# Stellar parameters

$L = \sigma \cdot 4 \cdot \pi \cdot R^2 T^4$

Input 2 of the 3 parameters, the 3rd one is calculated.
 Radius R in R☉ in cm Temperature T in K grid index Luminosity log L in log L☉ in erg/s
Input R and M or log g to calculate → log g or M
 Mass M in M☉ Grav. acc. log g in log cm s-2 in km/s ($v_\text{esc}$)

# Wind parameters

$R_\text{t} = R \cdot \left(\left.\frac{v_\infty}{2500\,\text{km}/\text{s}} \right/ \frac{\dot{M} \sqrt{D}}{10^{-4}\,M_\odot / \text{a}} \right)^{2/3}$ → transformed radius (see Schmutz, Hamann & Wessolowski 1989 )

$\displaystyle\eta = \dot{M} \cdot \frac{v_\infty}{L/c}$ → wind efficiency

Input R, v, log $\dot{M}$, D to calculate → Rt and log Rt.
OR:
Input R, v, D and Rt or log Rt to calculate → log $\dot{M}$.
OR:
Input v, log $\dot{M}$, log L to calculate → η.
 Radius R in R☉ Terminal velocity v∞ in km/s Mass-loss rate log $\dot{M}$ in log M☉/a Density contrast D Transformed radius Rt in R☉ Transformed radius log Rt in log R☉ grid index Luminosity log L in log L☉ Wind efficiency η Luminosity' log L' in log L☉ Density contrast' D' Mass-loss rate' log $\dot{M}'$ in log M☉/a Radius' R' in R☉ Distance factor d'/d