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Structure 1

Structure

Two sessions from 14:15-15:45 and 16:15-17:45 on Wednesday

Blocks of lectures, exercises and seminar according to the detailed schedule

Exercises: Two groups

• first group: 12:00-15:00, tutor: Judy Chebly

• second group: 15:00-18:00, tutor: Harry Dawson

• (third group: 12:00-15:00 online, Judy Chebly)

27.10.21 Lecture: group 1
03.11.21 Lecture: group 2
10.11.21 Lecture: group 1
17.11.21 Lecture: online
24.11.21 Exercises
01.12.21 Exercises
08.12.21 Lecture: group 2
15.12.21 Lecture: group 1

05.01.21 Exercises
12.01.21 Exercises
19.01.21 Lecture: group 2
26.01.21 Lecture: group 1
02.02.21 Exercises
09.02.21 Seminar: group 1
16.02.21 Seminar: group 2
23.02.21 Exam: 13:30-14:30: 2.27.0.01
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Structure

Requirements to reach the final exam

• Hand in the exercises in time and reach more than 50% of the points (groups
of two persons)

• Give a talk about a modern topic related to stellar astrophysics in the seminar
and actively contribute to the discussion

Final exam

• written exam of one hour duration on Wednesday 23.02.2020?, 13:30-14:30
• Grade on this exam combined with part II will be grade of Modul 750
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Seminar topics
Based on recent review papers on modern topics. Up to two speakers per topic,
about 20 minutes per individual talk

• Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
• Near-Field Cosmology with Extremely Metal-Poor Stars
• Hypervelocity Stars
• Hot Subluminous Stars
• Observational Clues to the Progenitors of Type Ia Supernovae
• Multiple Stellar Populations in Globular Clusters
• Red Clump Stars
• Asteroseismology of Solar-Type and Red-Giant Stars
• Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars
• The Most Luminous Supernovae
• Masses, Radii, and the Equation of State of Neutron Stars
• Microarcsecond Astrometry: Science Highlights from Gaia
• Evolution and Mass Loss of Cool Aging Stars: A Daedalean Story
• Astrochemistry During the Formation of Stars
• Probing the interior physics of stars through asteroseismology

https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-091916-055306
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-082214-122423
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-082214-122230
https://iopscience.iop.org/article/10.1088/1538-3873/128/966/082001/pdf
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-082812-141031
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081817-051839
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081915-023354
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-082812-140938
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081913-040025
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081817-051819
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081915-023322
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-112320-035628
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-090120-033712
https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-032620-021927
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.93.015001
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Seminar talks

Audience: Members of the class

→ Basics can be expected, but no in-depth knowledge about details

Talk should be as simple and easy to understand as possible!

→ Of course not all topics are simple ... this is the challenge here

Stay in time!

→ Talk must be practised several times before delivering it in class

Use material from the review papers, references therein, textbooks, the internet
(always with proper citations)

Papers can be downloaded using a UP account from the SAO/NASA Astro-
physics Data System (ADS) webpage

http://adsabs.harvard.edu/abstract_service.htm

Using the HTML version allows to download all the images and plots in high-
resolution

http://adsabs.harvard.edu/abstract_service.html
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Seminar talks

Basic structure:

• Introduction should be sufficient for the audience to get the context (about
one third of the time)

• Methods should be described in a general way avoiding too many details
• Results must be clearly summarized and put into context → the abstract and

conclusions session of a paper are very helpful here, also press releases re-
lated to the articles

Each talk needs to tell a story, which is self-contained!



1–7

Structure 6

Seminar talks

Common mistakes

• Too many details – People who really get interested in the topic of their talk
sometimes forget who is listening

• Showing off – Some people think, they can impress the lecturer and the other
students with an extra complicated talk (lots of formulae, unexplained jargon
etc.)

• Trying to show off – See above, but for the reason that they don’t understand
the topic and try to hide that. This never works!

• Underestimating the effort – Compared to other tasks, giving such a talk
might look easy and doable within a day or so. It is not and requires prepara-
tion and practice!
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Literature

• Kippenhahn, R., Weigert, D., & Weiss, A., Stellar Structure and Evolution,
2012

• de Boer, K. S., & Seggewiss, W., Stars and Stellar Evolution, 2008
• Prialnik, D., An Introduction to the Theory of Stellar Structure and Evolution,

2010

Slides of the lecture, seminar topics and exercise sheet and solution can be
found on Moodle.UP
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Why study stars?
Gravitational waves

NASA/SXS

Cosmology

NASA, Harvard CfA, Illustris Collaboration

Exoplanet

NASA Ames/SETI Institute/JPL-Caltech

Nucleosynthesis

NASA/CXC/SAO/STScI/JPL-Caltech


gravitational_waves.mp4
Media File (video/mp4)


Illustris.mp4
Media File (video/mp4)
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Why study stars?
Massive binary star progenitors

ESO

Stars needed to understand galaxies

ESO

Studied by effects on host stars

ESA/ATG medialab

nuclear processes, stellar evolution

adapted from Sneden et al. 2003
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Relevance for astrophysics
• Stars are an important constituent of visible matter in the universe
→ 1011 stars per galaxy ×1010 galaxies in the observable universe
→ 0.5% of the mass of the universe

• Stars synthesise all heavy elements
• Stars are well-studied and can be used to calibrate distance and to unravel

structures
• Stars host planetary systems and dominate their evolution
→ Sun is crucial for life on Earth

• Stars are laboratories to study all kinds of physics
→ Thermodynamics, general relativity, nuclear and particle physics
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Relevance for astrophysics

Exoplanets
Stellar
activity

Solar physics

Asteroseismology

STARS

Star Formation

Galatic
structure Stellar

evolutionStar
clusters

Galactic
archeology

Star
clusters Binaries

Interacting
Binaries

Planetary
nebula

Binaries

Interacting
Binaries

Cool stars

Hot/Massive
stars

Metal-
poor stars

Stellar
remnants

Stellar
explosions

Gravitatioal
waves
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What is a star?

A star can be defined as a body that satisfies two conditions:

• It is bound by self-gravity.
• It radiates energy supplied by an internal source.

There is a certain range of masses stars can have:

• Objects below ∼ 0.08 M⊙ are no longer stars but brown dwarfs or planets
because they shine (mostly) by reflection of stellar light instead of radiating it
on their own.

• Stars with more than several hundred M⊙ are not possible because their
strong radiation-driven stellar winds prevent them from accumulating more
material.
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Parameters of the sun

Our sun ⊙ as reference star

radius R⊙ 696 000 km
mass M⊙ 1.989 × 1030 kg
luminosity L⊙ 3.86 × 1026 W
effective
temperature Teff 5780 K
central
temperature Tc 15 × 106 K
age t⊙ 4.5 × 109 yr
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History

Ancient times E.g., Anaxagoras, Aristotle: Stars are "flaming stones"
1600 Heliocentric models identify the Sun as gigantic heat source in

space
1695 Christiaan Huygens compared the brightness of stars with the

Sun to calculate their distances
∼ 1800 William Herschel speculated, that the Sun might be inhabitated

under a thick mat of clouds
1814 Joseph von Fraunhofer discovers absorption lines in the Sun and

some stars
→ Spectral classification in the early 20th century

1838 Friedrich Bessel, Friedrich Struve and Thomas Henderson
measure the first parallax distances of stars
→ Distinction between giant and dwarf stars

Pre-1848 E.g., Kant, Laplace: Stars are "fire balls"
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History

1842/43 Julius Robert Mayer (surgeon!) and James Prescott Joule
propose conservation of energy as physical law (thermodynamics)

1848 Mayer: First proposal of a specific heat mechanism for the power
supply of stars, namely the infall of meteors

1854 + 1861 Helmholtz & Kelvin: Power supply by contraction (gravity)
→ Lifetime of less than 100 million years
↔ Charles Darwin and geologists (billions of years)

1861 Lane: Stars get hotter as they radiate and shrink ("Lane’s law")
1865 Herve Faye suggested that sunspots are regions, where the

glowing surface is blown aside
1869 Lane: Theory of polytropic gas spheres
1878 Ritter: First theory of stellar evolution based on Lane’s law
∼ 1880 Assuming that stars derive energy from contraction, A. Ritter

calculated the lifetime of the Sun to less than 6 million years,
after which contraction should cease and cooling start
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History

1880 Norman Lockyer proposes that stars are formed by
gravitational contraction of meteoritic particles

N. Lockyer, The Meteoritic Hyphothesis, 1890, 375

→ Spectroscopic classes are different phases of contraction
→ Origin of the classification as early and late-type stars
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History

1911 Eijnar Hertzsprung
→ apparent magnitude against color for

stars in the Pleiades and Hyades
→ no giants or supergiants in Pleiades

and only a few in the Hyades

Gingerich 2013
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History

1913 Henry Norris Russell
→ Giant stars are contracting to-

wards the main sequence
→ Main sequence stars stop con-

tracting and cool down along the
sequence
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History
1907 Emden: Systematic work on polytropes, i.e., stellar models

where heat is transported solely by convection (book: Gaskugeln)
1926 F. J. M. Stratton: Spectroscopic similarities between early-type stars and

planetary nebula, late-type stars and spiral nebula
→ O, B stars and planetary nebula come from diffusive nebulosity
→ M giants come from condensations in the arms of spiral nebula

1926 Eddington: The Internal Constitution of Stars
Perfect gas, uniform terrestrial (!) composition, constant opacity, constant
energy generation, Theory of radiative heat transport (first suggested by
Sampson in 1895 & K. Schwarzschild in 1906)
→ Prediction of the mass-luminosity relation, opacity problem (debated)

1925 Cecilia Payne, PhD thesis: Stellar Atmospheres, A Contribution to the
Observational Study of High Temperature in the Reversing Layers of Stars
→ First application of Sahas ionization theory to spectral lines of stars
Strength and presence of lines depends more on temp. than on abundance
→ Stars consist mainly of hydrogen (highly debated)
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History

Metal lines are more abundant and stronger in the solar spectrum + Meteroids
consist of rock and metals

Modern philosophy: Law of nature are universal

→ Stars have terrestrial composition
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History

Gingerich 1995

Harvard College Observatory, Wikipedia

1932 Eddington and Bengt Strömgren resolve opacity problem with
hydrogen-rich stellar models

1937 Strömgren: Determination of hydrogen content in stellar core
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History

1904 Rutherford: radioactive energy to resolve age issue
1920s Quantum mechanics becomes the standard in atomic physics
1928 Gamow: Theory of Coulomb barrier penetration (major breakthrough

for considering nuclear reactions as energy source in stars)
1929 Atkinson and Houtermans apply Gamows theory of the tunnel effect to

stellar interiors → Most effective interactions by light elements
1931 Theory of nucleosynthesis of heavy elements in stars

→ fusion of hydrogen to helium as energy source for the sun
→ Quadruple collision of hydrogen atoms unlikely
→ Successive absorption of protons

1938-39 Bethe and von Weizsäcker find the proper channels for the fusion of
hydrogen to helium (p-p chain and CNO-cycle)
→ Nuclear fusion as energy source of stars confirmed

1940/50s Nuclear reaction rates could finally be computed due to intensive
laboratory work in nuclear physics
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History

1916 Ernst Öpik derives the density of the recently discovered new luminosity
class of white dwarfs to be 25000 times higher than the one of the Sun
→ "Impossible", Eddington: "Shut up. Don’t talk nonsense."

1926 Fowler applies quantum mechanics and explains the high densities as
degenerate matter

1930 Chandrasekhar derives a limiting mass for white dwarfs
1934 Baade and Zwicky: propose existence of neutron stars

→ Binding energy powers the newly identified class of supernova explosions
1952 Sandage and Schwarzschild show that the contraction of the core due to

hydrogen exhaustion leads to an expansion of the envelope
→ Red giants are evolved stars
→ Explanation for connection between giants and dwarfs in cluster HRD

1951-54 Öpik, Salpeter and Hoyle show that carbon fusion by the triple-alpha
process occurs in red giant cores



3–12

History 11

History

Unsöld 1942, ZA, 21, 10 Christensen-Dalsgaard 1984, SRSPS Conf., 11

1939 Unsöld performs the first detailed spectroscopic analysis of a star other
than the Sun → Quantitative spectral analysis

1980s Multi-mode pulsating stars are studied for the frist time
→ Helio- and asteroseismology
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History

1950s Stellar evolution modelling became a field of computational astrophysics
1958 Schwarzschild: Presentation of numerical models (based on hand

integration techniques) that consistently account for energy production
and energy transfer; breakthrough in model building

1967 Jocelyn Bell and Anthony Hewish discover the first pulsar
1972 Bolton, Luise Webster and Murdin discover the first stellar mass black hole

in an X-ray binary
2014 LIGO detector discovers merging black holes from their gravitational

wave signal
2017 LIGO and VIRGO detect neutron star merger, prove the connection to

gamma ray bursts and the synthesis of heavy elements in this process
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Observables of stars
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Observables of stars
• Stars are observed as point sources (except our Sun)
• Electromagnetic radiation of very different wavelengths is emitted by stars
• The intensity I0 of this radiation is transformed to the signal S measured by

several wavelength dependent functions

S(𝜆) = I0(𝜆)A(𝜆)O(𝜆)F (𝜆)Q(𝜆) (4.1)

A(𝜆) Extinction by the interstellar medium and the Earth atmosphere
O(𝜆) Absorption by the telescope optics
F (𝜆) Transmission function of the filter
Q(𝜆) Quantum efficiency of the detector
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Photometric filters

• measured brightness in a certain filter
X is given as apparent magnitude

mX = −2.5 log10
FX

FX ,0
(4.2)

FX flux density using filter X FX ,0 ref-
erence flux (zero-point) for this filter
(Vega or AB-system)

• Magnitudes in different filters can be
combined to determine colours

mX − mY � X − Y (4.3)
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Photometric filters

• system bases on the flux of Vega,
mVega ≡ 0 at all wavelengths

• AB system: object with constant flux
per unit frequency interval has zero
color

mAB = −2.5 log(f (𝜆)) − 48.6 (4.4)

mAB = V for a flat-spectrum source.
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Abolute magnitude

ESA

• Absolute magnitude MX can be calcu-
lated from the apparent magnitude, if
the distance d is known

mX − MX = 5 log10 d − 5 (4.5)

distance modulus
• most direct distance measurement is

using the parallax 𝜋

d = 1/𝜋 (4.6)

d in pc, 𝜋 in arcsec
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Bolometric magnitude and luminosity
• bolometric magnitude Mbol is the in-

tegrated absolute magnitude over all
wavelengths

Mbol = −2.5 log10

∞∫︁
0

I𝜆 d𝜆 (4.7)

• to transform to bolometric magnitude
a bolometric correction is necessary,
which is calculated from stellar model
fluxes for each stellar type

Mbol ≡ MX − B.C. (4.8)

• luminosity of a star is related to the
bolometric magnitude

L
L⊙

= 10(Mbol−Mbol ,⊙)/2.5 (4.9)
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Interstellar Reddening

Extinction AV

• absorption and scattering of electromagnetic
radiation by dust and gas between an emit-
ting astronomical object and the observer

• shorter wavelengths (blue) are more heavily
reddened than longer (red) wavelengths

• measure colour index B − V

E(B − V ) = (B − V ) − (B − V )0 (4.10)

AV = 3.2E(B − V ) (4.11)

• true distance

d = 100.2(m−M+5−AV ) (4.12)
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Atmospheric extinction

• V = V0 + 𝜅(𝜆)X (z)
𝜅(𝜆) is the extinction
coefficient
z is the zenith dis-
tance
X is the air mass
X (z) ≈ cos−1 z

• extinction greater for
blue than for red

Standard stars to correct for atmospheric extinction and calibrate the sensitivity
of the instrument
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Atmospheric extinction

• V = V0 + 𝜅(𝜆)X (z) 𝜅(𝜆) is
the extinction coefficient
z is the zenith distance
X is the air mass
X (z) ≈ cos−1 z

• extinction wavelength-
dependent

• blue stars are getting weaker
compared to red stars
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Black body radiation

Definition
• in thermal equilibrium with its sur-

roundings
• emits a continuous spectrum whose

spectral shape is defined solely by its
temperature → Planck function

Realisation in nature
• well recovered if photons are fre-

quently absorbed and emitted, i.e.,
if the photons’ mean free paths are
short

• fulfilled in the stellar interior due to
the high densities

• not fulfilled in stellar atmospheres
where the densities are low

• useful first approximation
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Derivation of the Planck function
closed box coupled to a heat bath

→ photon gas inside is in thermal equilibrium

→ energy density u of photons of frequency 𝜈 (h is the Planck constant, c
speed of light, k Boltzmann constant)

u(𝜈) =
8𝜋h𝜈3

c3
1

exp(h𝜈/(kT ))) − 1
(4.13)

To derive Planck function B(𝜈) compute energy per unit area and unit time es-
caping through a tiny hole at, e.g., the bottom of the box:

B(𝜈) =
escaping energy

per unit area and unit time
=
𝜖(𝜈)
dAt

(4.14)

𝜖(𝜈, 𝜃)d𝜃 is the energy of photons with frequency 𝜈 escaping through the hole in
unit time from all directions inclined at angle 𝜃

𝜖(𝜈, 𝜃)d𝜃 = un(𝜃)V (𝜃)
Fig
= u

2𝜋 sin 𝜃
4𝜋

dA c dt cos 𝜃 (4.15)

n(𝜃) fraction of photons in prescribed cone, V (𝜃) volume occupied by those pho-
tons capable of passing through the hole in unit time
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Derivation of the Planck function

~dA

θ

dθ c dt
~dA

θ

Integration over angle yields the Planck function B(𝜈):

B(𝜈) =

𝜋/2∫︁
0

𝜖(𝜈, 𝜃)d𝜃/(dAdt) =
1
4

cu(𝜈) =
2𝜋h𝜈3

c2
1

exp(h𝜈/(kT )) − 1
(4.16)
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Properties of the Planck function

• B(𝜈) is energy per unit area per unit time per unit frequency interval. Often
Planck function per wavelength interval is useful. → B(𝜆)d𝜆 = B(𝜈)d𝜈:

B(𝜆) = B(𝜈)
⃒⃒⃒⃒
d𝜈
d𝜆

⃒⃒⃒⃒
𝜆𝜈=c= B

(︁c
𝜆

)︁ c
𝜆2 =

2𝜋hc2

𝜆5
1

exp(hc/(𝜆kT )) − 1
(4.17)

• Integration over all wavelengths gives us the luminosity per area

L
A

sphere
=

L
4𝜋R2 =

∞∫︁
0

B(𝜆)d𝜆 = S = 𝜎T 4 (4.18)

𝜎 = 2𝜋5k4

15c2h3 = 5.6705 × 10−5erg cm−2 s−1K−4 is the Stefan-Boltzmann con-
stant

• Wien’s displacement law states that the blackbody radiation curve for different
temperatures peaks at a wavelength inversely proportional to the temperature

d
d𝜆

B(𝜆max)
!= 0 → 𝜆maxT = 2.898 × 107 ÅK (4.19)
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Planck function

2000 4000 6000 8000 10 000 12 000 14 000 16 000 18 000
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Wien approximation h𝜈
kT ≫ 1 → B𝜈(T ) ≃ 2h𝜈3

c2 exp(−h𝜈/(kT ))

Rayleigh-Jeans approximation h𝜈
kT ≪ 1 → B𝜈(T ) ≃ 2𝜈2kT

c2
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Planck function
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Solar model
Blackbody with 5775 K

Definition of the effective temperature:

The effective temperature of a star is defined as the temperature of a blackbody
having the same radiated power per unit area.∞∫︁

0

F (𝜆)d𝜆 != 𝜎T 4
eff (4.20)
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Color-temperature relation
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mX mY mZ

X − Y
Y − Z
X − ZSpectroscopy

Mbol

𝜋

d−B.C.

Observed quantities

Stellar Properties

composition
log g, Teff

R L

M𝜏
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Fundamental Parameters

Mass M⋆: Except for massive stars with strong stellar winds or stars in
interacting multiple systems, the stellar mass is constant
throughout a star’s lifetime.
Possible range: 0.08 to several hundred M⊙

Radius R⋆: stellar radius is a probe for the evolutionary status.
Possible range: 0.5-1000 R⊙

Luminosity L⋆: total power radiated by the star: L⋆ = 4𝜋R2
⋆F = 4𝜋R2

⋆𝜎T 4
eff

Possible range: 10−2 − 107 L⊙
Age 𝜏⋆: age of the star. More massive stars have shorter lifetimes because 𝜏 ∝ M⋆/L⋆

Typical range: millions to billions of years
Mass and radius linked via the surface gravity g = GM⋆R−2

⋆ → spectroscopy
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Determination of fundamental parameters: Mass

Direct measurements of masses are only possible when stars occur in binary
systems and when their orbital motion is known

A2A1

B2

B1

C2 C1

Center of mass

a1 a2

M⋆,1/2 : Mass of component 1 and 2
P : Orbital period (measured)
d : distance to the system (somehow known)
i : Orbital inclination against the line of sight

(somehow known).
a1,2 Semimajor axis of the two stars’ angular

motion relative to center of mass
(measured) – aobserv = areal sin i

• Keplers’s third law with a = a1 + a2:

G(M1 + M2)
4𝜋2 =

a3

P2 (4.21)

• center-of-mass law
M1a1 = M2a2 (4.22)
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Determination of fundamental parameters: Mass

a1/2

Observer

Time

P

R
ad

ia
lv

el
oc

ity

K
1/

2

Wavelength

Fl
ux

double-lined spectroscopic
binary in circular orbit:

K1,2 =
2𝜋a1/2

P
sin i (4.23)

K1/2 is the radial velocity
amplitude
→ three unknowns: i ,
M1, M2; two equations !
→ inclination can be de-
rived for eclipsing binaries
(i ∼ 90∘)

• momentum conservation:
M1K1 = M2K2 (4.24)

• Keplers’s third law with a = a1 + a2:

(M1 + M2) sin3 i =
P

2𝜋G
(K1 + K2)3 (4.25)
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Determination of fundamental parameters: Radius

1
2 3 4 5

6
78910

1 2 3 4 5 6 7 8 9 10
Time

B
rig

ht
ne

ss

dA + dB = v (t5 − t2)

dA − dB = v (t4 − t3)

dA,B is the stars’ diameter,
v is the orbital velocity, ti
are the times of the eclipse
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Determination of fundamental parameters: Radius and luminosity

Near Star

Background with distant stars

Sun
Earth Earth

d

1AU

π

parallax 𝜋(arcsec) = 1/d(pc)

F = F (Teff) is the surface flux of the star, f
is the flux arriving on Earth

4𝜋d2f = 4𝜋R2F ⇒ R = d
√︀

f/F

Luminosity L using Stefan-Boltzmann law

L = 4𝜋R2𝜎T 4
eff
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Determination of stellar parameters: Mass & age
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evolution tracks: circles give the age in Myr → (model dependent) mass and age
from position in spectroscopic HRD
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Hertzsprung-Russell diagram
Observational:
Colour-Magnitude diagram (CMD)

Gaia collaboration

Theoretical: Temperature-Luminosity

ESO
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Hertzsprung-Russell diagram

Siegel et al. 2007, ApJ, 667, L57

• Why are the stars dis-
tributed in that way?

• How can we learn about
the temporal evolution
of stars from such snap-
shots?
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Stellar classification
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Angelo Secchi (1863): Stars have different spectra emitted from the visible stel-
lar surface layers → Stellar atmosphere.

Annie Cannon introduced the Harvard classification scheme with seven spectral
types (O, B, A, F, G, K, M) in 1901.
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Stellar atmosphere

Energy from the stellar interior flows outward and leaves the star as radiation

• Hydrostatic equation
→ Pressure/temperature distribution in the surface layers

• Radiation transport equation
→ Emergence of radiative energy at the surface
→ Temperature distribution in the surface layers

⇒ Stellar atmosphere model
⇒ Model spectrum compared to observed spectrum

Main model parameters

• Effective temperature Teff

• Surface gravity g = GM
R2 , usually used log g

• Chemical composition: abundance of hydrogen X , helium Y and the other el-
ements (metals) Z
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Radiation theory

de Boer & Seggewiss 2008

Radiative intensity I𝜈

I𝜈(𝜃,𝜑) =
dE𝜈

cos 𝜃dtd𝜈d𝜔d𝜎
Energy dE𝜈 within a frequency interval d𝜈 pass-
ing per unit time dt through a surface d𝜎 and
being directed into solid angle d𝜔

Integrated radiative intensity
→ integrated over all frequencies

I(𝜃,𝜑) =
∞∫︀
0

I𝜈d𝜈

Mean intensity J → average of I𝜈 over all solid angles 𝜔

J𝜈 =
1

4𝜋

𝜋∫︁
𝜃=0

2𝜋∫︁
𝜑=0

I𝜈(𝜃,𝜑) cos 𝜃 sin 𝜃d𝜑d𝜃 =
1

4𝜋

∫︁
I𝜈(𝜔)d𝜔
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Radiation theory

Radiative flux
#»

F𝜈
#»

F𝜈 =
∫︁

I𝜈d𝜈 cos 𝜃d𝜔

→ net energy in the interval d𝜈 passing each second through a unit area in the
direction of the vertical axis

→ F𝜈 = F +
𝜈 + F−

𝜈 , F +
𝜈 outward flux, F−

𝜈 inward flux
→ Spherical star J𝜈 = 1

𝜋F𝜈
→ Isotropic radiation field F𝜈 = 0 ⇒ F +

𝜈 = −F−
𝜈

Radiation density U𝜈

U𝜈 =
∫︁

dE𝜈

dV
d𝜔 =

1
c

∫︁
I𝜈d𝜔

→ Radiation energy dE𝜈 passes in a time interval dt through a volume element
dV = d𝜎ds, where ds = cdt . Energy density found by integrating over all solid
angles d𝜔
→ Isotropic radiation U𝜈 = 4𝜋

c I𝜈
→ Total radiation density U =

∫︀
U𝜈d𝜈=4𝜋

c I
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Equation of radiative transport

de Boer & Seggewiss 2008

• Optical depth 𝜏𝜈

𝜏𝜈 =

s∫︁
0

𝜅𝜈ds (4.26)

the mean free path of pho-
tons is Δ𝜏𝜈 = 1

Intensity per volume element dV of length ds
can change

• Emission → emission coefficient j𝜈

j𝜈 =
dE𝜈

dtdVd𝜈d𝜔
Energy emitted per volume element dV in a
unit of time dt and frequency d𝜈 into a solid
angle d𝜔

• Absorption → absorption coefficient 𝜅𝜈

dI𝜈 = −𝜅𝜈I𝜈ds

Change in intensity due to absorption in the
material over the path ds
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Equation of radiative transport

de Boer & Seggewiss 2008

Solving the differential equation

dI𝜈 = −𝜅𝜈I𝜈ds = −I𝜈d𝜏𝜈

⇒ I𝜈 = I0
𝜈e−𝜏𝜈 = I0

𝜈e−
∫︀
𝜅𝜈ds

→ 𝜏 = 1 ⇒ I𝜈 = I0
𝜈/e

Large optical depth 𝜏 ≫ 1:
→ Material opaque I𝜈 ≪ I0

𝜈

Small optical depth 𝜏 ≪ 1:
→ Material transparent I𝜈 ≃ I0

𝜈

Total change in intensity gives the radiative transport equation

dI𝜈 = −𝜅𝜈I𝜈ds + j𝜈ds (4.27)

dI𝜈
𝜅𝜈ds

=
dI𝜈
d𝜏𝜈

= −I𝜈 +
j𝜈
𝜅𝜈

= −I𝜈 + S𝜈

Source function S𝜈 dependent on material: S𝜈 < 0 more absorption than emis-
sion, S𝜈 > 0 more emission than absorption
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Equation of radiative transport

de Boer & Seggewiss 2008

• no background intensity
I0
𝜈 = 0 and 𝜏𝜈 → ∞
⇒ I𝜈 ≃ B𝜈

Source function equals the
Planck function

Solution for constant S𝜈

I𝜈 = I0
𝜈e−𝜏𝜈 + S𝜈(1 − e−𝜏𝜈)

intensity entering the volume and intensity pro-
duced inside the box are diluted by the optical
depth

• no background intensity I0
𝜈 = 0

⇒ I𝜈 = S𝜈(1 − e−𝜏𝜈)
• no background intensity I0

𝜈 = 0 and 𝜏𝜈 ≪ 1
⇒ I𝜈 = 𝜏𝜈S𝜈

All produced radiation can be seen by an
observer

• no background intensity I0
𝜈 = 0 and 𝜏𝜈 ≫ 1

⇒ I𝜈 ≃ S𝜈

No photons can escape (they are immedi-
ately scattered or absorbed)
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Equation of radiative transport

de Boer & Seggewiss 2008

• background intensity I0
𝜈 ̸= 0

⇒ I𝜈 = S𝜈 + (I0
𝜈 − S𝜈)e−𝜏𝜈

Applicable to stellar atmospheres
• background intensity I0

𝜈 ̸= 0 and 𝜏𝜈 ≪ 1
⇒ I𝜈 = I0

𝜈 − 𝜏𝜈(I0
𝜈 − S𝜈)

I0
𝜈 > S𝜈 → spectral absorption of an existing

continuum
I0
𝜈 < S𝜈 → spectral emission superimposed

on an existing continuum
• background intensity I0

𝜈 ̸= 0 and 𝜏𝜈 ≫ 1
⇒ I𝜈 ≃ S𝜈
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General equation of radiative transport

de Boer & Seggewiss 2008

In a stellar atmosphere, effects of geometry
have to be considered

dI𝜈(r , 𝜃) = −𝜅𝜈I𝜈(r , 𝜃)ds + j𝜈ds

dr = ds cos 𝜃 and rd𝜃 = −ds sin 𝜃:
General equation of radiative transport

𝜕I𝜈
𝜕r

cos 𝜃 − 𝜕I𝜈
𝜕𝜃

sin 𝜃
r

= −𝜅𝜈I𝜈 + j𝜈 (4.28)
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Continuity equation

de Boer & Seggewiss 2008

radiative flux
#»

F𝜈
#»

F𝜈 =
∫︁

I𝜈(r , 𝜃)d𝜈 cos 𝜃d𝜔

⇒ 1
4𝜋

dF𝜈
dr

= 𝜅𝜈(I𝜈 − S𝜈)

Energy transport only by radiation → dF
dr = 0

Continuity equation

1
4𝜋

∞∫︁
0

𝜅𝜈F𝜈d𝜈 =

∞∫︁
0

𝜅𝜈S𝜈d𝜈 (4.29)

connection between the frequency dependent
transport equations and the total radiative en-
ergy transport
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Local Thermal Equilibrium

Thermodynamic equilibrium (TE)

• radiation is isotropic and in balance with the material
• all processes (absorption, emission) in balance
• no changes in time
• I𝜈 = S𝜈 = B𝜈 Black-body continuum → does not exist in the real universe

Local thermal equilibrium (LTE)

• locally, in small regions of the star TE (almost) fullfilled
• if the gas is not in LTE → non-LTE (NLTE)
• S𝜈 = B𝜈 and dI𝜈

d𝜏𝜈
= 0 ⇒ B𝜈 = j𝜈/𝜅𝜈

• LTE can be assumed for some stellar atmospheres (high density, low temper-
ature → radiation-matter interactions in balance)
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Plane parallel atmosphere

de Boer & Seggewiss 2008

Atmosphere with large radius
→ Plane parallel atmosphere approximation

d𝜃 = 0 and d𝜏𝜈 = −𝜅𝜈dr

→ General energy transport equation

dI𝜈
d𝜏𝜈

cos 𝜃 = I𝜈 − S𝜈

→ total radiative flux F does not depend on the
depth r (F = const = energy conservation)

F = 𝜎T 4(r ) = 𝜎T 4
eff
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Limb darkening

de Boer & Seggewiss 2008

approximation for the source
function:

S𝜈(𝜏𝜈) = a𝜈 + b𝜈𝜏𝜈

→ I𝜈(0, 𝜃) = a𝜈 + b𝜈 cos 𝜃

Edge of stellar atmosphere
→ Radiation field not isotropic
→ Angular aspect 𝜃 relevant (sec 𝜃 = 1/ cos 𝜃)

Ie−𝜏 sec 𝜃 = −
∫︁
𝜏

Se−𝜏 ′ sec 𝜃d𝜏 ′ sec 𝜃

Outward component

I𝜈(0, 𝜃) = −
∞∫︁

0

S𝜈(𝜏𝜈)e−𝜏 ′ sec 𝜃d𝜏 ′ sec 𝜃

→ Edge of visible disk: 𝜃 = 𝜋
2, sec 𝜃 → ∞

I𝜈
(︁

0,
𝜋

2

)︁
= 0

→ Center of visible disk: 𝜃 = 0, sec 𝜃 = 1

I𝜈(0, 0) =

∞∫︁
0

S𝜈(𝜏𝜈)e−𝜏𝜈d𝜏𝜈
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Gray atmosphere

Simplified expression for the absorption coefficient 𝜅𝜈 ∼ �̄�

→ Rosseland opacity: flux-weighted mean opacity (F =
∫︀

F𝜈d𝜈, d𝜏 = �̄�ds)

1
�̄�

=

∫︀∞
0

1
𝜅𝜈

dB𝜈

dT d𝜈
d

dT

∫︀∞
0 B𝜈d𝜈

4 5 6 7 8

−6
−4

−2

−2

0

2

4

log(T(K))log(ρ/T3
6 (g cm−3 K−3))

lo
g(
κ(

cm
2

g−
1 ))

(http://cdsweb.u-strasbg.fr/topbase/OpacityTables.html)

 (http://cdsweb.u-strasbg.fr/topbase/OpacityTables.html) 
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Gray atmosphere
→ Simplified equation of radiation transport

cos 𝜃
dI(𝜏 , 𝜃)

d𝜏
= I(𝜏 , 𝜃) − S(𝜏 )

→ Simplified continuity equation

S(𝜏 ) =
1

4𝜋
F (𝜏 ) → S(𝜏 ) =

3
4𝜋

F · (𝜏 + q(𝜏 ))

q(𝜏 ) ≃ 0.7104 − 0.1331e−3.4488𝜏 numerical function
→ Simple limb darkening law can be derived

I(0, 𝜃)
I(0, 0)

=
2
5

(︂
1 +

3
2

cos 𝜃
)︂
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Gray atmosphere

Temperature structure

• LTE (S𝜈 = B𝜈) using Stefan-Boltzmann law

𝜋S(𝜏 ) = 𝜎T 4(𝜏 )

• gray atmosphere

T 4(𝜏 ) =
3
4

T 4
eff · (𝜏 + q𝜏 )

• at the surface (𝜏 → 0) with q𝜏 = 2/3

T0 =
1

21/4Teff → T0,⊙ = 4860 K
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Gray atmosphere
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Gray atmosphere

pressure structure

• ideal gas Pgas = nkT , gas pressure dPgas = −𝜌gds

dPgas

d𝜏
=

g
�̄�m

�̄�m(T , P, XYZ ) mass absorption coefficient → Numerical solution
• gray atmosphere and approximation Pgas = (g/�̄�m)𝜏

→ Geometric structure
dPgas

Pgas
= d ln Pgas = −dr

HP

with HP = kT
�̄�g the pressure scale height and �̄�(T , P, XYZ ) the mean molecu-

lar weight
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Opacity

Opacity = ability of stellar material to absorb radiation

Opacity

(true) absorption 𝜅𝜈 scattering 𝜎𝜈

bound-bound

bound-free

free-free Compton
scattering

Thomson/
Rayleigh
scattering

Resonant
scattering

𝜅𝜈,ges = 𝜅𝜈,bb + 𝜅𝜈,bf + 𝜅𝜈,ff + 𝜎𝜈,C + 𝜎𝜈,e + 𝜎𝜈,R (4.30)

→ True absorption is dominant in most stellar gases
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Sources of opacity – bound-bound transitions

atom absorbs a photon and becomes excited

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html
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Sources of opacity – bound-free transitions

ionizing absorption: if a photon has enough energy, its absorption can knock an
electron free from an atom and send it off with the leftover energy in kinetic form

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html
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Sources of opacity – free-free transitions

When a free electron happens to be passing by a nucleus, it may absorb a pho-
ton (as opposed to scattering it). We call this a ”free-free” or bremsstrahlung
process.

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html
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Sources of opacity – (Thomson) scattering

A single, isolated electron cannot absorb a passing photon, but it can scat-
ter it into some other direction. Scattering can also happen at atoms, ions and
molecules.

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html

http://spiff.rit.edu/classes/phys440/lectures/opacity/opacity.html
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Absorption due to ionization

de Boer & Seggewiss 2008

Lyman series: wavelengths between 900–1200 Å (ultraviolett)

Balmer series:
wavelengths between 3700–6500 Å (optical)

Paschen series: wavelengths between 8200–18 700 Å (infrared)
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• Atoms are ionized by photons with
E𝛾 = h𝜈 > Eion

→ E𝛾 = Eion + 1
2mev2

e + 1
2mionv2

ion
→ Eion depends on excitation state of

atom
→ bound-free (b-f) transition

• reverse process: recombination (f-b),
photon produced

• ionization takes place for
𝜈 > 𝜈ion = Eion/h
→ sharp depression of continuum:
ionization edge
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Absorption due to ionization

Corti et al. 2013, IBVS,

• ionization takes place for
𝜈 > 𝜈ion = Eion/h
→ sharp depression of continuum:
ionization edge

→ Hydrogen-like atoms:

𝜈edge = RZ 2 1
n2

R Rydberg constant, Z nuclear
charge

→ Helium: 𝜈edge ≃ 4
n2

→ Hydrogen: 𝜈edge ≃ 1
n2

T ≥ 20 000 K : hydrogen fully ionized, ionization edges disappear
T ≤ 6 000 K : hydrogen not ionized to level n = 2 Balmer and higher n absorp-
tion edges not present

Metals are less abundant in most stars and have lots of transitions and excitation
stages → ionization edges weaker
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Absorption due to H− dissociation

At temperature of 5000 to 6000 K most
of the metals singly ionized

• Lots of electrons freed
• H− anions created: n(H−) ≃ 3 ×

10−8n(H)
• binding energy 0.75 eV → easily

dissociated

→ Important source of absorption in the infrared range (around 16500 Å)
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Absorption due to molecule dissociation

Aller 1963

At low temperatures < 5000 K
molecules (H2, CO, TiO, ..) present
in the stellar atmospheres

• molecules are dissociated by pho-
tons with E𝛾 = h𝜈 > Ediss

• molecule AB is dissociated into
atoms A and B: AB +h𝜈diss → A+B

• Energy is taken up to dissociate and
kinetic energy as well as excitation
energy: E𝛾 = Ediss + Ekin + Eexc

• Probability given by the dissociation
constant

KAB =
PAPB

PAB
= kT

nAnB

nAB

assuming ideal gas PV = nkT
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Absorption due to free-free transitions

At higher temperatures and higher electron densities, electrons passing by ions
are accelerated in the Coulomb field and then radiate Coulomb-Bremsstrahlung

• Free-free (f-f) transition → free-free radiation
• energy can also be absorbed from the photon-field leading to acceleration

(free-free absorption)
• Absorption coefficient (fully ionized gas (stellar interior), solar composition):

𝜅𝜈,ff = 1.32 × 10−2 n2
e

T 3/2

1
𝜈2g

g ≃ 1 Gaunt correction factor
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Opacity due to scattering

Resonant scattering on atoms and ions: absorption and instantaneous re-
emission of the photon around the frequency of an transition 𝜈0 (absorption line)

𝜎𝜈,R =
8𝜋e4

3m2
ec4

(︂
𝜈

𝜈0

)︂4

N

Photon scattered by electrons (Thomson scattering) or molecules (Rayleigh
scattering)

𝜎e =
8𝜋e4

3m2
ec4

ne = 6.65 × 10−25ne

→ Thomson scattering important in hot atmospheres because of the higher
electron density ne

Compton scattering: Photons scattered by relativistic electrons gain energy
→ important in stellar interiors
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Total opacity

Bound-bound and

bound-free transitions

Free-free transitions

Electron scattering

6 6.5 7 7.5 8
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Total opacity

0

Frequency ν

O
pa

ci
ty
κ

bound-bound
bound-free
free-free
Thomson scattering
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Total opacity

de Boer & Seggewiss 2008
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Emission

Radiation continuum emitted by hot gas, can be described by Planck function in-
side the star as gas is in LTE

j𝜈 = B𝜈(T )

Further sources:

• Free-free transitions or Coulomb-Bremsstrahlung
→ Electrons are accelerated and emit radiation

• Free-bound transitions or recombination radiation

Emission only significant, if the gas deviates from LTE
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Spectral lines

Lyman series: wavelengths between 900–1200 Å (ultraviolett)

Balmer series:
wavelengths between 3700–6500 Å (optical)

Paschen series: wavelengths between 8200–18 700 Å (infrared)
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Spectral lines
https://reddwarfs.wordpress.com/tag/spectra/

The shape of spectral lines is determined
by quantum mechanics and the bulk
properties of the gas

de Boer & Seggewiss 2008

https://reddwarfs.wordpress.com/tag/spectra/
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Line broadening mechanisms – Natural broadening

Wikipedia

Natural broadening: Lifetime of an excited state related to the uncertainty of
the energy (uncertainty principle ΔEΔt = hΔ𝜈Δt ≥ h

4𝜋)

→ Lorentzian line profile with very small width Δ𝜆 ≈ 10−4 Å
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Line broadening mechanisms – Pressure broadening

Wikipedia

Pressure broadening: Interaction of the emitting atom with the electric field of
the surrounding plasma. Transition changed due to the Stark effect

→ Lorentzian line profile width depends on pressure Δ𝜆 ≈< 0.1... > 1000 Å
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Line broadening mechanisms – Pressure broadening

Niemczura, Smalley & Pych 2014

H𝛽 for
Teff = 7000, 10 000,
25 0000 K and
log g = 2.0 (black), 3.0 (red),
4.0 (green), 5.0 (blue)

Dependent on the surface gravity of the stars
→ Distinction between dwarfs and giants possible
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Line broadening mechanisms – thermal Doppler broadening

Wikipedia

Thermal Doppler broadening: Emitting atoms have a velocity distribution de-
pendent on the plasma conditions

→ Doppler effect causes Gaussian line broadening mostly dependent on tem-
perature
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Line profile
Voigt profile (𝛼, w) : Convolution of Gaussian (thermal) function 𝜑(Δ𝜈) and
Lorentzian (pressure) function Ψ(𝜈)

𝜑(Δ𝜈) =
1

Δ𝜈D
√
𝜋

e−
(︁

Δ𝜈
Δ𝜈D

)︁2

𝜓(𝜈) =
1
𝜋

𝛾/4𝜋
(𝜈 − 𝜈0)2 + (𝛾/4𝜋)2

+∞∫︁
−∞

𝜓(𝜈Δ𝜈)~ 𝜑(Δ𝜈)d(Δ𝜈)

=
1

Δ𝜈D
√
𝜋

⎡⎢⎣ 𝛾

4𝜋2

+∞∫︁
−∞

e−
(︁

Δ𝜈
Δ𝜈D

)︁2

(𝜈 − 𝜈0 −Δ𝜈)2 + (𝛾/4𝜋)2d(Δ𝜈)

⎤⎥⎦ =
1

Δ𝜈D
√
𝜋

H(𝛼, w)

𝛼 =
𝛾

4𝜋Δ𝜈D
w =

𝜈 − 𝜈0

Δ𝜈D

𝛾 damping constant (pressure dependent), Δ𝜈D = 𝜈
c

√︁
2kt
𝜇 Doppler broadening
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Line profile

Wikipedia
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Line shape and strength

shape due to frequency dependent absorption coefficient of the absorption line

𝜅line
𝜈 =

𝜋e2

mc
nlflu

1
Δ𝜈D

√
𝜋

H(𝛼, w)

nl number density of atoms in the lower state l
flu probability for a transition from the lower state l to the upper state u

with ΔE = Eu − El = h𝜈 → oscillator strength

Continuum intensity Icont is absorbed

I𝜈 = Icont
𝜈 e−𝜏 𝜏 ∼ H(𝛼, w)

Strength of spectral lines measured as
equivalent width

W𝜆 =
∫︁

Icont − I𝜆
Icont d𝜆

W𝜆

𝜆
=

W𝜈

𝜈
→ W𝜈 =

∫︁
line

1 − e−𝜏𝜈d𝜈

Open University
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Line shape and strength

small optical depth in the line (𝜏 ≪ 1 and/or 𝛼 ≪ 1)

→ 4𝜋Δ𝜈D ≫ 𝛾:
Doppler- broadening is much more important than the effect of the damping

→ absorption profile shows, only the central part, the Doppler core of the line

W𝜈 =
∫︁

line
1 − e−𝜏𝜈d𝜈 = (for small 𝜏 ) =

∫︁
𝜏𝜈d𝜈 =

+∞∫︁
0

s2∫︁
s1

𝜅𝜈dsd𝜈

→ assuming material doing the absorption to be constant over the line of sight

W𝜈 =
∫︁
𝜏𝜈d𝜈 =

+∞∫︁
0

𝜅𝜈
nl

d𝜈 ·
s2∫︁

s1

nlds =
𝜋e2

mc
flu · nlL =

𝜋e2

mc
Nlflu

∫︀
nlds = nlL = Nl column density of the material, wavelength 𝜆 = c/𝜈

→ W𝜆

𝜆
=
𝜋e2

mc2Nlflu𝜆
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Line shape and strength

very large optical depth in the line (𝜏 ≫ 1 and/or 𝛼 ≫ 1)

→ damping more important than Doppler broadening
→ shape shows wide damping wings: H(𝛼, w) ≃ 𝛼√

𝜋w2

𝜏𝜈 =

s2∫︁
s1

𝜋e2

mc
nlflu

1
Δ𝜈D

√
𝜋

𝛼√
𝜋w2ds

→ Separating integration over line of sight and frequency

W𝜆

𝜆
=
𝜋2e2

mc2

√︂
8

3𝜆

√︀
Nlflu𝜆 (4.31)

Equivalent width proportional to square root of the amount of material and the
line constant f𝜆

Intermediate 𝜏 and/or 𝛼→ Numerical integration: W𝜆

𝜆 =≈ log Nlflu𝜆
→ Equivalent width proportional to logarithm of the amount of material and the
line constant f𝜆
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Curve of growth

de Boer & Seggewiss 2008

b = 2
√

2Δ𝜈D(c/𝜈0) half width half maximum of Doppler broadening
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Boltzmann equation

In (local) thermodynamic equilibrium all processes are in balance

→ Population of energy levels determined by statistics
→ Distribution of particles in the possible energetic states A and B given by

Boltzmann equation
nA

nB
=

gA

gB
e−ΔEAB

kT (4.32)

nA/B number density, gA/B statistical weight, ΔEAB = EA − EB

Ratio of particles in a given state to all particles of that kind

ntotal =
∑︁

i

=
n1

g1
·
(︁

g1 + g2e−ΔE12
kT + g3e−ΔE13

kT + ...
)︁
≡ n1

g1
Q(T )e

E1
kT

Q(T ) =
∑︀

i
gie−Ei/kT partition function

⇒ nj

n
=

gj

Q(T )
e− Ej

kT

population number of a given state j relative to total population
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Saha equation

Distribution of particles in two different ionization stages a and b is given by
Saha equation

nb

nq
ne = 2

Qb(T )
Qa(T )

·
(︂

2𝜋mkT
h2

)︂3
2

e
−𝜒ab

kT (4.33)

𝜒ab ionization energy, ne electron number density

• equivalent width of a spectral lines depends on Nlflu𝜆
• fraction of the strength of two spectral lines with similar flu𝜆 in different excita-

tion/ionization stages depends (mostly) on T
→ Excitation/Ionization temperature can be determined

• Curve of growth (COG) analysis
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Molecular bands
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Other features in stellar spectra 2

Molecular bands

• In cool stellar atmospheres atoms can form molecules, which contribute to
the continuous (dissociation) and line opacity

• Molecules have additional energy levels due to vibration and rotation and
form bands instead of single lines (e.g. G-band of CH molecule)

• In dense atmospheres, atoms can continuously form short-lived quasi-
molecules, which quickly dissolve (e.g. H2,H+

2 ,He2), but cause spectral fea-
tures
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Molecular bands

Loidl et al. 2001 Carbon-rich AGB star
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Magnetic fields

Kepler et al. 2013, MNRAS, 429, 2934

In stellar atmospheres with
strong magnetic fields, spectral
lines split based on interaction
of the field and the electron spin
(Zeeman effect)

𝛿𝜆 = g
e𝜆2

4𝜋mc2H (4.34)

H magnetic field strength

Magnetic white dwarfs with
strong magnetic fields
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Rotation

Gray 2008
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Other features in stellar spectra 6

Rotation

Gray 2008
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Other features in stellar spectra 7

Rotation

Gray 2008
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Other features in stellar spectra 8

Rotation

Gray 2008
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Other features in stellar spectra 9

Rotation

Gray 2008
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Rotation

Stellar rotation leads to Doppler-shifts of the spectral lines across the stellar sur-
face

→ Integration over the entire visible surface leads to rotational broadening of
the spectral lines

b =
𝜆

c
R𝜔 sin i → b

𝜆
=

vrot

c
sin i

b maximum FWHM broadening, 𝜔 angular rotational velocity, vrot rotational ve-
locity at equator, i inclination angle of the rotation axis
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P Cygni profiles: signs of stellar wind

• Characteristic P Cygni profiles caused by
optically thick stellar winds

• Δ𝜆/𝜆0 = v∞/c, terminal wind velocity v∞
• Mass loss rate Ṁ determined with detailed

models
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Model atmosphere calculation

• temperature and density stratification of a model atmosphere is calculated
by solving the basic equations of radiative transfer, hydrostatic equilibrium, ra-
diative equilibrium, statistical equilibrium, charge and particle conservation it-
eratively

• Approximations have to be made dependent on the type of atmosphere (ge-
ometry, LTE/NLTE, static/wind, opacity sources)

• spectrum synthesis code take a previously computed atmospheric structure
and solve, frequency-by-frequency, the radiative transfer equation, with a suf-
ficiently high resolution in the frequency space to provide a reliable predicted
spectrum to be compared with observations.

• Extended line lists containing of the order of 107 − 109 of spectral line data
are necessary
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Model atmosphere calculation

Przybilla et al. 2011, A&A, 445, 1099
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Model atmosphere calculation 3

Model atmosphere calculation

Moore & Merrill 1968 t
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Model atmosphere calculation 4

Model atmosphere calculation

Przybilla et al. 2011, A&A, 445, 1099



4–88

Model atmosphere calculation 5

Model atmosphere calculation

Naslim et al. 2012, MNRAS, 423, 3031

Models are fitted to observed
spectra
Multidimensional model grids or
individual models
Spectroscopic parame-
ters (model dependent):
Teff Effective temperature
log g Surface gravity
n(X )/n(H) Elemental abundances
[M/H] Scaled metallicity (w.r.t Sun)
Vrot sin i Projected rotational velocity
v∞ Projected rotational velocity
Ṁ Mass loss rate
H Magnetic field strength
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Stellar classification

M

K

G

F
A
B
O

4000 4500 5000 5500 6000 6500 7000
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Annie Cannon introduced the Harvard classification scheme with seven spectral
types (O, B, A, F, G, K, M) in 1901.
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Harvard classification

The Harvard classification is based on the presence/absence and strength of
absorption lines in low-resolution optical spectra:

Ionized
helium

Neutral
helium

Hydrogen Ionized
metals

Neutral
metals

Molecules

O B A F G K M
Spectral class

R
el

at
iv

e
st

re
ng

th
of

lin
es
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Harvard classification = temperature sequence

It turned out later that the spectral classes are actually a temperature sequence:

Class Most prominent spectral features Temperature
O Ionized helium 45 000 – 25 000 K
B Neutral helium lines 25 000 – 11 000 K
A Hydrogen lines 11 000 – 7500 K
F Ionized metals 7500 – 6000 K
G Ionized and neutral metals 6000 – 5000 K
K Neutral metals and molecules 5000 – 3500 K
M Molecular bands 3500 – 2200 K

The ordering of the letters is due to historic reasons. Also for historic reasons,
the hotter stars are sometimes called “early-type stars” while the cooler ones are
called “late-type stars”. This has nothing to do with age.
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Link between spectral class and temperature

• Spectral classes based on absorption lines in optical spectra
• atom in ionization stage r and absorption line from transition from lower state
𝜖r,l to upper state 𝜖r,u
→ strength S of line scales with number of absorbers nr,l: S ∝ nr,l

• likelihood to find an atom in state given by Boltzmann distribution 𝜖r,l:
nr,l ∝ nr exp(−𝜖r,l/(kT ))

• degree of ionization given by the Saha equation:
nenr+1

nr
∝ (2𝜋mekT )3/2

h3 exp(−(𝜖r+1−𝜖r )
kT ) → nr = nr (T )

S ∝ nr (T ) exp(−𝜖l/(kT )) (4.35)

→ interplay between excitation and ionization effect
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Link between spectral class and temperature – Hydrogen as example

Lyman series: wavelengths between 900–1200 Å (ultraviolett)

Balmer series:
wavelengths between 3700–6500 Å (optical)

Paschen series: wavelengths between 8200–18 700 Å (infrared)

0
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)

• Optical transitions only if first excited state is populated
• low temperatures, most atoms are in the ground state (Lyman series, UV)
• with increasing temperature first excited state gets populated (Balmer series,

optical)
• for high temperatures hydrogen atoms get ionized, less atoms in first excited

state
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Luminosity classes

Wikipedia http://ned.ipac.caltech.edu/level5/Gray/frames.html

http://ned.ipac.caltech.edu/level5/Gray/frames.html
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Stellar structure equations
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Stellar structure equations 1

Mathematical preliminaries

Gradient of scalar field Divergence of a vector field

Scalar field: scalar value to every point vector field: vector to each point in a

in a space (e.g. temperature, subset of space (e.g. velocity field in

gravitational potential) a fluid)
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Stellar structure equations 2

Mathematical preliminaries

Spherical polar coordinates: scalar field V and vector field F

F = Frar + F𝜃a𝜃 + F𝜑a𝜑 (5.1)

gradient of V

∇V =
𝜕V
𝜕r

ar +
1
r
𝜕V
𝜕𝜃

a𝜃 +
1

r sin 𝜃
𝜕V
𝜕𝜑

a𝜑 (5.2)

divergence of F

div F =
1
r2
𝜕

𝜕r
(r2Fr ) +

1
r sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃F𝜃) +

1
r sin 𝜃

𝜕F𝜑
𝜕𝜑

(5.3)

Laplacian of V : ∇2V = div (∇V )

∇2V =
1
r2
𝜕

𝜕r

(︂
r2𝜕V
𝜕r

)︂
+

1
r2 sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕V
𝜕𝜑

)︂
+

1
r2 sin2 𝜃

𝜕2V
𝜕𝜑2 (5.4)

horizontal component of vector F

Fh = F𝜃a𝜃 + F𝜑a𝜑 (5.5)
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Coordinates and symmetries

Stars are clumps of gas, which are stabilized by the equilibrium of self-gravity
and pressure

→ Spherically symmetric configuration

→ 3D problem reduces to 1D problem

→ To characterize the full star and its evolution, one needs a temporal coordi-
nate t and a spatial coordinate
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Stellar structure equations 4

Coordinates and symmetries

Eulerian description

• Spatial coordinate is distance r from the
stellar center ⇒ 0 ≤ r ≤ R

• m(r , t) mass of sphere of radius r at the
time t

⇒ dm = 4𝜋r2𝜌dr − 4𝜋r2𝜌vdt

𝜌(r , t) density, v radial velocity

Conservation of mass



5–6

Stellar structure equations 5

Coordinates and symmetries

• Mass in sphere r + dr at constant t
𝜕m
𝜕r

= 4𝜋r2𝜌 (5.6)

• Mass flow out of sphere r + dr due to ra-
dial velocity v within dt

𝜕m
𝜕t

= −4𝜋r2𝜌v (5.7)

Conservation of mass (basic equation)
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Coordinates and symmetries

𝜕

𝜕t

(︂
𝜕m
𝜕r

)︂
=
𝜕

𝜕t
4𝜋r2𝜌

𝜕

𝜕r

(︂
𝜕m
𝜕t

)︂
=
𝜕

𝜕r
[−4𝜋r2𝜌v ]

Symmetry

𝜕

𝜕t

(︂
𝜕m
𝜕r

)︂
=
𝜕

𝜕r

(︂
𝜕m
𝜕t

)︂
⇒ 4𝜋

𝜕

𝜕t
r2𝜌 = −4𝜋

𝜕

𝜕r
r2𝜌v

r independent of t

⇒ 𝜕𝜌

𝜕t
= − 1

r2
𝜕(𝜌r2v )
𝜕r

= −∇ · (𝜌v ) (5.8)

Continuity equation of hydrodynamics
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Coordinates and symmetries

Advantageous as the mass of a
star varies much less than the
radius during stellar evolution
Mmax
Mmin

∼ 2−10, Rmax
Rmin

∼ 103−108

Lagrangian description

• Spatial coordinate is mass m contained
in a concentric sphere

⇒ m(r , t), 0 ≤ r ≤ R

• m(0, t) = 0 mass at the center,

m(R, t) = M total mass

Coordinate transformation from (r , t) to
(m, t)

𝜕

𝜕m
=
𝜕

𝜕r
· 𝜕r
𝜕m(︂

𝜕

𝜕t

)︂
m

=
𝜕

𝜕r
·
(︂
𝜕r
𝜕t

)︂
m

+
(︂
𝜕

𝜕t

)︂
r

transformation between operators

𝜕r
𝜕m

=
1

4𝜋r2𝜌
⇒ 𝜕

𝜕m
=

1
4𝜋r2𝜌

𝜕

𝜕r
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Gravitational field

Inside a spherically symmetric body, the ab-
solute value of gravitational acceleration g
at r does not depend on the mass elements
outside r
The gravitational potential Φ is a solution of
the Poisson equation

∇2Φ =
1
r2
𝜕

𝜕r

(︂
r2𝜕𝜑

𝜕r

)︂
= 4𝜋G𝜌

⇒ g =
𝜕Φ

𝜕r
=

Gm
r2

with G the gravitational constant

⇒ Φ(r ) =

r∫︁
0

Gm
r2 dr + constant

Φ → 0 for r → ∞
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Hydrostatic equilibrium

Gravitational force acting on shell at r with
thickness dr inward

fG =
FG

dA
= −g

dm
dA

= −g𝜌dr

Balanced by buoyancy force due to pres-
sure difference outward

FB = PedA − PidA = −dA
𝜕P
𝜕r

dr

In equilibrium, the sum of the two forces has

to be zero (FG + FB
!= 0)

→ 𝜕P
𝜕r

= −g𝜌⇔ 𝜕P
𝜕m

= − g
4𝜋r2 (5.9)

Equation of hydrostatic equilibrium (ba-
sic equation)
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Equation of motion

Star undergoes accelerated radial motion

0 ̸= −𝜕P
𝜕m

− g
4𝜋r2

Mass shell will be accelerated

dm
4𝜋r2

𝜕2r
𝜕t2 = fG + fB = −𝜕P

𝜕m
dm − g

dm
4𝜋r2

1
4𝜋r2

𝜕2r
𝜕t2 = −𝜕P

𝜕m
− g

4𝜋r2 (5.10)

Equation of motion
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Free-fall timescale

Reaction of the star to vanishing pressure

1
4𝜋r2

𝜕2r
𝜕t2 = − g

4𝜋r2

Exercise sheet III
Calculation of free-fall timescale 𝜏ff
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Explosive timescale

Reaction of the star to vanishing gravity

1
4𝜋r2

𝜕2r
𝜕t2 = −𝜕P

𝜕m
Lagrangian/Eulerian transformation

4𝜋r2𝜕P
𝜕m

=
𝜕P
𝜕r

1
𝜌

=
P̄
R�̄�

⇒ 𝜕2r
𝜕t2 = − P̄

R�̄�
Defining the characteristic explosion time-
scale 𝜏expl ⃒⃒⃒⃒

𝜕2r
𝜕t2

⃒⃒⃒⃒
=

R
𝜏2

expl
=

P̄
R�̄�

⇒ 𝜏expl ≈ R
(︂
�̄�

P̄

)︂1/2

𝜏expl of the order of the time a sound wave needs to travel from center to surface
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Hydrostatic time-scale

In near hydrostatic equilibrium

𝜏expl ≈ 𝜏ff = 𝜏hydr

𝜏hydr hydrostatic time-scale typical time in
which a (dynamically stable) star reacts on
a slight perturbation of hydrostatic equilib-
rium

𝜏hydr ≈
(︂

R3

GM

)︂1/2

≈ 1
2

(G𝜌)
−1/2

Much shorter than stellar evolution times
108 − 1010 yr

see Exercise sheet III
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Virial theorem

Integrating the basic equation of hydrostatic equilibrium 𝜕P
𝜕m = − g

4𝜋r2 over dm
from center to surface and multiplying by the Volume V = 4/3𝜋r3

⇒
M∫︁

0

Gm
r

dm = 3

P∫︁
0

P
𝜌

dm (5.11)

Derivation Exercise sheet III

EG gravitational energy: Potential energy of all mass elements dm of the star
due to the gravitational field

EG := −
M∫︁

0

Gm
r

dm

Energy needed to expand all mass shells to infinity
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Virial theorem

What is the meaning of 3
P∫︀
0

P
𝜌dm?

Assuming an ideal gas with equation of state

P = nkT =
R
𝜇
𝜌T

with 𝜌 = n𝜇mu, n number of particles per volume, 𝜇 mean molecular weight, mu

atomic mass unit, k Boltzmann constant, R = k
mu

universal gas constant

→ P
𝜌

=
R
𝜇

T = (cP − cV)T = (𝛾 − 1)cV)T

with cV,P specific heat capacities for constant V or P, R
𝜇 = cP − cV, 𝛾 = cP

cV
for

monoatomic gas: 𝛾=5
3

⇒ P
𝜌

=
2
3

u

with u = cVT internal energy per unit mass
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Virial theorem

Virial theorem for monoatomic gas
M∫︁

0

Gm
r

dm = 2

M∫︁
0

udm

EG = −2Ei (5.12)

Ei internal energy :=
M∫︀
0

udm

EG gravitational energy := −
M∫︀
0

Gm
r dm

General virial theorem

𝜁Ei + EG = 0 (5.13)

where 𝜁u = 3P
𝜌

Ideal gas 𝜁 = 3(𝛾 − 1), monoatomic 𝜁 = 2
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Virial theorem
W Total energy

W = Ei + EG

for gravitationally bound systems W < 0

W = (1 − 𝜁)Ei =
𝜁 − 1
𝜁

EG

All energy forms are coupled!

Energy loss via radiation with luminosity L
dW
dt

+ L = 0

⇒ L = (𝜁 − 1)
dEi

dt
= −𝜁 − 1

𝜁

dEG

dt
Contraction dEG

dt < 0 and ideal monoatmoic gas L = −1
2

dEG
dt = dEi

dt

→ Half of the energy radiated away, half heats the star
→ Stars in hydrostatic equilibrium have a negative heat capacity, become hotter
upon losing energy
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Kelvin-Helmholtz/ thermal timescale

Evolutionary time for a contracting and cooling star

𝜏KH :=
|EG|

L
≈ Ei

L

Rough estimate for |EG| ≈ Gm̄2

r̄ ≈ GM2

2R

𝜏KH ≈ GM2

2RL
For the Sun 𝜏KH ≈ 1.6 × 107 yr



5–20

Thermodynamic relations 1

Thermodynamic relations
First law of thermodynamics

dq = du + PdV (5.14)

q heat per unit mass, u internal energy per unit mass, V = 1/𝜌 specific volume
per unit mass

General equations of state 𝜌 = 𝜌(P, T , (Xi)), u = u(𝜌, T , (Xi))
→ d𝜌/𝜌 = 𝛼dP/P − 𝛿dT/T
Derivatives with respect to P, T , other quantity stays constant

𝛼 =
(︂
𝜕 ln 𝜌
𝜕 ln P

)︂
T

= −P
V

(︂
𝜕V
𝜕P

)︂
T

𝛿 =
(︂
𝜕 ln 𝜌
𝜕 ln T

)︂
P

= −T
V

(︂
𝜕V
𝜕T

)︂
P

cP, cV specific heats
cP =

(︂
dq
dT

)︂
P

=
(︂
𝜕u
𝜕T

)︂
P

+ P
(︂
𝜕V
𝜕T

)︂
P

(5.15)

cV =
(︂

dq
dT

)︂
V

=
(︂
𝜕u
𝜕T

)︂
V
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Thermodynamic relations
Total derivative

du =
(︂
𝜕u
𝜕V

)︂
T

dV +
(︂
𝜕u
𝜕T

)︂
V

dT

→ change of the specific entropy ds = dq/T

ds =
dq
T

=
1
T

[︂(︂
𝜕u
𝜕V

)︂
T

+ P
]︂

dV +
1
T

(︂
𝜕u
𝜕T

)︂
V

dT

Symmetry of total derivative: 𝜕2s/𝜕T𝜕V = 𝜕2s/𝜕V𝜕T

𝜕

𝜕T

[︂
1
T

(︂
𝜕u
𝜕V

)︂
T

+
P
T

]︂
=

1
T

𝜕2u
𝜕T𝜕V

⇒
(︂
𝜕u
𝜕V

)︂
T

= T
(︂
𝜕P
𝜕T

)︂
V
− P

analogue you can derive
(︀
𝜕u
𝜕T

)︀
P and use it for calculating the specific heats:

cP − cV =
(︂
𝜕u
𝜕T

)︂
P

+ P
(︂
𝜕V
𝜕T

)︂
P
−
(︂
𝜕u
𝜕T

)︂
V

=
(︂
𝜕V
𝜕T

)︂
P

(︂
𝜕P
𝜕T

)︂
V

T

using the definitions for 𝛼 and 𝛿(︂
𝜕P
𝜕T

)︂
V

= −
(︀
𝜕V
𝜕T

)︀
P(︀

𝜕V
𝜕P

)︀
T

=
P𝛿
T𝛼

⇒ cP−cV = T
(︂
𝜕V
𝜕T

)︂
P

P𝛿
T𝛼

=
P𝛿2

𝜌T𝛼
=

R
𝜇

(perfect gas)
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Thermodynamic relations 3

Thermodynamic relations
rewrite the first law of thermodynamics in Terms of T and P

dq = du+PdV =
(︂
𝜕u
𝜕T

)︂
V

dT+
[︂(︂

𝜕u
𝜕V

)︂
T

+ P
]︂

dV =
(︂
𝜕u
𝜕T

)︂
V

dT +T
(︂
𝜕P
𝜕T

)︂
V

dV

using the previous relations and use 𝜌 = 1/V instead of V (Kippenhahn &
Weigert 2012 for more details)

dq = cPdT − 𝛿

𝜌
dP (5.16)

next we define the adiabatic temperature gradient ∇ad:

∇ad :=
(︂
𝜕 ln T
𝜕 ln P

)︂
s

valid for constant entropy → ds = dq/T = 0

0 = dq = cPdT − 𝛿

𝜌
dP ⇒

(︂
dT
dP

)︂
s

=
𝛿

𝜌cP

∇ad ≡
(︂

P
T

dT
dP

)︂
s

=
P𝛿

T𝜌cP
(5.17)
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Thermodynamic relations 4

Mean molecular weight and perfect gas

Equation of state for perfect gas consisting of n particles per unit volume with
molecular weight 𝜇 having a density of 𝜌 = n𝜇mu (R = k

mu
)

P = nkT =
R
𝜇
𝜌T

Gas in stellar interiors is usually fully ionized → Mixture of nuclei and free elec-
tron gas, can be treated like a one-component gas, if all gases are perfect

Mixture of i kinds of fully ionized nuclei with weight fractions Xi , molecular
weight 𝜇i , charge number Zi , number of nuclei per volume ni , and partial density
𝜌i (Mass of the electrons is neglected here)

Xi = 𝜌i/𝜌 ni =
𝜌i

𝜇imu
=

𝜌

mu

Xi

𝜇i

Total pressure P is sum of the partial pressures due to the nuclei Pi and the
electrons Pe

P = Pe +
∑︁

i

Pi =

(︃
ne +

∑︁
i

ni

)︃
kT
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Thermodynamic relations 5

Mean molecular weight and perfect gas

Contribution of one completely ionized atom to the total number of particles is
one nucleus and Zi electrons

⇒ n = ne +
∑︁

i

ni =
∑︁

i

(1 + Zi)ni =
∑︁

i

(1 + Zi)
𝜌

mu

Xi

𝜇i

→ Equation of state

P = nkT =
∑︁

i

k
mu

Xi(1 + Zi)
𝜇i

𝜌T =
R
𝜇
𝜌T (5.18)

Mean molecular weight 𝜇:

𝜇 =

(︃∑︁
i

Xi(1 + Zi)
𝜇i

)︃−1

(5.19)
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Thermodynamic relations 6

Thermodynamic quantities for perfect, monoatomic gas

Internal energy is kinetic energy of translational motion of the particles only

u =
3
2

kT
n
𝜌

cP =
5
2

R
𝜇

cV =
3
2

R
𝜇

∇ad =
R
𝜇cP

=
2
5

𝛼 = 𝛿 = 1

adiabatic changes

𝛾ad :=
(︂
𝜕 ln P
𝜕 ln 𝜌

)︂
s

=
cP

cV
=

1
𝛼− 𝛿∇ad

=
5
3

(5.20)
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Stellar structure equations 1

Conservation of energy
Net energy l(r ) per second passing outward
through a sphere with radius r
l(0) = 0 at center, l(R) = L at surface
→ in between dependent of distribution of
sources and sinks of energy

Stationary case dl due to release of nu-
clear energy only, 𝜖 nuclear energy per unit
mass and second

dl = 4𝜋r2𝜌𝜖dr = 𝜖dm ⇒ 𝜕l
𝜕m

= 𝜖

Non-Stationary case dl can change its
internal energy and exchange mechanical
work

dq =
(︂
𝜖− 𝜕l

𝜕m

)︂
dt

dq heat per unit mass added to shell in dt
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Stellar structure equations 2

Conservation of energy

du + PdV 5.14= dq =
(︂
𝜖− 𝜕l

𝜕m

)︂
dt 5.16= cPdT − 𝛿

𝜌
dP

⇒ 𝜕l
𝜕m

= 𝜖− 𝜕u
𝜕t

− P
𝜕V
𝜕t

V=1/𝜌
= 𝜖− 𝜕u

𝜕t
− P
𝜌2
𝜕𝜌

𝜕t

⇒ 𝜕l
𝜕m

= 𝜖− cP
𝜕T
𝜕t

+
𝛿

𝜌

𝜕P
𝜕t

(5.21)

Conservation of energy (basic equation)

terms containing the time derivatives combined in a source function

𝜖g := −T
𝜕s
𝜕t

ds=dq/T
= −cP

𝜕T
𝜕t

+
𝛿

𝜌

𝜕P
𝜕t

5.17= −cPT
(︂

1
T
𝜕T
𝜕t

− ∇ad

P
𝜕P
𝜕t

)︂
𝜕l
𝜕m

= 𝜖 + 𝜖g
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Stellar structure equations 3

Conservation of energy

Neutrino losses have to be considered. Formed by nuclear energy reactions or
other reactions, but do not interact with stellar material and act as energy sink.
Complete energy equation:

𝜕l
𝜕m

= 𝜖− 𝜖𝜈 + 𝜖g (5.22)

The energy per second carried away from the star by neutrinos is often called
the neutrino luminosity:

L𝜈 :=

M∫︁
0

𝜖𝜈dm
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Stellar structure equations 4

Nuclear timescale

Star balances its energy loss L essentially by release of nuclear energy. If L is
constant this can go on for a nuclear timescale 𝜏n:

𝜏n :=
En

L
(5.23)

En total nuclear energy

Example Sun completely consisting of hydrogen:
En = QM⊙ = 6.3 × 1018erg g−1M⊙ = 1.25 × 1052erg, L = 4 × 1033erg/s
⇒ 𝜏n = 1011 yr

For stars with stable nuclear burning of hydrogen or helium

𝜏n ≫ 𝜏KH ≫ 𝜏hydr

In this case, the equation of energy conservation simplifies to

𝜕l
𝜕m

≈ 𝜖
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Energy transport 1

Transport of energy
• energy the star radiates away replenished from reservoirs situated in the very

hot central region → effective transfer of energy through the stellar material
• possible due to a non-vanishing temperature gradient in the star
• Depending on the local physical situation, transfer can occur mainly via radia-

tion, conduction, and convection
• ”particles” (photons, atoms, electrons, ”blobs” of matter) are exchanged be-

tween hotter and cooler parts
• their mean free path together with the temperature gradient of the surround-

ings will play a decisive role
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Energy transport 2

Energy transport by radiation

Mean free path lph of a photon in the stellar interior

lph =
1
𝜅𝜌

(5.24)

𝜅 average absorption coefficient
For sun: 𝜅 ≈ 1 cm2g−1, 𝜌⊙ ≈ 3M⊙/4𝜋R3

⊙ ⇒ lph ≈ 2 cm
Stellar interiors are extremely opaque
Mean free path of photons is much smaller than stellar radius
→ Energy transport can be simplified as diffusion process

typical Temperature gradient

ΔT
Δr

≈ Tcenter − Tsurface

R⊙
≈ 107 K − 104 K

R⊙
≈ 1.4 × 10−4 K cm−1 (5.25)

differences of temperature very small → in stellar interiors very close to thermal
equilibrium, radiation very close to black body
energy density of radiations u ∼ T 4

→ relative anisotropy 4ΔT/T ∼ 10−10: carrier of the stars’ huge luminosity
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Energy transport 3

Energy transport by radiation

diffusive flux j of particles (per unit area and time) between different particle
densities n

j = −D∇n (5.26)

Coefficient of diffusion D = 1
3vlp with v mean velocity and lp mean free path of

the particles
transition from particles to radiation

n → U = aT 4

j → F
lp → lph

v → c
Energy density of radiation U (a radiation density constant), F radiative flux

Spherical symmetry
Fr = |F| = F

∇U → 𝜕U
𝜕r
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Energy transport 4

Energy transport by radiation

⇒ 𝜕U
𝜕r

= 4aT 3𝜕T
𝜕r

with 5.24 and 5.26 follows for the flux:

F = −4ac
3

T 3

𝜅𝜌

𝜕T
𝜕r

(5.27)

using the local luminosity l = 4𝜋r2F we can solve for the temperature gradient

𝜕T
𝜕r

= − 3
16𝜋ac

𝜅𝜌l
r2T 3 ⇔ 𝜕T

𝜕m
= − 3

64𝜋2ac
𝜅l

r4T 3 (5.28)

Basic equation for radiative transport of energy
Only valid in the stellar interior!
𝜅 needs to be a mean over all frequencies (e.g. Rosseland mean)

𝜕T
𝜕P

=
𝜕T/𝜕m
𝜕P/𝜕m

𝜕P
𝜕m=− Gm

4𝜋r4
=

3
16𝜋acG

𝜅l
mT 3

∇rad =
(︂

d ln T
d ln P

)︂
rad

=
3

16𝜋acG
𝜅lP
mT 4 (5.29)

Gradient describing the temperature variation with depth
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Energy transport by conduction

Heat conduction: Energy transfer via collisions of particles (electrons, nuclei or
atoms, molecules) in random thermal motion

→ mean free paths and velocities several orders of magnitude less than for pho-
tons

→ in ”ordinary” stellar matter negligible
→ Important for degenerate matter(high densities), e.g. interiors of white dwarfs:

increases velocities and mean free path of electrons
→ Diffusion approximation can be used as well

Fcond = −4ac
3

T 3

𝜅cond𝜌

𝜕T
𝜕r

(5.30)

⇒ F = Frad + Fcd
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Energy transport 6

Stability against convection

Heat and mass transfer occurs via streams of stellar gas

→ Hot gas bubbles rise, while cooler material sinks down
→ Whether or not convection is driven in certain regions of the star depends

on the stability of the material against small perturbations and give rise to
macroscopic local (non- spherical) motions that are also statistically dis-
tributed over the sphere
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Energy transport 7

Stability against convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

Dynamic instability
→ No heat exchange of moving ele-

ments: adiabatic
→ pressure equilibrium with surround-

ing
Change of property of mass element
e with respect to surrounding s for any
quantity A:

DA = Ae − As



5–37

Energy transport 8

Stability against convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

slightly hotter element

DT > 0

No increase in pressure, because ele-
ments will expand immediately

DP = 0

perfect gas with 𝜌 ∼ P/T :

D𝜌 < 0

⇒ Element is lighter than surrounding
material
⇒ Buoyancy force will lift it upward
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Energy transport 9

Stability against convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

Density difference at new position

D𝜌 =
[︂(︂

d𝜌
dr

)︂
e
−
(︂

d𝜌
dr

)︂
s

]︂
dr

For D𝜌 < 0:
Boyancy force Kr = −gD𝜌 > 0 is di-
rected upward
→ perturbation is increased

Unstable!

For D𝜌 > 0:
Boyancy force Kr = −gD𝜌 > 0 is di-
rected downward
→ perturbation is removed

Stable!
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Energy transport 10

Stability against convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

Stability criterion(︂
d𝜌
dr

)︂
e
−
(︂

d𝜌
dr

)︂
s
> 0

Density gradient not part of basic equa-
tions
→ Transformation to temperature gradi-
ents:
Equation of state 𝜌(P, T ,𝜇) in differen-
tial form

d𝜌
𝜌

= 𝛼
dP
P

− 𝛿
dT
T

+ 𝜙
d𝜇
𝜇

Perfect gas 𝛼 = 𝛿 = 𝜙 = 1

𝛼 =
(︂
𝜕 ln 𝜌
𝜕 ln P

)︂
T ,𝜇

𝛿 =
(︂
𝜕 ln 𝜌
𝜕 ln T

)︂
P,𝜇
(5.31)

𝜙 =
(︂
𝜕 ln 𝜌
𝜕 ln𝜇

)︂
P,T
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Energy transport 11

Stability against convection

d𝜌
𝜌

= 𝛼
dP
P

− 𝛿
dT
T

+ 𝜙
d𝜇
𝜇

→ d𝜌
dr

= 𝜌
(︂
𝛼

P
dP
dr

− 𝛿

T
dT
dr

+
𝜙

𝜇

d𝜇
dr

)︂
(︂

d𝜌
dr

)︂
e
−
(︂

d𝜌
dr

)︂
s
> 0

→
(︂
𝛼

P
dP
dr

)︂
e
−
(︂
𝛿

T
dT
dr

)︂
e
+
(︂
𝜙

𝜇

d𝜇
dr

)︂
e
−
(︂
𝛼

P
dP
dr

)︂
s
+
(︂
𝛿

T
dT
dr

)︂
s
−
(︂
𝜙

𝜇

d𝜇
dr

)︂
s
> 0

• d𝜇 change in chemical composition: d𝜇e = 0 for moving element
• DP = 0 →

(︀
𝛼
P

dP
dr

)︀
e =
(︀
𝛼
P

dP
dr

)︀
s

Introducing the scale height of pressure HP

HP =
dr

d ln P
= −P

dr
dP

(5.32)

with hydrostatic equilibrium 𝜕P
𝜕r = −g𝜌⇒ HP = P

𝜌g
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Stability against convection[︂
−
(︂
𝛿

T
dT
dr

)︂
e

+
(︂
𝛿

T
dT
dr

)︂
s
−
(︂
𝜙

𝜇

d𝜇
dr

)︂
s

]︂ HP⏞  ⏟  
dr

d ln P
> 0

⇒
[︂
−
(︂
𝛿

T
dT

d ln P

)︂
e

+
(︂
𝛿

T
dT

d ln P

)︂
s
−
(︂
𝜙

𝜇

d𝜇
d ln P

)︂
s

]︂
> 0

⇒ −
(︂
𝛿
d ln T
d ln P

)︂
e

+
(︂
𝛿
d ln T
d ln P

)︂
s
−
(︂
𝜙

d ln𝜇
d ln P

)︂
s
> 0

Condition for stability

⇒
(︂

d ln T
d ln P

)︂
s
<

(︂
d ln T
d ln P

)︂
e

+
𝜙

𝛿

(︂
d ln𝜇
d ln P

)︂
s

(5.33)

∇ :=
(︂

d ln T
d ln P

)︂
s

∇e :=
(︂

d ln T
d ln P

)︂
e

∇𝜇 :=
(︂

d ln𝜇
d ln P

)︂
s

∇, ∇𝜇 variation of T and 𝜇 in the surrounding material with depth (P taken as
measure of depth)
∇e variation of T in the moving element, position is measured by P
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Stability against convection

∇ < ∇e +
𝜙

𝛿
∇𝜇 (5.34)

Stability of radiative layer ∇ = ∇rad with adiabatic change of elements: ∇e =
∇ad

∇rad < ∇ad +
𝜙

𝛿
∇𝜇 (5.35)

Ledoux criterion for dynamical stability (Δ𝜇 > 0 is stabilizing)
region with homogeneous chemical composition: ∇𝜇 = 0

∇rad < ∇ad (5.36)

Schwarzschild criterion for dynamical stability

Dynamically stable layers with different chemical compositions can become un-
stable under nonadiabatic conditions (DT ̸= 0, D𝜇 ̸= 0,∇𝜇 = 0)
→ Specific weight is temperature dependent

Secular or thermal instability
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Energy transport 14

Stability against convection

r

T

Radiative stable
Adiabatic
Convective equilibrium
Radiative unstable

𝜕T
𝜕r

≈ ∇ad
T
P
𝜕P
𝜕r

(convection)

𝜕T
𝜕r

= − 3
16𝜋ac

𝜅𝜌l
r2T 3 (Radiation)
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Energy transport by convection

Theoretical treatment of convective motions and transport of energy is extremely
difficult

• Hydrodynamic equations cannot be solved easily
• Conditions in stellar interiors are unfavorable: turbulent motion transports

enormous fluxes of energy in a very compressible gas (differences in proper-
ties over many orders of magnitude)

• Full 3D numerical simulations are demanding in terms of computer power
→ Mixing-length theory provides a simple model, which is still used today
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Energy transport by convection

Herwig 2018, Youtube


Core convection in a massive star, horizontal velocity.mp4
Media File (video/mp4)
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Energy transport by convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

Mixing length theory:
• Convective element with

DT > 0 and DP = 0
• Local convective flux

Fcon = 𝜌vcPDT

• Average convective flux: vDT must
be replaced by mean value over
the full concentric sphere and all
elements

• All elements started as small pertur-
bations
DT0 = 0 and v0 = 0

• Due to differences in temperature
gradients and buoyancy force DT
and v increase
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Energy transport by convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

• After a distance lm the elements
dissolves and mixes with the sur-
roundings (lm mixing length)

• Assuming that the average element
moved lm/2 in the sphere

DT
T

=
1
T
𝜕(DT )
𝜕r

lm
2

= (∇−∇e)
lm
2

1
HP

• Density difference (DP = D𝜇 = 0)

D𝜌
𝜌

= −𝛿DT
T

• Buyoncy force

kr = −g
D𝜌
𝜌
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Energy transport by convection

ρ(r),
T (r),
P (r)

ρ∗, T∗,
P∗ =

P (r + dr)

ρ(r), T (r), P (r)

ρ(r + dr),
T (r + dr),
P (r + dr)

s

e

e

Upward displacement
Adiabatic expansion

• Half of the buoyancy force may have
acted on the element over its motion
→work done is

1
2

kr
lm
2

= g𝛿(∇−∇e)
l2m

8HP

• Half of the work goes into kinetic energy

v2 = g𝛿(∇−∇e)
l2m

8HP

• convective flux

Fcon = 𝜌cPT
√︀

g𝛿
l2m

4
√

2
H−3/2

P (∇−∇e)3/2

• lm or mixing-length parameter 𝛼MLT = lm
HP

are free parameters estimated by plau-
sible assumptions and comparison with
observations
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Chemical composition

The chemical composition of stellar matter is very important, since it directly in-
fluences basic properties

• absorption by radiation
• generation of energy by nuclear reactions

→ reactions also alter the composition: record of the nuclear history
• composition is extremely simple compared to that of terrestrial bodies: no

chemical compounds, atoms mostly ionized because of high temperature and
pressure → sufficient to count different types of nuclei
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Chemical composition

• Xi fraction of a unit mass which consists of nuclei of type i∑︁
i

Xi
!= 1

• chemical composition of a star at time t : Xi = Xi(m, t), 0 < m < M
• particle number ni in a volume of nuclei with mass mi is related to mass

abundance
Xi =

mini

𝜌
• only few Xi to consider: most elements too rare, not important or constant
• sufficient to specify mass fraction of hydrogen, helium, ”rest” (metals)

X ≡ XH Y ≡ XHe Z ≡ 1 − X − Y

• relative distribution of the elements Z necessary (especially C,N and O)
• most stars in their envelopes, contain an overwhelming amount of hydrogen

and helium:

X = 0.65...0.75 Y = 0.30...0.25 Z = 0.05...0.0001
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Chemical composition
In radiative regions, no exchange of matter between different mass shells, if we
can neglect diffusion
→ frequency of a certain reaction is described by the reaction rate rlm: number
of reactions per unit volume and time that transform nuclei from type l into m

𝜕Xi

𝜕t
=

mi

𝜌

⎡⎣∑︁
j

rji −
∑︁

k

rik

⎤⎦ , i = 1...I

rji reaction rates for creation and change of ni per second
rki reaction rates for destruction and change of ni per second

reaction p → q may release energy epq: energy generation rate 𝜖 per unit mass

𝜖 =
∑︁
p,q

𝜖p,q =
1
𝜌

∑︁
p,q

rpqepq

energy generated when one mass unit of type p nuclei is transformed to type q:

qpq =
epq

mp
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Chemical composition

⇒ 𝜕Xi

𝜕t
=

mi

𝜌

⎡⎣∑︁
j

𝜖ji
qji

−
∑︁

k

𝜖ik
qik

⎤⎦
I different nuclei simultaneously subject to nuclear transformations form a set of
I differential equations, called a ”nuclear reactions network”

For hydrogen burning:

𝜕X
𝜕t

= − 𝜖H
qH

⇔ 𝜕Y
𝜕t

= −𝜕X
𝜕t

(5.37)

Reaction rates and energies are calculated or measured
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Chemical composition

Diffusion:
microscopic effects can also change the chemical composition in a star

• concentration diffusion tends to smooth out the differences
• heavier atoms can migrate towards the regions of higher temperature due to

temperature diffusion
• Heavier nuclei diffuse towards higher pressure due to pressure diffusion

(gravitational settling, sedimentation)

jD = cvD = −D∇c ⇒ vD = −1
c

D(∇c + kT∇ ln T + kP∇ ln P)

vD diffusion velocity
• In the the outer regions, where atoms are formed, radiative levitation can lead

to enrichment of heavy elements
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Chemical composition

mixing due to turbulent convective motion very rapid compared to change of
the chemical composition by nuclear reactions

→ composition in a convective region remains homogeneous

𝜕Xi

𝜕m
= 0

• Boundaries of convective layers can be different and change with time
→ composition can still change if the boundaries move into a region of inho-

mogeneous composition, e.g. ”ashes” of earlier nuclear burnings may be
brought to the surface, fresh fuel may be carried into a zone of nuclear burn-
ing, or discontinuities can be produced that drastically influence the later evo-
lution.

M1
M2

M

X
i
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Mass loss

Due to interaction of photons emitted from the photosphere with atoms (radia-
tion driven wind), molecules, or dust grains (dust-driven wind) in the atmosphere
stellar winds are formed and lead to mass loss

• mass loss of the sun: 10−14 M⊙/yr
• AGB stars: 10−4 M⊙/yr
• Evidence for mass loss and estimates of its size from direct detection of cir-

cumstellar matter and from spectral signatures, such as Doppler shifts and
spectral line shapes

• wind velocities: few km/s up to a few thousand km/s
• Complicated radiation-hydrodynamics problem

→ Only empirical formulations, e.g. Reimers law

ṀR = −4−13𝜂
L

gR
· g⊙R⊙

L⊙
parameter 𝜂 varies between 0.2...1, lower for metal-poor stars
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Full set of stellar structure equations

Mass conservation:
𝜕m
𝜕r

= 4𝜋r2𝜌
𝜕r
𝜕m

=
1

4𝜋r2𝜌
(5.38)

Hydrostatic equilibrium:
𝜕P
𝜕r

= −Gm𝜌
r2

𝜕P
𝜕m

= − Gm
4𝜋r4 (5.39)

Energy production:
𝜕l
𝜕m

= 𝜖n − 𝜖𝜈 − cP
𝜕T
𝜕𝜌

+
𝛿

𝜌

𝜕P
𝜕t

(5.40)

Energy transport:
𝜕T
𝜕r

= −𝜌GmT
r2P

∇conv/rad
𝜕T
𝜕m

= − GmT
4𝜋r4P

∇conv/rad (5.41)

temperature gradient: ∇ =
(︂

d ln T
d ln P

)︂
∇rad =

3
16𝜋acG

𝜅lP
mT 4 ∇conv ≈ ∇ad = (∇)S

𝜕Xi

𝜕t
=

mi

𝜌

⎛⎝∑︁
j

rji −
∑︁

k

rik

⎞⎠ , i = 1, ..., I (5.42)

change in chemical composition
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Full set of stellar structure equations

Equations 5.38 to 5.42 contain functions which describe properties of the stellar
material such as 𝜌, 𝜖n, 𝜖𝜈,𝜅, cP,∇ad, 𝛿 and reaction rates rij

If we assume them to be known functions of P, T and the chemical composition
by functions Xi(m, t), we have the equations of state:

𝜌 = 𝜌(P, T , Xi) (5.43)

and equations for the other thermodynamic properties of the stellar matter

cP = cP(P, T , Xi) (5.44)

𝛿 = 𝛿(P, T , Xi) =
(︂
𝜕 ln 𝜌
𝜕 ln T

)︂
P,𝜇

(5.45)

∇ad = ∇ad(P, T , Xi) (5.46)

as well as the Rosseland mean of the opacity (including conduction)

𝜅 = 𝜅(P, T , Xi) (5.47)
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Full set of stellar structure equations

and nuclear reaction rates and the energy production and energy loss via neutri-
nos:

rjk = rjk(P, T , Xi) (5.48)

𝜖n = 𝜖n(P, T , Xi) (5.49)

𝜖𝜈 = 𝜖𝜈(P, T , Xi) (5.50)

Xi stand for all types of nuclei (i = 1, ..., I)

I different types of nuclei being affected by reactions form a set of 4 + I differen-
tial equations for the 4 + I variables r , P, T , l , X1, ..., XI.

Independent variables m and t . If total mass of the star M is constant and time
of start of evolution t = t0: solutions in the interval 0 ≤ m ≤ M, t ≥ t0

set of non-linear, partial differential equations → Boundary conditions necessary

For full problem: specification of r (m, t0), ṙ (m, t0), s(m, t0) and Xi(m, t0)

Stellar model: solution r (m), P(m), ..., Xi(m) for given time t in interval [0, M]
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Boundary conditions

Central conditions

• m = 0: r = 0 l = 0
• m → 0

– d(r3) = 3
4𝜋𝜌c

dm → r =
(︁

3
4𝜋𝜌c

)︁1/3
m1/3

– l = (𝜖n − 𝜖𝜈 + 𝜖g)cm

– dP
dm = − G

4𝜋

(︁
4𝜋𝜌c

3

)︁4/3
m−1/3 → P − Pc = −3G

8𝜋

(︀4𝜋
3 𝜌c
)︀4/3 m2/3

– radiative case: dT
dm = − 3

64𝜋2ac
𝜅l

r4T 3

→ T 4 − T 4
c = − 1

2ac

(︀ 3
4𝜋

)︀2/3
𝜅c(𝜖n − 𝜖𝜈 + 𝜖g)c𝜌

4/3
c m2/3

– convective case: ln T − ln Tc = −
(︀
𝜋
6

)︀
G∇ad,c𝜌

4/3
c

Pc
m2/3

Numerical approaches needed to solve the system of equations: e.g. Shooting
method, Henyey method
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Boundary conditions

Surface conditions

• naive ”zero conditions” – m → M : P → 0, T → 0
• more real: extended transition to the finite values of P, T of the diffuse inter-

stellar medium
• find ”surface” that defines total stellar radius r = R: photosphere, from where

the bulk of the radiation is emitted into space: 𝜏 :=
∞∫︀
R
𝜅𝜌dr = �̄�

∞∫︀
R
𝜌dr = 2/3

• Pr=R

∞∫︀
R

g𝜌dr = g0

∞∫︀
R
𝜌dr

𝜏=2/3
= GM

R2
2
3

1
�̄�

• temperature of the photosphere equal to effective temperature Tr=R = Teff

→ L = 4𝜋R2𝜎T 4
eff,𝜎 = ac/4

• temperature dependency of 𝜅: Eddington approximation – grey atmosphere
T 4(𝜏 ) = 3

4(L/4𝜋R2𝜎)
(︀
𝜏 + 2

3

)︀
⇒ T = Teff for 𝜏 = 2/3

• dr/d𝜏 = −1/(𝜅𝜌) dP/dr = −g𝜌 → dP
d𝜏 = Gm

r2𝜅

• generally: interior solution should fit smoothly to solution of the stellar-
atmosphere problem
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Properties of stellar matter
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Properties of stellar matter

• basic variables: m, r , P, T , l
• differential equations also contain density, nuclear energy generation, or

opacity → describe properties of stellar matter for given P, T and chemical
composition, do not depend on m, r , l at given point in the star, could be de-
termined in a laboratory

→ position in the star not necessary to describe them
→ dependence of density 𝜌 on P, T : equation of state

• simple if we have a perfect gas
• but! radiation and ionization also influence the pressure and the internal en-

ergy → have to be included
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Perfect gas with radiation

Radiation pressure

• pressure in a star not only given by that if the gas but photons in the stellar in-
terior contribute significantly

• radiation is practically that of a black body

Prad =
1
3

U =
a
3

T 4 ⇒ P = Pgas + Prad =
R
𝜇
𝜌T +

a
3

T 4

• importance of the radiation pressure

𝛽 :=
Pgas

P
, 1 − 𝛽 =

Prad

P
→ 𝛽 = 1 ⇒ Prad = 0, 𝛽 = 0 ⇒ Pgas = 0
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Perfect gas with radiation

Thermodynamic Quantities

5.31⇒ 𝛼 =
1
𝛽

𝛿 =
4 − 3𝛽
𝛽

𝜙 = 1

internal energy per unit mass

u =
3
2

R
𝜇

T +
aT 4

𝜌
=

RT
𝜇

[︂
3
2

+
3(1 − 𝛽)

𝛽

]︂
specific heat

cP
5.15=

R
𝜇

[︂
3
2

+
3(4 + 𝛽)(1 − 𝛽)

𝛽2 +
4 − 3𝛽
𝛽2

]︂
adiabatic gradient

∇ad
5.17=

(︂
1 +

(1 − 𝛽)(4 + 𝛽)
𝛽2

)︂
/

(︂
5
2

+
4(1 − 𝛽)(4 + 𝛽)

𝛽2

)︂
perfect gas without radiation see 5.20 ⇒ 𝛾ad → 5

3
, ∇ad → 2

5
gas dominated by pressure ⇒ 𝛾ad → 4

3
, ∇ad → 1

4
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Perfect gas with radiation
Adiabatic coefficients (Chandrasekkar)

Γ1 :=
(︂

d ln P
d ln 𝜌

)︂
ad

= 𝛾ad (6.1)

Γ2

Γ2 − 1
:=
(︂

d ln P
d ln T

)︂
ad

=
1

∇ad
(6.2)

Γ3 :=
(︂

d ln T
d ln 𝜌

)︂
ad

+ 1 (6.3)

⇒ Γ1

Γ3 − 1
=

Γ2

Γ2 − 1

5
3

4
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.2

1.4

1.6

← Radiation dominates β Particles dominate→

Γ
2

cores of massive stars: ionized, ideal gas plus photon field
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Perfect gas with radiation

Adiabatic coefficients (Chandrasekkar)

Γ1 :=
(︂

d ln P
d ln 𝜌

)︂
ad

= 𝛾ad (6.4)

Γ2

Γ2 − 1
:=
(︂

d ln P
d ln T

)︂
ad

=
1

∇ad
(6.5)

Γ3 :=
(︂

d ln T
d ln 𝜌

)︂
ad

+ 1 (6.6)

⇒ Γ1

Γ3 − 1
=

Γ2

Γ2 − 1

4 5 6 7 8

−14
−12

−10

1.2

1.4

1.6

log(T(K))
log(P/T4(dynes cm−2 K−4))

Γ
2
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Ionization

• complete ionization of all atoms good approximation in the very deep interior,
where T and P sufficiently large

• in outer regions and stellar atmospheres atoms can only be partially ionized
• mean molecular weight and thermodynamic properties such as cp, Γ2 depend

on degree of ionization
• Ionization fraction given by Saha equation

Kippenhahn, Weigert & Weiss 2012
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Ionization
Adiabatic coefficients (Chandrasekkar)

Γ1 :=
(︂

d ln P
d ln 𝜌

)︂
ad

= 𝛾ad (6.7)

Γ2

Γ2 − 1
:=
(︂

d ln P
d ln T

)︂
ad

=
1

∇ad
(6.8)

Γ3 :=
(︂

d ln T
d ln 𝜌

)︂
ad

+ 1 (6.9)

⇒ Γ1

Γ3 − 1
=

Γ2

Γ2 − 1

5
3

1.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

← Neutral x Ionized→

Γ
2

stellar envelopes of low-mass stars: Γ2 dominated by ionization effects on H
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Pressure ionization

Effective continuum

Continuum of an isolated ion

Position

Φ

Limitation of Saha formula for high pressure, when pressure ionization sets in
→ Saha equation will underestimate the degree of ionization once this effect be-
comes important enough
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Degenerate electron gas

• gas with sufficiently high density in volume dV : fully pressure ionized
• free electrons of number density ne

• velocity distribution given by Boltzmann statistics → Ekin,mean = 3/2kT
• in momentum space px , py , pz each electron in a given volume dV repre-

sented by a point, points forming a spherical symmetric ”cloud” around the
origin

• p is the absolute value of the momentum (p2 = p2
x + p2

y + p2
z)

• number of electrons in spherical shell [p, p + dp] given by Boltzmann distribu-
tion function

f (p)dpdV = ne
4𝜋p2

(2𝜋mekT )3/2 exp
(︂
− p2

2mekT

)︂
dpdV

• for constant electron density: pmax = (2mekT )1/2

→ smaller T , maximum of distribution pmax at smaller p, maximum of f (p)

higher (ne ∼
∞∫︀
0

f (p)dp)
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Degenerate electron gas

Kippenhahn, Weigert & Weiss 2012
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Degenerate electron gas

Pauli principle

• electrons are fermions
→ Pauli’s exclusion principle: each quantum cell of the six-dimensional phase

space (x ; y ; z; px ; py ; pz ) cannot contain more than two electrons
• x ; y ; z are the space coordinates of the electrons with dV = dxdydz
• volume of quantum cell is dpxdpydpzdV = h3 (h is Planck’s constant)

→ in shell [p, p + dp] are 4𝜋p2dpdV/h3 quantum cells with two electrons per
cell

• quantum mechanics demands:

f (p)dpdV ≤ 8𝜋p2dpdV/h3

• Boltzmann distribution is in contradiction with quantum mechanics for too low
temperatures or too high densities

• electrons become degenerate
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Degenerate electron gas

Completely degenerate electron gas:

• all electrons have the lowest energy without violating Pauli’s principle
• all phase cells up to pF are filled, all other phase cells above pF empty

Kippenhahn, Weigert & Weiss 2012

f (p) =
8𝜋p2

h3 for p ≤ pF

f (p) = 0 for p > pF

Total number of electrons in dV

nedV = dV

pF∫︁
o

8𝜋p2dp
h3 =

8𝜋
3h3p3

FdV

(6.10)
Fermi momentum pF ∼ n1/3

e

→ EF = p2
F/2me ∼ n2/3

e Fermi energy
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Degenerate electron gas

Completely degenerate electron gas:

Kippenhahn, Weigert & Weiss 2012

• temperature of electron gas is zero
• but, electrons have energies up to finite

Energies EF

• for sufficiently large electron densities:
pF so high that fastest electrons have
v ∼ c

p =
mev√︀

1 − v2/c2

Etot =
mec2√︀

1 − v2/c2
= mec2

√︃
1 +

p2

m2
ec2

(6.11)

⇒ 1
c
𝜕Etot

𝜕p
=

p/(mec)
[1 + p2/(m2

ec2)]1/2
=

v
c

Kinetic energy E = Etot − mec2
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Degenerate electron gas

Completely degenerate electron
gas:

Derive equation of state
→ pressure needed: flux of momentum

through a unit surface per second
→ Number of electrons with momentum

between [p, p + dp] per second go-
ing through d𝜎 into solid angle dΩS

around direction s
→ f (p)dpdΩS/(4𝜋) electrons per unit

volume at the location of the sur-
face element with right momentum
[p, p + dp]

→ f (p)dpdΩSv (p) cos𝜗d𝜎/(4𝜋) elec-
trons per second move through the
surface element d𝜎 into the solid-angle
element dΩS

→ momentum in direction n : p cos𝜗
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Completely degenerate electron gas

Electron pressure by integration over all directions s and all values of p

Pe =
∫︁
2𝜋

∞∫︁
0

f (p)v (p)pcos2𝜗dpdΩS/(4𝜋) =
4𝜋
3

8𝜋
h3

pF∫︁
0

p2pv (p)dp/(4𝜋)

Pe =
8𝜋
3h3

pF∫︁
0

p3v (p)dp =
8𝜋c
3h3

pF∫︁
0

p3 p/(mec)
[1 + p2/(m2

ec2)]1/2
dp

with 𝜉 = p
mec and x = pF

mec

Pe =
8𝜋m4

ec5

3h3

x∫︁
0

𝜉4d𝜉
(1 + 𝜉2)1/2 =

𝜋c5m4
e

3h3 f (x)

f (x) = x(2x2 − 3)(1 + x2)1/2 + 3 ln[x + (1 + x2)1/2]

6.10⇒ ne =
𝜌

𝜇emu
=

8𝜋m3
ec3

3h3 x3
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Completely degenerate electron gas

Kippenhahn, Weigert & Weiss 2012
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Completely degenerate electron gas

Internal energy:

Ue =

pF∫︁
0

f (p)E(p)dp =
8𝜋
h3

pF∫︁
0

E(p)p2dp 6.11=
𝜋m4

ec5

3h3 g(x)

g(x) = 8x3[(x2 + 1)1/2 − 1] − f (x)
numerical values of f (x), g(x) can be found in Chandrasekhar 1939, Table 23.

x : importance of relativistic effects for electrons with the highest momentum

x =
pF

mec
=

vF/c
(1 − v2

F/c2)1/2
or

v2
F

c2 =
x2

1 + x2

For x ≪ 1 ⇒ vF/c ≪ 1 : Non-relativistic case
For x ≫ 1 ⇒ vF/c ≈ 1 : Relativistic case
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Completely degenerate electron gas

Non-relativistic case

x → 0 : f (x) → 8
5

x5, g(x) → 12
5

x5

⇒ Pe =
8𝜋m4

ec5

15h3 x5

equation of state for a completely degenerate non-relativistic electron gas:

Pe =
1
20

(︂
3
𝜋

)︂2/3 h2

me
n5/3

e =
1
20

(︂
3
𝜋

)︂2/3 h2

mem5/3
u

(︂
𝜌

𝜇e

)︂5/3

degeneracy pressure:

Pe = 1.0036 × 1013
(︂
𝜌

𝜇e

)︂5/3

(cgs)

Pe =
2
3

Ue
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Completely degenerate electron gas

Extreme relativistic case

see exercise sheet III

equation of state for a completely degenerate extreme relativistic electron gas:

Pe = 1.2435 × 1015
(︂
𝜌

𝜇e

)︂4/3

(cgs)

Pe =
1
3

Ue
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Partial Degeneracy of the Electron Gas

For finite temperatures, degeneracy not complete
→ transition to Boltzmann distribution
Fermi-Dirac statistics

f (p)dpdV =
8𝜋p2dpdV

h3
1

1 + eE/kT−𝜓

ne =
8𝜋
h3

∫︁ ∞

0

p2dp
1 + eE/kT−𝜓

Pe =
8𝜋
3h3

∫︁ ∞

0
p3v (p)

dp
1 + eE/kT−𝜓

Ue =
8𝜋
h3

∫︁ ∞

0

Ep2dp
1 + eE/kT−𝜓

degeneracy parameter 𝜓 = 𝜓
(︀ ne

T 3/2

)︀
Kippenhahn, Weigert & Weiss 2012

→ equation of state in the case of partial degeneracy cannot be derived analyt-
ically, analytical approximations are possible for the non-relativistic and extreme
relativistic case
For details see: Kippenhahn, Weigert & Weiss 2012, p. 145-150
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Partial Degeneracy of the Electron Gas

Number of available states→

E
ne

rg
y
→

Number of available states→
E

ne
rg

y
→

• low-density gas (red) behaves like ideal gas: Maxwell-Boltzmann distribution
• high-density gas (cyan) highly degenerate, i.e., all low energetic states are

occupied and electrons are forced into high-lying states causing degeneracy
pressure

• in complete degeneracy, all states up to the Fermi energy are filled
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Equation of state of stellar matter

In real stellar matter all components, which are ions, electrons and radiation are
mixed

P = Pion + Pe + Prad =
R
𝜇0
𝜌T +

8𝜋
3h3

∫︁ ∞

0
p3v (p)

dp
1 + eE/kT−𝜓 +

a
3

T 4

𝜌 =
4𝜋
h3 (2me)3/2mu𝜇e

∞∫︁
0

E1/2dE
1 + eE/kT−𝜓 , v (p) =

𝜕E
𝜕p

, E = mec2

⎛⎝√︃1 +
p2

m2
ec2

− 1

⎞⎠
• Local equation of state depends on the conditions in the plasma
• Both electron and ion gas can become degenerate at low temperatures

and/or high densities
→ Critical density for ions (mion/me)3/2 ∼ 105 times higher
→ Electron gas can be degenerate and ion gas ideal at the same time

• For high densities and low temperatures, the ions start to interact with each
other via Coulomb interactions
→ Perfect gas approximation breaks down
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Equation of state of stellar matter
In real stellar matter all components, which are ions, electrons and radiation are
mixed

P = Pion + Pe + Prad =
R
𝜇0
𝜌T +

8𝜋
3h3

∫︁ ∞

0
p3v (p)

dp
1 + eE/kT−𝜓 +

a
3

T 4

𝜌 =
4𝜋
h3 (2me)3/2mu𝜇e

∞∫︁
0

E1/2dE
1 + eE/kT−𝜓 , v (p) =

𝜕E
𝜕p

, E = mec2

⎛⎝√︃1 +
p2

m2
ec2

− 1

⎞⎠
• ions start to form a lattice to minimize total energy as soon as the thermal en-

ergy 3
2kT becomes similar to the Coulomb energy per ion of charge: −Ze

• This crystallization is not important in normal stars, but becomes important
at the late stages of stellar evolution

• Other real gas effects (e.g. van der Waals forces: attractive forces of electri-
cally neutral, but polarized particles important at low temperatures; electron
shielding: clouds of electrons gather around ions from distance the ion elec-
tron cloud appears electrically neutral, low densities) have to be taken into ac-
count in modern equations of state for stellar models
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Equation of state of stellar matter
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Equation of state of stellar matter

Kippenhahn, Weigert & Weiss 2012
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Opacity

• The material function 𝜅(𝜌, T ) for stellar-structure calculations is nowadays
computed numerically for different chemical mixtures

• main opacity mechanisms have already been introduced in the stellar atmo-
sphere part of this course:
– Electron scattering
– Absorption due to free-free, bound-free and bound-bound transitions
– Absorption due to H− dissociation
– Absorption due to dissociation of molecules
– Conduction (for white dwarfs only)

• Groups spezialised on different aspects published extensive tables for differ-
ent chemical mixtures, temperatures and densities
– Atomic absorption (OPAL, Opacity Project)
– Molecular and dust absorption below 104 K (Alexander & Ferguson 1994)
– Electron conduction (Itoh et al.)

• The tables must be combined to cover the whole stellar structure
• To find 𝜅(𝜌, T , Xi) for a given point in a star, the value has to be interpolated

from the grid points
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Nuclear energy production

• Stars produce energy through thermonuclear fusion
→ Thermal motions induce fusions of lighter elements to form a heavier one

• Before the reaction, the nuclei j have a total mass
∑︀

j
Mj , which is

different from the mass of the reaction product My

ΔM =
∑︁

j

Mj − My

ΔM is called mass defect
→ this mass is released as energy E = ΔMc2 (Einstein’s formula)

• Binding energy EB of a nucleus with mass Mnuc and atomic mass number
A: Z protons of mass mp and (A − Z ) neutrons of mass mn

EB = [(A − Z )mn + Zmp − Mnuc]c2

• Average binding energy per nucleon f

f =
EB

A
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Nuclear energy production

Abdullah 2014, Fundamentals in nuclear physics

Increase for A < 56

surface effect: particles at
the surface of the nucleus
experience less attrac-
tion by nuclear forces than
those in the interior

→ volume rises faster than
surface area

f (56Fe) = 8.5 MeV

→ increasing repulsion
by the Coulomb forces for
A > 56

Energy generation: Fusion of light nuclei A < 56 and Fission of heavy nuclei
A > 56
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Nuclear energy production 3

Nuclear energy production
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Nuclear energy production

Hofer 2013, Journal of Physics Conference Series 504, 1
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Coulomb barrier
For fusion two particles with charges Z1 and Z2 must be close enough to over-
come the repulsive Coulomb forces

rs

E

r(E)
0

1/r

∼
30

M
eV

∼
Z 1
Z 2

M
eV

Distance r

E
n
er
gy

E

ECoul =
Z1Z2e2

r
(6.12)

Distances smaller than
rS ≈ A1/31.44 × 10−13 cm:
attractive nuclear forces dominate
→ Sharp drop in potential energy
Coulomb barrier with height of
ECoul(rS) ≈ Z1Z2 MeV
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Coulomb barrier

rs

E

r(E)
0

1/r

∼
30

M
eV

∼
Z 1
Z 2

M
eV

Distance r

E
n
er
gy

E

Classical case
Kinetic energy of particle (given by
Maxwell-Boltzmann statistics) must be
higher than Coulomb barrier

e.g. center of the sun T ≈ 107 K
⇒ Ekin/ECoul ≈ 10−3

(no fusion possible)
Quantum mechanics
Small probability P0 to tunnel the
Coulomb barrier

P0 = p0E−1/2e−2𝜋𝜂

𝜂 =
(︁m

2

)︁1/2 Z1Z2e2

~E−1/2

m reduced mass, p0 parameter de-
pends on properties of colliding nuclei
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Coulomb barrier

rs

E

r(E)
0

1/r

∼
30

M
eV

∼
Z 1
Z 2

M
eV

Distance r

E
n
er
gy

E

Example: Hydrogen fusion in center
of the Sun T ≈ 107 K, Z1Z2 = 1

⇒ P0 ≈ 10−20

Probability increases with E and
decreases with Z1Z2

→ Lightest elements fuse first
→ Heavy element require much

higher energies
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Coulomb barrier

Classical turning point
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Small probability P0 to tunnel the Coulomb barrier

P0 = p0E−1/2e−2𝜋𝜂

Gamow factor T̂ ≡ e−2𝜋𝜂
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Thermonuclear reaction rate

thermonuclear reaction rates have to be computed to get the fusion rates

reaction of the nucleus X with the particle a by which the nucleus Y and the
particle b are formed:

a + X −−→ Y + b ⇔ X (a, b)Y

velocity-dependent cross section 𝜎 of the reaction

𝜎(v ) =
number of reactions per nucleus X per unit time

number of incident particles a per unit area per unit time
name cross section:
comes from assuming that each nucleus X has a cross-sectional area and that
a reaction occurs each time an a particle strikes that area (symmetric in type of
particle)

→ not physically correct picture, but helpful for understanding
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Thermonuclear reaction rate

thermonuclear reaction rate r per unit volume with the relative velocity (be-
tween a and X ) v in range [v , v + dv ] given by the velocity distribution P(v ):

r = 𝜎(v )vnanX ⇒ raX =
1

1 + 𝛿aX
nanX

∞∫︁
0

v𝜎(v )P(v )dv =
1

1 + 𝛿aX
nanX⟨𝜎v⟩

Replacing particle number ni by mass fractions Xi𝜌 = nimi and introducing the
energy released per reaction Q
→ Energy generation per unit mass

𝜖aX =
1

1 + 𝛿aX

Q
mamX

𝜌XaXX⟨𝜎v⟩

→ nuclear lifetime 𝜏a(X )(︂
𝜕nX

𝜕t

)︂
a

= − nX

𝜏a(X )
, 𝜏a(X ) =

1
1 + 𝛿aX

nX

raX
→ 1

𝜏 (X )
=
∑︁

i

1
𝜏i(X )
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Nuclear cross section
nuclear cross section

• inversely proportional to the number of incident particles per unit time and
react more often with each other when they spend more time close to each

other 𝜎(v ) ∼ v−2 E=1
2mv2

∼ E−1

• Nuclear reactions only when the particles can penetrate the Coulomb barrier
• nuclear structure of the involved particles will play a role → S-factor

𝜎(E) ≡ S(E)
E

e−2𝜋𝜂 ⇒ ⟨𝜎v⟩ =

∞∫︁
0

𝜎(E)v

f (E)⏞  ⏟  
2√
𝜋

E1/2

(kT )3/2e−E/kT dE

4

6

8

S
(E

)
(M

eV
b
ar

n
)

10−20

10−15

10−10

10−5

σ
(E

)
(b

ar
n
≡

10
−
2
8
m

2
)

10 100

Effective center-of-mass energy E (keV)
3He + 3He −−→ 4He + 2 p measured by LUNA (Junker et al. 1997, Bonetti et al. 1999)
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Gamow peak

The product (black) of rapidly falling Maxwell-Boltzmann exponential (blue) and
increasing Gamow penetration factor (red) has a sharp peak, the Gamow peak,

at energy E0 =
(︁

2𝜋𝜂√
E

kT
2

)︁2/3
=
(︁√

2m𝜋Z1Z2e2

~
kT
2

)︁2/3
≈ 5 − 100 × kT

E0
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Gamow peak
Maximum and area of Gamow peak extremely dependent on temperature

⟨𝜎v⟩ ∼
∞∫︁

0

e−E/kT−2𝜋𝜂dE ≈ ⟨𝜎v⟩0

(︂
T
T0

)︂𝜈
, 𝜈 ≈ E0

kT
, 𝜈 ≈ 5 − 20

Each reaction has a well defined energy range separate from other reactions
→ Separate burning stages dependent mostly on temperature
→ The heavier the nuclei, the higher the temperature dependence
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Nuclear reactions

E

∼
30

M
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∼
Z 1
Z 2
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ne

rg
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E

• Right after a particle is absorbed by the nucleus, a new compound nucleus is
formed for a short time

→ Similar to the energy levels of atoms, this nucleus has certain energy levels
→ if energy of absorbed particle matches one of those energy levels: resonance
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Nuclear reactions

Resonant reactions

• if configuration of the compound nucleus is similar to a stable excited state of
the newly formed nucleus, the reaction is said to be resonant.

• respective cross sections vary strongly with energy (since the energy uncer-
tainty of a stable state is small) and are relatively large

Non-resonant reactions

• If configuration of the compound nucleus is far from any stable excited state
of the newly formed nucleus, the reaction is said to be non-resonant.

• compound nucleus is, by definition, not stable and decays or de-excites in-
stantaneously

• cross sections are roughly constant with energy (since the energy uncertainty
of an unstable state is huge) and are relatively small
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Nuclear reactions

0 5 10 15 20 25 30 35 40 45 50
Energy E (keV)

Gamow peak
S-factor
S-factor
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Nuclear reactions
Energy dependence of reaction cross section 𝜎(E) has another factor of typical
resonance form around the resonance energy Eres in resonance case

𝜉(E) ∼ 1
(E − Eres)2 + (Γ/2)2

Γ = ~/𝜏 energy width of the level, 𝜏 lifetime on this level

Introducing the de Broglie wavelength of the particle with relative momentum p
and reduced mass m = m1m2/(m1m2)

𝜆 =
~
p

=
~

(2mE)1/2

𝜎(E) ∼ 𝜋𝜆2P0(E)𝜉(E) = 𝜉(E)
𝜋p0~2E−1/2

2m
e−2𝜋𝜂

E
≡ S(E)

E
e−2𝜋𝜂

”Astrophysical factor” S(E) contains all intrinsic nuclear properties of the reac-
tion, 𝜉(E) → 1 away from resonances
→ Can in principle be calculated, but is more reliable when measured
→ Problem: energies in stellar interiors very small ≈ 10 keV: 𝜎(E) very small
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Nuclear reactions
2H(p, 𝛾)3He

Cavanna et al. 2018

Laboratory measurements with
particle accelerators( LUNA
experiment at Gran Sasso
(1999-2014)):
3He(3He, 2 p)4He, 17O(p, 𝛾)18F, 2H(𝛼, 𝛾)6Li, 2H(p, 𝛾)3He

S(E) must be extrapolated to
lower energies in most cases
→ Easily possible in the non-

resonant case, because
S(E) varies slowly with
energy

→ Not possible, if hidden reso-
nances are present
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Nuclear reactions

Sandra Zavatarelli 2017

Laboratory measurements with
particle accelerators( LUNA
experiment at Gran Sasso
(1999-2014)):
3He(3He, 2 p)4He, 17O(p, 𝛾)18F, 2H(𝛼, 𝛾)6Li, 2H(p, 𝛾)3He

S(E) must be extrapolated to
lower energies in most cases
→ Easily possible in the non-

resonant case, because
S(E) varies slowly with
energy

→ Not possible, if hidden reso-
nances are present
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Hydrogen burning

Hydrogen is the lightest and most abundant element

→ Fusion reactions are happening at the lowest energies

fusion of hydrogen to helium liberates 26.64 MeV of total energy due to the
mass defect Δm
→ not all of this energy converted to thermal energy
→ some fraction (2 to 30%) carried by neutrinos, which are created by the con-

version of two protons into two neutrons via the 𝛽+ decay
→ low cross sections with matter, almost all neutrinos escape from the star with-

out interaction and their energy is lost (2 × 0.262 MeV)
→ detection of solar neutrinos was the verification of nuclear energy generation

in stars

4 H −−→ 4He: requires fusion of 4 protons at the same time

→ reaction extremely unlikely
→ Chain of reactions necessary
→ Two different reaction processes: p-p chains and CNO cycle



6–48

Hydrogen burning 2

p-p chains
backbone of the p-p chain – proton-proton reaction:

1H + 1H −−→ 2D + e+ + 𝜈e

→ liberated energy via the mass defect Δm is 0.420 MeV, annihilation of the
positron and an electron brings the total energy release to 1.442 MeV

→ close encounter between two protons and a simultaneous decay of a proton
into a neutron

→ cross section extremely small, never possible to measure it in the laboratory
(𝜏p(p) ≈ 1010 yr)

→ theoretical understanding good enough: S(E0) ≈ 3.78−22 keV barns

cross-section of deuterium-deuterium reaction very small → deuterium reacts
with protons:

2D + 1H −−→ 3He + 𝛾

→ 𝜏p(2D) ≈ 2.8 s for conditions in center of the Sun
→ created deuterium atom will almost immediately be converted to 3He,

deuterium-deuterium reaction can be neglected
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p-p chains

1H + 1H→ 2D + e+ + νe

2D + 1H→ 3He + γ

PP II/III

3He + 4He→ 7Be + γ

PPII

7Be + e− → 7Li + νe

7Li + 1H→ 2 4He

PP I

3He + 3He→ 4He + 2 1H

PP III

7Be + 1H→ 8B + γ

8B→ 8Be + e+ + νe

8Be→ 2 4He

Reaction rate determined by the slowest reaction: p-p reaction (1010 yr)
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p-p chains
Chemical composition similar to center of the Sun (X = 0.35, Y = 0.6465)
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0.980 FPPI
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0.721 FPPIII

• relative contribution of the chains depends on the temperature, density and
abundances

• Energy released: Q ≈ 25 MeV; reaction rate ⟨𝜎v⟩ ∼ 𝜌T 4.6
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CNO bi-cycle

C,N and O are present with relatively small abundances in all stars
→ These nuclei can induce another chain of reactions to transform hydrogen to

helium acting as catalysts only 12C + 1H → 13N + γ

13N → 13C + e+ + νe

13C + 1H → 14N + γ

14N + 1H → 15O + γ

15O → 15N + e+ + νe

15N + 1H → 12C + 4He

99.96%

17O + 1H → 14N + 4He

17F → 17O + e+ + νe

16O + 1H → 17F + γ

15N + 1H → 16O + γ

0.04%
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CNO bi-cycle

In massive stars also the CNO3 and CNO4 cycle becomes significant
18F → 18O + e+ + νe

18O + 1H → 15N + 4He

15N + 1H → 16O + γ

16O + 1H → 17F + γ

17F → 17O + e+ + νe

17O + 1H → 18F + γ

19F + 1H → 16O + 4He

18O + 1H → 19F + γ

18F → 18O + e+ + νe

17O + 1H → 18F + γ
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CNO bi-cycle
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• Slowest reaction: 14N + H −−→ 15O + 𝛾: pace of the CN cycle, and its energy
generation rate, is given by the decay of 14N against protons

• non-resonant reaction, contribution of ON cycle negligible
• Energy released: Q = [4mp − M4He]c2 − E𝜈e ≈ 26 MeV
• reaction rate ⟨𝜎v⟩ ∼ 𝜌T 16.7
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CNO bi-cycle
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• Slowest reaction: 14N + H −−→ 15O + 𝛾
→ overabundance of N w.r.t. C and O indication for CNO cycle as most of
12C, 13C and 15N will be converted to 14N

• isotopic ratio 13C/12C ≈ 0.3 important observational signature of CNO cycle



6–55

Hydrogen burning 9

CNO bi-cycle
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• Energy generation in massive stars sharply peaked at the stellar center
where temperatures are largest

• very steep temperature gradients to get rid of the huge amounts of energy
→ convective core
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CNO bi-cycle
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⟨𝜎v⟩pp ∼ 𝜌T 4.6 at 10 × 106 K ⇔ ⟨𝜎v⟩CNO ∼ 𝜌T16.7 at 25 × 106 K

• CNO cycle dominates for stars of mass & 1.5 M⊙
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Helium burning

Helium burning often written as a triple alpha reaction: 3 4He −−→ 12C + 𝛾
• two succesive reactions: creation of unstable isotope 8Be by

4He + 4He −−→ 8Be

and an instantaneous catch of a third alpha particle via a resonant reaction
8Be + 4He −−→ 12C + 𝛾

• lifetime of 8Be: 𝜏8Be = 2.6 × 10−16 s, still longer than mean collision time with
an alpha particle at T ∼ 108 K

• Helium burning becomes important only for high helium mass fractions Y and
for very high temperatures (T & 108 K)

• at later stages of stellar evolution when the temperature of the helium core in-
creases via gravitational contraction

• if helium burning is ignited in a stellar core supported by electron degeneracy,
i.e., the pressure is independent of temperature, an explosive event, the so-
called helium flash, is expected to occur.
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Helium burning

As soon as enough carbon has accumulated another alpha-capture reaction is
possible

12C + 4He −−→ 16O

• probabilities for other alpha-captures is very unlikely due to the Coulomb bar-
rier

• products of He-burning by the triple-alpha process are C and O
• Energy released by the net reactions

Q = [3m𝛼 − M12C]c2 = 7.275 MeV

Q = [4m𝛼 − M16O]c2 = 7.162 MeV

• very strong temperature dependence ⟨𝜎v⟩ ∼ 𝜖3𝛼 ∼ T 40 near T ≈ 108 K
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Advanced burning stages
In all massive stars (M & 8 M⊙), helium burning in the core is succeeded by
carbon and (for (M & 12 M⊙)) oxygen burning

• Fusion of carbon is possible for temperatures higher than 5 × 108 K
12C + 12C −−→ 24Mg + 𝛾

−−→ 23Mg + n
−−→ 23Na + p
−−→ 20Ne + 𝛼
−−→ 16O + 2𝛼

• Fusion of oxygen is possible for temperatures higher than 109 K
16O + 16O −−→ 32S + 𝛾

−−→ 31S + n
−−→ 31P + p
−−→ 28Si + 𝛼

−−→ 24Mg + 2𝛼
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Advanced burning stages

Iliadis 2015
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Advanced burning stages
• Energy released by the net reactions between 13 MeV and 16 MeV
• The particles produced in those reactions lead to the formation of many dif-

ferent isotopes by secondary reactions → Major reaction product is 28Si
• for temperatures T > 109 K photodisintegration of nuclei that are not too

strongly bound get important, e.g. neon disintegration dominating over in-
verse reaction for T > 1.5 × 109 K

20Ne + 𝛾 −−⇀↽−− 16O + 𝛼, Q = −4.73 MeV
2 20Ne + 𝛾 −−⇀↽−− 16O + 24Mg + 𝛾, Q = +4.583 MeV

24Mg + 𝛼 −−→ 28Si + 𝛾, Q = 0.984 MeV

• near end of oxygen burning: photodisintegration of 28Si and eject n, p and 𝛼
particles followed by a large number of reactions

• created nuclei (Al, Mg, Ne) also subject to photodisintegration leading to the
existence of an appreciable amount of free n, p and 𝛼 particles

• react with the remaining 28Si building up gradually heavier nuclei, until 56Fe is
reached
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Advanced burning stages

• forward and reverse reactions achieve equilibrium, with increasing temper-
ature and progressing time several pairs of nuclides link together to form
quasi-equilibrium clusters (24 ≤ A ≤ 40, A > 45 → A > 24 )
→ photodisintegration rearrangement

• 56Fe so strongly bound, it may survive this melting pot as the only (or domi-
nant) species

• ultimately net-conversion of two 28Si into 56Fe: Silicon burning
28Si + 28Si −−→ 56Ni + 𝛾

56Ni −−→ 56Co + e+ + 𝜈e
56Ni −−→ 56Fe + 2 e+ + 2 𝜈e

• at the end of silicon burning, the temperature in the stellar core increases
steadily → nonequilibrated reactions in the A < 24 region come into equi-
librium as well: Nuclear Statistical Equilibrium

• for T > 5 × 109 K photodisintegration breaks up even the 56Fe into 𝛼 parti-
cles: supernova explosions
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Nuclear Statistical Equilibrium
At high temperatures compositium can be aproximated by Nuclear Statistical
Equilibrium

• Composition is given by a minimum of the Free Energy: F = U − TS
conservation of number of nucleons and charge neutrality

A(Z, N) −−⇀↽−− Zp + Nn + 𝛾

• It is assumed that all nuclear reactions operate in a time scale much shorter
than any other timescale in the system

• favors free nucleons at high temperatures and iron group nuclei at low tem-
peratures

• nuclei follow Boltzmann statistics, results in a Saha equation
20Ne + 𝛾 −−⇀↽−− 16O + 𝛼

nOn𝛼
nNe

=
1
h3

(︂
2𝜋mOm𝛼kT

mNe

)︂3/2 GOG𝛼

GNe
e−Q/kT
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Nuclear Statistical Equilibrium
At high temperatures compositium can be aproximated by Nuclear Statistical
Equilibrium

• Composition is given by a minimum of the Free Energy: F = U − TS
conservation of number of nucleons and charge neutrality

A(Z, N) −−⇀↽−− Zp + Nn + 𝛾

• It is assumed that all nuclear reactions operate in a time scale much shorter
than any other timescale in the system

• favors free nucleons at high temperatures and iron group nuclei at low tem-
peratures

• nuclei follow Boltzmann statistics, results in a Saha equation

Y (Z , A) =
GZ ,A(T )A3/2

2A

(︂
𝜌

mu

)︂A−1

Y Z
p Y A−Z

n

(︂
2𝜋~2

mukT

)︂3(A−1)/2

eB(Z ,A)/kT

GZ ,A =
∑︀

i
(2Ji + 1)e−Ei(Z ,A)/kT partition function

Composition depends on two parameters: Yp, Yn
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Nucleosynthesis

solar abundances

Pinedo 2017
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Nucleosynthesis

Pinedo 2017
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Neutron-Capture Nucleosynthesis

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html

• nuclear burning able to produce only
elements up to iron: creation of ele-
ments heavier than the ”iron peak” is
endothermic, electrostatic repulsion
increasing with nuclear charge

• peaks in abundances reflect stability
of isotopes against further addition
of neutrons and protons: due to the
structure of the nuclei – shell model
of nuclear physics

• isotopes with even and equal num-
bers of neutrons and protons very
stable → more abundant

• during hydrostatic burning phases, elements beyond the iron peak produced
only if other reactions with lighter nuclei provide enough energy and, by the
capture of neutrons (electrically neutral), heavier isotopes: unstable

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html
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Neutron-Capture Nucleosynthesis

general sequence of reactions is

(Z, A) + n −−→ (Z, A + 1) + 𝛾
(Z, A + 1) −−→ (Z + 1, A + 1) + e− + 𝜈e

134Ba 135Ba 136Ba 137Ba 138Ba

133Cs 134Cs
2.06 y

135Cs
2.3 My

136Cs
12.15 d

n n n n

n n n

𝛽 𝛽

• neutron-capture time is long compared to the 𝛽-decay time: slow neutron-
capture process or simply the s-process – close to the line of 𝛽-stability in
the nuclear chart

• neutron-capture time is very short compared to the 𝛽-decay time: rapid
neutron-capture process or r-process – Subsequent neutron captures and 𝛽-
decays will lead to the creation of heavy elements
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Neutron-Capture Nucleosynthesis
s-process

• taking place in stars of intermediate mass (M ≈ 2...5M⊙) in an advanced
phase of evolution: shell burning on the asymptotic giant branch:
→ 13C(𝛼, n)16O, 22Ne(𝛼, n)25Mg

• short-lived isotopes of heavy elements (e.g. 99Tc,𝜏1/2 = 211, 000 y) found in
the atmospheres, could only have been created in the stars themselves

• unimportant for the energy budget and the structure of stars, mainly due to
the extremely low abundances

r-process

• astrophysical site for the r-process is not clearly identified, but is probably to
be found in supernova explosions and/or neutrino-driven winds after neutron
star mergers

• very high neutron fluxes → neutron capture until nuclear shell closure, stable
against more neutron capture: 𝛽 − decay

proton capture: responsible for proton-rich nuclei (p-process, rp- process, 𝜈p-
process): supernovae, neutrino driven winds
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Polytropic Gaseous spheres

Accurate stellar models need to be calculated numerically

→ simple analytic models can be useful to understand general rules and depen-
dencies

→ earliest such models are called polytropes

Temperature does not appear in the mechanical equations of stellar structure.
Assuming hydrostatic equilibrium

dP
dr

= −Gm
r2 𝜌

dΦ
dr =Gm

r2⇒ dP
dr

= −dΦ
dr
𝜌

together with Poisson’s equation

∇2Φ =
1
r2

d
dr

(︂
r2d𝜑

dr

)︂
= 4𝜋G𝜌

Temperature enters via equation of state 𝜌 = 𝜌(P, T ), simplest case: 𝜌 = 𝜌(P)
→ two equations can be solved for P and Φ without the other equations



7–3

Polytropic Gaseous spheres 2

Polytropic Gaseous spheres

Assuming such a simple relation between P and 𝜌 of the form

P = K𝜌𝛾 = K𝜌1+1
n, n =

1
𝛾 − 1

(7.1)

polytropic relation: K polytropic constant, 𝛾 polytropic exponent, n polytropic
index

⇒ dΦ
dr

= −K𝜌𝛾−2d𝜌
dr

If 𝛾 ̸= 1 and Φ = 0 at the surface (𝜌 = 0), integration gives

𝜌 =
(︂ −Φ

(n + 1)K

)︂n

With the Poisson equation, we obtain an ordinary differential equation for Φ

d2Φ

dr2 +
2
r

dΦ
dr

= 4𝜋G
(︂ −Φ

(n + 1)K

)︂n

(7.2)
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Lane-Emden equation

define dimensionless variables z, w and Φc, 𝜌c at the center

z = Ar , A2 =
4𝜋G

(n + 1)nK n(−𝜑c)n−1 =
4𝜋G

(n + 1)K
(𝜌c)

n−1
n , w =

Φ

Φc
=
(︂
𝜌

𝜌c

)︂1/n

Lane-Emden equation

1
z2

d
dz

(︂
z2dw

dz

)︂
+ wn = 0 (7.3)

interested in solutions that are finite at the centre, z = Ar = 0 → dw/dz ≡
w ′ = 0

𝜌(r ) = 𝜌cwn, 𝜌c =
[︂ −Φc

(n + 1)K

]︂n

⇒ P(r ) = Pcwn+1, Pc = K𝜌𝛾c
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Lane-Emden equation

regular singularity at z = 0, expand into a power series:

w(z) = 1 + a1z + a2z2 + a3z3 + ..., Lane-Emden⇒ w(z) = 1− 1
6

z2 +
n

120
z4 + ...

with a1 = w ′(0), 2a2 = w ′′(0), ... Analytical solutions only for three values of

• n = 0 : w(z) = 1 − 1
6z2

• n = 1 : w(z) = sin z
z

• n = 5 : w(z) = 1
(1+z2/3)1/2

Surface of the polytrope of index n defined by value z = zn, for which 𝜌 = p = 0
and w = 0

⇒ z0 =
√

6, z1 = 𝜋, z5 = ∞
→ Only polytropes with n < 5 have finite radii
→ In general, values ofzn and related functions have to be calculated numeri-

cally
→ published in tabular form
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Lane-Emden equation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

z/zn = r/R?

w
n
=
ρ
/
ρ
c

n = 1.5
n = 3
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Lane-Emden equation

n Rn ≡ znMn ≡
(︁
−z2dw(z)

dz

)︁ ⃒⃒⃒⃒
z=zn

Dn ≡ −
(︁

3
z

dw(z)
dz

)︁−1
⃒⃒⃒⃒
z=zn

Bn ≡ Rn
n−3

n (3Dn)
3−n
3n

(n+1)M
n−1

n
n

0 2.44949 4.89898 1.00000 undefined

0.5 2.75270 3.78865 1.83514 0.27432
1 3.14159 3.14159 3.28987 0.23310
1.5 3.65375 2.71407 5.99066 0.20558
2 4.35287 2.41113 11.40216 0.18538
2.5 5.35528 2.18721 23.40630 0.16957
3 6.89685 2.01824 54.18229 0.15654
3.258.01894 1.94983 88.15187 0.15076
3.5 9.53581 1.89060 152.88022 0.14534
5 ∞ 1.73205 ∞ ∞

Dn ≡
(︁
𝜌c
�̄�

)︁
z=zn
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Application to stars

polytropic models for a given index n < 5 and for given values of M⋆ and R⋆

m(r ) =

r∫︁
0

4𝜋𝜌r2dr = 4𝜋𝜌c

r∫︁
0

wnr2dr z=Ar= 4𝜋𝜌c
r3

z3

z∫︁
0

wnz2dz

Using the Lane-Emden equation

− d
dz

(︂
z2dw

dz

)︂
= wnz2 ⇒ m(r ) = 4𝜋𝜌cr3

(︂
−1

z
dw
dz

)︂
At the surface z = zn

M⋆ = 4𝜋𝜌cR3
⋆

(︂
−1

z
dw
dz

)︂
z=zn

= −4𝜋A−3𝜌c

(︂
z2dw

dz

)︂
z=zn

(7.4)

introducing the mean density �̄� = 3M⋆/(4𝜋R3
⋆ )

�̄�

𝜌c
=
(︂
−3

z
dw
dz

)︂
higher n → smaller �̄�

𝜌c
⇒ higher density concentration in the center
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Polytropic model

1. Measuring or assuming values for M⋆ and R⋆

2. Pick the appropriate polytropic index n
→ Numerical solution of Lane-Emden equation (Rn, Mn, Dn, Bn)

3. Calculating �̄� = 3M⋆

4𝜋R3
⋆

and 𝜌c = −zn/(3dw/dz)z=zn�̄�

4. turning the dimensionless z scale to r scale with A = zn/R⋆

5. density distributon: 𝜌(r ) = 𝜌cwn(z)
6. From A2 = 4𝜋G

(n+1)K𝜌
n−1

n
c follows K = 4𝜋G

(n+1)A2𝜌
n−1

n
c

7. Pressure distribution: P(r ) = K𝜌(n+1)/n
c wn+1

→ Pc = (4𝜋)
1
3

Rn
n−3

n (3Dn)
3−n
3n

(n+1)M
n−1

n
n

GM
2
3
⋆𝜌c

4
3 ≡ (4𝜋)

1
3BnGM

2
3
⋆𝜌c

4
3 = K𝜌𝛾c .

polytropic constants Rn, Mn, Dn, and Bn see table
8. Mass distribution: m(r ) = 4𝜋𝜌cr3

(︀
−1

z
dw
dz

)︀
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Polytropic model – Sun

Example: Sun

1. M⊙ = 1.989 × 1033 g, R⊙ = 6.96 × 1010 cm
2. Polytropic index n = 3 → z3 = 6.897
3. �̄� = 1.41 g cm−1, 𝜌c = 76.39 g cm−1

4. A = 9.91 × 10−11

5. 𝜌(r ) = 𝜌cw3(z)
6. K = 3.85 × 1014

→ central pressure Pc = 1.24 × 1017 dyn cm−2

Assuming an ideal gas with X = 0.7 and Y = 0.3 ⇒ 𝜇 = 0.62
→ central temperature Tc = 1.2 × 107 K
→ detailed calculations Tc = 1.5 × 107 K
→ Polytropic model does work quite well
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Polytropic model – Sun
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Polytropic model: n = 3 – Standard model

⇒ Eddingtons ”standard model”

Ideal gas with radiation pressure, 𝛽 = Pgas/P

P =
R
𝜇
𝜌T +

a
3

T 4 =
R
𝜇𝛽
𝜌T

Assuming 𝛽 to be constant throughout the star (0 > 𝛽 > 1)

⇒ 1 − 𝛽 =
Prad

P
=

aT 4

3P
⇒ T 4 ∼ P

Equation of state becomes a polytropic relation with n = 3

P =
(︂

3R4

a𝜇4

)︂1/3(︂1 − 𝛽

𝛽4

)︂1/3

𝜌4/3 = K𝜌1+1
n (7.5)

→ K free parameter, which depends on choice of 𝛽: two free parameters: 𝜌c, 𝛽
→ can be replaced by M⋆, R⋆ ⇒ Pc = Pc(M⋆, R⋆), Tc = Tc(M⋆, R⋆)

Pc = 1.24×1017
(︂

M⋆

M⊙

)︂2(︂R⊙
R⋆

)︂4

dyn cm−2, Tc = 19.5×106𝜇𝛽
M⋆

M⊙

R⊙
R⋆

K
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Polytropic model: n = 3 – Standard model

with 7.5, 7.4 and the definition of A we get the Eddington quartic equation:

1−𝛽 =
a

3R4
(𝜋G)3(3D3/4𝜋)2

z6
3

M2𝜇4𝛽4 = 0.003
(︂

M⋆

M⊙

)︂2

𝜇4𝛽4, → 𝛽 = 𝛽(𝜇, M⋆)

1 10 100

0.2

0.4

0.6

0.8

1

M?

MSun
µ2

β

0 1 2 3 4

0.96

0.98

1
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Polytropic model for radiative and fully convective stars

from the radiative temperature gradient we can derive the radiation pressure gra-
dient dPr

dr = 4
3aT 3dT

dr = − 𝜅𝜌L
4𝜋cr2, and obtain for n = 3:

dPr

dP

dP
dr =−GM𝜌

r2
=

𝜅L
4𝜋cGM

= 1 − 𝛽(r ) = 0.003
(︂

M⋆

M⊙

)︂2

𝜇4𝛽4

L⋆
L⊙

=
4𝜋cGM⊙
𝜅L⊙

0.003𝜇4𝛽4(𝜇, M⋆)
(︂

M⋆

M⊙

)︂3

(mass-luminosity relation) (7.6)

For fully convective stars the temperature gradient is given by the adiabatic tem-
perature gradient

dT
dr

=
Γ2 − 1
Γ2

T
P

dP
dr

⇔ dT
T

=
Γ2 − 1
Γ2

dP
P

.

If we assume the adiabatic coefficient Γ2 to be constant and the radiation pres-
sure negligible, the equation of state is that of an ideal gas

T ∼ P/𝜌⇒ P ∼ 𝜌Γ2, ⇒ n = 1/(Γ2 − 1) ⇒ TP
1−Γ2
Γ2 = const (7.7)

→ pre-main-sequence stars following the Hayashi line
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Polytropic model with K = const

Now we assume K to be fixed and construct a model with index n for a given

central density 𝜌c ⇒ 𝜌 = 𝜌cwn, A−2 =
(︀ r

z

)︀2 = 1
4𝜋G(n + 1)K𝜌

1−n
n

c

Using R⋆ = zn
A we get a mass-radius relation, for a given K and n:

R⋆ ∼ 𝜌
1−n
2n

c , M⋆ ∼ 𝜌cR3
⋆

⇒ M⋆ = C1𝜌
3−n
2n

c ; C1 = 4𝜋
(︂
−1

z
dw
dz

)︂
z=zn

z3
n

(︂
n + 1
4𝜋G

)︂3/2

K 3/2

⇒ R⋆ ∼ M
1−n
3−n
⋆ (7.8)
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Polytropic model for a degenerate electron gas

Non-relativistic, degenerate electron gas

Pe =
1
20

(︂
3
𝜋

)︂2/3 h2

mem5/3
u

(︂
𝜌

𝜇e

)︂5/3

Considering the chemical composition 𝜇e to be fixed:

Pe =
1
20

(︂
3
𝜋

)︂2/3 h2

me(𝜇emu)5/3𝜌
5/3

→ Equation of state is polytropic: P = K𝜌1+1
n

with polytropic index n = 3
2 and polytropic constant K = 1

20

(︀3
𝜋

)︀2/3 h2

me(𝜇emu)5/3

with the mass-radius relation 7.8, do we get a mass-radius relation for this case

R⋆ ∼ M−1/3
⋆ (7.9)

→ The higher the mass, the smaller the radius
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Polytropic model for a degenerate electron gas

for high densities, the degenerate electron gas becomes relativistic:

Pe =
(︂

3
𝜋

)︂1/3 hc
8(𝜇emu)4/3𝜌

4/3

Equation of state is (again) polytropic: P = K𝜌1+1
n

with polytropic index n = 3 and polytropic constant K =
(︀3
𝜋

)︀1/3 hc
8(𝜇emu)4/3

⇒ M⋆ = 4𝜋
(︂
−1

z
dw
dz

)︂
z=z3

z3
3

(︂
K
𝜋G

)︂3/2

𝜌0
c⏟ ⏞ 

1

= MCh

Mass does not vary with central density!

→ only one possible mass for relativistic degenerate polytropes:

Chandrasekhar mass : MCh =
5.836
𝜇2

e
M⊙ (7.10)

For white dwarfs 𝜇e = 2 ⇒ MCh = 1.46 M⊙
→ Highest possible (and observed) mass for WDs
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Polytropic model for a degenerate electron gas

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

M?/MSun

R
?
/R

S
un

non-relativistic limit
ultra-relativistic limit

mass-radius relation for white dwarfs with 𝜇e = 2, transition between non-
relativistic limit and ultra-relativistic limit can be derived by using an equation of
state accounting for relativistic effects (for MWD & 0.5 M⊙), which is then no
longer a polytropic equation of state.
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Homology Relations

For stars with similar density structure, there are simple relations between their
parameters

x =
m
M

=
m′

M ′ then
r (x)
r ′(x)

=
R
R′

→ This follows from the stellar structure equations
→ Such stars are called homologous

Homology relations can be formulated for the fundamental parameters and ma-
terial functions, e.g.

𝜌

𝜌′
=

M/M ′

(R/R′)3,
P
P ′ =

(M/M ′)2

(R/R′)4 =
(︂
𝜌

𝜌′

)︂4/3(︂M
M ′

)︂2/3
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Homology Relations

Assuming an ideal gas P ∼ (1/𝜇)𝜌T

T
T ′ =

𝜇

𝜇′
M
M ′

(︂
R
R′

)︂−1

→ If a star is compressed, R becomes smaller and T higher
→ Higher T leads to more fusion, higher internal energy and expansion
→ Star behave like a thermostat

Assuming an ideal gas and radiative energy transport

L
L′ =

(︁𝜅
𝜅′

)︁−1
(︂

M
M ′

)︂3(︂
𝜇

𝜇′

)︂4

,
L
L′ =

𝜖

𝜖′
M
M ′

→ Luminosity is a strong function of mass L ∼ M3

→ Stars with smaller metal content (smaller opacity 𝜅) have higher L
→ Stars with higher 𝜇 have higher L
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Stellar populations
First stars (Population III)

• formed with the primordial composition of the Universe (H, He, Li ,Be, B)
→ Metal-free composition (not observed yet)
→ No CNO-cycle possible

• Star forming gas clouds cool much slower, because the transitions of metals
make cooling more efficient
→ instability for collapse to stars might happen at higher masses
M ≈ 100 − 1000 M⊙
The mass distribution of the first stars is currently debated

• after 106 yr first supernovae (core collapse, pair production) enrich the inter-
stellar medium
→ Nucleosynthesis dominated by 𝛼-elements from C/O burning

(C, O, Ne, Mg, Si, S, Ar, Ca)
→ Due to the short evolutionary times, no s-process elements are formed
→ Due to the extreme properties of the first stars, r-process elements might

have been formed
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Stellar populations

Extremely metal-poor (EMP), low-
mass stars (MS, red giants) with
[Fe/H] < −7.0 ... − 3.0 have been
observed

• Due to their long lifetimes, they
allow us to study the enrichment
by the first generations of stars

• Stellar archaeology
• Near-field cosmology
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Stellar populations

Extremely metal-poor (EMP), low-
mass stars (MS, red giants) with
[Fe/H] < −7.0 ... − 3.0 have been
observed

• Lithium abundances and isotope
ratio in conflict with predictions for
primordial nucleosynthesis

• Carbon enrichment [C/Fe] > 1.0
detected in a large fraction of stars
→ CEMP stars

• Enrichment with r- and s-process
elements
→ (C)EMP-r/s stars

Enrichment by Pop III stars?
Nucleosynthesis predictions by early
supernovae highly uncertain
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Stellar populations

Subsequent generations of
stars enriched the ISM

• Stellar populations be-
come more metal-rich

• Massive stars most im-
portant for enrichment
(winds, SN II), but short-
lived (𝛼-elements)

• AGB-stars (s-process
elements)

• SN Ia (iron)
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Stellar populations

San Roman 2015, A&A, 579, 6

SN Ia require low-mass stars
to evolve to WDs first
→ starting to contribute later
than core collapse SN from
massive stars
→ The relative abundance of
𝛼−elements w.r.t iron [𝛼/Fe
decreases with time
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Stellar populations

Population II
Oldest Galactic population

• Associated with Galactic
halo

• [Fe/H] < −2.2 ... − 1.6
• Stars < 0.8 M⊙ still on

main sequence
• Age < 13 Gyr



8–8

Stellar populations 7

Stellar populations

ESA/Gaia/DPAC

Lower metallicity shifts the MS

Pop II stars below the ZAMS of sub-solar metallicity are called subdwarfs
(sdA/F/G/K/M)

Gaia revealed split in Pop II!
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Stellar populations

Amarsi et al. 2019, A&A, 630, 104

Galactic space velocity (km/s): U Velocity (km/s) toward the Galactic center; V in
the direction of Galactic rotation; W toward the North Galactic Pole

Kinematic selection
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Stellar populations

Globular clusters represent
old sub-populations with up
to ∼ 106 stars

• Part of the Galactic halo
• [Fe/H] < −2.3 ... − 1.6
• Cluster stars have formed

at the same time
• MS-turnoff depends on

age
• Problem: Multiple popula-

tions
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Stellar populations

NASA/ESA

ESA/Gaia/DPAC

Globular clusters represent
old sub-populations with up
to ∼ 106 stars

• Part of the Galactic halo
• [Fe/H] < −2.3 ... − 1.6
• Cluster stars have formed

at the same time
• MS-turnoff depends on

age
• Problem: Multiple popula-

tions
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Stellar populations

Population I
Youngest Galactic population

• Associated with Galactic
disk/bulge

• [Fe/H] < −0.2 ... − 0.6
• Star formation ongoing in

the disk
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Stellar populations

ESA/Gaia/DPAC

MS extended towards young and massive stars

WDs and low-mass MS stars present

→ Selection effect: Sun belongs to the disk
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Stellar populations

Open clusters represent
sub-populations with up to
∼ 103 stars

• Part of the Galactic disk
• Cluster stars have formed

at the same time
• MS-turnoff depends on

age
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Stellar populations

ESA/Gaia/DPAC

Open clusters represent
sub-populations with up to
∼ 103 stars

• Part of the Galactic disk
• Cluster stars have formed

at the same time
• MS-turnoff depends on

age

NASA,
ESA, AURA/Caltech, Palomar Observatory
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Stellar populations

Age determination of clusters by isochrones

Ekström et al. 2012, A&A, 37, A146
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Stellar evolution
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Star formation 1

Cosmic cycle of matter
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Star formation 2

Molecular clouds
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Star formation 3

Cloud collapse

• new stars can be formed in an environment of dense interstellar (molecu-
lar hydrogen H2) clouds. Under certain circumstances (e.g. by shock waves
from supernovae) these clouds can become gravitationally unstable to con-
traction.

• not strictly necessary to have such massive clouds. There are inhomo-
geneities that will cause the cloud to fragment leading to the formation of
more than one star.
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Star formation 4

Cloud collapse

Jeans mass

• Gravitational pressure has to overcome gas pressure (𝜃 = 3/5 for homoge-
nous sphere)

|Pgas| < |Pgrav| →
R
𝜇
𝜌T < 𝜃

GM2

4𝜋R4

⇒ MJeans =
27
16

(︂
3
𝜋

)︂1/2(︂ R
𝜃G

)︂3/2
√︃

T 3

𝜇3�̄�

⇒ MJeans = 1.1M⊙

(︂
T

10 K

)︂3/2(︂
𝜌

10−19 g cm−3

)︂−1/2 (︁ 𝜇

2.3

)︁−3/2)
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Cloud collapse

Offner et al. 2014, in: Protostars and Planets VI, 53

Low-mass stars are more frequent → peak at M = 0.2 M⊙
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Star formation 6

Cloud collapse

Molecular clouds highly turbulent → MJeans ∼
√︁

T 3

𝜇3𝜌
ℳ−1, ℳ = vshock

vsound

with Mach number ℳ


StarCluster_Formation.mp4
Media File (video/mp4)
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Star formation
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Pre-main sequence stars 1

Young stellar objects (YSOs)

Andre 2002

• isothermal phase: T ∼ 10 K,
density low enough that gravita-
tional energy can be radiated away,
temperature remains low and it
keeps contracting, visible through
far infrared emission

• adiabatic phase: density increases
until cloud becomes opaque, tem-
perature rises until contraction
stops because pressure built up
(hydrostatic equilibrium), protostar
forms, cloud is detectable from
radiation from dust in IR
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Pre-main sequence stars 2

Young stellar objects (YSOs)

Masunaga and Inutsuka 2000
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Pre-main sequence stars 3

Evolution of cloud collapse and early pre-main sequence in the HRD

Wuchterl & Tscharnuter 2003, A&A 398,1081
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Pre-main sequence stars 4

Evolution of cloud collapse and early pre-main sequence in the HRD
• collapsing cloud remains an infrared object as long as the envelope is

opaque to visible radiation → evolutionary track starts extremely far to the
right

• thinning out of the envelope has several effects:
– becomes more transparent
– photosphere moves downwards until it has reached the surface of the hy-

drostatic core
– with decreasing R: Teff must increase in order to radiate away the energy
– luminosity is produced by accretion → with decreasing Ṁ : L decreases

until it is finally provided by contraction of the core
• for low-mass stars accretion onto the protostar stops well before central tem-

peratures for hydrogen ignition is reached
• For massive stars, accretion continues while central hydrogen burning has al-

ready set in → already consumed part of its hydrogen fuel when it becomes
visible
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Hayashi lines
The Hayashi line (HL) is defined as the locus in the HRD of fully convective stars
of given parameters (mass M and chemical composition)

→ located far to the right in the HRD, typically at Teff ≈ 3000...5000 K, very
steep, in large parts almost vertical

→ borderline between an ”allowed” region (on its left) and a forbidden” region
(on its right), for all stars in hydrostatic equilibrium and being fully convective

→ cooler Teff than Hayashi line not stable because temperature gradients would
have to be steeper than the adiabatic one

interior part of convective star has an adiabatic stratification d ln T/d ln P = ∇ad

→ if we assume a fully ionized ideal gas: ∇ad = const = 0.4
→ simple P − T relation: P = CT 1+n = CT 5/2

→ star is polytropic with an index n = 1/∇ad − 1 = 3/2, C = K−n(R/𝜇)1+n

K ∼ 𝜌
1/3
c A−2 ∼ 𝜌

1/3
c R2 ∼ M1/3R ⇒ C = C ′(n,𝜇)R−3/2M−1/2

⇒ lg T = 0.4 lg P + 0.4
(︂

3
2

lg R +
1
2

lg M − lg C ′
)︂
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Hayashi lines

with the hydrostatic equation and the Stephan-Boltzmann law we get the
Hayashi lines in the HRD

lg Teff = A lg L + B lg M + C lg𝜇 + constant (9.1)

Kippenhahn, Weigert & Weiss 2012
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Pre-main sequence stars 7

Further evolution of pre-main sequence in the HRD

Tout et a. 1999, MNRAS, 310, 360

PMS tracks with constant
masses

• later phases a short episode
of nuclear burning sets in

D + H −−→ 3
2He + 𝛾

• Low-mass PMS ≤ 0.5 M⊙
evolve along the Hayashi
tracks

• High-mass PMS > 0.5 M⊙
leave or never follow the
Hayashi tracks because a
radiative zone develops
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Pre-main sequence stars 8

Further evolution of pre-main sequence in the HRD

Tout et a. 1999, MNRAS, 310, 360

PMS tracks for constant ac-
cretion and an initial mass of
0.1 M⊙
→ Much more complicated
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Further evolution of pre-main sequence in the HRD

Schulz 2012

When the opacity drops the in-
ternal temperature rises and the
convective zone recedes from
the center, evolutionary path of
the star in the HR-diagram to
move away from the Hayashi
track toward higher effective
temperatures
→ radiative track of the HR-
diagram (timelines 2-5)
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Protostars

Tcentral of pre-main-sequence (PMS) stars too low to ignite hydrogen burning
→ Energy source is gravitational energy of infalling material Lproto = GMṀ

R
→ evolution on Kelvin-Helmholtz timescale 𝜏KH = GM2

2RLproto
∼ 107 yr

→ presence of infalling envelope of gas and dust is the defining characteristic
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Lithium abundance in solar type stars

Carlos et al. 2015

Identification as young star
via the presence of lithium
in their spectra
→ Lithium is consumed in

stars with T > 2×106 K
7Li + H −−→ 4He + 4He
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Structure of a protostellar system

Tobin et al. 2012

• infalling envelope surrounding the
protostar and disk

• infalling material has some net rota-
tion → falls onto a disk

• Keplerian rotation of the disk around
the protostar

• Mass is transported from the en-
velope to the disk and then it is
accreted through the disk and onto
the protostar

• protostar and disk both work to-
gether and drive a bipolar outflow

• > 50% are variable
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Protostellar luminosity problem

∼ 10 times less luminous than expected
How do stars accrete their mass?
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Pre-main sequence stars 14

Protostellar luminosity problem

episodic acretion
Schulz 2012
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Pre-main sequence stars 15

Magnetospheric Accretion in T Tauri stars
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Pre-main sequence stars 16

UV and X-ray excess in T Tauri stars

Variable stars of spectral types Me to Fe are called T Tauri stars
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Pre-main sequence stars 17

Variability of pre-main sequence stars

Cody et al. 2014, AJ, 147, 4



9–26

Pre-main sequence stars 18

T Tauris stars in the HRD

Bertout et al. 2007, A&A, 473, L21
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Pre-main sequence stars 19

Protoplanetary discs

HL Tau, ALMA
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Pre-main sequence stars 20

Protoplanetary discs

ALMA / ESO / NAOJ / NRAO / S. Andrews et al / AUI / NSF / S. Dagnello
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Herbig Ae/Be stars

• Pre-MS stars of intermediate mass, higher-mass (2 M⊙ < M < 10 M⊙)
analogs of TTS

• within mass range of HAeBes change in accretion mechanism from magneti-
cally to an unknown mechanism for high mass stars (radiative, non-magnetic)

• Herbig Ae and T-Tauri stars behave more similarly than Herbig Be stars, and
Herbig Ae and Herbig Be stars have different observational properties



9–30

Pre-main sequence stars 22

Massive young stellar objects (MYSOs)

Caratti o Garatti et al 2017

• massive young stellar objects
(MYSO) spend their brief youth
while deeply embedded in extremely
dense molecular cores

• optically visible massive stars should
have already arrived on the zero-
age-main-sequence with very little
episodic accretion activity

• massive stars can form from clumpy
discs of material – in much the same
way as less massive stars

• accretion bursts might reduce the ra-
diation pressure of the central source
and allow the star to form
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

As soon as the conditions in the
core are fulfilled, stable burning of
hydrogen starts

Since 𝜏nuc ≫ 𝜏KH this phase can
be described by homogeneous
models in thermal equilibrium

For solar-like stars the chemical
composition is

X = 0.70, Y = 0.28 Z = 0.02

The sequence of such models is
called
Zero Age Main Sequence
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Zero-Age Main Sequence (ZAMS)
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prediction of the ZAMS by a sophisticated stellar structure and evolution code
(EZ: http://www.astro.wisc.edu/~townsend/static.php?ref=
ez-web)

http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web
http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type M
Teff = 2400 − 3700 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type K
Teff = 3700 − 5200 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type G
Teff = 5200 − 6000 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type F
Teff = 6000 − 7500 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type A
Teff = 7500 − 10000 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type B
Teff = 10000 − 30000 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Kippenhahn, Weigert & Weiss 2012

Spectral-type O
Teff = 30000 − 50000 K

X-Shooter spectral library, http://xsl.u-strasbg.fr/

http://xsl.u-strasbg.fr/
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Zero-Age Main Sequence (ZAMS)

Mass-radius relation Mass-luminosity relation

Kippenhahn, Weigert & Weiss 2012

R ∼ M0.56...0.79 L ∼ M3.89...3.35
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Interior structure of ZAMS stars
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Jump due to change from p-pchain to CNO-cycle
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Interior structure of ZAMS stars

Kippenhahn, Weigert & Weiss 2012

→ For lower masses, the core becomes partly degenerate
→ For high masses, radiation pressure becomes significant
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Interior structure of ZAMS stars
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Interior structure of ZAMS stars

Temperature and pressure for a 1 M⊙ ZAMS star
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Interior structure of ZAMS stars

Temperature and pressure for a 1.35 M⊙ ZAMS star
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Interior structure of ZAMS stars

Temperature and pressure for a 3 M⊙ ZAMS star
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Interior structure of ZAMS stars

Temperature and pressure for a 7 M⊙ ZAMS star
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Interior structure of ZAMS stars
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Interior structure of ZAMS stars
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Radial extension of convection zones for ZAMS stars
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convection zone at the surface/center is shaded in orange/cyan. The surface
convection zone increases with decreasing stellar mass while the opposite is
true for the central convection zone
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Radial extension of convection zones for ZAMS stars

Kippenhahn, Weigert & Weiss 2012

Upper main sequence
M & 1 M⊙

→ CNO cycle leads to high
temperature gradient in
the core

→ Convective core +
radiative envelope

Lower main sequence
M . 1 M⊙

→ Low temperature at the
surface and high opacity

→ Radiative core + con-
vective envelope

M . 0.25 M⊙ → Fully convective
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Zero-Age Main Sequence

Minimum mass M ≃ 0.08 M⊙

→ Hydrogen-burning limit

Substellar objects with masses 0.01 − 0.08 M⊙ are called brown dwarfs

→ After a short phase of deuterium burning, they continue to cool down with 𝜏KH

→ Discovered in 1995
→ New spectral types L, T and Y have been introduced
→ Objects with low luminosities and SEDs peaking in the infrared

Maximum mass M ≃ 60 − 100 M⊙

→ limited by vibrational instability and radiation pressure

At the upper end of the main sequence, radiation pressure becomes so high that
the star becomes unbound (grad = −1

𝜌
dPrad

dr > g)

→ The critical luminosity is called Eddington luminosity LE
LE

L⊙
=

4𝜋cGM
𝜅

= 1.3 × 1041
𝜅

M
M⊙

Since L ∼ M3 this leads to a limiting mass dependent on metallicity
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Zero-Age Main Sequence

Kippenhahn, Weigert & Weiss 2012

Other main se-
quences can be
constructed for differ-
ent compositions

Relevant for later
stages of stellar evo-
lution are the He-MS
and the C-MS
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Main Sequence Evolution of a 1 M⊙ star
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Occurrence of convection, chemical composition, energy generation as function
of fractional mass coordinate for a 1 M⊙ ZAMS star (based on EZ-models with
X = 0.73, Y = 0.26)
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Main Sequence Evolution of a 1 M⊙ star
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Occurrence of convection, chemical composition, energy generation as function
of fractional mass coordinate for a 1 M⊙ terminal-age main sequence (TAMS)
star (based on EZ-models with X = 0.73, Y = 0.26)
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Main Sequence Evolution of a 1 M⊙ star
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ZAMS and TAMS model (based on MESA-models: http://www.astro.
wisc.edu/~townsend/static.php?ref=mesa-web) with X = 0.7, Y =
0.28).

http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-web
http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-web
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Main Sequence Evolution of a 1 M⊙ star
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Temporal changes of central temperature Tc , pressure Pc , density 𝜌c (all in cgs
units), and stellar radius R (based on EZ-models with X = 0.73, Y = 0.26).
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Main Sequence Evolution of a 1 M⊙ star (MESA model)
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core
→ shell moves outward
→ radiative core
→ more massive stars have convective cores
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MS Evolution of a 1 M⊙ (radiative core) vs 5 M⊙ (convective) star
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Main Sequence Evolution of a 7 M⊙ star (EZ model)
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Main Sequence Evolution in the HRD
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Nuclear time scale

Kippenhahn, Weigert & Weiss 2012

The nuclear lifetime on the
main sequence is a strong
function of L and therefore M

𝜏H ∼ M−2.5

It ranges from several million
years to more than the age of
the Universe for M < 0.8 M⊙
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Evolution of a star with convective core

Kippenhahn, Weigert & Weiss 2012

seemingly nice and
clear picture of the main-
sequence phase
→ notorious problem of

convection
→ precise determination

of those regions in the
deep interior in which
convective motions occur
and the extent to which
the chemical elements
are mixed

→ mixing influences the later evolution, since the chemical profile, which is es-
tablished and left behind, is a long-lasting memory
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Convective Overshooting

Kippenhahn, Weigert & Weiss 2012

At border between convective core and
radiative envelope

∇rad = ∇ad

→ regimes in which convective motions
are present (v > 0) and absent
(v = 0)

→ Inertia of the moving material
→ Penetration into the radiative region
→ Convective overshooting
→ mixing-length parameter 𝛼 = lm/Hp

→ F = Fconv + Frad = l
4𝜋r2

→ overshooting (𝛼 > 0) brings more
hydrogen in the core
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Convective Overshooting

Kippenhahn, Weigert & Weiss 2012

overshooting (𝛼 > 0) brings more
hydrogen in the core
→ Helium core becomes larger
→ Main-sequence age increases
→ Broader main sequence
Open issue in stellar evolution theory
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Semiconvection

Kippenhahn, Weigert & Weiss 2012

semiconvection: slow mixing

massive stars M & 10 M⊙
• during central hydrogen burning the

convective core retreats, leaving a
certain hydrogen profile behind

• radiative gradient ∇rad outside the
core starts to rise and soon exceeds
the adiabatic gradient ∇ad

• dynamically stable due to Ledoux
criterion

∇ad < ∇rad < ∇ad +
𝜑

𝛿
∇𝜇

• slightly displaced mass element
starts to oscillate with slowly grow-
ing amplitude, penetrates more and
more into regions of different chemi-
cal composition
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Schönberg-Chandrasekhar Limit (SC-Limit)

Kippenhahn, Weigert & Weiss 2012

• at end of central H-burning, H-burning
moves outward in a shell

• No energy produced in the He-core
→ Isothermmal Tc = const

• Core grows in mass
How long can this last?

Virial theorem for separate core and envelope:

P0 = Pgas − Pgrav =
3

4𝜋
R
𝜇c

T0Mc

R3
c

− 𝜃GM2
c

4𝜋R4
c

Maximum value P0,max at the radius Rc,max

dP0

dRc
= 0 ⇒ Rc,max =

4𝜃G
9R

Mc𝜇c

Tc
⇒ P0,max = C

T 4
c

𝜇4
cM2

c
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Schönberg-Chandrasekhar Limit (SC-Limit)
• P0,max must balance the pressure exerted by

the envelope Penv

• Assuming the core to be a point mass and
hydrostatic equilibrium
→ Penv equals the central pressure Pc

⇒ C
T 4

c

𝜇4
cM2

c
≥ GM2

8𝜋R4

• Homology relation

Tc ≃ 𝜇envM/R

⇒ Mc

M
≤ constant

(︂
𝜇env

𝜇c

)︂2

≈ 0.37
(︂
𝜇env

𝜇c

)︂2

≈ 0.1 (9.2)

Stars with mass M > 2 M⊙: when mass of the He-core exceeds the SC-limit,
the core starts to contract rapidly and the star leaves the main sequence.

For smaller stars: gas in the He-core partially degenerate before the star
reaches the SC-limit (not T depended, hydrostatic equilibrium with higher P).
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Schönberg-Chandrasekhar Limit (SC-Limit)

• Contraction of the He-core leads
to heating of the core on the Kelvin-
Helmholtz timescale (much shorter
than nuclear timescale)

• As the core contracts, it generates
energy, which flows outward

→ The envelope expands
→ The star moves to the red giant

branch

The details of the further evolution
strongly depend on stellar mass.

• Low-mass stars (< 2.5 M⊙)
• Intermediate-mass stars

(2.5 − 8 M⊙)
• Massive stars (> 8 M⊙)
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Post-main sequence evolution
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Theoretical Hertzsprung-Russell diagram (based on EZ-models with X =
0.73, Y = 0.26). The blue numbers indicate the mass in M⊙. The color codes
the fractional age on the displayed portion of the track.
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Kippenhahn diagram

Kippenhahn diagram shows internal structure of star
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Intermediate stars im HRD (EZ model for a 5 M⊙ star)
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Post-main sequence evolution – Intermediate stars

MESA

Main sequence (A-B)
• main energy production

is H-burning due to CNO
cycle

• stronger temperature de-
pendence as PP cycle
→ star will expand more
during the MS than a lower
mass star

Main sequence (B-C)
• At point B the central H is

getting depleted and the
core starts contracting

• At C, all H in the core is
used up.
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Post-main sequence evolution – Intermediate stars

MESA

Thick shell burning (C-D)
• When the core H is ex-

hausted, quick transition
to H shell burning.

• Temperature gradient is
small because the outer
layers haven’t puffed up
much yet.

→ H shell takes place in a
thick shell.

• core keeps growing in
mass
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Post-main sequence evolution – Intermediate stars

MESA

Thick shell burning (C-D)
• Fast evolution on Kelvin-

Helmholtz timescale
∼ 107 yr

• Not many stars in ob-
served HRDs
→ Hertzsprung gap

• Luminosity and Teff drops
by a factor of ∼ 3

• Radius increases by a
factor of ∼ 5

• at D core exceeds
Schönberg-Chandrasekhar
limit → envelope pushed
out



9–76

Post-main sequence evolution – Intermediate stars 5

Post-main sequence evolution – Intermediate stars

MESA

Red giant branch (RGB, D-E)
• expansion of the outer layers

causes the T gradient to
become steeper, and the H
burning shell becomes much
thinner

• envelope is fully convective:
star is on the RGB

• Convection reaches into re-
gions with nuclear processed
material

• First dredge-up of pro-
cessed material to the sur-
face

→ Red giant – Luminosity class III – T ∼ 4000 − 5000 K
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Post-main sequence evolution – Intermediate stars

Keller, Pilachowski & Sneden 2001, AJ, 122, 2554

First dredge-up
• primordial ratio of the carbon

isotopes 12C/13C ≃ 90
is reduced due to CNO-
processing

• first dredge-up brings mate-
rial to the surface

• Molecular bands of CO in
IR-spectra can be used to
determine this ratio (10 ± 1)

→ Evidence for the first
dredge-up has been found
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Post-main sequence evolution – Intermediate stars

MESA

He ignition (E)
• When the core of the star

reaches T ∼ 108 K,
it ignites Helium under non-
degenerate conditions.

• He burning starts ’gently’
• reaction 3𝛼 −−→ 12C,

later 12C + 𝛼 −−→ 16O
• eventually 16O/12C ≈ 0.5

Blue loop (E-F-G-H)
• Star becomes smaller and

hotter
• During core He burning, the

star goes through the blue
loop.
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Post-main sequence evolution – Intermediate stars

MESA

Blue loop (E-F-G-H)
• blueward direction: H-

burning shell maintains an
even level of efficiency and
He-burning core increases

• redward: core starts to de-
crease in luminosity as He is
running low

• important to explain Cepheid
stars, when crossing the
instability strip

• Details depend on composi-
tion, mixing and mass-loss

• Core helium burning stops,
when helium is completely
processed
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Post-main sequence evolution – Intermediate stars

MESA

Asymptotic giant branch
(AGB, H-J)

• C/O core grows in mass and
contracts, H and He-shell
burning

• star reaches the AGB
• He-burning shell moves

outward
• As the stars expands, the

temperature in the H-shell
drops

• H-shell burning ceases
• Convection reaches (again)

into the core region
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Post-main sequence evolution – Intermediate stars

MESA

Asymptotic giant branch
(AGB, H-J)

• Second dredge-up of H-
processed material (He,N) to
the surface

• C/O core grows further in
mass

• Outward moving He-burning
shell reignites H-burning
shell
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Post-main sequence evolution – Intermediate stars

Kippenhahn, Weigert & Weiss 2012

”Cloudy” regions indicate convective areas. Heavily hatched regions indicate
where the nuclear energy generation (H or He) exceeds 102 erg g−1 s−1. Re-
gions of mixed chemical composition are dotted.
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Post-main sequence evolution – Intermediate stars
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Post-main sequence evolution – Massive stars
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Post-main sequence evolution – Massive stars

Kippenhahn, Weigert & Weiss 2012 15 M⊙ star

Evolution of high-mass stars
depends on uncertain physics

• convective core
→ Ledoux or Schwarzschild
criterion

• Convective mixing
– Overshooting
– Semiconvection

• Rotational mixing
• Mass loss:

15 M⊙
→ Ṁ = 1 − 2 × 10−8M⊙/yr
≈ 1.15 M⊙ at end of helium
burning

grey: with mass loss and overshooting; dotted: Ledoux criterion (semi-convection); black/dashed :
Schwarzschild criterion without/with overshooting



9–86

Post-main sequence evolution – Massive stars 3

Post-main sequence evolution – Massive stars

Kippenhahn, Weigert & Weiss 2012 15 M⊙ star

Evolution of high-mass stars
Start of He-core burning (∼ 106

yr) highly model-dependent
• Schwarzschild criterion:

layers become convective
more easily and earlier in the
evolution, He burning at an
age of 9.35 Myr

• Semiconvection: region of
varying chemical composi-
tion around the convective
core → longer H-fusion, blue
loop

• Overshooting: creating a smooth chemical profile, enlarges the convective
helium-burning core, higher luminosity, reduced duration of nuclear phase
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Post-main sequence evolution – Massive stars

Kippenhahn, Weigert & Weiss 2012 15 M⊙ star

Evolution of very high-mass
stars
evolution highly model-
dependent

• mass loss: ∼ 10−6M⊙/yr
→ timescale much longer
than nuclear timescale
→ MS lifetime 4.5 Myr
→ star can adjust to the
reduced mass and evolves
similar to star of constant
mass → (3 times) higher
mass-loss: perturbation

40 M⊙ star: Schwarzschild crit. (solid), overshooting (dotted), additional mass loss (dot dashed);
50 M⊙ star: Ledoux criterion (solid), Schwarzschild criterion (grey dotted line), significantly en-
hanced mass loss (grey dash-dotted)
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Post-main sequence evolution – Massive stars

Kippenhahn, Weigert & Weiss 2012 15 M⊙ star

Evolution of very high-mass
stars
mass loss: 10−(4−6)M⊙/yr
caused by strong stellar winds,
significant changes of the mass
during stellar evolution up to
several tens of M⊙
most extreme cases: removal
of the entire envelope, leav-
ing behind the extremely hot
(30000 − 120000 K) and still
massive (< 10 M⊙) core
surrounded by nebula and
called Wolf-Rayet stars
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Post-main sequence evolution – Massive stars

Hubble Legacy Archive

Spectra show lines of nuclear pro-
cessed elements in emission Crowther 2007, ARA&A, 45, 177

Classification based on most prominent elements: WN, WC, WO
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Post-main sequence evolution – Massive stars

Kippenhahn, Weigert & Weiss 2012 15 M⊙ star

Evolution of very high-mass
stars

• L ≈ 105.6 − 106 L⊙
• Teff ≈ 3000 − 25000 K

→ R ≈ 40 − 4000 R⊙
Blue, Yellow and Red Super-
giants

• Most luminous stars, observ-
able in other galaxies

• Red Supergiant Luminosity
class I

40 M⊙ star: Schwarzschild crit. (solid), overshooting (dotted), additional mass loss (dot dashed);
50 M⊙ star: Ledoux criterion (solid), Schwarzschild criterion (grey dotted line), significantly en-
hanced mass loss (grey dash-dotted)
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Low mass stars in the HRD (EZ model for a 1 M⊙ star)
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Post-main sequence evolution – Low mass stars

In low-mass stars the core is radia-
tive

• No efficient mixing in the core
• Hydrogen is consumed starting in

the center
• Smooth transition to shell burning



9–93

Post-main sequence evolution – Low mass stars 3

Post-main sequence evolution – Low mass stars

Due to the high density in the core, the
electron gas becomes degenerate

• Isothermal, degenerate core is
stable

• Schönberg-Chandrasekhar limit is
not important

• Core can grow in mass

No rapid contraction of the core
• No Hertzsprung gap
• No heating during core contraction

due to equation of state

Pe = 1.0036 × 1013
(︂
𝜌

𝜇e

)︂5/3



9–94

Post-main sequence evolution – Low mass stars 4

Low mass stars in the HRD (EZ model for a 1 M⊙ star)
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Post-main sequence evolution – Low mass stars

MESA

Main sequence (A-B)
• Slow fusion of hydrogen

in the core of the star
• Time on MS depends on

mass: 106 − 109 yr
• Star evolves from the

ZAMS towards higher
luminosity and larger
radii
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Post-main sequence evolution – Low mass stars

MESA

Sub giant branch (B-C)
• H runs out in the core at

point B (Hc < 0.001)
• H-fusion moves to a

shell around the core
• Core keeps growing in

mass and contracts due
to shell burning

• at C, He core becomes
degenerate

• Core contracts, envelope
expands
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Post-main sequence evolution – Low mass stars

MESA

First dredge up (D)
• convective envelope

is at it’s deepest point
and reaches into layers
that were processed by
H-burning

• Processed material is
transported to the sur-
face and changes the
observed abundances of
the star



9–98

Post-main sequence evolution – Low mass stars 8

Post-main sequence evolution – Low mass stars

MESA

to tip of the RGB (D-E)
• Between D and E, the

outer layers of the star
become less bound, and
a stellar wind will remove
part of the envelope

• Due to the high concen-
tration of mass in the
core L ∼ Mcore

• Temperature of the core
increases
→Increase of T in the
H-burning shell
→ Core contraction
heats transition layer
between core and shell
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He flash
He-flash (E)

• At point E, the tip of the RGB, the
core of the star has reached the
critical temperature (∼ 108 K) at the
necessary mass to ignite He

• Due to the degeneracy of the core,
the actual core ignition mass is
independent of the star mass
(M ∼ 0.47 M⊙)

• Due to energy losses via neutri-
nos leading to cooling in the center,
helium is ignited in a shell

Due to the high temperature dependency of the 3𝛼 reaction ⟨𝜎v⟩ ∼ 𝜌T 40 nu-
clear energy is released fast and increases the core temperature but degenerate
gas cannot expand with increasing temperature → fast increasing Tc

→ Runaway burning of helium: Helium flash
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He flash

Kippenhahn, Weigert & Weiss 2012

Runaway burning of he-
lium under degenerate
conditions

• Luminosity during
He flash reaches
∼ 1010 L⊙,
small galaxy

• energy is used to expand
the envelope, and is thus
not visible

• Degeneracy is lifted
• Core expands, density

drops
• Stable He-core burning

→ Flash starts off center due to neutrino cooling
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He flash

Subflashes when the
burning moves from the
shell towards the center

• He-flash is highly
dynamic and not well
understood

• Detailed hydrody-
namical models
necessary
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He flash

Mocak et al. 2008, A&A, 490, 265
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Horizontal branch (EZ model for a 0.8 M⊙ star)
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Phase of stable He-core and H-shell burning

→ Stars occupy a region of (about) constant luminosity: Horizontal branch
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Horizontal branch (HB)

Kippenhahn, Weigert & Weiss 2012

Horizontal Branch stars
• Different mass loss 𝜂 on the

RGB leads to different thick-
ness of the hydrogen en-
velopes

• Mass of the He-core is constant
(∼ 0.47 M⊙)

• Diverse types of HB stars
• The thinner the hydrogen enve-

lope, the bluer the HB star
• Morphology of HB depends on

metallicity and age
• Luminosity during He burning is

determined by core mass, which
is similar for all low mass stars
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Horizontal branch (HB)

Gaia collaboration 2018, A&A 616, 10

Red clump (RC) stars
• red, close to RGB
• low-mass stars in their stage of

central He-burning
• sizable convective envelopes

result from either a moderately
high metallicity or buffer of mass
above the H-burning shell

• young population
• far more abundant than HB stars

(1/3 of all red giants )
• RC stars can be used as stan-

dard candles
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Horizontal branch (HB)

Renzini & Fusi Pecci 1988, ARA&A, 26, 199

Red Horizontal Branch
(RHB) stars

• Redward of the MS
• (Sub-)giants
• Spectral types K, G
• metal-poor, old popula-

tion
RR Lyr stars

• (Sub-)giants
• Spectral types F
• metal-poor, old popula-

tion
• pulsators
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Horizontal branch (HB)

Xue et al. 2008, ApJ, 684, 1143

Blue Horizontal Branch
(BHB) stars

• Blueward of the MS
• (Sub-)dwarfs
• Spectral types A,B

(HBA, HBB)
• chemically peculiar

→ low helium content
HBB > 11500 K

→ Light elements depleted,
heavy elements enriched

→ Slow rotation



9–108

Post-main sequence evolution – Low mass stars 18

Extreme Horizontal branch (EHB)

Moehler et al. 2004, A&A, 415, 313

Extreme Horizontal
Branch (EHB) stars

• Subdwarfs
• Spectral types O, B

(sdO, sdB)
• Extremely thin hydrogen

envelopes, no H-shell
burning

• mass close to He-core
mass necessary for
He-burning (0.47 M⊙)
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Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Hydrogen-rich sdBs
• very low to solar helium

content
• Light elements depleted,

heavy elements enriched
• High binary fraction

Helium-rich sdO/Bs
• very high helium abun-

dance
• Enrichment in carbon

and/or nitrogen
• Single stars



9–110

Post-main sequence evolution – Low mass stars 20

Extreme Horizontal branch (EHB)

• mass-loss phase near tip of the RGB, moving away from the RGB before the
core ignites

• Resettling/contraction of the sdB progenitor
• He flashes
• time about 2 Myr
• He-core burning (∼ 100 Myr)
• He-shell burning
• white dwarf cooling track
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Extreme Horizontal branch (EHB)

• He-core burning from
the Zero Age Extreme
Horizontal branch (ZA-
EHB) to the Terminal
Age Extreme Horizontal
Branch (TAEHB)

• lifetime on the EHB
∼ 100 Myr
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Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Alternative formation
• Helium enriched

populations
• Due to previous

episodes of star
formation?

• Composition
changes luminos-
ity and temperature
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Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Alternative formation
• Late hot helium flash
• After RGB phase
• Mixing of processed

material (C,N)
• Dependent on evolution-

ary phase
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Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Alternative formation
• Close binary evolution
• Helium-burning core of

the red giant stripped by
binary interaction

• Binary sdB stars
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Extreme Horizontal branch (EHB)


common_envelope_trim.mp4
Media File (video/mp4)



9–116

Post-main sequence evolution – Low mass stars 26

Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Alternative formation
• Close binary evolution
• Star stripped before

ignition of helium burning
• Evolutionary cooling

timescales 106 − 108 yr
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Extreme Horizontal branch (EHB)

Heber 2016, PASP, 128, 966

Alternative formation
• Close binary evolution
• Merger of two white

dwarfs of pure helium
composition

• Single He-sdO/B stars
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Horizontal Branch (HB)

HB evolution (F-G)
• Stable He-burning in the convective

core and H-burning in a shell
• lifetime ∼ 108 yr
• Core grows through shell burning
• C/O becomes enriched in the core
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Low mass stars in the HRD (EZ model for a 1 M⊙ star)
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars 2

Intermediate mass stars in the HRD (EZ model for a 5 M⊙ star)
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

MESA

AGB (G-H)
• After central He is ex-

hausted the CO core
contracts. He shell burn-
ing starts and the star
reaches the AGB

• Star has CO core, He
burning shell, H burn-
ing shell and large H
envelope

• Star can undergo ther-
mal pulses when the
ashes of H burning shell
increase the mass of the
He burning shell
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

• He-shell burning phase
• gradually adds mass to the grow-

ing CO core, which becomes
degenerate due to its increasing
density

• AGB phase starts at the exhaustion of
helium in the center

• low-mass stars: AGB at similar luminosi-
ties but higher Teff than preceding RGB
phase, stars M > 2.5 M⊙: at higher
luminosities than the RGB

early AGB phase
• CO core contracts
• two active burning (H,He) shells

→ He-rich layers above core expand, outer
envelope starts contracting

• due to expansion of the He-rich zone,
the temperature in the H-shell decreases
and the H-burning shell is extinguished

→ He-rich layer plus H-rich outer envelope
expanding in response to core contraction
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Pols 2007

Second dredge-up
• expanding envelope cools, convec-

tive envelope penetrates deeper until it
reaches the composition discontinuity left
by the extinct H-shell at K

• For stars > 4 M⊙ → Second dredge-up
• lower-mass stars the H-burning shell

remains active at a low level, which
prevents the convective envelope from
penetrating deeper into the star

• material that is dredged up (0.2 − 1M⊙):
hydrogen has been burned into helium,
12C and 16O almost completely converted
into 14N by CNO-cycle

• much more dramatic effect than first
dredge-up om RGB
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars
• As the He-burning shell approaches the H-He discontinuity, its luminosity de-

creases as it runs out of fuel
• layers above contract, heating the extinguished H-burning shell until it is re-

ignited

→ Helium shell source much hotter than H-burning limit

• neighbouring shell sources can influence each other
• each type of burning requires a separate range of temperature
• Enormous increase in H-burning, when He shell approaches a H-rich layer
• relative motion of H and He shell (Xi mass concentration of reacting element)

ṁH

ṁHe
=

LH

LHe

qH

qHe

XH

XHe

stationary⇒ LH ≈ 7LHe

Nuclear burning in the He-shell concentrated towards the outer edge
→ Thin layer of thickness l and mass Δm

l = r − r0 ≪ R Δm = 4𝜋r2
0 l𝜌 r0=const,dm=0→ d𝜌

𝜌
= −dl

l
dr=dl= −r

l
dr
r
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Shell expands as reaction to nuclear energy generation
→ homology relation dP

P
= −4

dr
r

→ dP
P

= 4
l
r
d𝜌
𝜌

General equation of state

d𝜌
𝜌

= 𝛼
dP
P

− 𝛿
dT
T

= 𝛼4
l
r
d𝜌
𝜌

− 𝛿
dT
T

l/r⇒0→ d𝜌
𝜌

= −𝛿dT
T

expansion of a thin shell d𝜌
𝜌 < 0 leads to an increase of the temperature dT

T > 0
• Higher temperature leads to higher nuclear enery production
• Runaway process: Thin shell instability of He-shell

Instability of the He-shell leads to thermal runaway until the shell has expanded
enough to stop it

• He-shell extinguishes and contracts
• He-shell reignites
• Thermal pulses (TP-AGB)
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Pols 2007

thermally pulsing AGB phase
• phase of double shell burning
• most of the time, the He-burning shell is

inactive
• H-burning shell adds mass to the He-rich

region between the burning shells
• increases the pressure and temperature

at the bottom of this region
• mass of the intershell region reaches a

critical value → helium shell flash
• energy release by He-shell flash goes

into expansion of the intershell
• phase of stable He- shell burning
• expansion and cooling of the intershell

region after the He-shell flash, H-burning
shell extinguishes
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

thermally pulsing AGB phase
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Third dredge-up

• Expansion and cooling of the intershell region lead to a deeper penetration of
the outer convective envelope beyond the now extinct H-burning shell

• material from the intershell region is mixed into the outer envelope
→ third dredge-up

• He, and He-burning products (12C) can appear at the surface
→ leads to important nucleosynthesis of 12C, 14N and elements heavier than

iron
→ makes the stellar envelope and atmosphere more carbon-rich

• H-burning shell is reignited → stable H-shell burning
• mass of the intershell region grows until the next thermal pulse occurs
• interpulse period depends on the core mass, lasting between 50, 000 yrs (for

low-mass AGB stars with CO cores of ∼ 0.5 M⊙ ) to < 1000 yrs for the most
massive AGB stars.
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Lançon et al. 2002, A&A 393, 167

Abundance changes on the AGB
• appearance of helium-burning products

at the surface → 12C abundance in-
creases after every dredge-up episode

• low temperatures in the stellar atmo-
sphere C and O atoms bound into CO

• if C/O < 1: oxygen rich AGB stars
(TiO, H2O)

• after repeated dredge-ups C/O > 1:
C forms carbon-rich molecules e.g.
C2, CN: carbon stars

• Formation of dust
• chemically peculiar; e.g. 19F and 99Tc

Red (super-)giants: Luminosity class III-I
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Nucleosynthesis on the AGB
• enriched in elements heavier than iron, such as Zr, Y, Sr, Tc, Ba, La and Pb
→ Trans-iron elements are produced via the s-process

• source of free neutrons produced in He-burning in the He-rich intershell re-
gion: 13C(𝛼, n)16O, 22Ne(𝛼, n)25Mg (He-flash in massive AGB stars)

• 22Ne abundant in the intershell region, because 14N left by the CNO-cycle
converted to 22Ne by He-burning: 14N(𝛼, 𝛾)18F(𝛽+)18O(𝛼, 𝛾)22Ne

• main neutron source in low-mass stars: 13C(𝛼, n)16O:
thin shell or ’pocket’ of 13C formed by partial mixing of protons and 12C at in-
terface between the H-rich envelope and the C-rich intershell region, reacts
with He when T > 108 K

• s-enriched pocket is ingested into the intershell convection zone during the
next pulse, and mixed throughout the intershell region, together with carbon
produced by He burning

• carbon and s-process material from the intershell region is subsequently
mixed to the surface in the next dredge-up phase
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Stancliffe et al. 2004, MNRAS 352, 984

• Change in surface luminosity dependent on the stellar mass
• If the shells reach close to the surface, jumps in the HRD on short timescales

(∼ 104 yr) are possible
• Luminosity depends on the core mass

L
L⊙

= 5.92 × 104
(︂

Mc

M⊙
− 0.52

)︂
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Dorman et al. 1993, ApJ, 419, 596

AGB-evolution depends also on the mass
of the H-shell after the HB phase and the
metallicity

• sdO/B stars do not reach the AGB
phase

• AGB-manque (failed AGB)
• After He-shell burning they cool

down to become low-mass C/O WDs
(∼ 0.3 − 0.47 M⊙)

• Stars without He-core burning evolve
to become low-mass or extremely low-
mass (ELM) He WDs (∼ 0.1− 0.4 M⊙)
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

ESA/NASA & R. Sahai, ALMA, Hyosun Kim, et al.

AGB stars
• Strong mass loss

(10−7−10−4 M⊙/yr)
driven by Mira pul-
sations and radiation
pressure on dust
particles formed in
the cool atmosphere

→ superwinds
Red (super-)giants:
Luminosity class III-I
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Catalan et al. 2008, MNRAS, 387, 1693

AGB stars
• Strong mass loss

(10−7−10−4 M⊙/yr)
driven by Mira pul-
sations and radiation
pressure on dust
particles formed in
the cool atmosphere

→ superwinds
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Evolution on the Asymptotic Giant Branch – Low/intermediate mass stars

Catalan et al. 2008, MNRAS, 387, 1693 Bergeron et al. 2007, ASPC, 372, 29
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Evolution beyond the Asymptotic Giant Branch

Herwig et al. 2001, Ap&SS, 275, 15

post-AGB evolution
• During the last

pulses most of the
stellar envelope is
expelled

• Core is exposed
and star heats
up extremely
(Teff ∼ 105 K)
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Evolution beyond the Asymptotic Giant Branch

Suarez et al. 2006, A&A, 458, 173

post-AGB evolution
• Diverse spectral types

from M to F/A
• (Super-)giants
• Reddening through dust

and expelled material
• Emission of expelled

material



9–138

Evolution beyond the Asymptotic Giant Branch 3

Evolution beyond the Asymptotic Giant Branch

Herwig et al. 2001, Ap&SS, 275, 15

post-AGB evolution
• Teff > 3 × 104 K
• Circumstellar matter

becomes ionized
• planetary nebula
• Central stars of

planetary nebula
(CSPN)
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Evolution beyond the Asymptotic Giant Branch

Suarez et al. 2006, A&A, 458, 173

post-AGB evolution
• CSPN spectra domi-

nated by nebular emis-
sion lines

• Stellar wind and emis-
sion features

• H-rich types have spec-
tral type B and O

• He-rich classes similar to
massive WR-stars

• Spectral classes:
[WN],[WC],[WO]
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Evolution beyond the Asymptotic Giant Branch

Keller et al. 2014, MNRAS, 442, 1379
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Evolution beyond the Asymptotic Giant Branch

ESA/Hubble & NASA, ESO, Ivan Bojicic, David Frew, Quentin Parker

Planetary nebula
• Different shapes

→ Binary evolution
• Lifetime ∼ 104 yr
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Evolution beyond the Asymptotic Giant Branch

Herwig et al. 2001, Ap&SS, 275, 15

• Several objects known! (e.g. V4334 Sg, FG Sge)
"born-again" objects

post-AGB evolution
• Thermal pulses can

still happen at later
stages

• Late thermal pulse
(LTP)

• Very late thermal
pulse (VLTP)

• Very short loops
back to the red
giant phase
∼ 101 − 103 yr

• Stellar evolution can
be seen in real-time



9–143

Evolution beyond the Asymptotic Giant Branch 8

Evolution beyond the Asymptotic Giant Branch

Reindl et al. 2017, MNRAS, 464, 51; Youtube


Evolution of SAO 244567.mp4
Media File (video/mp4)
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Evolution beyond the Asymptotic Giant Branch

Herwig et al. 2001, Ap&SS, 275, 15

post-AGB evolution
• Finally, the core

cools down and be-
comes a C/O white
dwarf (WD)

• Depending on the
details of evolution,
the surface can be
H- or He-rich

• Intermediate mass
(Super-)AGB stars
(8 − 10 M⊙) might
ignite C/O burning

• Massive Ne/O WDs
(∼ 1.4 M⊙)
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Late massive core evolution

56Fe core

28Si,32S

16O,24Mg,28Si

16O,20Ne,24Mg

12C,16O

4He

1H,4He

1H

silicon burning

oxygen burning

neon shell-burning

carbon shell-burning

helium shell-burning

hydrogen shell-burning

non-burning hydrogen envelope

Massive stars with M & 10 M⊙
ignite successively burning of
heavier elements

Core described by onion-skin
model

• Each shell represents a
nuclear burning stage that
was originally located at the
center of the star

• After depletion of the central
fuel, the burning continued
as shell burning in adjacent,
heated layers and gradually
moved outwards
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Late massive core evolution

56Fe core

28Si,32S

16O,24Mg,28Si

16O,20Ne,24Mg

12C,16O

4He

1H,4He

1H

silicon burning

oxygen burning

neon shell-burning

carbon shell-burning

helium shell-burning

hydrogen shell-burning

non-burning hydrogen envelope

Core described by onion-skin
model

Nuclear burning

Exhaustion of fuel

Core contraction

Core heating

Nuclear burning
...
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Late massive core evolution

Due to the strongly declining energy released per nucleon
→ Burning stages become shorter and shorter

Example M = 40 M⊙:
H-burning: 5×106 yr
He-burning: 4×105 yr
C-burning: 200 yr
O-burning: 60 d
Ne-burning: 50 d
Si-burning: 13 h

Burning episodes stop in the iron core → No energy released
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Late massive core evolution

Real evolution quite compli-
cated and uncertain

• Level of degeneracy
• Shell interactions
• Neutrino losses L𝜈 ∼ 106 L

Final evolution not visible in the
HRD
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Final stages of stellar evolution

For stars with masses of less than < 8−10 M⊙ (97% of all stars) mass is lost in
the post-AGB phase and the core grows until shell-burning stops completely

→ core cools, contracts and becomes fully degenerate

Objects in this final stage of stellar evolution are called White Dwarfs (WD)

From polytropic models for the non-relativistic fully degenerate electron gas fol-
lows the mass-radius relation

R ∼ M−1/3

→ The higher the mass, the smaller the radius

At high densities, the equation of state changes and for the extreme relativistic
degenerate electron gas follows the maximum Chandrasekhar mass

MCh =
5.836
𝜇2

e
M⊙ =

(︂
2
𝜇e

)︂2

× 1.459 M⊙
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Final stages of stellar evolution

Kippenhahn, Weigert & Weiss 2012

Realistic WD models have to be calculated
numerically
→ Chandrasekhars theory
no longer polytrop, electrons fully degener-
ate, but degree of relativity x = pF/mec

P = C1f (x), 𝜌 = C2x3; x = pF/mec

Mass-radius relation depends on the chem-
ical composition and the importance of
relativistic effects

For low temperatures, crystallization due
to electrostatic interactions sets in and
changes the mechanical and chemical
structure (phase separation)
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Final stages of stellar evolution
• Mass-radius relations for

different compositions
• Solid lines include Coulomb

interactions and phase tran-
sitions

If the radius is known, the mass
of a WD can be calculated

• Radii are of the order of the
radius of Earth

RWD ≈ 0.01 R⊙

• densities are

𝜌WD ≈ 106𝜌⊙
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Final stages of stellar evolution

Kippenhahn, Weigert & Weiss 2012

After a short phase of H-shell
burning WDs are cooling

Cooling time 𝜏

𝜏 ≈ 4.7 × 107

A

(︂
M/M⊙
L/L⊙

)︂5/7

yr

Typically 𝜏 ≈ 109 yr
→ Long evolutionary stage

Cooling mechanisms
• Neutrino emission
• Gravothermal energy

Core crystallization releases a
considerable amount of latent
heat and delays the cooling by
about one billion years
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Final stages of stellar evolution

Gaia reveals crystallization for the first time!

Tremblay et al. 2019, Nature, 565, 202
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Final stages of stellar evolution

Gaia reveals crystallization for the first time!

Tremblay et al. 2019, Nature, 565, 202

Luminosity function of
WDs
→ Can be used to

measure the age of
stellar populations

→ Single-star evolution
cannot have formed
WDs with masses
. 0.5 M⊙ because
𝜏 > tHubble
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Final stages of stellar evolution

Gaia collaboration 2018, A&A, 616, 10

WDs form a well separated sequence in
the observed HRD
→ Luminosities depend on age, but

are in general much smaller than for
other stars (∼ 10−4 L⊙)
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White dwarf structure

Spectral types of White Dwarfs
• DA: H lines present; subtype DAB
• DB: He I lines; subtype DBA
• DC: continuous spectrum, no lines
• DO: He II lines; subtype DAO, DOA
• DZ: Metal lines
• DQ: Carbon lines

• X: unclassifiable, peculiar spectrum
• P: magnetic WD with detectable

polarization
• H: magnetic WD without polarization
• E: emission lines present
• V: variable WD
• ?: uncertain classification
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White dwarf structure

WDs of diverse compositions
cool down and change their
spectral types

• DA → cooler DA
• PG1159 → DO → DB →

DC → DQ
Final stage: Black dwarf

• Not observed
• Universe is too young!
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White dwarf structure

Structure of WDs depends on earlier phases of stellar evolution

• Mass-loss or mixing processes due to late thermal pulses remove H-rich
and/or He-rich layers
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White dwarf structure

White dwarf Lumi-
nosity class VII

• H-rich: DA
• He-rich:

PG1159, DO,
DB, DC, DQ

Wesemael et al. 1993, PASP, 105, 761
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White dwarf structure

White dwarf Lumi-
nosity class VII

• H-rich: DA
• He-rich:

PG1159, DO,
DB, DC, DQ

• metal-rich: DZ

Wesemael et al. 1993, PASP, 105, 761
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White dwarf structure

White dwarf Lumi-
nosity class VII

• H-rich: DA
• He-rich:

PG1159, DO,
DB, DC, DQ

Wesemael et al. 1993, PASP, 105, 761
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White dwarf structure

White dwarf Lumi-
nosity class VII

• H-rich: DA
• He-rich:

PG1159, DO,
DB, DC, DQ

• metal-rich: DZ

Wesemael et al. 1993, PASP, 105, 761
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White dwarf structure

White dwarf Lumi-
nosity class VII

• H-rich: DA
• He-rich:

PG1159, DO,
DB, DC, DQ

• metal-rich: DZ

Wesemael et al. 1993, PASP, 105, 761
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Seeing with sounds

• observations of the atmosphere by
spectra

• how can we look into the interior?
• sound wave is a pressure wave:

c =
√︀

Γ1p/𝜌

Γ1 adiabatic coefficient
• ideal gas:

p = 𝜌kBT/𝜇mu

𝜇 mean molecular weight, mu atomic
mass unit

• sound speed depends on pressure,
density, temperature and composi-
tion of the gas

• sounds tell us internal structure
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1-D oscillations
• everything has natural frequencies of

pulsation
• obvious mode for a gas sphere (a

star): star remains spherical and
simply changes its volume (radial
pulsations)

• pulsations in stars analogue to an
open-at-one-end organ pipe

• A node (no movement) at the centre
of the star, an antinode (maximum
movement) at the surface

• radial pulsations can be fundamen-
tal, first overtone, second overtone,
etc. all of these modes of variation
can be excited at the same time
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3-D oscillations

Stars are 3D, so natural oscillations have nodes in all 3 orthogonal directions

• spherical symmetric described by r , 𝜃,𝜑
• nodes are concentric shells at constant r , cones of

constant 𝜃 and planes of constant 𝜑
• solutions to equation of motion have displacements

in (r , 𝜃,𝜑)

𝜉r (r , 𝜃,𝜑, t) = a(r )Y m
l (𝜃,𝜑) exp(−i2𝜋𝜈t) (9.3)

𝜉𝜃(r , 𝜃,𝜑, t) = b(r )
𝜕Y m

l (𝜃,𝜑)
𝜕𝜃

exp(−i2𝜋𝜈t) (9.4)

𝜉𝜑(r , 𝜃,𝜑, t) =
b(r )
sin 𝜃

𝜕Y m
l (𝜃,𝜑)
𝜕𝜑

exp(−i2𝜋𝜈t) (9.5)

amplitudes a(r ), b(r ), oscillation frequency 𝜈

Zima 1999
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Spherical harmonics
Solution to Laplace’s equation: ∇2T (r , 𝜃,𝜑) = 0, T (r , 𝜃,𝜑) = R(r )Θ(𝜃)Φ(𝜑)
Laplacian in spherical coordinates

∇2 =
1
r2
𝜕

𝜕r

(︂
r2 𝜕

𝜕r

)︂
+

1
r2 sin2 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕

𝜕𝜃

)︂
+

1
r2 sin2 𝜃

𝜕2

𝜕𝜑2

Φ(𝜑) =
{︂

exp(im𝜑)
exp(−im𝜑)

for m = 0, 1, 2, 3, .... (9.6)

R(r ) =
{︂

r l

r−l−1 (9.7)

Legendre polynomials

Θ(𝜃) = Pm
l (x = cos 𝜃) =

1
2l l !

(1 − x2)m/2 d l+m

dx l+m(x2 − 1)l (9.8)

l = 0, 1, 2, 3, ... and m = −l ,−l + 1, ..., l − 1, l

T (r , 𝜃,𝜑) =
{︂

r l

r−l−1 Pm
l (cos 𝜃)

{︂
exp(im𝜑)
exp(−im𝜑)

(9.9)
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Spherical harmonics

spherical harmonics Y m
l (𝜃𝜑)

Y m
l (𝜃,𝜑) = (−1)m

√︃
(2l + 1)

4𝜋
(l − m)!
(l + m)!

Pm
l (cos 𝜃)eim𝜑 (9.10)

T (r , 𝜃,𝜑) =
∞∑︁
l=0

l∑︁
m=−l

(almr l + blmr−l−1)Y m
l (𝜃,𝜑) (9.11)

Modes specified by three quantum numbers:
n overtone: Number of radial nodes
l degree: number of surface nodes present

→ l = 0 radial mode, l = 1 dipole, ..
m azimuthal order: |m| How many of the surface nodes are lines of longitude

→ m ranges from −l to l .
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3-D oscillations l = 3
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3-D oscillations

http://www.physics.usyd.edu.au/
~bedding/animations/visual.html

l = 1, m = 0

l = 3, m = 0

l = 1, m = 1

l = 3, m = 1

l = 2, m = 1

l = 3, m = 2

l = 2, m = 2

l = 3, m = 3

nice program to simulate a pulsating star: http://userpages.irap.omp.eu/~scharpinet/
glpulse3d/


AF-Cyg.mp4
Media File (video/mp4)


l1m0.mp4
Media File (video/mp4)


l3m0.mp4
Media File (video/mp4)


l1m1.mp4
Media File (video/mp4)


l3m1.mp4
Media File (video/mp4)


l2m1.mp4
Media File (video/mp4)


l3m2.mp4
Media File (video/mp4)


l2m2.mp4
Media File (video/mp4)


l3m3.mp4
Media File (video/mp4)

http://www.physics.usyd.edu.au/~bedding/animations/visual.html
http://www.physics.usyd.edu.au/~bedding/animations/visual.html
http://userpages.irap.omp.eu/~scharpinet/glpulse3d/
http://userpages.irap.omp.eu/~scharpinet/glpulse3d/
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3-D oscillations

representation of high order (n) and high degree (l) non-radial mode. The differ-
ent colours represent the surface rising/falling – alternatively cooling/heating.
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Lightcurves of pulsating stars

Jeffery & Ramsay 2014

• Light curve is the variation of the integrated light over the stellar surface over
time

• Fourier transformation gives you the oscillation frequencies of the underlying
pulsations

• Radial velocity variations can also be used to measure pulsations



9–173

Pulsating stars 10

Driving mechanism of pulsations

• During each pulsation cycle, energy
is lost → Damping

• To maintain pulsations for a long
time, a driving mechanism is needed

• Radial layer, which gains heat during
the compression part of the pulsation
cycle drives the pulsations

→ Heat-engine mechanism
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𝜅 mechnism
• according to Kramer’s Law:

– 𝜅 ∼ 𝜌
T 3.5

• Ionized matter contains free elec-
trons and – at the temperatures in-
side a star – electron scattering and
free-free absorption will dominate the
opacity 𝜅

• in partial ionized layers energy re-
leased during a layer’s compression
can be used for further ionisation,
instead of temperature increase of
the gas

opacity 𝜅 builds up in ionization layer (H, He, Fe)

• radiation is blocked
• gas heats
• pressure increases
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𝜅 mechnism

Stars expand
• recombination lowers opacity
• radiation flows
• gas cools, pressure drops
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𝜅 mechnism

star contracts
• ionization increases opacity again
• next pulsation cycle begins

→ increased ability of layers to par-
ticipate in 𝜅 mechanism to gain heat
during compression (adiabatic coeffi-
cient) is called 𝛾 mechanism
→ 𝜅 and 𝛾mechanism work together

Oscillations can only be excited when a suitable combination of stellar luminos-
ity, temperature, and chemical composition occurs. For this reason, non-radial
oscillations are excited in so-called instability strips in the Hertzsprung-Russell
diagram
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𝜖 mechanism
• energy generation rate 𝜖 in the stellar

core
• energy generation is dependent on

high powers of the temperature, it
might be supposed that small vari-
ations, even statistical fluctuations,
could lead to variations in energy
generation rates which might be
self-sustaining

• e.g., He-shell sub-flashes, fluctua-
tions in nuclear burning rate

• proposed for fully-convective stars –
such as the coolest M dwarfs – and
in the most massive stars – perhaps
with M > 60 M⊙

• not observationally confirmed
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Stochastic oscillations
Outer convection zone can drive oscilla-
tions

• very small variations (typically at the
micromagnitude level rather than the
> millimag level which is usually all
we can observe in stars) are main-
tained by stochastic noise generated
by convection near the surface

• observed in the sun and red-giants
• lifetimes of the order of days to

weeks
• stochastically excited modes
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Types of pulsations

Kurtz 2006 Cunha et al. 2007

two main sets
of solutions of
the equation
of motion
p-mode:
pressure is
restoring
force
acoustic
waves
g-mode:
buoyancy
is restoring
force
gas motion
primarily
horizontal
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Equations of stellar oscillations
characteristic acoustic frequency Sl with S2

l = l(l+1)c2

r2 =
L2c2

r2 = k2
h c2, c2 = Γ1p/𝜌

oscillation equations for nonradial, adiabatic oscillations

d𝜉r

dr
= −

(︂
2
r

+
1
Γ1p

dp
dr

)︂
𝜉r+

1
𝜌c2

(︂
S2

l
𝜔2 − 1

)︂
p′+

l(l + 1)
𝜔2r2 Φ′

(9.12)
dp′

dr
= 𝜌(𝜔2−N2)𝜉r+

1
Γ1p

dp
dr

p′−𝜌dΦ′

dr
, N2 = g

(︂
1
Γ1p

dp
dr

− 1
𝜌

d𝜌
dr

)︂
(9.13)

with N the buoyancy frequency

1
r2

d
dr

(︂
r2dΦ′

dr

)︂
= 4𝜋G

(︂
p′

c2 +
𝜌𝜉r

g
N2
)︂

+
l(l + 1)

r2 Φ′

(9.14)
fourth-order system of ordinary differential equations for
the four dependent variables 𝜉r , p′,Φ′ and dΦ′/dr
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Asymptotic equation of stellar oscillations
Cowling Approximation:
Eulerian perturbation of the gravitational potential is
neglected: Φ′ = 0, valid when density small or l is large
or radial mode |n| is large

d𝜉r

dr
= −

(︂
2
r
− 1

Γ1
H−1

p

)︂
𝜉r +

1
𝜌c2

(︂
S2

l
𝜔2 − 1

)︂
p′ (9.15)

dp′

dr
= 𝜌(𝜔2−N2)𝜉r−

1
Γ1

H−1
p p′, H−1

p = −d ln p
dr

(9.16)

Hp is the pressure scale height For oscillations of high
radial order this simplifies to

d2𝜉r

dr2 =
𝜔2

c2

(︂
1 − N2

𝜔2

)︂(︂
S2

l
𝜔2 − 1

)︂
𝜉r = −Ks(r )𝜉r

(9.17)
𝜉r oscillates if Ks > 0
o1) |𝜔| > |N| and |𝜔| > Sl : p mode
o2) |𝜔| < |N| and |𝜔| < Sl : g mode
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Stellar timescales

Kjeldsen et al. 2009

• Kelvin-Helmholtz (thermal) time
scale

𝜏th =
GM2

RL
w

⟨cpT ⟩M
L

(9.18)

time a star can shine with gravity as
only energy source

• longest timescale: nuclear time scale

𝜏nuc =
𝜖qMc2

L
(9.19)

time a star can shine with nuclear
fusion as energy source

• shortest timescale: dynamical time
scale

𝜏dyn =

√︂
R3

GM
w

√︃
1

G�̄�
(9.20)

time the star needs to return to
hydrostatic equilibrium after distur-
bance by dynamical process
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Pulsation periods

radial oscillations as standing acoustic waves: characteristic period

Π = 2
∫︁ R

0

dr
c(r )

∼ R
⟨c⟩ (9.21)

mean sound speed ⟨c⟩ =
√︀

Γ1p/𝜌 mean density and pressure given by hydro-
static equilibrium

𝜌 w
M
R3, p w

GM2

R4 (9.22)

so we can calculate the characteristic period of radial oscillations

Π =

√︃
3𝜋

2Γ1G⟨𝜌⟩ ∼
(︂

R3

GM

)︂1/2

= tdyn (9.23)

Pulsation periods and ampliudes depend on equilibrium stellar structure
(𝜌, p, Γ1, g, composition as functions of r ) → Frequency of pulsation mode at
the surface depends on the sound travel time along its ray path

⇒ probing the structure of stars: Asteroseismology
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Asteroseismology

Kjeldsen et al. 2009, IAU Symp. 253, 309
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Pulsation modes

Limitation → High order modes cancel in integrated light
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Pulsating stars

Jeffery & Saio 2016

Pulsating stars are found all
over the HRD (and new ones
discovered constantly)

• Driving mechanisms require
special conditions (ionization
zones, surface convection,
etc.)

• Instability strips
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Solar oscillations

Rozelot & Neiner 2011 p-modes
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Periodogram of the sun observed by GOLF/SOHO

Rozelot & Neiner 2011



9–189

Pulsating stars 26

Periodogram of the sun observed by GOLF/SOHO

Rozelot & Neiner 2011

90% of the solar interior known!

large frequency separation Δ𝜈 = 𝜈n+1l − 𝜈nl =
(︁

2
∫︀ R

0
dr
c

)︁−1
∼
√︀

⟨𝜌⟩

small separation 𝛿𝜈 ≡ 𝜈nl − 𝜈n−1l+2 ≃ −(4l + 6) Δ𝜈
4𝜋2𝜈nl

∫︀ R
0

dc
dr

dr
r
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Solar-like pulsators

Garcia & Ballot



9–191

Pulsating stars 28

Mira variables
10/8/21, 10:16 PM Static Light Curve

https://www.aavso.org/LCGv2/static.htm?DateFormat=Julian&RequestedBands=&Grid=true&view=api.delim&ident=mira&fromjd=2454766&tojd=2459496.341&delimiter=@@@ 1/1

12,843 Observations @ mira  2008/10/26 to 2021/10/07 Vis Faint B V R I CV TB TG TR
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Julian Days

• have periods from 80
to 1000 h d with visual
amplitudes > 2.5 mag

• giant stars with effective
temperature near 3000 K
near the tip of the AGB

→ cool giant stars with very large radii powered by fusion from a hydrogen and a
helium burning-shell

→ very low average density, significant mass loss
→ less massive then on the main sequence
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RR Lyrae

Catelan et al. 2013

• RR Lyrae stars are low-mass (≈
0.6 − 0.8 M⊙) horizontal branch stars
falling within the instability strip

• periods between 0.2 and 1.0 d
• amplitudes Δm ∼ 0.2 − 2 mag
• three classes: a (largest ampli-

tude, steepest rise to maximum),
b (smaller amplitude and longer
periods), c (shorter periods, lower
amplitudes, more symmetric)

• found in the instability strip near
absolute magnitude of +0.6 mag

• temperatures between 6000 and
7250 K

• only found in populations older than
10 Gy

• amplitude of the light curves in-
crease from the infrared to the
UV



9–193

Pulsating stars 30

RR Lyrae as standard candles

Ngeow et al. 2013

• measuring distances to systems
containing old stellar populations

• located on horizontal branch
→ horizontal in V

• in other filters period-luminosity
relation (Infrared)

• radial pulsations on dynamical
timescales → P

√
𝜌 = const

• absolute magnitude also depends
on metallicity ⟨MV⟩ = a + b [Fe/H]

• zero-point calibration for using
period-luminosity relation in the
Infrared
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Classical Cepheids

• evolved, radially pulsating stars in the instabil-
ity strip, more luminous than RR Lyrae

• classical Cepheids (𝛿 Cepheids or type I
Cepheids): from F-type (MV = −2) to G or K
type (MV = −6)

• pulsation periods mostly from 1 to 100 d
• pulsation excited by 𝜅 and 𝛾 mechanism
• more massive than sun, have evolved from

2 − 20 M⊙ main-sequence stars, many from
4 − 9 M⊙ stars

• cross instability strip on the way to the RGB
and on the blue loop during He burning

• young stars from 107 the brightest to 108

years the faintest
• found in regions of recent star formation, in

the Milky Way in the disk
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Classical Cepheids

Soszynski et al. 2008

Relation between L and P expected

Mbol = −5 log(R) − 10 log(Teff) + const, P
√︀

⟨𝜌⟩ = const, ⟨𝜌⟩ =
M

4/3𝜋R3

⇒ log(P) + 0.5 log(M) + 0.3Mbol + 3 log(Teff) = const

Mass-luminosity relation (compare MS stars): Mbol = −8 log(M) + const

log(P) = −0.24Mbol − 3 log(Teff) + const

⇒ MV = 𝛼 log P + 𝛽(B − V )0 + 𝛾 (9.24)

MV = −(2.77 ± 0.08)(log P − 1) − (4.08 ± 0.04) (9.25)
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Type II Cepheids

Neilson & Percy 2016

• Hubble used Cepheids to
measure distances to nearby
Galaxies

• Cepheid with emission lines
found → different type with
different luminosity

• old, evolved stars of low mass
(∼ 0.5 − 0.6 M⊙)

• found in globular clusters, halo,
bulge, old disk populations,
Magellanic clouds, some Local
Group galaxies

• rarer than RR Lyrae
• luminosities larger than hor-

izontal branch, smaller than
Classical Cepheids

• shell-burning
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Type II Cepheids

Maas et al. et al. 2007

• BL Her stars: blue HB star moves
quite fast from HB to AGB crossing
instability strip, increasing periods

• W Vir stars: He-shell flashes on AGB
→ more common in more metal-
rich clusters, low envelope masses,
period decrease or increase

• even bluer, lower-mass HB stars with
masses as small as 0.52 M⊙ cross
the instability strip several times
moving to the AGB

• metal-rich HB stars are found on the
red HB never crossing the instability
strip, few solar-metallicity Type II
Cepheids had large mass-loss on
the RGB
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Pulsating stars close to the lower main sequence in the HRD

Jeffery & Saio 2016

type P(d) AV (mag) modes Z

𝛿 Scuti 0.008-0.42 0.001-1.7 R+NR(p, low order) ≈ solar
SX Phoenicis 0.01-0.4 0.002-1 R+NR(p, low order) < to ≪ solar
𝛾 Doradus 0.3-3 <0.1 NR (g) ≈ solar

roAp 0.002-0.016 <0.012 NR (p, high-order) ∼ solar, but peculiar



9–199

Pulsating stars 36

Pulsating stars close to the upper main sequence in the HRD

Jeffery & Saio 2016

type P(d) AV (mag) modes

𝛽 Cephei 0.1-0.6 0.01-0.32 NR(p)
Slowly Pulsating B stars (SPB) 0.4-6 <0.03 NR(g)
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Pulsating Supergiant Stars

Jeffery & Saio 2016

type SPBsg 𝛼 Cygni PV Tel I PV Tel II PV Tel III V652 Her

P (d) 0.35-47 1.2-100 5-30 0.5-5 30-100 ≈ 0.1
AV (mag) . 0.004 0.01-0.1 ’low’ ’low’ ’low’ ≈ 0.1

Modes NR(g,p) NR(g,SM) R(SM) NR(g,SM) R R
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Hot Subdwarf Pulsators

Pietrukowicz et al. 2017

type EC 14026 PG 1716+426 sdOV He-sdBV BLAP high-gravity BLAP

P (s) 64-573 1000-14 600 60-120 1950-5080 1300-2400 200-475
AV (mmag) 1-300 0.4-41 1.3-40 1.0-2.7 200-400 50-200

Modes R+NR(p) NR(g) NR(p) NR(g) R(p) or NR(g) low-order R(p)?
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Hot Subdwarf Pulsators

Randall et al. 2016 Charpinet et al. 2009, AIP Conf. Proc., 1170, 585
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Pulsating White Dwarfs and Pre-White Dwarfs

Corsico et al. 2019
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Properties of pulsating White Dwarfs

type P(min) AV (mag) Teff(kK) Modes driving zone

GW Vir 5-101 0.01-0.15 80-170 NR(g) CV-VI, OVII-VIII

Hot DAV 2.7-11.8 0.0010-0.0014 29.9-32.6 NR(g) 𝜇 gradient
DBV 2-18 0.001-0.3 22.4-29.2 NR(g) HeI-II

DQV 2.7-18 0.004-0.016 19.8-21.7 NR(g) CIII-VI, HeII

DAV 1.6-23.9 0.01-0.3 10.4-12.9 NR(g) HI

pre-ELMV 5-83 0.001-0.05 8-13 R+NR(p,mixed) HeI-II

ELM-DAV 19.4-103.9 0.0015-0.041 7.80-9.9 NR(g,p?) HI

GW Lib 3.5-21.5 0.007-0.07 10.5-16 NR(g) HI,HeI-II
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ZZ Ceti (DAV) Stars

Bognar et al. 2009
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Final stages of stellar evolution

Core-collapse supernova: rapid collapse and violent explosion of a massive star
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Final stages of stellar evolution

Kippenhahn, Weigert & Weiss 2012

chemical composition of interior of 25 M⊙ star
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Final stages of stellar evolution
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Janka et al. 2012

For stars with masses of
more than > 8 − 10 M⊙
(3% of all stars)

Iron core develops, which
does not have fusion in the
core anymore
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Final stages of stellar evolution
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Janka et al. 2012

Core contracts and heats up
T ≃ 1010 K
→ photo-disintegration:

56Fe + 𝛾 → 134He + 4n

𝛾 + 4He → 2p + 2n

→ Electron captures by heavy
nuclei reduce pressure

p + e− −−→ n + 𝜈e

Neutronisation
→ Core collapse (𝜏ff ∼ ms)

→ inert core exceeds the Chandrasekhar limit of about 1.4 M⊙, electron degen-
eracy is no longer sufficient to counter the gravitational compression
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Final stages of stellar evolution
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Janka et al. 2012

Collapse stops as soon
as the core reaches
𝜌 ∼ 1014 gcm−3:
density of atomic nuclei
→ Neutron gas becomes

degenerate
→ Degeneracy pressure

stabilizes the core

Collapsing material re-
flected back
→ Shock wave moves

outward
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Final stages of stellar evolution
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Janka et al. 2012

Energy released during the
final collapse

• Core radius be-
fore the collapse:
∼ RWD ∼ 104 km

• Core radius after the
collapse: Rn ∼ 10 km

E ≈GM2
c

(︂
1

Rn
− 1

RWD

)︂
≈GM2

c

Rn
≈ 3 × 1053 erg
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Final stages of stellar evolution

Janka et al. 2012

Energy needed to unbind the
envelope

Ee =

M∫︁
MWD

Gmdm
r

≈3 × 1052 erg
Star explodes, ultracompact
remnant remains?

However, most of this energy
cannot be transformed to kinetic
energy
→ Photodisintegration of in-

falling iron
→ Neutrino emission

∼ 1053 erg
No explosion possible?
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Final stages of stellar evolution

Janka et al. 2012

Neutrinos behave differently
under the extreme conditions in
the core

Energy of the order of the rel-
ativistic Fermi energy of the
electrons

E𝜈

mec2 ≈ EF

mec2

EF

mec2 = x =
pF

mec
=
(︂

3
8𝜋mu

)︂1/3 h
mec

(︂
𝜌

𝜇e

)︂1/3

≈ 10−2
(︂
𝜌

𝜇e

)︂1/3

Neutrinos can react with heavy nuclei by scattering and transfer kinetic energy

𝜈 + (Z, A) −−→ (Z, A) + 𝜈
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Final stages of stellar evolution

How often does that happen? Is the mean free path l𝜈 in collapsing core small
enough?

𝜎𝜈 ≈10−45
(︂

E𝜈

mec2

)︂2

A2 [cm2]

E𝜈

mec2 ≈10−2
(︂
𝜌

𝜇e

)︂1/3

𝜎𝜈 ≈10−49A2
(︂
𝜌

𝜇e

)︂2/3

[cm2]

Number density of nuclei n = 𝜌/Amu

l𝜈 ≈
1

n𝜎𝜈
= 1.7 × 1025 1

𝜇eA

(︂
𝜌

𝜇e

)︂−5/3

[cm]

For A = 100, 𝜇e = 2 and 𝜌 = 1010 − 1014 g cm−3

l𝜈 ≈ 1 − 106 cm

Mean free path smaller than core size!
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Final stages of stellar evolution

Neutrinos shock front trans-
fers kinetic energy and
helps to unbind the enve-
lope

Only 1% of the total en-
ergy is kinetic energy
∼ 1051 erg

Hydrodynamical simula-
tions are needed to study
this in detail
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Final stages of stellar evolution

SXS collaboration 2012, Youtube


3D_SN.mp4
Media File (video/mp4)
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Core-collapse supernova

Blum et al. 2016, ApJ, 828, 31

Filippenko 1997, ARA&A, 35, 309
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Light curves of core-collapse supernovae

Leibundgut & Suntze

• brightness of the shock break
out determined by the temper-
ature in shock and size of the
progenitor star (peak few h to
couple of d)

• rapid, initial cooling
• large progenitors: plateau
• small stars: decline, before light

curve brightens to plateau
• balance between receding pho-

tosphere in the expanding ejecta
• heating by radioactive decay
• masses of Ni
• ’freeze-out’ from material which

was ionized and recombines
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Classification of supernovae
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Types of light curves of supernovae
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Final stages of stellar evolution

NASA Collapsar model

For very massive stars
(> 30 M⊙) core col-
lapses into a fast-
rotating black hole and
infalling matter assem-
bles in an accretion disk
around it.

Part of the binding or
rotation energy might
be ejected in collimated
outflows (jets = beams
of ionised matter ac-
celerated close to the
speed of light).


collapsar.mpg
Media File (video/mpeg)
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Final stages of stellar evolution

Schanne et al. 2005 Pe’er 2014
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Final stages of stellar evolution
M87

Andrew A. Chael, Youtube EHT

As a spinning BH pulls in matter, it creates a rotating "accretion disc" of charged
particles. The motion generates twisted magnetic fields that accelerate particles
into two thin jets.


BH_jets.mp4
Media File (video/mp4)
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Final stages of stellar evolution

Matheson et al. 2003, ApJ, 599, 394

Long-duration Gamma Ray Bursts (GRB) connected to SN Ib/c (Hypernovae)

→ power-law continuum of GRB + later SN light curve
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Final stages of stellar evolution

Zha et al. Electron-capture supernova

Collapse can start earlier,
if a degenerate NeOMg
core ∼ 1.37 M⊙ reaches
a
critical density (initial
mass ∼ 9 M⊙)
→ Electron-capture

on 24Mg and 20Ne
leads to decrease in
pressure and collapse

Lower energy SN ex-
pected ∼ 1050 erg
Candidates are under
debate
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Final stages of stellar evolution

Wikipedia Pair instability supernova

For the most massive
stars (∼ 80 − 100 M⊙)
energies in the cores can
be high enough to create
electron-positron pairs

𝛾 + 𝛾 −−→ e− + e+

→ Pair production re-
duces the pressure
and may lead to col-
lapse

Candidates are under
debate



9–227

Final stages of stellar evolution 22

Final stages of stellar evolution

Astronomy.com/Kevin Gill

Remnant of core col-
lapse is extremely dense
�̄� ≃ 1014 gcm−3

Neutron star
→ Radius ∼ 10 km
→ Mass ∼ 1.4 − 3 M⊙

• Magnetic field ∼ 109−
1015 gauss

Evolution

Temperature drops quickly from 1010 K to 108 K in ∼ 100 yr due to neutrino
emisision

Contraction leads to increasing density
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Final stages of stellar evolution

Astronomy.com/Kevin Gill

Matter consists initially of
crystallized heavy nuclei,
electrons and neutrons
→ Neutron-rich nuclei

release neutrons
→ electron-capture of

protons
→ destroys nuclei
→ Neutronisation

Pressure of the non-relativistic degenerate neutrons becomes dominant

Pn =
1
20

(︂
3
𝜋

)︂2/3 h2

m8/3
n

𝜌
5/3
0

Neutron gas (or liquid) with some protons and electrons develops
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Final stages of stellar evolution

For higher densities in the core (≫ 6 × 1015g cm−3), the situation becomes
much more complicated

Energy density needs to be taken into account additional to rest-mass density
𝜌0 (not necessary for electrons, because density determined by ions)

𝜌 = 𝜌0 + u/c2

Equation of state becomes relativistic 𝜌0 ≪ u/c2

𝜌 ≈ u/c2 ⇒ u ≈ 𝜌c2

For relativistic particles
P = u/3 = 𝜌c2/3

Interactions between nucleons become important

→ Equation of state not "ideal" any more
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Final stages of stellar evolution
For a given equation of state, the equation for hydrostatic equilibrium in gen-
eral relativity (Tolman-Oppenheimer-Volkoff equation)

dP
dr

= −Gm
r2 𝜌

(︂
1 +

P
𝜌c2

)︂(︂
1 +

4𝜋r3P
mc2

)︂(︂
1 − 2Gm

rc2

)︂−1

can be used to obtain neutron star models

Kippenhahn, Weigert & Weiss 2012

Equation of state of neutron stars is
not known. Different models have
been proposed and are under debate
Models predict a limiting mass for
neutron stars
→ Oppenheimer-Volkoff mass

∼ 1.4 − 3.0 M⊙
→ For higher masses, the pressure of

the degenerate neutron gas cannot
compensate gravity any more

Neutron star becomes unstable and
collapses
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Final stages of stellar evolution

Weber et al. 2009

Fermi energies of nucleons reach rest
masses of hyperons (baryon with
strange quark) and potentially also free
quarks
→ Lowest mass hyperons (Λ,Σ,Δ, ...)

contain one strange quark
→ Strange stars and quark stars

postulated

• Atmosphere very hot ∼ 106 K and extremely compressed log g ∼ 14 (thick-
ness: cm) → Spectral lines of heavy nuclei observed in X-rays

• Surface of WD like material 𝜌 ∼ 106 g cm−3

• Solid crust of crystallized Fe nuclei and degenerate electrons
• Interior superfluid neutron liquid + solid core?
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Final stages of stellar evolution

Light house model

Neutron stars are observed
as pulsars
→ Radio observations

allow to measure the
pulses with extreme
accuracy

• Accurate dynamical
masses can be derived
in binary pulsars
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Final stages of stellar evolution

http://www.astron.nl/pulsars/animations/

Slowing down due to magnetic dipole radiation
magnet dipole radiation

Prad ∼ (BR3 sin𝛼)2

P4 = − ˙Erot (9.26)

Energy loss

Ė =
d
dt

(︂
2𝜋2I
P2

)︂
= −4𝜋2IṖ

P3 (9.27)

characteristic age

𝜏 =
P

2Ṗ
(9.28)


PulsarWithProfile.mp4
Media File (video/mp4)

http://www.astron.nl/pulsars/animations/
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Final stages of stellar evolution

𝜏 =
P
2Ṗ

B ∼
√︀

PṖ
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Binary Pulsars

Hulse & Taylor 1975, ApJ 195, L51

PSRB1913+16:
• discovered by Hulse & Taylor

(1975):
”attempts to measure its period
to an accuracy of ±1𝜇s were
frustrated by changes in period
of up to 80 𝜇s from day to day”

• ⇒ Binary Pulsar
• Orbital period:

P = 7.751938773864 hr
• Eccentricity: 0.6171334
• Rotation period:

59.02999792988 ms
• Note the number of significant

digits!
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Binary Pulsars

Özel & Freire 2016, ARA&A, 54, 401

Neutron stars are observed
as accreting objects in
X-ray binaries
→ Dynamical masses can

be measured
→ Masses and radii

can be derived from
the X-ray spectra:
LX ∼ R2

NST 4
eff,NS
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Final stages of stellar evolution

NASA

Merging neutron stars are observed with
gravitational wave detectors (two so far)
→ Masses and radii can be derived from
the GW signal
→ Short-duration gamma ray burst

Abbott et al. 2017, ApJ, 848, L12


ns_merge.mp4
Media File (video/mp4)
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Final stages of stellar evolution

LIGO collaboration

Özel et al. 2016, ApJ, 820, 28

Measurements used to constrain the equation of state
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Final stages of stellar evolution

Interstellar

Fully characterized by mass, spin and charge
→ Solutions for rotating (Kerr) and charged BHs
are known

Stellar remnants with masses
exceeding the Oppenheimer-
Volkoff limit collapse further
→ No denser state of matter is

known
→ No further pressure sources

can counteract gravity
As soon as the Schwarzschild
radius

RS =
2GM

c2 (9.29)

is reached, radiation cannot es-
cape any more (event horizon)
→ Black hole is formed
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Final stages of stellar evolution

Ligo collaboration

Stellar mass black holes are
observed as accreting objects
in X-ray binaries
→ Dynamical masses can be

measured

MBH,X−ray ≈ 5 − 20 M⊙

→ Consistent with predictions
As soon as the Schwarzschild
radius

RS =
2GM

c2 (9.30)

is reached, radiation cannot es-
cape any more (event horizon)
→ Black hole is formed
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Final stages of stellar evolution

LIGO collaboration

• MBH,grav,wave ≈ 5 − 80 M⊙
→ surprisingly many heavy BH (selection ef-
fect?)

• Most massive BHs hard to explain with stellar
evolution

Merging black holes, neu-
tron stars and BH-NS are
observed with gravitational
wave detectors

• more than 100 events so
far

• 22 definitive binary
merger events, 2 NS
mergers, 3 NS-BH merg-
ers, 18 BH mergers

• Masses and other prop-
erties can be derived
from the GW signal


Merge_BH.mp4
Media File (video/mp4)
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Final stages of stellar evolution

LIGO collaboration

Merging black holes ob-
served with gravitational
wave detectors

• 18 BH mergers
MBH,grav,wave ≈ 5 −
80 M⊙

• Most massive BHs hard
to explain with stellar
evolution

• Merger of smaller BHs in
cluster centers?

• Primordial BHs? Dark
matter?

• Extremely massive and
close binary as progeni-
tor?
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Stellar evolution of binaries
Most stars are not born alone

0.1 1.0 10.0
Stellar Mass (M

O •
)

0.0

0.5

1.0

1.5

M
F

, C
F

VLM M K G A early B O

Duchene & Kraus 2013

→ stellar evolution cannot be understood without understanding binary evolution
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Stellar evolution of binaries

Types of binaries

• Visual binary: double star system where you can see both stars and they
appear to move around each other
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Stellar evolution of binaries

Types of binaries

• Astrometric binary: Similar to a visual binary, but only one component can
be seen. The visible component will ’wobble’ around the center of mass of
the binary.
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Stellar evolution of binaries

Types of binaries

• Spectroscopic binary: Components of the binary can not be distinguished
visually. Spectrum of the star(s) shows a different Doppler shift at different
times.



10–6

Stellar evolution of binaries 5

Stellar evolution of binaries

Types of binaries

• Spectroscopic binary: Doppler shift can be used to determine radial veloci-
ties of 1 or both stars. (in our line of sight)
Single lined system: only one star is visible in the spectrum
Double lines system: both stars are visible in the spectrum
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Stellar evolution of binaries

Types of binaries
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Stellar evolution of binaries

Types of binaries

• Eclipsing binary: Stars rotate in the same plane as our line of sight (or with
very small inclination). Stars will pass in front of each other causing eclipses.
Duration/depth of the eclipses can be used to calculate size of the stars.
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Stellar evolution of binaries
Multiple systems: common but harder to detect, Non hierarchical systems are
always dynamical unstable



10–10

Stellar evolution of binaries 9

Stellar evolution of binaries
Multiple systems
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Stellar evolution of binaries
Multiple systems
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Stellar evolution of binaries
Potential wells

• Detached binary: Both stars are within their potential well, and are more or
less undistorted (they can be approximated as being spherical).
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Stellar evolution of binaries
Potential wells

• Semi-detached binary: One of the stars has expanded to the point where it
reached the saddle point (this star can not be considered spherical anymore).
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Stellar evolution of binaries
Potential wells

• Contact binary: Both stars are filling their potential well. This can occur be-
cause the mass that flows from the first star that fills it’s well fills up the poten-
tial well of the secondary star. Or because both stars expand to fill their well.
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Stellar evolution of binaries
Potential wells

• Overcontact binary: Both stars are overfilling their potential well, so that
there is only one common surface visible.
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Stellar evolution of binaries

Kang 2010

Wilson 1994
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Stellar evolution of binaries
Roche formalism

potential wells can be depicted in a more mathematical way using the Roche for-
malism: Roche potential – shape of stars are given by equipotential surfaces

Roche lobes: equipotential surfaces through the L1 Lagrangian point: region
within which orbiting material is gravitationally bound to that star.
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Stellar evolution of binaries
Roche formalism Roche lobes: equipotential surfaces through the L1 La-
grangian point: region within which orbiting material is gravitationally bound to
that star.

relevant, if one or both of the stars radii start approaching it’s Roche lobe.

When a star reaches it’s Roche lobe it becomes an interacting binary. Mass
can then start flowing from the Roche lobe filling star to it’s companion.
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Stellar evolution of binaries

Mass transfer: can change stellar evolution

S. Cartwright, University of Sheffield

Close binary evolution: Evolution of both
components linked by Roche Lobe Overflow
(RLOF)
Three cases of mass transfer phases:

• Case A: RLOF at the core hydrogen
burning phase (P ≈ 1 − 10 d)

• Case B: RLOF at the hydrogen-shell
burning phase (RGB) (P ≈ 10 − 100 d)

• Case C: RLOF after core helium exhaus-
tion phase (AGB) (P ≈ 100 d)
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Stellar evolution of binaries

ESO/L. Calçada/M. Kornmesser/S.E. de Mink

Influence on stellar evolution can be complicated: masses, size, shape and rota-
tion changes


binary_evolution.mp4
Media File (video/mp4)
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Stellar evolution of binaries

Smith 2017
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Stellar evolution of binaries

Stable mass transfer: Roche lobe overflow

• Direct impact: If the secondary star is large, then the mass stream that en-
ters from the L1 point can fall directly onto the star. Higher transfer of angular
momentum.
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Stellar evolution of binaries

Stable mass transfer: Roche lobe overflow

• Accretion disc: If the secondary star is small, the mass stream will not hit
the star, but curve around it until it folds back onto itself, spread out due to
friction and forms an accretion disc. The disc will fill up until it reaches the
secondary star, and then mass will be accreted onto the secondary. Angular
momentum accretion is slower.
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Stellar evolution of binaries

Stable mass transfer: Roche lobe overflow

secondary star can accrete all or part of the mass lost by the primary. This de-
pends on what type of star the secondary is, and how fast the mass loss is.

• Spin up: if the secondary accretes mass, it also accretes angular momen-
tum. This causes the star to spin up. When the star reaches breakup velocity
any more mass that lands on the star is thrown off again.

• Bloating: Adding extra mass onto a star can cause it to expand rapidly due
to the extra energy that is dumped in the atmosphere. The secondary will
start to resemble a red giant, and can even fill its Roche lobe leading to a
contact system

• Eddington luminosity: The maximum accretion rate that can be attained by
a star is determined by the Eddington luminosity. Intuition: This is the point
where the radiation pressure caused by the accreted matter equals the grav-
itational attraction. Any extra mass will be pushed away by radiation pressure.
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Stellar evolution of binaries

Unstable mass transfer: common envelope evolution

Youtube/Thomas Reichardt


common_envelope_trim.mp4
Media File (video/mp4)
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Stellar evolution of binaries

Binary merger

University of Warwick/Mark Garlick
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Stellar evolution of binaries

Binary merger

Youtube/Mike Zingale


wd_merger.mp4
Media File (video/mp4)
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Stellar evolution of binaries

Barium stars, CH stars, G/K-giants

Yang et al. 2016, RAA, 16, 19

Pollution from evolved AGB compan-
ions in the past responsible for weird
enrichments of elements

Dwarf carbon stars (dC) – M dwarfs

UCSC

Green 2013, ApJ, 765, 12
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Stellar evolution of binaries
Some star types are formed exclusively by binary interactions

Hot subdwarfs, low-mass He-
WDs

• Stripped cores of red giants
• He-WD mergers

Heber 2016, PASP, 128, 966

R Coronae Borealis stars
C-rich yellow supergiant

• variable due to dust
• merger of CO- and He-WD

ESO

Blue stragglers
• MS-stars too

massive for host
clusters

→ mass transfer
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Stellar evolution of binaries

Interacting binaries with white dwarf stars – Cataclysmic variables

stable

mass transfer from MS or RG companion to white dwarf
→ Mass-transfer to a WD can lead to stable or runaway-H-burning on its surface
→ mass transfer in non-magnetic WD via accretion disc, which gets unstable
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Stellar evolution of binaries

Supernova type Ia (SN Ia)

ESA/Hubble, NASA, P. Ruiz-Lapuente, S. Geier

→ Single-degenerate scenario: white
dwarf accretes mass from main se-
quence star, red giant, or He star until
Chandrasekhar mass is reached

ESO

→ Double-degenerate scenario: merger
of two WD due to emission of gravi-
tational waves, combined mass near
Chandrasekhar limit

Mass-transfer to a CO-WD can lead to a C-flash in the degenerate core
→ Thermonuclear Supernova type Ia (SN Ia)


sn1a_sd.mp4
Media File (video/mp4)


sn1a_dd.mp4
Media File (video/mp4)
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Stellar evolution of binaries
Hypervelocity stars:

CAST group, YouTube

Interaction of close binaries with the super-
massive black hole in the Galactic center
→ Ejection of hypervelocity stars
encounters in star clusters can disrupt
binaries
→ runaway stars

James Josephides (Swinburne Astronomy Productions)

NASA


cast.mp4
Media File (video/mp4)


hills.mp4
Media File (video/mp4)


star_cluster.mp4
Media File (video/mp4)
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Stellar evolution of binaries

Mark Garlick

Interaction stars with supermassive
black holes can lead to the disruption of
the star
⇒ Tidal-disruption event

NASA/CXC/M. Weiss

DESY, Science Communication Lab


tde.mp4
Media File (video/mp4)
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