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Parallelization
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Parallelization

Many runs in MC simulations required for reliable conclusions (σ ∼ 1√
N
)

Often: Result of one run (e.g., path of a neutron through a plate) independent from other runs

→ Idea: acceleration by parallelization
Problem: concurrent access to memory resources, i.e. variables (e.g., ns, frefl)
Solution: special libraries that enable multithreading (e.g., OpenMP) or multiple processes

(e.g., MPI) for one program

→ insert: pipelining, vectorization, parallelization
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CPU Performance

What influences the performance of a CPU (= runtime of your code)?
architecture/design: out-of-order execution (all x86 except for Intel Atom), pipelining
(stages), vectorization units (width)
cache sizes (kB . . .MB) and location: L1 cache for each core, L3 for processor
clock rate (∼GHz): only within a processor family usable for comparison due to different
number of instruction per clock (IPC) of design, even more complicated because of
variable clock rates (base, peak) to exploit TDP (thermal design power)
→ impact on single-thread performance
number of cores (1 . . . ): → impact on multi-thread performance
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Pipelining I

splitting machine instruction into a sequence

independent execution of instructions, each
consisting of

instruction fetching (IF)
instruction decoding (ID) + register fetch
execution (EX)
write back (WB)

operations of instructions are processed at the
same time → quasi parallel execution, higher
throughput
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By en:User:Cburnett - Own workThis vector image was created with Inkscape., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1499754
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Pipelining II

NetBurst disaster
Pentium 4 (2000-2008) developed to achieve > 4GHz (goal: 10 GHz) clockrate by several
techniques, i.a., long pipeline:

20 stages (Pentium III: 10) up to 31 stages (Prescott core)
smaller number of instructions per clock (IPC) (!)
increased branch misprediction (also only 10%, improved by 33% for Pentium III)
larger penalty for misprediction

→ compensated by higher clock rate
higher clock rate → higher power dissipation, especially for 65 (Presler, Pentium D), 90
(Prescott) up to 180 nm (Williamette) structures
→ power barriere at 3.8 GHz (Prescott)
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SSE and AVX I
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SSE - Streaming SIMD Extensions
(formerly: ISSE - Internet SSE)
SIMD - Single Instruction Multiple Data (
→ cf. Multivec, AMD3Dnow!),
introduced with Pentium III (Katamai,
Feb. 1999)
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SSE and AVX II

enables vectorization of instructions (not to be confused with pipelining or parallelization),
often new, complex machine instructions required,
e.g., PANDN → bitwise NOT + AND on packed integers

comprises 70 different instructions, e.g., ADDPS – add packed single-precision floats (two
“vectors” each with 4 32 bit) into a 128 bit register

works with 128 bit registers (3Dnow! only 64 bit), but first execution units (before Core
architecture) only with 64 bit

AVX - Advanced Vector Extensions with 256 bit registers, theoretically doubled speed!
since Sandy Bridge (Intel Core 2nd generation, e.g., i7-2600K) and Bulldozer (AMD)
→AVX-512 with 512 bit registers in Skylake-X (6th generation, e.g., Core i7-6700); AMD
Zen 4, 5
Note: AVX-512 instructions may reduce the clockrate on Intel CPUs (heat limit)
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SSE and AVX III

supported by all common compilers, e.g.,
ifort -sse4.2
ifort -axcode COMMON-AVX512
g++ -msse4.1
g++ -mavx512f

very easy (automatic) and efficient optimization, e.g., for unrolled loops → vectorization

Caution!
Different precisions for SSE-doubles (e.g., 64 bit) and FPU-doubles (80 bit), especially for
buffering, so results of doubles, e.g.,
xx = pow(x,2) ;
sqrt( xx - x*x) ;
usually not predictable
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Multi-cores

Multi-cores
originally one core per processor, sometimes several processors per machine/board
(supercomputer)
many units, e.g., arithmetic logic unit (ALU), register, already multiply existing in one
processor
first multi-core processors: IBM POWER4 (2001);
desktop → Smithfield (2005), e.g., Pentium D
Hyper-threading (HT): introduced in Intel Pentium 4 → for better workload of the
computing units by simulation of another, logical processor core (compare: AMD
Bulldozer design with modules)
today: up to 64 cores for desktop (AMD Zen: Ryzen Threadripper 5995WX, TDP 280W)
or 96 for servers (e.g., AMD EPYC 9654, TDP 360W – even 2 CPUs per board)
+ Hyperthreading
arms race of cores instead of clock rate (NetBurst disaster)
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Multi-cores and compilers

Acceleration by parallelization

parallelization done, e.g., by multithreading (from thread)
for shared memory (RAM on one “node”, usually on one mainboard)
“The free lunch is over” → no simple acceleration more of single-thread programs by pure
increase of clock rate (exceptions: Turbo Boost, Turbo Core, in some ways larger caches
may help)
multithreading supported by, e.g., OpenMP (shared memory), see below
different from: multiprocessing parallelization via MPI (Message Passing Interface)
→ distributed computing (cf. Co-array Fortran) but can be combined: MPI + OpenMP;
usually: MPI more complicated (and slower) than OpenMP → trend for “larger nodes”
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GPGPU

General-purpose computing on graphics processing units → further development of graphic
cards

e.g., Nvidia (Tesla, Fermi); AMD (Radeon Instinct)
→El Capitan (USA, 1st since Nov 2024 in Top500) with 43 808 nodes (each with
AMD-EPYC 24core CPU + GPU MI300A x228) reaches 1.7 ExaFLOPS
(for comparison: 24 core desktop CPU ≈ 8TeraFLOPS → 7× 10−6 of Frontier)
so-called shaders → highly specialized ALUs, often only with single precision (opposite
concept: Intel’s Larrabee)
programming (not only graphics) via CUDA (Nvidia) or OpenCL (more general)
OpenCL → parallel programming for arbitrary systems, also NUMA (non-uniform memory
access), but very abstract and complex concept and also complicated C-syntax
CUDA support, e.g., by PGI Fortran compiler → simple acceleration without code
modifications
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OpenMP
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OpenMP - Intro and Syntax I

OpenMP - Open Multi-Processing

for shared-memory systems (e.g., multi core) per node

directly available in g++, gfortran, and Intel compilers

insertion of so-called OpenMP (pragma) directives :

Example: for loop
C++
#include <omp.h>
...

#pragma omp parallel for
for (int i = 1 ; i <= n ; ++i)
{ ... }

Fortran
USE omp_lib ! ifort declarations

!$OMP PARALLEL DO
DO i = 1, n
....

ENDDO
!$OMP END PARALLEL DO

instructs parallel execution of the for loop, i.e., there are copies of the loop (different
iterations) which run in parallel
→ only the labeled section runs in parallel
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OpenMP - Intro and Syntax II

→ pragma directives are syntactically seen comments, i.e., invisible for compilers without
OpenMP support

realization during runtime by threads

number of used threads can be set, e.g., by environment variable

export OMP_NUM_THREADS=4 # bash
setenv OMP_NUM_THREADS 4 # tcsh

→ obvious: per core only one thread can run at the same time (but: Intel’s
hyper-threading, AMD’s Bulldozer design) → in HPC often reasonable:

number of threads = number of physical CPU cores

Caution!
Distributing and joining of threads produces some overhead in CPU / computing time (e.g.,
copying data) and is therefore only efficient for complex tasks within each thread. Otherwise
multithreading can slow down program execution.
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OpenMP - Intro and Syntax III

Including the OpenMP library:

C++

#ifdef _OPENMP
#include <omp.h>
#endif

Fortran

! only needed for declaration of
! OMP functions etc. with ifort:
!$ use omp_lib

→ instructions between #ifdef _OPENMP and #endif (Fortran: following !$) are only
executed if compiler invokes OpenMP

Compile with
g++ -fopenmp
icpx -fopenmp also: -qopenmp (deprecated: -openmp)

gfortran -fopenmp
ifort -fopenmp also: -qopenmp (deprecated: -openmp)

H. Todt (UP) Fortran WiSe 2025/26, 30.1.2026 16 / 27



OMP functions

Useful: functions specific for OpenMP, e.g., for number of available CPU cores, generated
(maximum) number of threads, and current number of threads:

omp_get_num_procs() // number of (logical) processor cores
omp_get_max_threads() // max. number of (automatic) generated threads
omp_get_num_threads() // number of current threads
omp_get_thread_num() // number of the current thread

Join-fork model:
thread that executes
parallel directive
becomes master of
thread group with ID= 0

Master Thread

Master Thread Thread 1 Thread n -1

Master Thread

...
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OMP – Access to variables: shared and private I

Very important: organization of the accessibility of the involved data, i.e. assign attributes
shared or private to thread variables

shared
→ default for variables declared outside the parallel section
data are visible in all threads and can be modified (concurrent access)

int sum = 0 ;
#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) {

sum += k ; // sum is implicitly shared

NSUM = 0
!$OMP PARALLEL DO

DO K = KMAX, 1, -1
NSUM = NSUM + K ! NSUM is implicitly shared
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OMP – Access to variables: shared and private II

in contrast to:

private
each thread has its own copy of the data, which are invisible for other threads, especially from
outside of the parallel section.
Loop iteration variables are private by default and should be declared in the loop header for
clarity:

#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) // k is implicitly private

!$OMP PARALLEL DO
DO K = KMAX, 1, -1 ! K is implicitly private

Moreover, there are further so-called data clauses, e.g., firstprivate (initialization before
the parallel section), lastprivate (last completed thread determines the value of the variable
after the parallel section) and many more . . .
→This is the complicated part of OpenMP!
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OMP – Access to variables: shared and private III

Example private
C++:
int j, m = 4 ;
#pragma omp parallel for private (j)
for (int i = 0 ; i < max ; i++) {

j = i + m ;
... ;

}

Fortran:
INTEGER :: j, m

!$OMP PARALLEL DO PRIVATE (j)
DO i = 0, max

j = i + m
...

ENDDO
!$OMP END PARALLEL DO

→ loop variable i and explicitly private variable j as “local” copies in each thread
→ variable m implicitly shared (be careful in Fortran because of implicit declarations within, e.g. loops)
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OMP – critical and reduction I

General form of OpenMP directive for parallelization:

#pragma omp parallel
→ parallel section also possible without a loop, section is executed per thread
(in C/C++: { } block required for multiple commands):

C++:

#pragma omp parallel
{
cout << "Hi!" ;
cout << endl ;

}

Fortran:†

!$OMP PARALLEL
print *, "Hi!"

!$OMP END PARALLEL

† for gfortran the !$ must start in 1st column
H. Todt (UP) Fortran WiSe 2025/26, 30.1.2026 21 / 27



OMP – critical and reduction II

#pragma omp critical
→within a parallel section
is executed by each thread, but never at the same time (avoiding race conditions for shared
resources)

C++:

#pragma omp critical
{

WDrawPoint(myworld, x, y, c) ;
}

Fortran:

!$OMP CRITICAL
CALL PGDRAW (x, y)

!$OMP END CRITICAL
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OMP – critical and reduction III

Example: critical access to an array
C++:

#pragma omp parallel for private (j)
for (int i = 0 ; i < nymax ; ++i) {

for (j = 0 ; j < nxmax ; ++j ) {
...
#pragma omp critical
subset[i][j] = result ;

}
}

Fortran:

!$OMP PARALLEL DO private (j)
DO i = 0, nymax - 1

DO j = 0, nxmax - 1
...

!$OMP CRITICAL
subset(i,j) = result

ENDDO
ENDDO

→ critical forces threads to queue, hence slows down execution, better: if possible, use
reduction clause:
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OMP – critical and reduction IV
#pragma omp parallel reduction (operator:list of variables)
The reduction clause defines corresponding (scalar) variables in a parallel section.

Example: summing up with reduction
C++:

#pragma omp parallel for \
private(x) reduction(+:sum_this)

for (int i = 1; i <= nmax ; i++) {
x = 0.01 / (i + 0.5) ;
sum_this += x ;

}

Fortran:

!$OMP PARALLEL DO PRIVATE(x)
!$ > REDUCTION(+:sum_this)

DO i = 1, nmax
x = 0.01 / (i + 0.5)
sum_this = sum_this + x

ENDDO

There are a number of allowed operators for reduction, e.g.:
operator meaning data type neutral element / initial value

+,- sum int, float 0
* product int, float 1
& bitwise and int all bits 1
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Syntax II

Heads up! OpenMP needs clear syntax for loop parallelization:

for (int i = 0 ; i < n ; i++)

make sure that your loop has canonical loop form, especially the loop iteration variable (here:
i) is integer as well as variables used for comparison (here: n). OpenMP is very picky and
might otherwise (e.g., if n is float) stop compilation:
error: invalid controlling predicate.

Note that omp parallel for / OMP PARALLEL DO is the contracted form of

C++:
#pragma omp parallel
{
#pragma omp for
for ( ... ) {
...

}
}

Fortran:
!$OMP PARALLEL
!$OMP DO

...
!$OMP END DO
!$OMP END PARALLEL
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OMP – Scheduling I

schedule(runtime)
Examples:
#pragma omp parallel for schedule (runtime)

→way of distributing the parallel section to threads is defined at runtime, e.g., by (bash)

export OMP_SCHEDULE="dynamic,1"

→ each thread gets a chunk of size 1 (e.g., one iteration) as soon as it is ready

export OMP_SCHEDULE="static"

→ the parallel section (e.g., loop iterations) is divided by the number of threads (e.g., 4)
and each thread gets a chunk of the same size

→ static is the default
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OMP – Performance and infos

Useful for performance measurement:

omp_get_wtime() // → returns the so-called wall clock time (not the cpu time)

omp_get_thread_num() // → returns the number of the current thread

Weblinks:
http://www.openmp.org/
especially the documentation of the specifications:
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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