta(r)=0.003\left(\frac{M_{\star}}{M_{\odot}}\right)^{2} \mu^{4} \beta^{4} .4 \pi c G M}{4}
$$

$$
\begin{equation*}
\frac{L_{\star}}{L_{\odot}}=\frac{4 \pi c G M_{\odot}}{\kappa L_{\odot}} 0.003 \mu^{4} \beta^{4}\left(\mu, M_{\star}\right)\left(\frac{M_{\star}}{M_{\odot}}\right)^{3} \text { (mass-luminosity relation) } \tag{7.6}
\end{equation*}
$$

For fully convective stars the temperature gradient is given by the adiabatic temperature gradient

$$
\frac{\mathrm{d} T}{\mathrm{~d} r}=\frac{\Gamma_{2}-1}{\Gamma_{2}} \frac{T}{P} \frac{\mathrm{~d} P}{\mathrm{~d} r} \Leftrightarrow \frac{\mathrm{~d} T}{T}=\frac{\Gamma_{2}-1}{\Gamma_{2}} \frac{\mathrm{~d} P}{P} .
$$

If we assume the adiabatic coefficient Γ_{2} to be constant and the radiation pressure negligible, the equation of state is that of an ideal gas

$$
\begin{equation*}
T \sim P / \rho \Rightarrow P \sim \rho^{\Gamma_{2}}, \quad \Rightarrow n=1 /\left(\Gamma_{2}-1\right) \Rightarrow T P^{\frac{1-\Gamma_{2}}{\Gamma_{2}}}=\mathrm{const} \tag{7.7}
\end{equation*}
$$

\rightarrow pre-main-sequence stars following the Hayashi line

Now we assume K to be fixed and construct a model with index n for a given central density $\rho_{\mathrm{c}} \Rightarrow \rho=\rho_{\mathrm{c}} \boldsymbol{W}^{n}, \boldsymbol{A}^{-2}=\left(\frac{r}{z}\right)^{2}=\frac{1}{4 \pi G}(n+1) K \rho_{\mathrm{c}}^{\frac{1-n}{n}}$ Using $R_{\star}=\frac{z_{n}}{A}$ we get a mass-radius relation, for a given K and n :

$$
\begin{align*}
R_{\star} & \sim \rho_{\mathrm{c}}^{\frac{1-n}{2 n}}, M_{\star} \sim \rho_{\mathrm{c}} R_{\star}^{3} \\
\Rightarrow M_{\star}=C_{1} \rho_{\mathrm{c}}^{\frac{3-n}{2 n}} ; C_{1}= & 4 \pi\left(-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)_{z=z_{n}} z_{n}^{3}\left(\frac{n+1}{4 \pi G}\right)^{3 / 2} K^{3 / 2} \\
& \Rightarrow R_{\star} \sim M_{\star}^{\frac{1-n}{3-n}} \tag{7.8}
\end{align*}
$$

Polytropic model for a degenerate electron gas

Non-relativistic, degenerate electron gas

$$
P_{\mathrm{e}}=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{\mathrm{e}} m_{\mathrm{u}}^{5 / 3}}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{5 / 3}
$$

Considering the chemical composition μ_{e} to be fixed:

$$
P_{\mathrm{e}}=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{\mathrm{e}}\left(\mu_{\mathrm{e}} m_{\mathrm{u}}\right)^{5 / 3}} \rho^{5 / 3}
$$

\rightarrow Equation of state is polytropic: $P=K \rho^{1+\frac{1}{n}}$
with polytropic index $n=\frac{3}{2}$ and polytropic constant $K=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{e}\left(\mu_{e} m_{u}\right)^{5 / 3}}$
with the mass-radius relation 7.8, do we get a mass-radius relation for this case

$$
\begin{equation*}
R_{\star} \sim M_{\star}^{-1 / 3} \tag{7.9}
\end{equation*}
$$

\rightarrow The higher the mass, the smaller the radius

Polytropic model for a degenerate electron gas

for high densities, the degenerate electron gas becomes relativistic:

$$
P_{\mathrm{e}}=\left(\frac{3}{\pi}\right)^{1 / 3} \frac{h c}{8\left(\mu_{\mathrm{e}} m_{\mathrm{u}}\right)^{4 / 3}} \rho^{4 / 3}
$$

Equation of state is (again) polytropic: $P=K \rho^{1+\frac{1}{n}}$
with polytropic index $n=3$ and polytropic constant $K=\left(\frac{3}{\pi}\right)^{1 / 3} \frac{h c}{8\left(\mu_{\mathrm{e}} m_{\mathrm{u}}\right)^{4 / 3}}$

$$
\Rightarrow M_{\star}=4 \pi\left(-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)_{z=z_{3}} z_{3}^{3}\left(\frac{K}{\pi G}\right)^{3 / 2} \underbrace{\rho_{\mathrm{c}}^{0}}_{1}=M_{\mathrm{Ch}}
$$

Mass does not vary with central density!
\rightarrow only one possible mass for relativistic degenerate polytropes:

$$
\begin{equation*}
\text { Chandrasekhar mass : } \quad M_{\mathrm{Ch}}=\frac{5.836}{\mu_{\mathrm{e}}^{2}} M_{\odot} \tag{7.10}
\end{equation*}
$$

For white dwarfs $\mu_{\mathrm{e}}=2 \Rightarrow M_{\mathrm{Ch}}=1.46 \mathrm{M}_{\odot}$
\rightarrow Highest possible (and observed) mass for WDs

Polytropic model for a degenerate electron gas

mass-radius relation for white dwarfs with $\mu_{e}=2$, transition between nonrelativistic limit and ultra-relativistic limit can be derived by using an equation of state accounting for relativistic effects (for $M_{W D} \gtrsim 0.5 \mathrm{M}_{\odot}$), which is then no longer a polytropic equation of state.

For stars with similar density structure, there are simple relations between their parameters

$$
x=\frac{m}{M}=\frac{m^{\prime}}{M^{\prime}} \text { then } \frac{r(x)}{r^{\prime}(x)}=\frac{R}{R^{\prime}}
$$

\rightarrow This follows from the stellar structure equations
\rightarrow Such stars are called homologous
Homology relations can be formulated for the fundamental parameters and material functions, e.g.

$$
\frac{\rho}{\rho^{\prime}}=\frac{M / M^{\prime}}{\left(R / R^{\prime}\right)^{3}}, \quad \frac{P}{P^{\prime}}=\frac{\left(M / M^{\prime}\right)^{2}}{\left(R / R^{\prime}\right)^{4}}=\left(\frac{\rho}{\rho^{\prime}}\right)^{4 / 3}\left(\frac{M}{M^{\prime}}\right)^{2 / 3}
$$

Assuming an ideal gas $P \sim(1 / \mu) \rho T$

$$
\frac{T}{T^{\prime}}=\frac{\mu}{\mu^{\prime}} \frac{M}{M^{\prime}}\left(\frac{R}{R^{\prime}}\right)^{-1}
$$

\rightarrow If a star is compressed, R becomes smaller and T higher
\rightarrow Higher T leads to more fusion, higher internal energy and expansion
\rightarrow Star behave like a thermostat
Assuming an ideal gas and radiative energy transport

$$
\frac{L}{L^{\prime}}=\left(\frac{\kappa}{\kappa^{\prime}}\right)^{-1}\left(\frac{M}{M^{\prime}}\right)^{3}\left(\frac{\mu}{\mu^{\prime}}\right)^{4}, \quad \frac{L}{L^{\prime}}=\frac{\epsilon}{\epsilon^{\prime}} \frac{M}{M^{\prime}}
$$

\rightarrow Luminosity is a strong function of mass $L \sim M^{3}$
\rightarrow Stars with smaller metal content (smaller opacity κ) have higher L
\rightarrow Stars with higher μ have higher L

Stellar populations

First stars (Population III)

- formed with the primordial composition of the Universe ($\mathrm{H}, \mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{B}$)
\rightarrow Metal-free composition (not observed yet)
\rightarrow No CNO-cycle possible
- Star forming gas clouds cool much slower, because the transitions of metals make cooling more efficient
\rightarrow instability for collapse to stars might happen at higher masses $M \approx 100-1000 M_{\text {. }}$
The mass distribution of the first stars is currently debated
- after $10^{6} \mathrm{yr}$ first supernovae (core collapse, pair production) enrich the interstellar medium
\rightarrow Nucleosynthesis dominated by α-elements from C/O burning (C, O, Ne, Mg, Si, S, Ar, Ca)
\rightarrow Due to the short evolutionary times, no s-process elements are formed
\rightarrow Due to the extreme properties of the first stars, r-process elements might have been formed

Extremely metal-poor (EMP), lowmass stars (MS, red giants) with $[\mathrm{Fe} / \mathrm{H}]<-7.0 \ldots-3.0$ have been observed

- Due to their long lifetimes, they allow us to study the enrichment by the first generations of stars
- Stellar archaeology
- Near-field cosmology

夜
Frebel A, Norris JE. 2015.
Annu. Rev. Astron. Astrophys. 53:631-88

永Frebel A, Norris JE. 2015.
Annu. Rev. Astron. Astrophys. 53:631-88

Extremely metal-poor (EMP), lowmass stars (MS, red giants) with $[\mathrm{Fe} / \mathrm{H}]<-7.0 \ldots-3.0$ have been observed

- Lithium abundances and isotope ratio in conflict with predictions for primordial nucleosynthesis
- Carbon enrichment [C/Fe] > 1.0 detected in a large fraction of stars \rightarrow CEMP stars
- Enrichment with r - and s -process elements
\rightarrow (C)EMP-r/s stars
Enrichment by Pop III stars?
Nucleosynthesis predictions by early supernovae highly uncertain

Stellar populations

30 kpc

Subsequent generations of stars enriched the ISM

- Stellar populations become more metal-rich
- Massive stars most important for enrichment (winds, SN II), but shortlived (α-elements)
- AGB-stars (s-process elements)
- SN la (iron)

San Roman 2015, A\&A, 579, 6

Stellar populations

\qquad

Lower metallicity shifts the MS
Pop II stars below the ZAMS of sub-solar metallicity are called subdwarfs (sdA/F/G/K/M)
Gaia revealed split in Pop II!

Stellar populations

Amarsi et al. 2019, A\&A, 630, 104
Galactic space velocity (km/s): U Velocity (km/s) toward the Galactic center; V in the direction of Galactic rotation; W toward the North Galactic Pole

Stellar populations

Globular clusters represent old sub-populations with up to $\sim 10^{6}$ stars

- Part of the Galactic halo
- $[\mathrm{Fe} / \mathrm{H}]<-2.3 \ldots-1.6$
- Cluster stars have formed at the same time
- MS-turnoff depends on age
- Problem: Multiple populations

Globular clusters represent old sub-populations with up to $\sim 10^{6}$ stars

- Part of the Galactic halo
- $[\mathrm{Fe} / \mathrm{H}]<-2.3 \ldots-1.6$
- Cluster stars have formed at the same time
- MS-turnoff depends on age
- Problem: Multiple populations

Stellar populations

Population I

Youngest Galactic population

- Associated with Galactic disk/bulge
- $[\mathrm{Fe} / \mathrm{H}]<-0.2 \ldots-0.6$
- Star formation ongoing in the disk

MS extended towards young and massive stars
WDs and low-mass MS stars present
\rightarrow Selection effect: Sun belongs to the disk

Stellar populations

Open clusters represent sub-populations with up to $\sim 10^{3}$ stars

- Part of the Galactic disk
- Cluster stars have formed at the same time
- MS-turnoff depends on age

Age determination of clusters by isochrones

Stellar evolution

Molecular clouds

Hubble Space Telescope Views of Orion Nebula showing stars hidden in clouds
http://oposite.stsci.edu/pubinfo/pr/97/13/A.html

In equilibrium:

$$
-E_{g}=2 E_{k}
$$

$\frac{3}{5} \frac{G M^{2}}{R}=\frac{3}{2} k T \frac{M}{m}$

During collapse:

$$
-\frac{1}{2} E_{g}>E_{k}
$$

$$
M>M_{J}=9 \cdot 10^{4} M_{\odot}\left(\frac{T_{(K)}^{3}}{n_{\left(m^{-3}\right)}}\right)^{\frac{1}{2}}
$$

For a MC with:

$$
\left.\begin{array}{l}
\mathrm{T}=10 \mathrm{~K} \\
\mathrm{n}=100 \mathrm{~cm}^{-3}
\end{array}\right\} \mathrm{M}_{\lrcorner} \sim 10^{2} \mathrm{M}_{\mathrm{s}}
$$

- new stars can be formed in an environment of dense interstellar (molecular hydrogen H_{2}) clouds. Under certain circumstances (e.g. by shock waves from supernovae) these clouds can become gravitationally unstable to contraction.
- not strictly necessary to have such massive clouds. There are inhomogeneities that will cause the cloud to fragment leading to the formation of more than one star.

Cloud collapse

In equilibrium:

$$
-E_{g}=2 E_{k}
$$

$\frac{3}{5} \frac{G M^{2}}{R}=\frac{3}{2} k T \frac{M}{m}$

During collapse:

$$
-\frac{1}{2} E_{g}>E_{k}
$$

$$
M>M_{J}=9 \cdot 10^{4} M_{\odot}\left(\frac{T_{(K)}^{3}}{n_{\left(m^{-3}\right)}}\right)^{\frac{1}{2}}
$$

For a MC with:

$$
\left.\begin{array}{l}
\mathrm{T}=10 \mathrm{~K} \\
\mathrm{n}=100 \mathrm{~cm}^{-3}
\end{array}\right\} M_{\jmath} \sim 10^{2} M_{S}
$$

Jeans mass

- Gravitational pressure has to overcome gas pressure ($\theta=3 / 5$ for homogenous sphere)

$$
\begin{aligned}
& \left|P_{\text {gas }}\right|<\left|P_{\text {grav }}\right| \rightarrow \frac{R}{\mu} \rho T<\theta \frac{G M^{2}}{4 \pi R^{4}} \\
\Rightarrow & M_{\text {Jeans }}=\frac{27}{16}\left(\frac{3}{\pi}\right)^{1 / 2}\left(\frac{R}{\theta G}\right)^{3 / 2} \sqrt{\frac{T^{3}}{\mu^{3} \bar{\rho}}}
\end{aligned}
$$

$$
\Rightarrow M_{\text {Jeans }}=1.1 M_{\odot}\left(\frac{T}{10 \mathrm{~K}}\right)^{3 / 2}\left(\frac{\rho}{10^{-19} \mathrm{gcm}^{-3}}\right)^{-1 / 2}\left(\frac{\mu}{2.3}\right)^{-3 / 2)}
$$

Cloud collapse

Low-mass stars are more frequent \rightarrow peak at $M=0.2 \mathrm{M}_{\odot}$

Molecular clouds highly turbulent $\rightarrow M_{\text {Jeans }} \sim \sqrt{\frac{T^{3}}{\mu^{3} \rho}} \mathcal{M}^{-1}, \mathcal{M}=\frac{v_{\text {shock }}}{v_{\text {sound }}}$ with Mach number \mathcal{M}

Pre-Stellar Dense Core $\mathrm{T}_{\text {bol }} \sim 10-20 \mathrm{~K}, \mathrm{M}_{*}=0$
$-1000000 \mathrm{yr}$

```
t~0 yr
Young Accreting Protostar
    T
< 30000 yr
Evolved Accreting Protostar \(\mathrm{T}_{\text {bol }}{ }^{70-650 \mathrm{~K}, \mathrm{M}_{*}>\mathrm{M}_{\text {env }}}\) \(\sim 200000 \mathrm{yr}\)
```


$\mathrm{t} \sim 0 \mathrm{yr}$

```
Young Accreting Protostar
\(\mathrm{T}_{\text {bol }}<70 \mathrm{~K}, \mathrm{M}_{*} \ll \mathrm{M}_{\mathrm{env}}\)
\(<30000 \mathrm{yr}\)
```

Birthline for

Formation of the central protostellar object

Pre-main sequence stars

Classical T Tauri Star

 1000000 yr

Weak T Tauri Star $\mathrm{T}_{\text {bol }}>2880 \mathrm{~K}, \mathrm{M}_{\text {Disk }}<\mathrm{M}_{\text {Jupiter }}$ $\sim 10000000 \mathrm{yr}$

- isothermal phase: $T \sim 10 \mathrm{~K}$, density low enough that gravitational energy can be radiated away, temperature remains low and it keeps contracting, visible through far infrared emission
- adiabatic phase: density increases until cloud becomes opaque, temperature rises until contraction stops because pressure built up (hydrostatic equilibrium), protostar forms, cloud is detectable from radiation from dust in IR

Wuchterl \& Tscharnuter 2003, A\&A 398,1081 $\log _{10}$ Effective Temperature / [K]
Pre-main sequence stars

- collapsing cloud remains an infrared object as long as the envelope is opaque to visible radiation \rightarrow evolutionary track starts extremely far to the right
- thinning out of the envelope has several effects:
- becomes more transparent
- photosphere moves downwards until it has reached the surface of the hydrostatic core
- with decreasing R : $T_{\text {eff }}$ must increase in order to radiate away the energy
- luminosity is produced by accretion \rightarrow with decreasing $\dot{M}: L$ decreases until it is finally provided by contraction of the core
- for low-mass stars accretion onto the protostar stops well before central temperatures for hydrogen ignition is reached
- For massive stars, accretion continues while central hydrogen burning has already set in \rightarrow already consumed part of its hydrogen fuel when it becomes visible

The Hayashi line (HL) is defined as the locus in the HRD of fully convective stars of given parameters (mass M and chemical composition)
\rightarrow located far to the right in the HRD, typically at $T_{\text {eff }} \approx 3000 \ldots 5000 \mathrm{~K}$, very steep, in large parts almost vertical
\rightarrow borderline between an "allowed" region (on its left) and a forbidden" region (on its right), for all stars in hydrostatic equilibrium and being fully convective
\rightarrow cooler $T_{\text {eff }}$ than Hayashi line not stable because temperature gradients would have to be steeper than the adiabatic one
interior part of convective star has an adiabatic stratification $\mathrm{d} \ln T / \mathrm{d} \ln P=\nabla_{\mathrm{ad}}$
\rightarrow if we assume a fully ionized ideal gas: $\nabla_{\text {ad }}=$ const $=0.4$
\rightarrow simple $P-T$ relation: $P=C T^{1+n}=C T^{5 / 2}$
\rightarrow star is polytropic with an index $n=1 / \nabla_{\mathrm{ad}}-1=3 / 2, C=K^{-n}(R / \mu)^{1+n}$

$$
\begin{aligned}
& K \sim \rho_{\mathrm{c}}^{1 / 3} A^{-2} \sim \rho_{\mathrm{c}}^{1 / 3} R^{2} \sim M^{1 / 3} R \Rightarrow C=C^{\prime}(n, \mu) R^{-3 / 2} M^{-1 / 2} \\
& \Rightarrow \lg T
\end{aligned}=0.4 \lg P+0.4\left(\frac{3}{2} \lg R+\frac{1}{2} \lg M-\lg C^{\prime}\right) \quad .
$$

\qquad
with the hydrostatic equation and the Stephan-Boltzmann law we get the Hayashi lines in the HRD

$$
\begin{equation*}
\lg T_{\text {eff }}=A \lg L+B \lg M+C \lg \mu+\text { constant } \tag{9.1}
\end{equation*}
$$

PMS tracks with constant
masses

- later phases a short episode of nuclear burning sets in

$$
\mathrm{D}+\mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\gamma
$$

- Low-mass PMS $\leq 0.5 \mathrm{M}_{\odot}$ evolve along the Hayashi tracks
- High-mass PMS > $0.5 \mathrm{M}_{\odot}$ leave or never follow the Hayashi tracks because a radiative zone develops

[^2]

When the opacity drops the internal temperature rises and the convective zone recedes from the center, evolutionary path of the star in the HR-diagram to move away from the Hayashi track toward higher effective temperatures
\rightarrow radiative track of the HR-
diagram (timelines 2-5)

$T_{\text {central }}$ of pre-main-sequence (PMS) stars too low to ignite hydrogen burning
\rightarrow Energy source is gravitational energy of infalling material $L_{\text {proto }}=\frac{G M \dot{M}}{R}$
\rightarrow evolution on Kelvin-Helmholtz timescale $\tau_{K H}=\frac{G M^{2}}{2 R L_{\text {proto }}} \sim 10^{7} \mathrm{yr}$
\rightarrow presence of infalling envelope of gas and dust is the defining characteristic

Lithium abundance in solar type stars

- infalling envelope surrounding the protostar and disk
- infalling material has some net rotation \rightarrow falls onto a disk
- Keplerian rotation of the disk arounc the protostar
- Mass is transported from the envelope to the disk and then it is accreted through the disk and onto the protostar
- protostar and disk both work together and drive a bipolar outflow
- $>50 \%$ are variable

Protostellar luminosity problem

Total protostellar luminosity

$$
\rightarrow L_{p}=L_{\mathrm{phot}}+f_{\mathrm{acc}}
$$

$$
G m \dot{m}
$$

~ 10 times less luminous than expected How do stars accrete their mass?

Post-accretion phases

log (Age [yr])

kHartmann L, et al. 2016.
Annu. Rev. Astron. Astrophys. 54:135-80

UV and X-ray excess in T Tauri stars

Annu. Rev. Astron. Astrophys. 54:135-80
Variable stars of spectral types Me to Fe are called T Tauri stars

Cody et al. 2014, AJ, 147, 4

*

- Pre-MS stars of intermediate mass, higher-mass ($2 \mathrm{M}_{\odot}<\mathrm{M}<10 \mathrm{M}_{\odot}$) analogs of TTS
- within mass range of HAeBes change in accretion mechanism from magnetically to an unknown mechanism for high mass stars (radiative, non-magnetic)
- Herbig Ae and T-Tauri stars behave more similarly than Herbig Be stars, and Herbig Ae and Herbig Be stars have different observational properties

Caratti o Garatti et al 2017

- massive young stellar objects (MYSO) spend their brief youth while deeply embedded in extremely dense molecular cores
- optically visible massive stars should have already arrived on the zero-age-main-sequence with very little episodic accretion activity
- massive stars can form from clumpy discs of material - in much the same way as less massive stars
- accretion bursts might reduce the radiation pressure of the central source and allow the star to form
lg L/L。

As soon as the conditions in the core are fulfilled, stable burning of hydrogen starts

Since $\tau_{\text {nuc }} \gg \tau_{K H}$ this phase can be described by homogeneous models in thermal equilibrium
For solar-like stars the chemical composition is

$$
X=0.70, \quad Y=0.28 Z=0.02
$$

The sequence of such models is called

Zero Age Main Sequence

prediction of the ZAMS by a sophisticated stellar structure and evolution code (EZ: http://www.astro.wisc.edu/~townsend/static.php?ref= ez-web)

-隹

File: HD209290_480096_55408_UVB+VIS.fits

Kippenhahn, Weigert \& Weiss 2012

Spectral-type M

$T_{\text {eff }}=2400-3700 \mathrm{~K}$

Kippenhahn, Weigert \& Weiss 2012

Spectral-type K

$T_{\text {eff }}=3700-5200 \mathrm{~K}$

File: HD16160_389660_55162_UVB+VIS.fits

Ca II H\&K File: H01 3043 _480674_55408_uve+us.fits

Zero-Age Main Sequence (ZAMS)

Ca II H\&K
File: HD29391_389630_55178_UVB+VIS.fits

Kippenhahn, Weigert \& Weiss 2012

Spectral-type F

$T_{\text {eff }}=6000-7500 \mathrm{~K}$

Zero-Age Main Sequence

Zero-Age Main Sequence (ZAMS)
)

File: HD174240_480113_55395_UVB+VIS.fits

Kippenhahn, Weigert \& Weiss 2012

Spectral-type A

$T_{\text {eff }}=7500-10000 \mathrm{~K}$

File: HD147550_480128_55438_UVB+VIS.fits

Kippenhahn, Weigert \& Weiss 2012

Spectral-type B

$T_{\text {eff }}=10000-30000 \mathrm{~K}$

Kippenhahn, Weigert \& Weiss 2012

Spectral-type 0

$T_{\text {eff }}=30000-50000 \mathrm{~K}$

File: HD57060_389588_55235_UVB+VIS.fits

Mass-radius relation

Kippenhahn, Weigert \& Weiss 2012

$$
R \sim M^{0.56 \ldots 0.79}
$$

Central temperature versus central density for zero-age main sequence stars (based on EZ-models with $X=0.73$ and $Y=0.26$); color codes the fractional contribution of the CN -cycle to the total thermal energy generation Jump due to change from p-pchain to CNO-cycle

\rightarrow For lower masses, the core becomes partly degenerate
\rightarrow For high masses, radiation pressure becomes significant

Fractional contribution of the proton-proton chain (red lines) and the CN-cycle (blue lines) to the total thermal energy generation as function of stellar mass

Temperature and pressure for a $1 \mathrm{M}_{\odot}$ ZAMS star

solid: EZ-model; dotted: polytropic standard model with radius according to EZmodel)

Temperature and pressure for a $1.35 \mathrm{M}_{\odot} \mathrm{ZAMS}$ star

Temperature and pressure for a $3 \mathrm{M}_{\odot}$ ZAMS star

Temperature and pressure for a $7 \mathrm{M}_{\odot}$ ZAMS star

Interior structure of ZAMS stars

Interior structure of ZAMS stars

Differences mostly due to change from p-p-chain to CNO-cycle

Radial extension of convection zones for ZAMS stars

convection zone at the surface/center is shaded in orange/cyan. The surface convection zone increases with decreasing stellar mass while the opposite is true for the central convection zone

Radial extension of convection zones for ZAMS stars

Kippenhahn, Weigert \& Weiss 2012

Upper main sequence $M \gtrsim 1 \mathrm{M}_{\odot}$
\rightarrow CNO cycle leads to high temperature gradient in the core
\rightarrow Convective core + radiative envelope

Lower main sequence $M \lesssim 1 \mathrm{M}_{\odot}$
\rightarrow Low temperature at the surface and high opacity
$\lg \mathrm{M} / \mathrm{M}_{\odot} \longrightarrow \rightarrow$ Radiative core + convective envelope
$M \lesssim 0.25 \mathrm{M}_{\odot} \rightarrow$ Fully convective

Minimum mass $M \simeq 0.08 \mathrm{M}_{\odot}$
\rightarrow Hydrogen-burning limit
Substellar objects with masses $0.01-0.08 \mathrm{M}_{\odot}$ are called brown dwarfs
\rightarrow After a short phase of deuterium burning, they continue to cool down with $\tau_{K H}$
\rightarrow Discovered in 1995
\rightarrow New spectral types L, T and Y have been introduced
\rightarrow Objects with low luminosities and SEDs peaking in the infrared
Maximum mass $M \simeq 60-100 \mathrm{M}_{\odot}$
\rightarrow limited by vibrational instability and radiation pressure
At the upper end of the main sequence, radiation pressure becomes so high that the star becomes unbound ($g_{\mathrm{rad}}=-\frac{1}{\rho} \frac{\mathrm{~d} \mathrm{P}_{\text {rad }}}{\mathrm{dr}}>g$)
\rightarrow The critical luminosity is called Eddington luminosity L_{E}

$$
\frac{L_{E}}{L_{\odot}}=\frac{4 \pi c G M}{\kappa}=1.3 \times 10^{4} \frac{1}{\kappa} \frac{M}{M_{\odot}}
$$

Since $L \sim M^{3}$ this leads to a limiting mass dependent on metallicity

Zero-Age Main Sequence

Occurrence of convection, chemical composition, energy generation as function of fractional mass coordinate for a $1 \mathrm{M}_{\odot}$ ZAMS star (based on EZ-models with $X=0.73, Y=0.26$)

Occurrence of convection, chemical composition, energy generation as function of fractional mass coordinate for a $1 \mathrm{M}_{\odot}$ terminal-age main sequence (TAMS) star (based on EZ-models with $X=0.73, Y=0.26$)

ZAMS and TAMS model (based on MESA-models: http://www. astro. wisc.edu/~ townsend/static. php?ref=mesa-web) with $\mathrm{X}=0.7, \mathrm{Y}=$ $0.28)$.

Temporal changes of central temperature T_{c}, pressure P_{c}, density ρ_{c} (all in cgs units), and stellar radius R (based on EZ-models with $X=0.73, Y=0.26$).

exhaustion of H in the core, H -burning develops in a shell around the He -rich core
\rightarrow shell moves outward
\rightarrow radiative core
\rightarrow more massive stars have convective cores

MS Evolution of a $1 \mathrm{M}_{\odot}$ (radiative core) vs $5 \mathrm{M}_{\odot}$ (convective) star

Main Sequence Evolution of a $7 \mathrm{M}_{\odot}$ star (EZ model)

Theoretical Hertzsprung-Russell diagram showing the evolution during the main sequence phase (based on EZ-models with $\mathrm{X}=0.73, \mathrm{Y}=0.26$), the color codes the fractional age ranging from the ZAMS (blue) to the TAMS (red)

Kippenhahn, Weigert \& Weiss 2012

Evolution of a star with convective core

seemingly nice and clear picture of the mainsequence phase
\rightarrow notorious problem of convection
\rightarrow precise determination of those regions in the deep interior in which convective motions occur and the extent to which the chemical elements
$\lg \mathrm{M} / \mathrm{M}_{\odot} \rightarrow \quad$ are mixed
Kippenhahn, Weigert \& Weiss 2012
\rightarrow mixing influences the later evolution, since the chemical profile, which is established and left behind, is a long-lasting memory

At border between convective core and radiative envelope

$$
\nabla_{\mathrm{rad}}=\nabla_{\mathrm{ad}}
$$

\rightarrow regimes in which convective motions are present $(v>0)$ and absent ($v=0$)
\rightarrow Inertia of the moving material
\rightarrow Penetration into the radiative region
\rightarrow Convective overshooting
\rightarrow mixing-length parameter $\alpha=I_{\mathrm{m}} / H_{p}$
$\rightarrow F=F_{\mathrm{conv}}+F_{\mathrm{rad}}=\frac{1}{4 \pi r^{2}}$
\rightarrow overshooting $(\alpha>0)$ brings more hydrogen in the core

overshooting ($\alpha>0$) brings more
hydrogen in the core
\rightarrow Helium core becomes larger
\rightarrow Main-sequence age increases
\rightarrow Broader main sequence
Open issue in stellar evolution theory

Kippenhahn, Weigert \& Weiss 2012
semiconvection: slow mixing
massive stars $M \gtrsim 10 M_{\odot}$

- during central hydrogen burning the convective core retreats, leaving a certain hydrogen profile behind
- radiative gradient $\nabla_{\text {rad }}$ outside the core starts to rise and soon exceeds the adiabatic gradient ∇_{ad}
- dynamically stable due to Ledoux criterion

$$
\nabla_{\mathrm{ad}}<\nabla_{\mathrm{rad}}<\nabla_{\mathrm{ad}}+\frac{\phi}{\delta} \nabla_{\mu}
$$

- slightly displaced mass element starts to oscillate with slowly growing amplitude, penetrates more and more into regions of different chemical composition

- at end of central H-burning, H-burning moves outward in a shell
- No energy produced in the He-core
\rightarrow Isothermmal $T_{\mathrm{C}}=$ const
- Core grows in mass

How long can this last?

Kippenhahn, Weigert \& Weiss 2012
Virial theorem for separate core and envelope:

$$
P_{0}=P_{\text {gas }}-P_{\text {grav }}=\frac{3}{4 \pi} \frac{R}{\mu_{\mathrm{c}}} \frac{T_{0} M_{\mathrm{c}}}{R_{\mathrm{c}}^{3}}-\frac{\theta G M_{\mathrm{c}}^{2}}{4 \pi R_{\mathrm{c}}^{4}}
$$

Maximum value $P_{0, \text { max }}$ at the radius $R_{\mathrm{c}, \text { max }}$

$$
\frac{\mathrm{d} P_{0}}{\mathrm{~d} R_{\mathrm{c}}}=0 \Rightarrow R_{\mathrm{c}, \max }=\frac{4 \theta G}{9 R} \frac{M_{\mathrm{c}} \mu_{\mathrm{c}}}{T_{\mathrm{c}}} \Rightarrow P_{0, \max }=C \frac{T_{\mathrm{c}}^{4}}{\mu_{\mathrm{c}}^{4} M_{\mathrm{c}}^{2}}
$$

- $P_{0, \text { max }}$ must balance the pressure exerted by the envelope $P_{\text {env }}$
- Assuming the core to be a point mass and hydrostatic equilibrium
$\rightarrow P_{\text {env }}$ equals the central pressure P_{C}

$$
\Rightarrow C \frac{T_{\mathrm{c}}^{4}}{\mu_{\mathrm{c}}^{4} M_{\mathrm{c}}^{2}} \geq \frac{G M^{2}}{8 \pi R^{4}}
$$

- Homology relation

$$
\begin{equation*}
\Rightarrow \frac{M_{\mathrm{c}}}{M} \leq \mathrm{constant}\left(\frac{\mu_{\mathrm{env}}}{\mu_{\mathrm{c}}}\right)^{2} \approx 0.37\left(\frac{\mu_{\mathrm{env}}}{\mu_{\mathrm{c}}}\right)^{2} \approx 0.1 \tag{9.2}
\end{equation*}
$$

Stars with mass $M>2 \mathrm{M}_{\odot}$: when mass of the He-core exceeds the SC-limit, the core starts to contract rapidly and the star leaves the main sequence.
For smaller stars: gas in the He-core partially degenerate before the star reaches the SC-limit (not T depended, hydrostatic equilibrium with higher P).

- Contraction of the He-core leads to heating of the core on the KelvinHelmholtz timescale (much shorter than nuclear timescale)
- As the core contracts, it generates energy, which flows outward
\rightarrow The envelope expands
\rightarrow The star moves to the red giant branch

The details of the further evolution strongly depend on stellar mass.

- Low-mass stars (<2.5 M_{\odot})
- Intermediate-mass stars
($2.5-8 \mathrm{M}_{\odot}$)
- Massive stars (> $8 \mathrm{M}_{\odot}$)

Theoretical Hertzsprung-Russell diagram (based on EZ-models with $X=$ $0.73, Y=0.26)$. The blue numbers indicate the mass in M_{\odot}. The color codes the fractional age on the displayed portion of the track.

Kippenhahn diagram shows internal structure of star

Time
Hydrogen burning energy yield
Helium burning energy yield

Intermediate stars in HRD (EZ model for a $5 \mathrm{M}_{\odot}$ star)

Post-main sequence evolution - Intermediate stars

Post-main sequence evolution - Intermediate stars

Post-main sequence evolution - Intermediate stars

Post-main sequence evolution - Intermediate stars

Thick shell burning (C-D)

- Fast evolution on KelvinHelmholtz timescale $\sim 10^{7} \mathrm{yr}$
- Not many stars in observed HRDs
\rightarrow Hertzsprung gap
- Luminosity and $T_{\text {eff }}$ drops by a factor of ~ 3
- Radius increases by a factor of ~ 5
- at D core exceeds

Schönberg-Chandrasekhar limit \rightarrow envelope pushed out

Post-main sequence evolution - Intermediate stars

\rightarrow Red giant - Luminosity class III - T~4000 - 5000 K

First dredge-up

- primordial ratio of the carbon isotopes ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C} \simeq 90$ is reduced due to CNOprocessing
- first dredge-up brings material to the surface
- Molecular bands of CO in IR-spectra can be used to determine this ratio (10 ± 1)
\rightarrow Evidence for the first dredge-up has been found

Post-main sequence evolution - Intermediate stars

He ignition (E)

- When the core of the star reaches $T \sim 10^{8} \mathrm{~K}$, it ignites Helium under nondegenerate conditions.
- He burning starts 'gently'
- reaction $3 \alpha \longrightarrow{ }^{12} \mathrm{C}$, later ${ }^{12} \mathrm{C}+\alpha \longrightarrow{ }^{16} \mathrm{O}$
- eventually ${ }^{16} \mathrm{O} /{ }^{12} \mathrm{C} \approx 0.5$

Blue loop (E-F-G-H)

- Star becomes smaller and hotter
- During core He burning, the star goes through the blue loop.

Post-main sequence evolution - Intermediate stars
Blue loop (E-F-G-H)

- blueward direction: Hburning shell maintains an even level of efficiency and He-burning core increases
- redward: core starts to decrease in luminosity as He is running low
- important to explain Cepheid stars, when crossing the instability strip
- Details depend on composition, mixing and mass-loss
- Core helium burning stops, when helium is completely processed

Post-main sequence evolution - Intermediate stars

Asymptotic giant branch

 (AGB, H-J)- C / O core grows in mass and contracts, H and He -shell burning
- star reaches the AGB
- He-burning shell moves outward
- As the stars expands, the temperature in the H -shell drops
- H-shell burning ceases
- Convection reaches (again) into the core region

Post-main sequence evolution - Intermediate stars

Post-main sequence evolution - Intermediate stars

"Cloudy" regions indicate convective areas. Heavily hatched regions indicate where the nuclear energy generation (H or He) exceeds $10^{2} \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$. Regions of mixed chemical composition are dotted.

Post-main sequence evolution - Intermediate stars

Evolution similar for different intermediate masses dotted lines: instability strip

Post-main sequence evolution - Massive stars

_Post-main sequence evolution - Massive stars

Evolution of high-mass stars

depends on uncertain physics

- convective core
\rightarrow Ledoux or Schwarzschild criterion
- Convective mixing
- Overshooting
- Semiconvection
- Rotational mixing
- Mass loss:
$15 \mathrm{M}_{\odot}$
$\rightarrow \dot{M}=1-2 \times 10^{-8} \mathrm{M}_{\odot} / \mathrm{yr}$
$\approx 1.15 \mathrm{M}_{\odot}$ at end of helium burning
grey: with mass loss and overshooting; dotted: Ledoux criterion (semi-convection); black/dashed :
Schwarzschild criterion without/with overshooting

Post-main sequence evolution - Massive stars

- Overshooting: creating a smooth chemical profile, enlarges the convective helium-burning core, higher luminosity, reduced duration of nuclear phase

Post-main sequence evolution - Massive stars

Evolution of very high-mass

 starsevolution highly modeldependent

- mass loss: $\sim 10^{-6} \mathrm{M}_{\odot} / \mathrm{yr}$
\rightarrow timescale much longer than nuclear timescale
\rightarrow MS lifetime 4.5 Myr
\rightarrow star can adjust to the reduced mass and evolves similar to star of constant mass \rightarrow (3 times) higher mass-loss: perturbation $40 \mathrm{M}_{\odot}$ star: Schwarzschild crit. (solid), overshooting (dotted), additional mass loss (dot dashed); $50 \mathrm{M}_{\odot}$ star: Ledoux criterion (solid), Schwarzschild criterion (grey dotted line), significantly enhanced mass loss (grey dash-dotted)

Post-main sequence evolution - Massive stars

Post-main sequence evolution - Massive stars

Hubble Legacy Archive
Spectra show lines of nuclear processed elements in emission

Crowther 2007, ARA\&A, 45, 177

Classification based on most prominent elements: WN, WC, WO

Low mass stars in the HRD (EZ model for a $1 \mathrm{M}_{\odot}$ star)

Post-main sequence evolution - Low mass stars

In low-mass stars the core is radiative

- No efficient mixing in the core
- Hydrogen is consumed starting in the center
- Smooth transition to shell burning

Post-main sequence evolution - Low mass stars

Due to the high density in the core, the electron gas becomes degenerate

- Isothermal, degenerate core is stable
- Schönberg-Chandrasekhar limit is not important
- Core can grow in mass

No rapid contraction of the core

- No Hertzsprung gap
- No heating during core contraction due to equation of state

$$
P_{\mathrm{e}}=1.0036 \times 10^{13}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{5 / 3}
$$

Low mass stars in the HRD (EZ model for a $1 \mathrm{M}_{\odot}$ star)

Post-main sequence evolution - Low mass stars

Main sequence (A-B)

- Slow fusion of hydrogen in the core of the star
- Time on MS depends on mass: $10^{6}-10^{9} \mathrm{yr}$
- Star evolves from the ZAMS towards higher luminosity and larger radii

Post-main sequence evolution - Low mass stars

Sub giant branch (B-C)

- H runs out in the core at point B ($H_{c}<0.001$)
- H -fusion moves to a shell around the core
- Core keeps growing in mass and contracts due to shell burning
- at C, He core becomes degenerate
- Core contracts, envelope expands

Post-main sequence evolution - Low mass stars

First dredge up (D)

- convective envelope is at it's deepest point and reaches into layers that were processed by H-burning
- Processed material is transported to the surface and changes the observed abundances of the star

Post-main sequence evolution - Low mass stars

to tip of the RGB (D-E)

- Between D and E, the outer layers of the star become less bound, and a stellar wind will remove part of the envelope
- Due to the high concentration of mass in the core $L \sim M_{\text {core }}$
- Temperature of the core increases
\rightarrow Increase of T in the H-burning shell
\rightarrow Core contraction heats transition layer between core and shell

He-flash (E)

- At point E, the tip of the RGB, the core of the star has reached the critical temperature ($\sim 10^{8} \mathrm{~K}$) at the necessary mass to ignite He
- Due to the degeneracy of the core, the actual core ignition mass is independent of the star mass ($M \sim 0.47 \mathrm{M}_{\odot}$)
- Due to energy losses via neutrinos leading to cooling in the center, helium is ignited in a shell
Due to the high temperature dependency of the 3α reaction $\langle\sigma v\rangle \sim \rho T^{40}$ nuclear energy is released fast and increases the core temperature but degenerate gas cannot expand with increasing temperature \rightarrow fast increasing T_{C}
\rightarrow Runaway burning of helium: Helium flash

Runaway burning of helium under degenerate conditions

- Luminosity during

He flash reaches
$\sim 10^{10} \mathrm{~L}_{\odot}$,
small galaxy

- energy is used to expand the envelope, and is thus not visible
- Degeneracy is lifted
- Core expands, density drops
- Stable He-core burning
\rightarrow Flash starts off center due to neutrino cooling

Mocak et al. 2008, A\&A, 490, 265
Post-main sequence evolution - Low mass stars

Phase of stable He-core and H -shell burning
\rightarrow Stars occupy a region of (about) constant luminosity: Horizontal branch

Horizontal Branch stars

- Different mass loss η on the RGB leads to different thickness of the hydrogen envelopes
- Mass of the He-core is constant ($\sim 0.47 \mathrm{M}_{\odot}$)
- Diverse types of HB stars
- The thinner the hydrogen envelope, the bluer the HB star
- Morphology of HB depends on metallicity and age
- Luminosity during He burning is determined by core mass, which is similar for all low mass stars

Red clump (RC) stars

- red, close to RGB
- low-mass stars in their stage of central He-burning
- sizable convective envelopes result from either a moderately high metallicity or buffer of mass above the H -burning shell
- young population
- far more abundant than HB stars ($1 / 3$ of all red giants)
- RC stars can be used as standard candles

Extreme Horizontal Branch (EHB) stars

- Subdwarfs
- Spectral types O, B (sdO, sdB)
- Extremely thin hydrogen envelopes, no H-shell burning
- mass close to He-core mass necessary for He-burning ($0.47 \mathrm{M}_{\odot}$)

Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Hydrogen-rich sdBs

- very low to solar helium content
- Light elements depleted, heavy elements enriched
- High binary fraction Helium-rich sdO/Bs
- very high helium abundance
- Enrichment in carbon and/or nitrogen
- Single stars

Extreme Horizontal branch (EHB)

He burning

- mass-loss phase near tip of the RGB, moving away from the RGB before the core ignites
- Resettling/contraction of the sdB progenitor
- He flashes
- time about 2 Myr
- He-core burning (~ 100 Myr)
- He-shell burning
- white dwarf cooling track

Extreme Horizontal branch (EHB)

- He-core burning from the Zero Age Extreme Horizontal branch (ZAEHB) to the Terminal Age Extreme Horizontal Branch (TAEHB)
- lifetime on the EHB
~ 100 Myr

Model

Alternative formation

- Helium enriched populations
- Due to previous episodes of star formation?
- Composition changes luminosity and temperature

Extreme Horizontal branch (EHB)

Alternative formation

- Late hot helium flash
- After RGB phase
- Mixing of processed material (C,N)
- Dependent on evolutionary phase

Extreme Horizontal branch (EHB)

Stable RLOF + CE channel
(mass ratio $<1.2-1.5$)

Alternative formation

- Close binary evolution
- Helium-burning core of the red giant stripped by binary interaction
- Binary sdB stars

Extreme Horizontal branch (EHB)

Extreme Horizontal branch (EHB)

$\mathrm{H} \rightarrow \mathrm{He}$

HB evolution (F-G)

- Stable He-burning in the convective core and H-burning in a shell
- lifetime $\sim 10^{8} \mathrm{yr}$
- Core grows through shell burning
- C/O becomes enriched in the core

Low mass stars in the HRD (EZ model for a $1 \mathrm{M}_{\odot}$ star)

Intermediate mass stars in the HRD (EZ model for a $5 \mathrm{M}_{\odot}$ star) ${ }^{0}$

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

AGB (G-H)

- After central He is exhausted the CO core contracts. He shell burning starts and the star reaches the AGB
- Star has CO core, He burning shell, H burning shell and large H envelope
- Star can undergo thermal pulses when the ashes of H burning shell increase the mass of the He burning shell

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

- AGB phase starts at the exhaustion of helium in the center
- low-mass stars: AGB at similar luminosities but higher $T_{\text {eff }}$ than preceding RGB phase, stars $M>2.5 \mathrm{M}_{\odot}$: at higher luminosities than the RGB

early AGB phase

- CO core contracts
- two active burning (H, He) shells
\rightarrow He-rich layers above core expand, outer envelope starts contracting
- due to expansion of the He-rich zone, the temperature in the H -shell decreases and the H -burning shell is extinguished degenerate due to its increasing \rightarrow He-rich layer plus H -rich outer envelope density
expanding in response to core contraction

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Second dredge-up

- expanding envelope cools, convective envelope penetrates deeper until it reaches the composition discontinuity left by the extinct H -shell at K
- For stars $>4 \mathrm{M}_{\odot} \rightarrow$ Second dredge-up - lower-mass stars the H -burning shell remains active at a low level, which prevents the convective envelope from penetrating deeper into the star
- material that is dredged up $\left(0.2-1 \mathrm{M}_{\odot}\right)$: hydrogen has been burned into helium, ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ almost completely converted into ${ }^{14} \mathrm{~N}$ by CNO-cycle
- much more dramatic effect than first dredge-up om RGB

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

- As the He-burning shell approaches the H -He discontinuity, its luminosity decreases as it runs out of fuel
- layers above contract, heating the extinguished H -burning shell until it is reignited
\rightarrow Helium shell source much hotter than H-burning limit
- neighbouring shell sources can influence each other
- each type of burning requires a separate range of temperature
- Enormous increase in H-burning, when He shell approaches a H -rich layer
- relative motion of H and He shell (X_{i} mass concentration of reacting element)

$$
\frac{\dot{m}_{\mathrm{H}}}{\dot{m}_{\mathrm{He}}}=\frac{L_{\mathrm{H}}}{L_{\mathrm{He}}} \frac{q_{\mathrm{H}}}{q_{\mathrm{He}}} \frac{X_{\mathrm{H}}}{X_{\mathrm{He}}} \quad \stackrel{\text { stationary }}{\Rightarrow} L_{\mathrm{H}} \approx 7 L_{\mathrm{He}}
$$

Nuclear burning in the He-shell concentrated towards the outer edge
\rightarrow Thin layer of thickness I and mass Δm

$$
I=r-r_{0} \ll R \quad \Delta m=4 \pi r_{0}^{2} I \rho \quad r_{0}=\text { const, } \mathrm{d} m=0 \quad \frac{\mathrm{~d} \rho}{\rho}=-\frac{\mathrm{d} /}{l} \stackrel{\mathrm{~d} r=\mathrm{d} /}{=}-\frac{r}{l} \frac{\mathrm{~d} r}{r}
$$

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Shell expands as reaction to nuclear energy generation
\rightarrow homology relation

$$
\frac{\mathrm{d} P}{P}=-4 \frac{\mathrm{~d} r}{r} \quad \rightarrow \frac{\mathrm{~d} P}{P}=4-\frac{l \mathrm{~d} \rho}{r} \frac{1}{\rho}
$$

General equation of state

$$
\frac{\mathrm{d} \rho}{\rho}=\alpha \frac{\mathrm{d} P}{P}-\delta \frac{\mathrm{d} T}{T}=\alpha 4 \frac{l \mathrm{~d} \rho}{r}-\delta \frac{\mathrm{d} T}{T} \quad \stackrel{1 / r \Rightarrow 0}{\rightarrow} \quad \frac{\mathrm{~d} \rho}{\rho}=-\delta \frac{\mathrm{d} T}{T}
$$

expansion of a thin shell $\frac{\mathrm{d} \rho}{\rho}<0$ leads to an increase of the temperature $\frac{\mathrm{d} T}{T}>0$

- Higher temperature leads to higher nuclear enery production
- Runaway process: Thin shell instability of He -shell

Instability of the He-shell leads to thermal runaway until the shell has expanded enough to stop it

- He-shell extinguishes and contracts
- He-shell reignites
- Thermal pulses (TP-AGB)

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

thermally pulsing AGB phase

- phase of double shell burning
- most of the time, the He-burning shell is inactive
- H-burning shell adds mass to the He-rich region between the burning shells
- increases the pressure and temperature at the bottom of this region
- mass of the intershell region reaches a critical value \rightarrow helium shell flash
- energy release by He-shell flash goes into expansion of the intershell
- phase of stable He- shell burning
- expansion and cooling of the intershell region after the He -shell flash, H -burning shell extinguishes

thermally pulsing AGB phase

time \longrightarrow
Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Third dredge-up

- Expansion and cooling of the intershell region lead to a deeper penetration of the outer convective envelope beyond the now extinct H -burning shell
- material from the intershell region is mixed into the outer envelope
\rightarrow third dredge-up
- He, and He-burning products $\left({ }^{12} \mathrm{C}\right)$ can appear at the surface
\rightarrow leads to important nucleosynthesis of ${ }^{12} \mathrm{C},{ }^{14} \mathrm{~N}$ and elements heavier than iron
\rightarrow makes the stellar envelope and atmosphere more carbon-rich
- H -burning shell is reignited \rightarrow stable H -shell burning
- mass of the intershell region grows until the next thermal pulse occurs
- interpulse period depends on the core mass, lasting between 50, 000 yrs (for low-mass AGB stars with CO cores of $\sim 0.5 \mathrm{M}_{\odot}$) to <1000 yrs for the most massive AGB stars.

Abundance changes on the AGB

- appearance of helium-burning products at the surface $\rightarrow{ }^{12} \mathrm{C}$ abundance increases after every dredge-up episode
- low temperatures in the stellar atmosphere C and O atoms bound into CO
- if $\mathrm{C} / \mathrm{O}<1$: oxygen rich AGB stars ($\mathrm{TiO}, \mathrm{H}_{2} \mathrm{O}$)
- after repeated dredge-ups $\mathrm{C} / \mathrm{O}>1$:

C forms carbon-rich molecules e.g.
$\mathrm{C}_{2}, \mathrm{CN}$: carbon stars

- Formation of dust
- chemically peculiar; e.g. ${ }^{19} \mathrm{~F}$ and ${ }^{99} \mathrm{Tc}$ Red (super-)giants: Luminosity class III-I

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Nucleosynthesis on the AGB

- enriched in elements heavier than iron, such as $\mathrm{Zr}, \mathrm{Y}, \mathrm{Sr}, \mathrm{Tc}, \mathrm{Ba}$, La and Pb
\rightarrow Trans-iron elements are produced via the s-process
- source of free neutrons produced in He-burning in the He-rich intershell region: ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O},{ }^{22} \mathrm{Ne}(\alpha, \mathrm{n}){ }^{25} \mathrm{Mg}$ (He-flash in massive AGB stars)
- ${ }^{22} \mathrm{Ne}$ abundant in the intershell region, because ${ }^{14} \mathrm{~N}$ left by the CNO-cycle converted to ${ }^{22} \mathrm{Ne}$ by He-burning: ${ }^{14} \mathrm{~N}(\alpha, \gamma)^{18} \mathrm{~F}\left(\beta^{+}\right){ }^{18} \mathrm{O}(\alpha, \gamma)^{22} \mathrm{Ne}$
- main neutron source in low-mass stars: ${ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O}$: thin shell or 'pocket' of ${ }^{13} \mathrm{C}$ formed by partial mixing of protons and ${ }^{12} \mathrm{C}$ at interface between the H -rich envelope and the C -rich intershell region, reacts with He when $T>10^{8} \mathrm{~K}$
- s-enriched pocket is ingested into the intershell convection zone during the next pulse, and mixed throughout the intershell region, together with carbon produced by He burning
- carbon and s-process material from the intershell region is subsequently mixed to the surface in the next dredge-up phase

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Stancliffe et al. 2004, MNRAS 352, 984

- Change in surface luminosity dependent on the stellar mass
- If the shells reach close to the surface, jumps in the HRD on short timescales ($\sim 10^{4} \mathrm{yr}$) are possible
- Luminosity depends on the core mass

$$
\frac{L}{L_{\odot}}=5.92 \times 10^{4}\left(\frac{M_{\mathrm{c}}}{M_{\odot}}-0.52\right)
$$

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

AGB-evolution depends also on the mass of the H -shell after the HB phase and the metallicity

- sdO/B stars do not reach the AGB phase
- AGB-manque (failed AGB)
- After He-shell burning they cool down to become low-mass C/O WDs ($\sim 0.3-0.47 \mathrm{M}_{\odot}$)
- Stars without He-core burning evolve to become low-mass or extremely lowmass (ELM) He WDs ($\sim 0.1-0.4 \mathrm{M}_{\odot}$)

ESA/NASA \& R. Sahai, ALMA, Hyosun Kim, et al.

AGB stars

- Strong mass loss $\left(10^{-7}-10^{-4} \mathrm{M}_{\odot} / \mathrm{yr}\right)$ driven by Mira pulsations and radiation pressure on dust particles formed in the cool atmosphere
\rightarrow superwinds
Red (super-)giants:
Luminosity class III-I

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

Evolution on the Asymptotic Giant Branch - Low/intermediate mass stars

post-AGB evolution

- Diverse spectral types from M to F/A
- (Super-)giants
- Reddening through dust and expelled material
- Emission of expelled material

post-AGB evolution
- CSPN spectra dominated by nebular emission lines
- Stellar wind and emission features
- H-rich types have spectral type B and O
- He-rich classes similar to massive WR-stars
- Spectral classes: [WN],[WC],[WO]

Evolution beyond the Asymptotic Giant Branch

Eveller et al. 2014. MNRAS, 442.13799 ${ }^{\text {E }}$ mmptotic Giant Branch

Evolution beyond the Asymptotic Giant Branch

Planetary nebula

- Different shapes
\rightarrow Binary evolution
- Lifetime $\sim 10^{4} \mathrm{yr}$

Herwig et al. 2001, Ap\&SS, 275, 15

- Several objects known! (e.g. V4334 Sg, FG Sge) "born-again" objects
post-AGB evolution
- Thermal pulses can still happen at later stages
- Late thermal pulse (LTP)
- Very late thermal pulse (VLTP)
- Very short loops back to the red giant phase $\sim 10^{1}-10^{3} \mathrm{yr}$
- Stellar evolution can be seen in real-time

post-AGB evolution

Herwig et al. 2001, Ap\&SS, 275, 15

- Finally, the core cools down and becomes a C/O white dwarf (WD)
- Depending on the details of evolution, the surface can be H- or He-rich
- Intermediate mass (Super-)AGB stars $\left(8-10 \mathrm{M}_{\odot}\right)$ might ignite C/O burning
- Massive Ne/O WDs $\left(\sim 1.4 \mathrm{M}_{\odot}\right)$

Massive stars with $M \gtrsim 10 \mathrm{M}_{\odot}$ ignite successively burning of heavier elements

Core described by onion-skin model

- Each shell represents a nuclear burning stage that was originally located at the center of the star
- After depletion of the central fuel, the burning continued as shell burning in adjacent, heated layers and gradually moved outwards

Core described by onion-skin model

Nuclear burning

\downarrow
Exhaustion of fuel \downarrow
Core contraction

Core heating

Nuclear burning

Due to the strongly declining energy released per nucleon
\rightarrow Burning stages become shorter and shorter
Example $M=40 \mathrm{M}_{\odot}$:
H-burning: $5 \times 10^{6} \mathrm{yr}$
He-burning: $4 \times 10^{5} \mathrm{yr}$
C-burning: 200 yr
O-burning: 60 d
Ne-burning: 50 d
Si-burning: 13 h
Burning episodes stop in the iron core \rightarrow No energy released

Real evolution quite complicated and uncertain

- Level of degeneracy
- Shell interactions
- Neutrino losses $L_{\nu} \sim 10^{6} L$

Final evolution not visible in the
HRD

For stars with masses of less than $<8-10 \mathrm{M}_{\odot}$ (97% of all stars) mass is lost in the post-AGB phase and the core grows until shell-burning stops completely
\rightarrow core cools, contracts and becomes fully degenerate
Objects in this final stage of stellar evolution are called White Dwarfs (WD)
From polytropic models for the non-relativistic fully degenerate electron gas follows the mass-radius relation

$$
R \sim M^{-1 / 3}
$$

\rightarrow The higher the mass, the smaller the radius
At high densities, the equation of state changes and for the extreme relativistic degenerate electron gas follows the maximum Chandrasekhar mass

$$
M_{\mathrm{Ch}}=\frac{5.836}{\mu_{\mathrm{e}}^{2}} \mathrm{M}_{\odot}=\left(\frac{2}{\mu_{\mathrm{e}}}\right)^{2} \times 1.459 \mathrm{M}_{\odot}
$$

(Pr. > Pr.

Realistic WD models have to be calculated numerically
\rightarrow Chandrasekhars theory no longer polytrop, electrons fully degenerate, but degree of relativity $x=p_{\mathrm{F}} / m_{\mathrm{e}} C$

$$
P=C_{1} f(x), \rho=C_{2} x^{3} ; x=p_{\mathrm{F}} / m_{\mathrm{e}} C
$$

Mass-radius relation depends on the chemical composition and the importance of relativistic effects

For low temperatures, crystallization due to electrostatic interactions sets in and changes the mechanical and chemical structure (phase separation)

Final stages of stellar evolution

- Mass-radius relations for different compositions
- Solid lines include Coulomb interactions and phase transitions
If the radius is known, the mass of a WD can be calculated
- Radii are of the order of the radius of Earth

$$
R_{\mathrm{WD}} \approx 0.01 \mathrm{R}_{\odot}
$$

- densities are

$$
\rho_{\mathrm{WD}} \approx 10^{6} \rho_{\odot}
$$

Final stages of stellar evolution
After a short phase of H -shell burning WDs are cooling

Cooling time τ
$\tau \approx \frac{4.7 \times 10^{7}}{A}\left(\frac{M / M_{\odot}}{L / L_{\odot}}\right)^{5 / 7} \mathrm{yr}$
Typically $\tau \approx 10^{9} \mathrm{yr}$
\rightarrow Long evolutionary stage
Cooling mechanisms

- Neutrino emission
- Gravothermal energy

Core crystallization releases a considerable amount of latent heat and delays the cooling by about one billion years

Final stages of stellar evolution
Gaia reveals crystallization for the first time!

Gaia reveals crystallization for the first time!

\rightarrow GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

WDs form a well separated sequence in the observed HRD
\rightarrow Luminosities depend on age, but are in general much smaller than for other stars $\left(\sim 10^{-4} L_{\odot}\right)$

White dwarf structure

Spectral types of White Dwarfs

- DA: H lines present; subtype DAB
- DB: He I lines; subtype DBA
- DC: continuous spectrum, no lines
- DO: He II lines; subtype DAO, DOA
- DZ: Metal lines
-DQ: Carbon lines
- X: unclassifiable, peculiar spectrum
- P: magnetic WD with detectable polarization
- H: magnetic WD without polarization
- E: emission lines present
- V: variable WD
- ?: uncertain classification

White dwarf structure

WDs of diverse compositions cool down and change their spectral types

- DA \rightarrow cooler DA
- PG1159 \rightarrow DO \rightarrow DB \rightarrow DC \rightarrow DQ
Final stage: Black dwarf
- Not observed
- Universe is too young!

White dwarf structure

Structure of WDs depends on earlier phases of stellar evolution

- Mass-loss or mixing processes due to late thermal pulses remove H -rich and/or He-rich layers

White dwarf structure

White dwarf structure

White dwarf Luminosity class VII

- H-rich: DA
- He-rich:

PG1159, DO, DB, DC, DQ

- metal-rich: DZ
$\lambda(\AA)$

White dwarf structure

White dwarf Luminosity class VII

- H-rich: DA
- He-rich:

PG1159, DO, DB, DC, DQ

White dwarf structure

$\lambda(\AA)$

White dwarf structure

Wesemael et al. 1993, PASP, 105, 761

- observations of the atmosphere by spectra
- how can we look into the interior?
- sound wave is a pressure wave:

$$
c=\sqrt{\Gamma_{1} p / \rho}
$$

Γ_{1} adiabatic coefficient

- ideal gas:

$$
p=\rho k_{\mathrm{B}} T / \mu m_{\mathrm{u}}
$$

μ mean molecular weight, m_{u} atomic mass unit

- sound speed depends on pressure, density, temperature and composition of the gas
- sounds tell us internal structure

Sound is a Pressure Wave

NOTE: "C" stands for compression and " R " stands for rarefaction

1-D oscillations

- everything has natural frequencies of pulsation
- obvious mode for a gas sphere (a star): star remains spherical and simply changes its volume (radial pulsations)
- pulsations in stars analogue to an open-at-one-end organ pipe
- A node (no movement) at the centre of the star, an antinode (maximum movement) at the surface
- radial pulsations can be fundamental, first overtone, second overtone, etc. all of these modes of variation can be excited at the same time

3-D oscillations

Stars are 3D, so natural oscillations have nodes in all 3 orthogonal directions

- spherical symmetric described by r, θ, ϕ
- nodes are concentric shells at constant r, cones of constant θ and planes of constant ϕ
- solutions to equation of motion have displacements in (r, θ, ϕ)

$$
\begin{aligned}
\xi_{r}(r, \theta, \phi, t) & =a(r) Y_{l}^{m}(\theta, \phi) \exp (-i 2 \pi \nu t) \\
\xi_{\theta}(r, \theta, \phi, t) & =b(r) \frac{\partial Y_{l}^{m}(\theta, \phi)}{\partial \theta} \exp (-i 2 \pi \nu t) \\
\xi_{\phi}(r, \theta, \phi, t) & =\frac{b(r)}{\sin \theta} \frac{\partial Y_{l}^{m}(\theta, \phi)}{\partial \phi} \exp (-i 2 \pi \nu t)
\end{aligned}
$$

Solution to Laplace's equation: $\nabla^{2} T(r, \theta, \phi)=0, T(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$
Laplacian in spherical coordinates

$$
\begin{gather*}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \\
\Phi(\phi)=\left\{\begin{array}{l}
\exp (i m \phi) \\
\exp (-i m \phi)
\end{array} \quad \text { for } m=0,1,2,3, \ldots\right.
\end{gathered} \begin{gathered}
R(r)=\left\{\begin{array}{l}
r^{\prime} \\
r^{-l-1}
\end{array}\right. \tag{9.6}
\end{gather*}
$$

Legendre polynomials

$$
\begin{align*}
& \Theta(\theta)=P_{I}^{m}(x=\cos \theta)=\frac{1}{2^{\prime I!}}\left(1-x^{2}\right)^{m / 2} \frac{d^{I+m}}{d x^{I+m}}\left(x^{2}-1\right)^{I} \tag{9.8}\\
& I=0,1,2,3, \ldots \text { and } m=-I,-I+1, \ldots, I-1, I
\end{align*}
$$

$$
T(r, \theta, \phi)=\left\{\begin{array} { l }
{ r ^ { \prime } } \tag{9.9}\\
{ r ^ { - l - 1 } }
\end{array} P _ { l } ^ { m } (\operatorname { c o s } \theta) \left\{\begin{array}{l}
\exp (i m \phi) \\
\exp (-i m \phi)
\end{array}\right.\right.
$$

spherical harmonics $Y_{I}^{m}(\theta \phi)$

$$
\begin{gather*}
Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{(2 I+1)(I-m)!}{4 \pi} \frac{(I+m)!}{(I)}} P_{l}^{m}(\cos \theta) e^{i m \phi} \tag{9.10}\\
T(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(a_{l m} r^{\prime}+b_{l m} r^{-l-1}\right) Y_{l}^{m}(\theta, \phi) \tag{9.11}
\end{gather*}
$$

Modes specified by three quantum numbers:
n overtone: Number of radial nodes
I degree: number of surface nodes present $\rightarrow I=0$ radial mode, $I=1$ dipole, ..
m azimuthal order: $|m|$ How many of the surface nodes are lines of longitude
$\rightarrow m$ ranges from $-l$ to l.

3-D oscillations $/=3$

Pulsating stars

3-D oscillations

$$
I=1, m=0 I=1, m=1 I=2, m=1 I=2, m=2
$$

$I=3, m=0 I=3, m=1 I=3, m=2 I=3, m=3$
http://www.physics.usyd.edu.au/
~bedding/animations/visual.html
nice program to simulate a pulsating star: http://userpages.irap.omp.eu/~scharpinet/ glpulse3d/

representation of high order (n) and high degree (I) non-radial mode. The different colours represent the surface rising/falling - alternatively cooling/heating.

Jeffery \& Ramsay 2014

- Light curve is the variation of the integrated light over the stellar surface over time
- Fourier transformation gives you the oscillation frequencies of the underlying pulsations
- Radial velocity variations can also be used to measure pulsations
- During each pulsation cycle, energy is lost \rightarrow Damping
- To maintain pulsations for a long time, a driving mechanism is needed
- Radial layer, which gains heat during the compression part of the pulsation cycle drives the pulsations
\rightarrow Heat-engine mechanism

- according to Kramer's Law:
$-\kappa \sim \frac{\rho}{T^{3.5}}$
- Ionized matter contains free electrons and - at the temperatures inside a star - electron scattering and free-free absorption will dominate the opacity κ
- in partial ionized layers energy released during a layer's compression can be used for further ionisation, instead of temperature increase of the gas
opacity κ builds up in ionization layer ($\mathrm{H}, \mathrm{He}, \mathrm{Fe}$)
- radiation is blocked
- gas heats
- pressure increases

Stars expand

- recombination lowers opacity
- radiation flows
- gas cools, pressure drops
star contracts
- ionization increases opacity again
- next pulsation cycle begins
\rightarrow increased ability of layers to participate in κ mechanism to gain heat during compression (adiabatic coefficient) is called γ mechanism $\rightarrow \kappa$ and γ mechanism work together

Oscillations can only be excited when a suitable combination of stellar luminosity, temperature, and chemical composition occurs. For this reason, non-radial oscillations are excited in so-called instability strips in the Hertzsprung-Russell diagram

- energy generation rate ϵ in the stellar core
- energy generation is dependent on high powers of the temperature, it might be supposed that small variations, even statistical fluctuations, could lead to variations in energy generation rates which might be self-sustaining
- e.g., He-shell sub-flashes, fluctuations in nuclear burning rate
- proposed for fully-convective stars such as the coolest M dwarfs - and in the most massive stars - perhaps with $M>60 M_{\odot}$
- not observationally confirmed

Outer convection zone can drive oscilla-
 tions

- very small variations (typically at the micromagnitude level rather than the $>$ millimag level which is usually all we can observe in stars) are maintained by stochastic noise generated by convection near the surface
- observed in the sun and red-giants
- lifetimes of the order of days to weeks
- stochastically excited modes

Types of pulsations

Equations of stellar oscillations

characteristic acoustic frequency $S_{/}$with $S_{l}^{2}=\frac{l(l+1) c^{2}}{r^{2}}=$ $\frac{L^{2} c^{2}}{r^{2}}=k_{h}^{2} c^{2}, c^{2}=\Gamma_{1} p / \rho$
oscillation equations for nonradial, adiabatic oscillations

$$
\begin{aligned}
& \frac{\mathrm{d} \xi_{r}}{\mathrm{~d} r}=-\left(\frac{2}{r}+\frac{1}{\Gamma_{1} p} \frac{\mathrm{~d} p}{\mathrm{~d} r}\right) \xi_{r}+\frac{1}{\rho c^{2}}\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) p^{\prime}+\frac{I(I+1)}{\omega^{2} r^{2}} \Phi^{\prime} \\
& \frac{\mathrm{d} p^{\prime}}{\mathrm{d} r}=\rho\left(\omega^{2}-N^{2}\right) \xi_{r}+\frac{1}{\Gamma_{1} p} \frac{\mathrm{~d} p}{\mathrm{~d} r} p^{\prime}-\rho \frac{\mathrm{d} \Phi^{\prime}}{\mathrm{d} r}, \quad N^{2}=g\left(\frac{1}{\left(\frac{1.12)}{\Gamma_{1} p} \frac{\mathrm{~d} p}{\mathrm{~d} r}-\frac{1}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{~d} r}\right)}\right.
\end{aligned}
$$

with N the buoyancy frequency

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \Phi^{\prime}}{\mathrm{d} r}\right)=4 \pi G\left(\frac{p^{\prime}}{c^{2}}+\frac{\rho \xi_{r}}{g} N^{2}\right)+\frac{I(I+1)}{r^{2}} \Phi^{\prime} \tag{9.14}
\end{equation*}
$$

fourth-order system of ordinary differential equations for the four dependent variables $\xi_{r}, p^{\prime}, \Phi^{\prime}$ and $\mathrm{d} \Phi^{\prime} / \mathrm{d} r$

Cowling Approximation:
Eulerian perturbation of the gravitational potential is neglected: $\Phi^{\prime}=0$, valid when density small or $/$ is large or radial mode $|n|$ is large

$$
\begin{align*}
& \frac{\mathrm{d} \xi_{r}}{\mathrm{~d} r}=-\left(\frac{2}{r}-\frac{1}{\Gamma_{1}} H_{p}^{-1}\right) \xi_{r}+\frac{1}{\rho c^{2}}\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) p^{\prime} \tag{9.15}\\
& \frac{\mathrm{d} p^{\prime}}{\mathrm{d} r}=\rho\left(\omega^{2}-N^{2}\right) \xi_{r}-\frac{1}{\Gamma_{1}} H_{p}^{-1} p^{\prime}, H_{p}^{-1}=-\frac{\mathrm{d} \ln p}{\mathrm{~d} r} \tag{9.16}
\end{align*}
$$

H_{p} is the pressure scale height For oscillations of high radial order this simplifies to

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \xi_{r}}{\mathrm{~d} r^{2}}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{N^{2}}{\omega^{2}}\right)\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \xi_{r}=-K_{\mathrm{s}}(r) \xi_{r} \tag{9.17}
\end{equation*}
$$

ξ_{r} oscillates if $K_{s}>0$
o1) $|\omega|>|N|$ and $|\omega|>S_{\text {I: }}$ p mode
o2) $|\omega|<|N|$ and $|\omega|<S_{\text {I }}$: g mode

- Kelvin-Helmholtz (thermal) time scale $_{\tau_{\text {th }}}=\frac{G M^{2}}{R L} \simeq \frac{\left\langle c_{p} T\right\rangle M}{L}$
time a star can shine with gravity as only energy source
- longest timescale: nuclear time scale

$$
\begin{equation*}
\tau_{\text {nuc }}=\frac{\epsilon q M c^{2}}{L} \tag{9.19}
\end{equation*}
$$

time a star can shine with nuclear fusion as energy source

- shortest timescale: dynamical time scale

$$
\begin{equation*}
\tau_{\mathrm{dyn}}=\sqrt{\frac{R^{3}}{G M}} \simeq \sqrt{\frac{1}{G \bar{\rho}}} \tag{9.20}
\end{equation*}
$$

time the star needs to return to hydrostatic equilibrium after disturbance by dynamical process

radial oscillations as standing acoustic waves: characteristic period

$$
\begin{equation*}
\Pi=2 \int_{0}^{R} \frac{\mathrm{~d} r}{c(r)} \sim \frac{R}{\langle c\rangle} \tag{9.21}
\end{equation*}
$$

mean sound speed $\langle c\rangle=\sqrt{\Gamma_{1} p / \rho}$ mean density and pressure given by hydrostatic equilibrium

$$
\begin{equation*}
\rho \simeq \frac{M}{R^{3}}, p \simeq \frac{G M^{2}}{R^{4}} \tag{9.22}
\end{equation*}
$$

so we can calculate the characteristic period of radial oscillations

$$
\begin{equation*}
\Pi=\sqrt{\frac{3 \pi}{2 \Gamma_{1} G\langle\rho\rangle}} \sim\left(\frac{R^{3}}{G M}\right)^{1 / 2}=t_{\mathrm{dyn}} \tag{9.23}
\end{equation*}
$$

Pulsation periods and ampliudes depend on equilibrium stellar structure ($\rho, \boldsymbol{p}, \Gamma_{1}, g$, composition as functions of r) \rightarrow Frequency of pulsation mode at the surface depends on the sound travel time along its ray path
\Rightarrow probing the structure of stars: Asteroseismology

Rotation:

Period and inclination
Mass
Age

Stellar activity

Kjeldsen et al. 2009, IAU Symp. 253, 309
Pulsating stars

Pulsation modes

Limitation \rightarrow High order modes cancel in integrated light

Solar oscillations

$\lambda_{\mathrm{h}}, \mathrm{Mm}$

Periodogram of the sun observed by GOLF/SOHO

Rozelot \& Neiner 2011
90% of the solar interior known!
large frequency separation $\Delta \nu=\nu_{n+1 /}-\nu_{n l}=\left(2 \int_{0}^{R} \frac{d r}{c}\right)^{-1} \sim \sqrt{\langle\rho\rangle}$
small separation $\delta_{\nu} \equiv \nu_{n I}-\nu_{n-1 /+2} \simeq-(4 I+6) \frac{\Delta \nu}{4 \pi^{2} \nu_{n l}} \int_{0}^{R} \frac{d c}{d r} \frac{d r}{r}$

- have periods from 80 to 1000 h d with visual amplitudes > 2.5 mag
- giant stars with effective temperature near 3000 K near the tip of the AGB
\rightarrow cool giant stars with very large radii powered by fusion from a hydrogen and a helium burning-shell
\rightarrow very low average density, significant mass loss
\rightarrow less massive then on the main sequence
- periods between 0.2 and 1.0 d
- amplitudes $\Delta m \sim 0.2-2 \mathrm{mag}$
- three classes: a (largest amplitude, steepest rise to maximum),
b (smaller amplitude and longer periods), c (shorter periods, lower amplitudes, more symmetric)
- found in the instability strip near absolute magnitude of +0.6 mag
- temperatures between 6000 and 7250 K
- only found in populations older than 10 Gy
- amplitude of the light curves increase from the infrared to the UV

- measuring distances to systems containing old stellar populations
- located on horizontal branch \rightarrow horizontal in V
- in other filters period-luminosity relation (Infrared)
- radial pulsations on dynamical timescales $\rightarrow P \sqrt{\rho}=$ const
- absolute magnitude also depends on metallicity $\left\langle M_{V}\right\rangle=a+b[\mathrm{Fe} / \mathrm{H}]$
- zero-point calibration for using period-luminosity relation in the Infrared

- evolved, radially pulsating stars in the instability strip, more luminous than RR Lyrae
- classical Cepheids (δ Cepheids or type I Cepheids): from F-type ($M_{V}=-2$) to G or K type ($M_{V}=-6$)
- pulsation periods mostly from 1 to 100 d
- pulsation excited by κ and γ mechanism
- more massive than sun, have evolved from $2-20 M_{\odot}$ main-sequence stars, many from $4-9 M_{\odot}$ stars
- cross instability strip on the way to the RGB and on the blue loop during He burning
- young stars from 10^{7} the brightest to 10^{8} years the faintest
- found in regions of recent star formation, in the Milky Way in the disk

Relation between L and P expected

$$
\begin{aligned}
M_{\mathrm{bol}}=- & 5 \log (R)-10 \log \left(T_{\text {eff }}\right)+\text { const, } P \sqrt{\langle\rho\rangle}=\text { const, }\langle\rho\rangle=\frac{\mathrm{M}}{4 / 3 \pi \mathrm{R}^{3}} \\
& \Rightarrow \log (P)+0.5 \log (M)+0.3 M_{\mathrm{bol}}+3 \log \left(T_{\text {eff }}\right)=\text { const }
\end{aligned}
$$

Mass-luminosity relation (compare MS stars): $M_{\text {bol }}=-8 \log (M)+$ const

$$
\begin{gather*}
\log (P)=-0.24 M_{\mathrm{bol}}-3 \log \left(T_{\text {eff }}\right)+\text { const } \\
\Rightarrow M_{V}=\alpha \log P+\beta(B-V)_{0}+\gamma \tag{9.24}
\end{gather*}
$$

$$
\begin{equation*}
M_{V}=-(2.77 \pm 0.08)(\log P-1)-(4.08 \pm 0.04) \tag{9.25}
\end{equation*}
$$

- Hubble used Cepheids to

_Neilson \& Percy 2016
$(B-V)_{0}$ measure distances to nearby Galaxies
- Cepheid with emission lines found \rightarrow different type with different luminosity
- old, evolved stars of low mass ($\sim 0.5-0.6 \mathrm{M}_{\odot}$)
- found in globular clusters, halo, bulge, old disk populations, Magellanic clouds, some Local Group galaxies
- rarer than RR Lyrae
- luminosities larger than horizontal branch, smaller than Classical Cepheids

[^3]- BL Her stars: blue HB star moves quite fast from HB to AGB crossing instability strip, increasing periods
- W Vir stars: He-shell flashes on AGB
\rightarrow more common in more metalrich clusters, low envelope masses, period decrease or increase
- even bluer, lower-mass HB stars with masses as small as $0.52 \mathrm{M}_{\odot}$ cross the instability strip several times moving to the AGB
- metal-rich HB stars are found on the red HB never crossing the instability strip, few solar-metallicity Type II Cepheids had large mass-loss on the RGB

Pulsating stars close to the lower main sequence in the HRD

type	P (d)	$A_{V}(\mathrm{mag})$	modes	$\begin{gathered} \text { fery \& Saio } 2016 \\ \text { Z } \end{gathered}$
δ Scuti	0.008-0.42	0.001-1.7	$\mathrm{R}+\mathrm{NR}(\mathrm{p}$, low order)	\approx solar
SX Phoenicis	0.01-0.4	0.002-1	$R+N R(p$, low order)	< to \ll solar
γ Doradus	0.3-3	<0.1	NR (g)	\approx solar
roAp	0.002-0.016	<0.012	NR (p, high-order)	solar, but peculiar

Pulsating stars close to the upper main sequence in the HRD

Jeffery \& Saio 2016

type	$\mathrm{P}(\mathrm{d})$	$A_{V}(\mathrm{mag})$	modes
β Cephei	$0.1-0.6$	$0.01-0.32$	$\mathrm{NR}(\mathrm{p})$
Slowly Pulsating B stars (SPB)	$0.4-6$	<0.03	$\mathrm{NR}(\mathrm{g})$

Jeffery \& Saio 2016

type	SPBsg	α Cygni	PV Tel I	PV Tel II	PV Tel III	V652 Her
$\mathrm{P}(\mathrm{d})$	$0.35-47$	$1.2-100$	$5-30$	$0.5-5$	$30-100$	≈ 0.1
$A_{V}(\mathrm{mag})$	$\lesssim 0.004$	$0.01-0.1$	'low' $^{\prime}$	'low'	'low'	≈ 0.1
Modes	$\mathrm{NR}(\mathrm{g}, \mathrm{p})$	$\mathrm{NR}(\mathrm{g}, \mathrm{SM})$	$\mathrm{R}(\mathrm{SM})$	$\mathrm{NR}(\mathrm{g}, \mathrm{SM})$	R	R

Pietrukowicz et al. 2017

type	EC 14026	PG 1716+426	sdOV	He-sdBV	BLAP	high-gravity BLAP
$\mathrm{P}(\mathrm{s})$	$64-573$	$1000-14600$	$60-120$	$1950-5080$	$1300-2400$	$200-475$
A_{V} (mmag)	$1-300$	$0.4-41$	$1.3-40$	$1.0-2.7$	$200-400$	$50-200$
Modes	$R+N R(\mathrm{p})$	$\mathrm{NR}(\mathrm{g})$	$\mathrm{NR}(\mathrm{p})$	$\mathrm{NR}(\mathrm{g})$	$\mathrm{R}(\mathrm{p})$ or $\mathrm{NR}(\mathrm{g})$	low-order $R(\mathrm{p}) ?$

Hot Subdwarf Pulsators

Randall et al. 2016

Charpinet et al. 2009, AIP Conf. Proc., 1170, 585

Pulsating White Dwarfs and Pre-White Dwarfs

Properties of pulsating White Dwarfs

type	$\mathrm{P}(\mathrm{min})$	$A_{V}(\mathrm{mag})$	$T_{\text {eff }}(\mathrm{kK})$	Modes	driving zone
GW Vir	$5-101$	$0.01-0.15$	$80-170$	$\mathrm{NR}(\mathrm{g})$	CV - VI, OVII-VIII
Hot DAV	$2.7-11.8$	$0.0010-0.0014$	$29.9-32.6$	$\mathrm{NR}(\mathrm{g})$	μ gradient
DBV	$2-18$	$0.001-0.3$	$22.4-29.2$	$\mathrm{NR}(\mathrm{g})$	HeI-II
DQV	$2.7-18$	$0.004-0.016$	$19.8-21.7$	$\mathrm{NR}(\mathrm{g})$	$\mathrm{CIII}-\mathrm{VI}$, HeII
DAV	$1.6-23.9$	$0.01-0.3$	$10.4-12.9$	$\mathrm{NR}(\mathrm{g})$	HI
pre-ELMV	$5-83$	$0.001-0.05$	$8-13$	$\mathrm{R}+\mathrm{NR}(\mathrm{p}$, mixed $)$	HeI II
ELM-DAV	$19.4-103.9$	$0.0015-0.041$	$7.80-9.9$	$\mathrm{NR}(\mathrm{g}, \mathrm{p} ?)$	HI
GW Lib	$3.5-21.5$	$0.007-0.07$	$10.5-16$	$\mathrm{NR}(\mathrm{g})$	$\mathrm{HI}, \mathrm{HeI}-I I$

ZZ Ceti (DAV) Stars \qquad
Whunt

Bognare tat. 2009
Pulsating stars

Core-collapse supernova: rapid collapse and violent explosion of a massive star

Final stages of stellar evolution

chemical composition of interior of $25 \mathrm{M}_{\odot}$ star

Onion-shell structure of pre-collapse star

For stars with masses of more than $>8-10 \mathrm{M}_{\odot}$ (3\% of all stars)

Iron core develops, which does not have fusion in the core anymore

Core contracts and heats up

$$
T \simeq 10^{10} \mathrm{~K}
$$

\rightarrow photo-disintegration:

$$
\begin{gathered}
{ }^{56} \mathrm{Fe}+\gamma \rightarrow 13^{4} \mathrm{He}+4 n \\
\gamma+{ }^{4} \mathrm{He} \rightarrow 2 p+2 n
\end{gathered}
$$

\rightarrow Electron captures by heavy nuclei reduce pressure

$$
\mathrm{p}+\mathrm{e}^{-} \longrightarrow \mathrm{n}+\nu_{\mathrm{e}}
$$

Neutronisation
\rightarrow Core collapse ($\tau_{\mathrm{ff}} \sim \mathrm{ms}$)

Janka et al. 2012
\rightarrow inert core exceeds the Chandrasekhar limit of about $1.4 \mathrm{M}_{\odot}$, electron degeneracy is no longer sufficient to counter the gravitational compression

Final stages of stellar evolution

Janka et al. 2012

Collapse stops as soon as the core reaches $\rho \sim 10^{14} \mathrm{gcm}^{-3}$: density of atomic nuclei
\rightarrow Neutron gas becomes degenerate
\rightarrow Degeneracy pressure stabilizes the core Collapsing material reflected back
\rightarrow Shock wave moves outward

[^4]Energy released during the final collapse

- Core radius before the collapse:

$$
\sim R_{\mathrm{WD}} \sim 10^{4} \mathrm{~km}
$$

- Core radius after the collapse: $R_{\mathrm{n}} \sim 10 \mathrm{~km}$

$$
\begin{aligned}
E & \approx G M_{\mathrm{c}}^{2}\left(\frac{1}{R_{\mathrm{n}}}-\frac{1}{R_{\mathrm{WD}}}\right) \\
& \approx \frac{G M_{\mathrm{c}}^{2}}{R_{\mathrm{n}}} \approx 3 \times 10^{53} \mathrm{erg}
\end{aligned}
$$

Energy needed to unbind the envelope

$$
\begin{aligned}
E_{\mathrm{e}} & =\int_{M_{\mathrm{wd}}}^{M} \frac{G m \mathrm{~d} m}{r} \\
& \approx 3 \times 10^{52} \mathrm{erg}
\end{aligned}
$$

Star explodes, ultracompact remnant remains?

However, most of this energy
cannot be transformed to kinetic
energy
\rightarrow Photodisintegration of infalling iron
\rightarrow Neutrino emission

$$
\sim 10^{53} \mathrm{erg}
$$

No explosion possible?

Final stages of stellar evolution

Neutrinos behave differently under the extreme conditions in the core

Energy of the order of the relativistic Fermi energy of the electrons

$$
\frac{E_{\nu}}{m_{\mathrm{e}} c^{2}} \approx \frac{E_{\mathrm{F}}}{m_{\mathrm{e}} c^{2}}
$$

$$
\frac{E_{\mathrm{F}}}{m_{\mathrm{e}} c^{2}}=x=\frac{p_{\mathrm{F}}}{m_{\mathrm{e}} c}=\left(\frac{3}{8 \pi m_{\mathrm{u}}}\right)^{1 / 3} \frac{h}{m_{\mathrm{e}} c}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{1 / 3} \approx 10^{-2}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{1 / 3}
$$

Neutrinos can react with heavy nuclei by scattering and transfer kinetic energy

$$
\nu+(\mathrm{Z}, \mathrm{~A}) \longrightarrow(\mathrm{Z}, \mathrm{~A})+\nu
$$

How often does that happen? Is the mean free path I_{ν} in collapsing core small enough?

$$
\begin{aligned}
\sigma_{\nu} & \approx 10^{-45}\left(\frac{E_{\nu}}{m_{\mathrm{e}} c^{2}}\right)^{2} A^{2}\left[\mathrm{~cm}^{2}\right] \\
\frac{E_{\nu}}{m_{\mathrm{e}} c^{2}} & \approx 10^{-2}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{1 / 3} \\
\sigma_{\nu} & \approx 10^{-49} A^{2}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{2 / 3}\left[\mathrm{~cm}^{2}\right]
\end{aligned}
$$

Number density of nuclei $n=\rho / A m_{\mathrm{u}}$

$$
I_{\nu} \approx \frac{1}{n \sigma_{\nu}}=1.7 \times 10^{25} \frac{1}{\mu_{\mathrm{e}} A}\left(\frac{\rho}{\mu_{\mathrm{e}}}\right)^{-5 / 3}[\mathrm{~cm}]
$$

For $A=100, \mu_{\mathrm{e}}=2$ and $\rho=10^{10}-10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$

$$
I_{\nu} \approx 1-10^{6} \mathrm{~cm}
$$

Mean free path smaller than core size!

Neutrinos shock front transfers kinetic energy and helps to unbind the envelope

Only 1% of the total energy is kinetic energy $\sim 10^{51} \mathrm{erg}$

Hydrodynamical simulations are needed to study this in detail

Blum et al. 2016, ApJ, 828, 31
Final stages of stellar evolution

Leibundgut \& Suntze

- brightness of the shock break out determined by the temperature in shock and size of the progenitor star (peak few h to couple of d)
- rapid, initial cooling
- large progenitors: plateau
- small stars: decline, before light curve brightens to plateau
- balance between receding photosphere in the expanding ejecta
- heating by radioactive decay
- masses of Ni
- 'freeze-out' from material which was ionized and recombines

Types of light curves of supernovae
—Type la — Type Ib - Type Ic —Type IIb — Type II-L —Type II-P — Type IIn

For very massive stars ($>\quad 30 \mathrm{M}_{\odot}$) core collapses into a fastrotating black hole and infalling matter assembles in an accretion disk around it.

Part of the binding or rotation energy might be ejected in collimated outflows (jets = beams of ionised matter accelerated close to the speed of light).

Final stages of stellar evolution

Schanne et al. 2005

Time (s)

Time (s)

Time (s)

Pe'er 2014

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

M87

Andrew A. Chael, Youtube

As a spinning BH pulls in matter, it creates a rotating "accretion disc" of charged particles. The motion generates twisted magnetic fields that accelerate particles into two thin jets.

Final stages of stellar evolution

Long-duration Gamma Ray Bursts (GRB) connected to SN Ib/c (Hypernovae)
\rightarrow power-law continuum of GRB + later SN light curve

Final stages of stellar evolution

Final stages of stellar evolution

For the most massive

Wikipedia Pair instability supernova
stars ($\sim 80-100 \mathrm{M}_{\odot}$)
energies in the cores can be high enough to create electron-positron pairs
$\gamma+\gamma \longrightarrow \mathbf{e}^{-}+\mathbf{e}^{+}$
\rightarrow Pair production reduces the pressure and may lead to collapse
Candidates are under debate

Remnant of core collapse is extremely dense $\bar{\rho} \simeq 10^{14} \mathrm{gcm}^{-3}$
Neutron star
\rightarrow Radius $\sim 10 \mathrm{~km}$
\rightarrow Mass $\sim 1.4-3 \mathrm{M}_{\odot}$

- Magnetic field $\sim 10^{9}-$ 10^{15} gauss

Astronomy.com/Kevin Gill

Evolution

Temperature drops quickly from $10^{10} \mathrm{~K}$ to $10^{8} \mathrm{~K}$ in $\sim 100 \mathrm{yr}$ due to neutrino emisision

Contraction leads to increasing density

Final stages of stellar evolution

Matter consists initially of crystallized heavy nuclei, electrons and neutrons
\rightarrow Neutron-rich nuclei release neutrons
\rightarrow electron-capture of protons
\rightarrow destroys nuclei
\rightarrow Neutronisation
Astronomy.com/Kevin Gill
Pressure of the non-relativistic degenerate neutrons becomes dominant

$$
P_{\mathrm{n}}=\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{\mathrm{n}}^{8 / 3}} \rho_{0}^{5 / 3}
$$

Neutron gas (or liquid) with some protons and electrons develops

For higher densities in the core ($\gg 6 \times 10^{15} \mathrm{~g} \mathrm{~cm}^{-3}$), the situation becomes much more complicated

Energy density needs to be taken into account additional to rest-mass density ρ_{0} (not necessary for electrons, because density determined by ions)

$$
\rho=\rho_{0}+u / c^{2}
$$

Equation of state becomes relativistic $\rho_{0} \ll u / c^{2}$

$$
\rho \approx u / c^{2} \Rightarrow u \approx \rho c^{2}
$$

For relativistic particles

$$
P=u / 3=\rho c^{2} / 3
$$

Interactions between nucleons become important
\rightarrow Equation of state not "ideal" any more

For a given equation of state, the equation for hydrostatic equilibrium in general relativity (Tolman-Oppenheimer-Volkoff equation)

$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\frac{G m}{r^{2}} \rho\left(1+\frac{P}{\rho c^{2}}\right)\left(1+\frac{4 \pi r^{3} P}{m c^{2}}\right)\left(1-\frac{2 G m}{r c^{2}}\right)^{-1}
$$

can be used to obtain neutron star models

Fermi energies of nucleons reach rest masses of hyperons (baryon with strange quark) and potentially also free quarks
\rightarrow Lowest mass hyperons ($\wedge, \Sigma, \Delta, \ldots$) contain one strange quark
\rightarrow Strange stars and quark stars postulated

Weber et al. 2009

- Atmosphere very hot $\sim 10^{6} \mathrm{~K}$ and extremely compressed $\log g \sim 14$ (thickness: cm$) \rightarrow$ Spectral lines of heavy nuclei observed in X-rays
- Surface of WD like material $\rho \sim 10^{6} \mathrm{~g} \mathrm{~cm}^{-3}$
- Solid crust of crystallized Fe nuclei and degenerate electrons
- Interior superfluid neutron liquid + solid core?

Light house model

Neutron stars are observed as pulsars
\rightarrow Radio observations allow to measure the pulses with extreme accuracy

- Accurate dynamical masses can be derived in binary pulsars

http://www.astron.nl/pulsars/animations/
Slowing down due to magnetic dipole radiation magnet dipole radiation Energy loss

$$
\begin{equation*}
P_{\mathrm{rad}} \sim \frac{\left(B R^{3} \sin \alpha\right)^{2}}{P^{4}}=-\dot{E}_{\mathrm{rot}} \text { (9.26) } \quad \dot{E}=\frac{d}{d t}\left(\frac{2 \pi^{2} I}{P^{2}}\right)=-\frac{4 \pi^{2} I \dot{P}}{P^{3}} \quad \text { (9.27) } \tau=\frac{P}{2 \dot{P}} \tag{9.28}
\end{equation*}
$$

Final stages of stellar evolution

$$
\begin{aligned}
\tau & =\frac{P}{2 \dot{P}} \\
B & \sim \sqrt{P \dot{P}}
\end{aligned}
$$

\qquad

PSRB1913+16:

- discovered by Hulse \& Taylor (1975):
"attempts to measure its period to an accuracy of $\pm 1 \mu$ s were frustrated by changes in period of up to 80μ s from day to day"
- \Rightarrow Binary Pulsar
- Orbital period: $\mathrm{P}=7.751938773864 \mathrm{hr}$
- Eccentricity: 0.6171334
- Rotation period:
59.02999792988 ms
- Note the number of significant digits!

Hulse \& Taylor 1975, ApJ 195, L51

Neutron stars are observed as accreting objects in X-ray binaries
\rightarrow Dynamical masses can be measured
\rightarrow Masses and radii can be derived from the X -ray spectra: $L_{\mathrm{X}} \sim R_{N S}^{2} T_{\text {eff,NS }}^{4}$

Final stages of stellar evolution

Final stages of stellar evolution

Measurements used to constrain the equation of state

Stellar remnants with masses exceeding the OppenheimerVolkoff limit collapse further
\rightarrow No denser state of matter is known
\rightarrow No further pressure sources can counteract gravity
As soon as the Schwarzschild radius

$$
\begin{equation*}
R_{\mathrm{S}}=\frac{2 G M}{c^{2}} \tag{9.29}
\end{equation*}
$$

Fully characterized by mass, spin and charge
\rightarrow Solutions for rotating (Kerr) and charged BHs is reached, radiation cannot esare known cape any more (event horizon)
\rightarrow Black hole is formed

Final stages of stellar evolution

Stellar mass black holes are observed as accreting objects

Ligo collaboration in X-ray binaries
\rightarrow Dynamical masses can be measured

$$
M_{\mathrm{BH}, \mathrm{X}-\mathrm{ray}} \approx 5-20 \mathrm{M}_{\odot}
$$

\rightarrow Consistent with predictions As soon as the Schwarzschild radius

$$
\begin{equation*}
R_{\mathrm{S}}=\frac{2 G M}{c^{2}} \tag{9.30}
\end{equation*}
$$

is reached, radiation cannot escape any more (event horizon)
\rightarrow Black hole is formed

LIGO collaboration

- $M_{\mathrm{BH}, \text { grav,wave }} \approx 5-80 \mathrm{M}_{\odot}$
\rightarrow surprisingly many heavy BH (selection effect?)
- Most massive BHs hard to explain with stellar evolution

Merging black holes, neutron stars and BH-NS are observed with gravitational wave detectors

- more than 100 events so far
- 22 definitive binary merger events, 2 NS mergers, 3 NS-BH mergers, 18 BH mergers
- Masses and other properties can be derived from the GW signal

Merging black holes ob-

LIGO collaboration
served with gravitational wave detectors

- 18 BH mergers
$M_{\mathrm{BH}, \text { grav, wave }} \approx 5$ $80 \mathrm{M}_{\text {- }}$
- Most massive BHs hard to explain with stellar evolution
- Merger of smaller BHs in cluster centers?
- Primordial BHs? Dark matter?
- Extremely massive and close binary as progenitor?

Stellar evolution of binaries

Stellar evolution of binaries

Most stars are not born alone

\rightarrow stellar evolution cannot be understood without understanding binary evolution

Types of binaries

- Visual binary: double star system where you can see both stars and they appear to move around each other

70 Ophiuchi

Types of binaries

- Astrometric binary: Similar to a visual binary, but only one component can be seen. The visible component will 'wobble' around the center of mass of the binary.

Types of binaries

- Spectroscopic binary: Components of the binary can not be distinguished visually. Spectrum of the star(s) shows a different Doppler shift at different times.

Stage 2

To Earth \downarrow

Stage 3

To Earth \downarrow

Types of binaries

- Spectroscopic binary: Doppler shift can be used to determine radial velocities of 1 or both stars. (in our line of sight)
Single lined system: only one star is visible in the spectrum Double lines system: both stars are visible in the spectrum

Stellar evolution of binaries

Types of binaries

Spectroscopic Binary: IM Mon, $\mathrm{P}=1.2$ days, $\mathrm{e}=0$

Types of binaries

- Eclipsing binary: Stars rotate in the same plane as our line of sight (or with very small inclination). Stars will pass in front of each other causing eclipses.
Duration/depth of the eclipses can be used to calculate size of the stars.

(a) Partial eclipse

Time \longrightarrow

Multiple systems: common but harder to detect, Non hierarchical systems are always dynamical unstable

Triple system

A B

Stellar evolution of binaries

Multiple systems

Quadruple system

A B

Stellar evolution of binaries

Multiple systems

Sextuple system (Castor)

Stellar evolution of binaries

Potential wells

- Detached binary: Both stars are within their potential well, and are more or less undistorted (they can be approximated as being spherical).

Stellar evolution of binaries

Potential wells

- Semi-detached binary: One of the stars has expanded to the point where it reached the saddle point (this star can not be considered spherical anymore).

Stellar evolution of binaries

Potential wells

- Contact binary: Both stars are filling their potential well. This can occur because the mass that flows from the first star that fills it's well fills up the potential well of the secondary star. Or because both stars expand to fill their well.

Stellar evolution of binaries

Potential wells

- Overcontact binary: Both stars are overfilling their potential well, so that there is only one common surface visible.

Stellar evolution of binaries

Stellar evolution of binaries

Roche formalism

potential wells can be depicted in a more mathematical way using the Roche formalism: Roche potential - shape of stars are given by equipotential surfaces

Roche lobes: equipotential surfaces through the L1 Lagrangian point: region within which orbiting material is gravitationally bound to that star.

L1 L3

Roche formalism Roche lobes: equipotential surfaces through the L1 Lagrangian point: region within which orbiting material is gravitationally bound to that star.
relevant, if one or both of the stars radii start approaching it's Roche lobe.
When a star reaches it's Roche lobe it becomes an interacting binary. Mass can then start flowing from the Roche lobe filling star to it's companion.

Mass transfer: can change stellar evolution

Close binary evolution: Evolution of both components linked by Roche Lobe Overflow (RLOF)
Three cases of mass transfer phases:

- Case A: RLOF at the core hydrogen burning phase ($P \approx 1-10 \mathrm{~d}$)
- Case B: RLOF at the hydrogen-shell burning phase (RGB) ($P \approx 10-100 \mathrm{~d}$)
- Case C: RLOF after core helium exhaustion phase (AGB) ($P \approx 100 \mathrm{~d}$)
S. Cartwright, University of Sheffield

ESO/L. Calçada/M. Kornmesser/S.E. de Mink
Influence on stellar evolution can be complicated: masses, size, shape and rotation changes

Stellar evolution of binaries

Stable mass transfer: Roche lobe overflow

- Direct impact: If the secondary star is large, then the mass stream that enters from the L1 point can fall directly onto the star. Higher transfer of angular momentum.

Stable mass transfer: Roche lobe overflow

- Accretion disc: If the secondary star is small, the mass stream will not hit the star, but curve around it until it folds back onto itself, spread out due to friction and forms an accretion disc. The disc will fill up until it reaches the secondary star, and then mass will be accreted onto the secondary. Angular momentum accretion is slower.

Stable mass transfer: Roche lobe overflow
secondary star can accrete all or part of the mass lost by the primary. This depends on what type of star the secondary is, and how fast the mass loss is.

- Spin up: if the secondary accretes mass, it also accretes angular momentum. This causes the star to spin up. When the star reaches breakup velocity any more mass that lands on the star is thrown off again.
- Bloating: Adding extra mass onto a star can cause it to expand rapidly due to the extra energy that is dumped in the atmosphere. The secondary will start to resemble a red giant, and can even fill its Roche lobe leading to a contact system
- Eddington luminosity: The maximum accretion rate that can be attained by a star is determined by the Eddington luminosity. Intuition: This is the point where the radiation pressure caused by the accreted matter equals the gravitational attraction. Any extra mass will be pushed away by radiation pressure.

Unstable mass transfer: common envelope evolution

Binary merger

Binary merger

Dwarf carbon stars (dC) - M dwarfs

Barium stars, CH stars, G/K-giants

Yang et al. 2016, RAA, 16, 19
Pollution from evolved AGB companions in the past responsible for weird enrichments of elements

Some star types are formed exclusively by binary interactions

Hot subdwarfs, low-mass He WDs

- Stripped cores of red giants
- He-WD mergers

Heber 2016, PASP, 128, 966

R Coronae Borealis stars
C-rich yellow supergiant

- variable due to dust
- merger of CO- and He-WD

ESO

Blue stragglers

- MS-stars too massive for host clusters
\rightarrow mass transfer

Interacting binaries with white dwarf stars - Cataclysmic variables

stable
mass transfer from MS or RG companion to white dwarf \rightarrow Mass-transfer to a WD can lead to stable or runaway-H-burning on its surface Stellar mass transfer in non-magnetic WD via accretion disc, which gets unstable
Sinarles

Supernova type la (SN la)

ESA/Hubble, NASA, P. Ruiz-Lapuente, S. Geier
\rightarrow Single-degenerate scenario: white dwarf accretes mass from main sequence star, red giant, or He star until Chandrasekhar mass is reached

ESO
\rightarrow Double-degenerate scenario: merger
of two WD due to emission of gravitational waves, combined mass near Chandrasekhar limit

Mass-transfer to a CO-WD can lead to a C-flash in the degenerate core
\rightarrow Thermonuclear Supernova type la (SN la)

Hypervelocity stars:

James Josephides (Swinburne Astronomy Productions)
CAST group, YouTube
Interaction of close binaries with the supermassive black hole in the Galactic center
\rightarrow Ejection of hypervelocity stars
encounters in star clusters can disrupt binaries

\rightarrow runaway stars

NASA/CXC/M. Weiss

Mark Garlick
Interaction stars with supermassive
black holes can lead to the disruption of the star
\Rightarrow Tidal-disruption event

[^0]: Kippenhahn, Weigert \& Weiss 2012

[^1]: Sandra Zavatarelli 2017

[^2]: Tout et a. 1999, MNRAS, 310, 360

[^3]: - shell-burning

[^4]: Janka et al. 2012

