Stellar parameters

$L = \sigma \cdot 4 \cdot \pi \cdot R^2 T^4$

Input 2 of the 3 parameters, the 3rd one is calculated.
Radius R in R in cm
Temperature T in K grid index
Luminosity log L in log L in erg/s
Input R and M or log g to calculate → log g or M
Mass M in M
Grav. acc. log g in log cm s-2 in km/s ($v_\text{esc}$)

Wind parameters

$R_\text{t} = R \cdot \left(\left.\frac{v_\infty}{2500\,\text{km}/\text{s}} \right/ \frac{\dot{M} \sqrt{D}}{10^{-4}\,M_\odot / \text{a}} \right)^{2/3}$ → transformed radius (see Schmutz, Hamann & Wessolowski 1989 )

$\displaystyle\eta = \dot{M} \cdot \frac{v_\infty}{L/c}$ → wind efficiency

Input R, v, log $\dot{M}$, D to calculate → Rt and log Rt.
Input R, v, D and Rt or log Rt to calculate → log $\dot{M}$.
Input v, log $\dot{M}$, log L to calculate → η.
Radius R in R
Terminal velocity v in km/s
Mass-loss rate log $\dot{M}$ in log M/a
Density contrast D
Transformed radius Rt in R
Transformed radius log Rt in log R grid index
Luminosity log L in log L
Wind efficiency η
Luminosity' log L' in log L
Density contrast' D'
Mass-loss rate' log $\dot{M}'$ in log M/a
Radius' R' in R
Distance factor d'/d