
Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy

University of Potsdam

SoSe 2025, 30.6.2025

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 1 / 170

Programming in Fortran - Part 1

Introduction

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 2 / 170

Fortran - History

Fortran = Formula translation
first high level language (John Backus1 1957) – in contrast to Assembler
contains a lot of builtin features, like power “**” and a data type for complex numbers
initially on punch[ed] cards with → 80 characters per line

Advantages of punch cards (K. Ganzhorn 1966)

machine and visual readability

mechanical dublica-, mixa- and sortability

outstandingly superior signal-to-noise ratio (> 106)

cheap

universal suitability for machine data input and output

11924 - 2007, Turing Award 1977, also ALGOL 58
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 3 / 170

Punch cards I

Original idea by Herman Hollerith (1860-1929) in 1898 →Hollerith constants in early FORTRAN

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 4 / 170

Punch cards II

Computer History Museum (CHM), Mountain View, 2019

Type 31 Alphabetical Duplicating Punch, IBM, USA,
1933
→ keyboard-operated card punch

CHM, 2019

Model 406 Card Sorter, Power-Samas, UK, 1954
→ used for Atlas of British Flora, can sort 300 cards /
min

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 5 / 170

Fortran versions/standards

FORTRAN I (1954-57)
FORTRAN II (1958)
FORTRAN IV (1961)
FORTRAN 66 (ANSI/ASA)

CHM, 2019

FORTRAN 77 (structured, before: GOTO)
Fortran 90 (free form)
Fortran 95 (WHERE, FORALL, removed: REAL loops)
Fortran 2000, Fortran 2003 (polymorphism, inheritance, object-oriented)
Fortran 2008 (Coarray Fortran)
Fortran 2018 (e.g., teams for Coarray Fortran)

Conventions
In the following we will only consider FORTRAN 77 with some elements from Fortran 90/95.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 6 / 170

Why Fortran? I

Fortran was the first
high level language and is therefore
the ancestor of all modern
programming languages.
Fortran is still used and developed
(modern compilers).

CHM, 2019
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 7 / 170

Why Fortran? II

Fortran can be easier (and therefore better) optimized by Compilers (see Sect. 31) – since
Backus – and is also easy to learn.
This is amongst others due to:

The Fortran programming language is more strict (=less flexible), e.g., loop variables
(counter) cannot be changed within the loop:

DO I = 1 , 10
I = 10

ENDDO

not permitted! (Error, e.g., gfortran Error: Variable ’I’ cannot be redefined inside loop)
→ real loops, (max.) number of iterations determined before loop entry

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 8 / 170

Why Fortran? III

High level language Fortran vs. Assembly l. →Machine language

Machine language
100 077400201750
101 075400000000
102 040000205670
103 200001200102
104 060100002720

Assembly code (line by line →machine code)
AXT 1000,B
PXD ,0

LOOP ADD MEM+1000,B
TIX LOOP,B,1
STO ISUM

Fortran (syntact. analysis →machine code)
ISUM = 0
DO 42 I = 1, 1000

42 ISUM = ISUM + MEM(I)

originally: programmers had to write machine
instructions (add, shift registers) as numbers

Assembly language uses names instead of
numbers for code and memory locations, but
still: 1 line code for 1 computer instruction;
translation to machine language by Assembler

high level language (Fortran): English-like
statements ; translated by compiler to
machine code

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 9 / 170

Why Fortran? IV

static data types: data types are known at compile time

but: no explicit declaration (type checking) of arguments of procedures:
SUBROUTINE VEC_X_MATRIX (VEC, MATRIX, FLAG)

therefore also possible: passing multi-dimensional arrays without giving the dimensions
(e.g. re-dimensioning in procedure possible)

no pointer needed (but they exist, e.g., Cray-pointer), procedures get only the start
address of the arrays/variables

CALL ADDZ (ARG1,ARG2(2:4,2:5))
...

SUBROUTINE ADDZ (ARG1,ARG2)
DIMENSION ARG2(3,4)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 10 / 170

Why Fortran? V

Fortran is a procedural language without templates,
header files, etc. 2

→ short compile time, highly optimizable by
compilers (see Sect. 31)

“Weaknesses” of Fortran
On the other hand: no type checking when passing
variables to procedures
(exception: optional INTERFACE).
Many Fortran programmers use GOTO instructions, one of
the main reasons of “Spaghetti” code
There is no general exception handling, no good graphics
library, etc.

However, OS for Prime in 1970s completely in Fortran→→ CHM, 2019

2but: MODULE, INTERFACE with INCLUDE
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 11 / 170

Economical aspects

Table: Survey among IT people

Skill % of the respondent annual income / e

C 16.8 55 304
C++ 19.2 53 568
Cobol 1.7 65 813
Fortran 0.6∗ 67 185
Java 28.8 54 164
SQL 43.0 50 881

3446 respondents, c’t 2011, 6
∗ = 21 respondents

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 12 / 170

Spreading/applications of Fortran

LINPACK → benchmarking of supercomputers (PFLOPS) & LAPACK
→ systems of linear equations
astrophysics:
radiative transfer (e.g., CMFGEN, PoWR, FASTWIND, TMAP, MOCASSIN),
CMBFAST (but outdated),
hydrodynamics (ZEUS),
data analysis (e.g., ABSOLUT for absorption lines)
particle physics: SIMDET (simulation of detectors of colliders), PYTHIA (until V6.4, MC
simulation of particle decays)
but also application software: WRplot (with some C-routines for graphics and file handling)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 13 / 170

Fortran compilers

Current Fortran compilers (June 2024):
gfortran (GCC) 9.5 (May 2022)
ifort (Intel) 2024.1.0 (April 2024)
PGI CUDA Fortran (PGI/NVIDIA) 20.4 (May 2020)
g95 (Andy) 0.93 (Oct 2012!)
openf90/openf95 (AMD x86 Open64) 4.5.2 (2014!)
and many others . . .

each of these compilers has specific advantages and disadvantages, some compilers (gfortran,
g95) do not support all features (e.g, ENCODE).
Moreover, gfortran is only a front end for gcc and translates Fortran into an abstract syntax
tree (AST) → less optimization potential.
The PGI compiler and ifort are commercial products (but can be obtained for free under
specific conditions), the other compilers are for free and mostly open source.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 14 / 170

Calling the compiler

gfortran
gfortran myprogram.f → creates executable program a.out from source file
myprogram.f

gfortran -o myprogram myprogram.f → creates executable program myprogram

gfortran -c myprogram.f → creates object file myprogram.o

gfortran -o myprogram myprogram.o → links the object file against the runtime
libraries to create the program

ifort
first step: set compiler path etc., e.g.,
source /opt/intel/[...]/bin/ifortvars.sh intel64

ifort -o myprogram.exe myprogram.f → as for gfortran

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 15 / 170

Literature

Intel Fortran Language Reference, about 900 pages, extensive reference containing many
examples
Using GNU Fortran, about 200 pages, documentation of gfortran intrisics and behavior
Modern Fortran Explained (Metcalf et al. 2018), including Fortran 2018
Modern Fortran (Curcic 2020), most recent Fortran book, focus on parallelization

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 16 / 170

Introduction I

. . . what a developer usually has to know:

1 Where to put the semicolons?

2 How to insert a comment?

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 17 / 170

Introduction II

In Fortran 77 (default source format, format because of → punchcards):
1 one line = one instruction

(end of line usually after column 72, continuation lines possible via a character in column 6
or via & in the previous line).
→A semicolon separates multiple instructions within a single line.

1234567 ... 72 column number
WRITE (*,'(A,A,A)')

> "Hello"
& " world!" ; END

→ columns 1 - 5 for label (pos. integer number) reserved, e.g.,

123456
IF (BERROR) GOTO 999
...

999 STOP 'INPUT ERROR'

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 18 / 170

Introduction III

2 A comment line is indicated by a comment indicator (!, C, *) in the first column,
since Fortran 90, also via a preceeding exclamation mark “!”.
Also, everything after column 72 is ignored (comment).

0000000001 ... 77777777
1234567890 ... 01234567
C a comment

! comment
EXP(-PI) comment

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 19 / 170

Introduction IV

A simple program:

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 20 / 170

Program - basic instructions

PROGRAM program_name
→ optional, recommended
STOP
→ optional, recommended
END [PROGRAM program_name]
→ obligatory

Hints:
Fortran doesn’t distinguish lowercase and uppercase characters for instructions and
variable names.
Fortran can be written without blanks, e.g., PROGRAMmyprogram
default file extensions for Fortran source files:
.f .for .f90 (and some more)
→ depends on compiler

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 21 / 170

Labels and GOTO

lines (= instruction) can/must be labeled with a number in the beginning

100 READ(*,101,ERR=102) RADIUS
101 FORMAT (F15.0)
...

STOP
102 PRINT * , 'Wrong input, again please!'

GOTO 100

labels can be targeted by GOTO → immediate jump to this instruction →way to hell . . .

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 22 / 170

Simple output / print out

the universal output instruction is

WRITE

3 E.g.:

WRITE (*,*) "Hello world!" , "Hello!"

Meaning of the *:
WRITE (UNIT,FORMAT)

3there also exists PRINT
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 23 / 170

Unit specifier

The instructions PRINT and WRITE(*,*) write to stdout (terminal, shell).
Furthermore, WRITE can write to a “unit” (device):

WRITE(J,*)

where J is an integer number with 0 ≤ J ≤ 2 147 483 640 (ifort)

unit uninitialized meaning channel
* Always: screen / keyboard STDOUT/STDIN
0 screen (terminal) STDERR
5 keyboard (terminal) STDIN
6 screen (terminal) STDOUT

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 24 / 170

Reading from input

The import of data is done by

READ
syntax similar to WRITE, e.g.

READ (*,*) RADIUS

i.e. READ (UNIT,FORMAT)

problem: wrong type at input (e.g., string instead of float) causes program crash, therefore
always:
catch wrong input, e.g.:
100 READ(*,*,ERR=101) RADIUS
...

STOP
101 PRINT * , 'Wrong input, again please!' ; GOTO 100

END

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 25 / 170

Format statements I

instead of * in READ / WRITE better use format string

e.g., WRITE (*,'(A,F10.2)') 'Radius is ', RADIUS

enclose string with ' ' or " " and put them in parentheses ()

Example:

A : text, A26 → 26 characters

Fn.d : fixed point, F4.1 → one decimal place, two digits left before decimal point

En.dEz : floating-point, E10.1E2 → 10 digits in total, 1 digit after decimal point, 2 digits
for exponent

Hint
Reading any format of numbers (integer, fixed, float) via fixed point format with number of
positions after decimal point = zero into a REAL variable, e.g.,

F20.0

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 26 / 170

Format statements II

FORMAT statement

the format can also be set via an instruction, e.g.,

READ (5,200) KARTE
200 FORMAT (A132)

or use READ(5,FMT=200) for better readability
advantage of the FORMAT statement:

re-usability (e.g., multiple READ / WRITE statements with same format)
clarity: collecting FORMAT statements between STOP and END PROGRAM
can contain text:

WRITE (*,100), SUM
100 FORMAT ("The result is: ",F10.4)

Note that the argument of the FORMAT statement is written without quotation markes and that
a FORMAT statement must be always labelled.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 27 / 170

Format statements III

Alternatively: Format strings can be constructed during runtime! (flexibility)

CHARACTER*8 FORM
...

FORM = "(A,F5.1)"
...

FORM(7:7) = "2" ! changes F5.1 to F5.2
WRITE (0,FMT=FORM) "found unknown", X

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 28 / 170

Data types I

Fortran allows the use of variables without explicit declaration.
→ data type (INTEGER, REAL) is determined by initial letter of the variable name:

initial letter I, J, K, L, M, N for integer numbers, e.g.,
DO I = 1, K → counting loop
Nparticipants = 8

all others: floating points (REAL), e.g.,
PI = 3.141
XMASS = 2.E33

more on that later . . .

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 29 / 170

Fortran 90 vs. FORTRAN 77

FORTRAN 77 – fixed form:

77777
1234567890 34567

WRITE (*,*) ... comment

Fortran 90 – free form:

WRITE (*,*) ... ! comment

default: fixed form
free form via: file extension .f90
or compiler option:

gfortran: -ffree-form
ifort: -free

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 30 / 170

Programming in Fortran - Part 2

Data types, input, output, files, execution control

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 31 / 170

Implicit declaration I

We already know:

integer number variables (INTEGER) start with: I, J, K, L, M, N

floating point number variables (REAL): any other letter

with help of the IMPLICIT instruction it is possible to assign other letters to the variables, e.g.,

IMPLICIT COMPLEX (c, z)

IMPLICIT LOGICAL (b)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 32 / 170

Implicit declaration II

Advantage of implicit declarations
compact declaration block (only needed for arrays and other data types)

Big disadvantage:
Typos of variable names are not detected at compile time. E.g.,

RSUN = 69.57E9
RADIUS = RADIUS / RSUNN

often leads to errors which are difficult to reproduce
(here: division by 0)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 33 / 170

Implicit declaration III

Therefore better and always recommended:

IMPLICIT NONE

as the first statement in each program (or function/subroutine).
This statement switches off implicit declaration and requires the explicit declaration of a
variable before use (like, e.g., in C/C++)

Example
PROGRAM SIMPLE
IMPLICIT NONE
REAL RSUN, RADIUS

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 34 / 170

Implicit declaration IV

The declaration block
Explicit declaration of variables is exclusively done in the “declaration block”.
This block must be at the beginning of the program.
The initialization of variables via “=” can only be done after this block.

Exceptions:
Constants (PARAMETER) can/should be initialized in the declaration block:

REAL, PARAMETER :: CLIGHT = 2.9979E10

Via the DATA instruction variables can be initialized in the declaration block. Note that
this is done at compile time!

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 35 / 170

Implicit declaration V

Example - declaration
Correct:

REAL R, S, PI, E
DATA PI, E /3.141,2.718/
INTEGER I, NMAX
PARAMETER (NMAX=100)
REAL, PARAMETER :: k_b = 1.38E-23
CHARACTER LINE*132

Incorrect:

REAL X
X = 3.0 ! not permitted:

! initialization via =
! in the declaration block

INTEGER Y

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 36 / 170

INTEGER - Integer data types I

completely analogous to int in C, e.g.,

INTEGER I, M
I = 0
M = 1

integers have a sign (signed):
J = -1000
K = +200
the + is optional

if not declared otherwise (see below) each INTEGER occupies 32 Bit (=4 Byte) in the
memory

therefore: largest integer (32 Bit, two’s complement): 231 − 1 = 2 147 483 647
(smallest: −(231))

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 37 / 170

INTEGER - Integer data types II

INTEGER of different size than 32 Bit with help of the KIND parameter, e.g.,

INTEGER(KIND=8) trillion
INTEGER*1 c128

KIND means usually the size in Byte (= 8 Bit), so KIND=8 may correspond to 64 Bit

the default value (if KIND is not used) is KIND=4 (32 Bit)

all INTEGER of a source code can be set automatically to 64 Bit with the compiler option:

gfortran: -fdefault-integer-8
ifort: -i8

Warning: The Fortran standard does not guarantee that KIND corresponds always to Bytes
(so KIND=4 for 32Bit), although most Compilers support this correspondance.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 38 / 170

INTEGER - Integer data types III

Use of integers:

for loops: DO I = 1, 10

indices (subscripts) of arrays: A(I)

On the importance of integer arithmetic:

Usually, integers can be faster processed than floats, as there is, e.g., no normalization
necessary. Also, operations with integers often require a smaller number of bits.

Bit patterns of integers are stable. Integer can be represented exactly and can be
compared unambiguously.

With help of integers it is possible to implement a fixed point number arithmetic without
round-off errors (e.g., GnuCash).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 39 / 170

Floating point numbers I

REAL, DOUBLE PRECISION

Floating point numbers are an approximative representation of real numbers.

Floating point numbers can be declared explicit via

REAL radius, pi, euler, x, y
DOUBLE PRECISION rbb, z

(analogously to float or double in C).

valid assignments are

x = 3.0
y = 1.1E-3
z = 4.0D-266
rbb = 2.06798E-300_8

The last two assignments refer to DOUBLE PRECISION: D instead of E or subsequent _8

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 40 / 170

Floating point numbers II
Representation and usage of floating point numbers is, e.g., regulated by the standard
IEEE 754.

x = s ·m · be (1)

where b = 2 is the basis (IBM Power6: also b = 10)
For 32 Bit (single precision):

MMMMMMMMMMMMMMMMMMMMMMMEEEEEEEES

bits

0781516232431

mantissaexponent

sign

therefore for single precision (32 Bit):
−126 ≤ e ≤ 127 →max. ≈ 1038(= 10127∗log 2)

decimals: 7-8 (= log 223)
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 41 / 170

Floating point numbers III

analogously for 64 Bit – DOUBLE PRECISION or KIND=8:
exponent: 11 Bit (r), mantissa: 52 Bit

−1022 ≤ e ≤ 1023 →max. ≈ 10308 (= 101023∗log 2)
decimals: 15-16 (= log 252)

For the representation:

sign bit: positive = 0, negative = 1

exponent e results from non negative number E via e = E − B where B = 2r−1 − 1, e.g.,
B = 211−1 − 1 = 1023

mantissa is set by normalization to the format (example)
1.0100100 ×24

i.e. with 1 before the point. This 1 is not saved.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 42 / 170

Floating point numbers IV

Notes about floats (IEEE 754):

precise saving of integers with 6 up to 9 digits for 32Bit floats, etc.

there are positive and negative infinities, e.g., −1./0. =-Infinity

there exist two zeros: −0 and +0, equal for comparison, but, e.g., 1/± 0 = ±∞ (different
for comparison)

subnormal (denormal) numbers: fill underflow gap around zero by allowing for leading
zeros in mantissa (hence larger exponent)

NaN: not a number, result of, e.g., ∞∗ 0, 0/0,
√
−1, indicated by all exponent bits set to 1

and some non-zero number in mantissa
Important: NaNs can propagate through calculations (NaN+1=NaN, but NaN0 = 1)

value 32 bit pattern (sign, exponent, mantissa)
0. 0 00000000 00000000000000000000000

-0. 1 00000000 00000000000000000000000
inf 0 11111111 00000000000000000000000

-inf 1 11111111 00000000000000000000000
NaN 1 11111111 10000000000000000000000

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 43 / 170

Floating point numbers V

On the KINDs of floats:

default for REAL: KIND=4 usually corresponds to 32 Bit

default for DOUBLE PRECISION: KIND=8 corresponds usually to 64 Bit

all REAL declarations of a source code can be automatically set to 64 Bit by the compiler
option:

gfortran: -fdefault-real-8
ifort: -r8

this option is usually used together with the analogous integer option (-i8).
Caution: gfortran then sets DOUBLE PRECISION declarations to 16 Byte (=128 Bit)!

Warning: The Fortran standard does not guarantee that KIND corresponds always to Bytes
(so KIND=4 for 32Bit), although most Compilers support this correspondance.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 44 / 170

Floating point numbers VI

Trade-off between speed and accuracy
Often, accuracy and speed are conflictive goals.
E.g., the use of 128 Bit floats slows down the code significantly, while switching back from 64
Bit to 32 Bit especially for vector operations (SIMDa, SSEb, AVXc) can increase the
computation speed.

aSingle Instruction Multiple Data
bSIMD Streaming Extension, 128 Bit
cAdvanced Vector Extensions, 256 Bit

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 45 / 170

Floating point numbers VII

Importance of floating point numbers:

essential for most scientific calculations, often 64 Bit precision is required

Problems:

not all rational numbers can be represented exactly (as for, e.g., 1/3 in decimal system)

bit patterns not “stable”, e.g. because of denormalization for small numbers

accuracy of representation depends on the KIND, e.g.
KIND=10 for FPU (floating point unit), but only KIND=8 when saved and for SSE
instructions

Warning
Under no circumstances, it is OK to test blindly two floats on identity, instead one should
always use a range of accuracy:
ABS(X - Y) .LE. EPS instead of X .EQ. Y

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 46 / 170

Complex I

COMPLEX Z, C

intrinsic data type(!), always occupies two REAL memory cells

access and assignment of complex variables:

REAL REALPART, IMAGINARYPART
COMPLEX Z
Z = (2.0 , 1.0)
Z = CMPLX(2.0 , 1.0)
REALPART = REAL(Z)
IMAGINARYPART = AIMAG(Z)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 47 / 170

Complex II

Trick: The access on the components of complex variables is also possible with help of
EQUIVALENCE:

COMPLEX Z
REAL ZR(2), REALPART, IMAGINARYPART
EQUIVALENCE (ZR,Z)
...
REALPART = ZR(1)
IMAGINARYPART = ZR(2)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 48 / 170

Logical - Boolean variable I

LOGICAL BTEST

possible values: .TRUE. or .FALSE.

example: BTEST = .FALSE.

although only 1 Bit required, 32 Bit are used by default for storage

default value of most compilers if not initialized:
.FALSE.

recommendation: LOGICAL variable names should start with a B (for boolean)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 49 / 170

Logical - Boolean variable II

Computing with LOGICAL

Variables of type LOGICAL can be combined such that the result is again of type LOGICAL
(take care of the ordering, if necessary use parentheses):

BBOTH = BONE .AND. BTWO
BALSO = (.NOT. BONE) .OR. BTWO

operator meaning C/C++
.AND. logical AND (∧) &&
.OR. logical OR (∨) ||
.NOT. logical NOT (B) !

.XOR., .NEQV. exclusive OR (∨̇) !=
.EQV. logical EQUIVALENCE ==

(true if both true or both false)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 50 / 170

Logical - Boolean variable III

LOGICALS are also the result of comparisons:

BTEST = X .GT. Y
BCHECK = .NOT. (I .EQ. J)

Fortran meaning C/C++/Fortran
.LT. < strictly lesser than <
.LE. ≤ lesser/equal <=
.EQ. = equal ==
.NE. 6= not equal / = (in C: !=)
.GE. ≥ greater/equal >=
.GT. > strictly greater than >

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 51 / 170

Logical - Boolean variable IV

Precedence of operators

category operator precedence

numeric ** highest
numeric *, / ·
numeric +, - ·
relational .EQ., .NE., .LT., ·

.LE., .GT., .GE. ·
logical .NOT. ·
logical .AND. ·
logcial .OR. ·
logical .XOR., .EQV., .NEQV. lowest

→ a higher priority can be always enforced via parentheses ()
→ the evaluation of composed expressions can be optimized by the compiler, e.g., as in
IF (X .NE. 0. .AND. 1./X .GT. 2.) → no further evaluation if X = 0.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 52 / 170

CHARACTER I

CHARACTER A, LINE*80

Variables of type CHARACTER contain a single ASCII character (default), therefore KIND=1
(8 Bit)

With the following modifier it is possible to create strings, i.e. “character arrays” (here: 80
characters long):

CHARACTER LINE*80
CHARACTER*80 LINE2
CHARACTER (LEN=80) CARD
CHARACTER(80) TEXT

assignment to CHARACTER constants via quotation marks:

LINE="Hello world!"
TEXT='Good bye!'

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 53 / 170

CHARACTER II

The access on substrings is possible with help of round parentheses ():

TEXT='Good bye!'
WRITE (*,*) TEXT(:2), TEXT(3:6) , TEXT(7:)

important for the comparison of test strings:
upper and lower case are distinguished,
trailing blanks are ignored

BTEXT = TEXT .EQ. 'Good bye! '

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 54 / 170

Comparison: Intrinsic data types in C/C++ and Fortran

Fortran C/C++ comment

INTEGER int 32 bit
REAL float 32 bit
DOUBLE PRECISION double 64 bit
COMPLEX — 32 bit
LOGICAL bool
CHARACTER char
CHARACTER*80 char[81] Fortran string not null terminated

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 55 / 170

FORMAT statement

We already know:
automatic formatting:

(*,*)

text formatting:
(*,'(A)'), (*,'(A80)')

fixed point formatting:
(*,"(F20.0, F8.2)")

exponential formatting:
(*,"(E5.2, E10.1E2)")

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 56 / 170

FORMAT statement: Integer, Logical, and Complex

INTEGER

formatting via (In), n = number of digits, e.g., I3
LOGICAL

format indicator: L or Lw
e.g., WRITE (*,"(L)") BTEST
or WRITE (*,"(L3)") BCHECK

output: T or F (depends on value), or ∆∆T (if (L3))
for input: only the first (non-blank) character is required: .T, T, .t, t or .F, F, .f, f
(the format with the dot should be avoided in the shell)

COMPLEX

output as for REAL, components separated by line break, e.g, for z = 1 + 2ı:
PRINT *, Z (1.000000,2.000000)

PRINT "(F4.1)", Z 1.0
2.0

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 57 / 170

Formatting: useful extensions

More output formatting:
formatting of arbitrary number data types via G, analogously to E: (G10.2E3)
output of bit patterns: e.g., (B64) for 64 Bit

Format modifiers:
repetition by preceeding number of repetitions, hence: (4F5.2)
blanks via X, e.g.: (5X,A,X)
scaling – moving the decimal point per P: (2PE8.2E1) moves the decimal point by two
digits to the right
no line break via $: (A,$)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 58 / 170

Type conversion I

There is i.g. no type checking (at compile time) in Fortran and data types are often not
automatically converted. Therefore, this must be done by the developer, e.g., the conversion
from INTEGER to REAL

X = REAL(N) ! argument can be INTEGER, REAL, COMPLEX
Y = FLOAT(M) ! argument is INTEGER

Moreover, we have already learnt a method to convert even CHARACTER (strings) to INTEGER or
REAL:

READ (*,"(F20.0)") X

reads from STDIN (“string”) and converts to REAL
Hint: the asterisk * can be replaced by a variable name:

READ (LINE,"(I10)") M

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 59 / 170

Type conversion II

The other way around (INTEGER, REAL → CHARACTER) is done by WRITE.

WRITE (LINE,"(I5)") NUMBER

Already known.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 60 / 170

IF-THEN-ELSE

The one-liner:

IF (EXPRESSION) instruction

EXPRESSION is a logical expression (LOGICAL) with the values .TRUE. or .FALSE.
often: comparison (operators) and combinations (sentential connectives), e.g.,

IF (XL .GT. 1. .AND. XL .LT. 200.) GOTO 100

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 61 / 170

IF-THEN-ELSE

The extensive standard form:

IF (EXPR) THEN

... instruction ...

ELSE IF (EXPR2) THEN

... other instruction ...

ELSE

... alternative ...

ENDIF

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 62 / 170

SELECT CASE

Instead of lengthy IF-THEN-ELSEIF blocks it may be more convenient to use:

[name:] SELECT CASE (variable)
CASE (value1)
...

CASE (value2)
...

CASE DEFAULT
...

END SELECT name

where variable must be of type
INTEGER

LOGICAL

CHARACTER

and value can also be a range:
min:max
min:
:max

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 63 / 170

DO loops I

Loops are among the most powerful and useful structures in programs.
In Fortran loops begin with the statement:

DO

In principle there are the following types of (DO-) loops:

“count” loops

WHILE loops

“infinite” loops

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 64 / 170

Do forever I

infinite loops have an empty loop header (no break condition):

DO

... instruction block ...

END DO

Leaving the loop is therefore only possible by an instruction like
IF (BEND) EXIT

EXIT
immediately terminates the current iteration and exits the current(!) loop

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 65 / 170

Do forever II

Example
DO
K = K + 1
IF (K .EQ. 10) EXIT

ENDDO

We remember:

Blanks
Blanks are optional in Fortran. So they are also optional in END DO, DOUBLE PRECISION, ELSE
IF, GO TO, . . .

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 66 / 170

Count loops I

When entering the count loop the loop header is evaluated:

DO K = 1 , NMAX , 1
...

ENDDO

the first argument initializes the loop counter (always!)

the second argument defines the maximum value of the loop variable

Note: If the loop is exited normally, the loop variable K has the value
NMAX + 1.

the third (optional) argument is the increment (or decrement)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 67 / 170

Count loops II

Fortran 90:

loop variables can be also of type REAL.

Fortran 95:

loop variables can only be of type INTEGER.

General loop control
EXIT terminates the current(!) loop immediately
CYCLE skips the rest of the current iteration(!) and jumps to the beginning of the next
iteration
CONTINUE does nothing, useful for loops with labels

Loop with label (there was no ENDDO in FORTRAN77):

DO 101 , K = 3 , 10
...

101 CONTINUE

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 68 / 170

WHILE loops

The WHILE loop checks before each iteration for a logical expression:

WHILE
DO WHILE (condition)

...

END DO

bad: the condition is changed in the loop body, but the condition is checked not before
the next iteration
because of performance issues it is recommended to avoid (extensive) WHILE loops

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 69 / 170

Comparison: Execution in C/C++ and Fortran

Branching
Fortran

IF (X .GT. Y) THEN
...

END IF

C/C++

if (x > y) {
...

}

For loop
Fortran

DO I = 1, 10
...

END DO

C/C++

for (int i = 0; i < 10; ++i) {
...

}

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 70 / 170

Reading and writing on files I

Open a file
OPEN (UNIT, FILE="name", ACTION="access", ERR=label)

opens a file with name “name” (similar syntax as in IDL),

assigns a device number UNIT of type INTEGER to the file; the only obligatory argument,

defines the way of access: READ, WRITE, or READWRITE (default),

and jumps in the case of an error during opening to the label label (e.g., file not found).

Example
OPEN (22, FILE="output.dat", ERR=999)

→ opens the file output.dat, jumps to label 999 in the case of an error

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 71 / 170

Reading and writing on files II

The counterpart:

Close a file
CLOSE (UNIT,ERR=label)

where ERR=label is optional

Example
CLOSE (22)

Note: For performance issues it may happen that write actions on the file will be postponed
until the CLOSE statement (buffering).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 72 / 170

Reading and writing on files III

Read from an opened file per line

CHARACTER line*132
READ (22,"(A132)") line

→ read in a text string
or formatted reading into corresponding variables:

READ (22,"(I10,1X,F10.2)", END=21) n , X
...

21 CLOSE(22)

→ if the last line of the file is reached: jump to label 21
Or unformatted reading:

READ (22,*,END=11) n , X

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 73 / 170

Reading and writing on files IV

Write to an opened file, e.g.,

WRITE (42,*) "file header:"

Or formatted:

WRITE (42,"(A,G12.3)") " x = " , x

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 74 / 170

Programming in Fortran - Part 3

Arrays

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 75 / 170

Arrays I

There are many ways to allocate arrays, i.e., to reserve memory.
Most efficient and stable, the static allocation (on stack):

Size and shape of the array must be determined at/before compile time in the program
(but shape can be changed in procedures)

The process of allocation is done when the program is loaded.

Allocated memory is only freed at the end of the program.

Recommended and unambiguous is the use of

DIMENSION array (array specification)

This instruction can stand alone or as a so-called attribute.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 76 / 170

Arrays II

Example: allocation of a “vector”
DIMENSION POSITION(3)

The name of the array, POSITION, implies the data type REAL.

The array consists of 3 elements and has the dimension (rank) 1

Example: allocation of a “matrix”
DIMENSION ROTATIONALMATRIX(3,3)

The array has the dimension (rank) 2, the shape (3,3) and the size 3× 3 = 9.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 77 / 170

Arrays III

DIMENSION can also be used as an attribute:

REAL(8), DIMENSION(3) :: x, v

Data type and attribute(s) are separated from the list of variables by double colons.
Moreover:

The argument of DIMENSION must be a (integer) constant, e.g.,

INTEGER, PARAMETER :: NMAX=100
REAL, DIMENSION(NMAX,NMAX) :: NLINE

The maximum dimension is 7. E.g.,

INTEGER, DIMENSION (1,2,3,4,5,6,7) :: rank7

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 78 / 170

Arrays IV

DIMENSION M(100,100)

arrays can be accessed as whole or per element:

M = 0
M(1,1) = 1

arrays can also be accessed with help of ranges:

M(2:100,100) = 1

the use of ranges (bounds) offers the interesting possibility to set negative indices:

DIMENSION M(-50:49,100)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 79 / 170

Arrays V

Since Fortran 90 exists the possibility to set the size (but not the rank) of an array at runtime.
Such arrays must be marked as allocatable:

Dynamic Allocation
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: M
...
READ (*,"(I1000)") I
ALLOCATE (M(I,I), STAT=ERR)

The ALLOCATE statement reserves the corresponding amount of memory (dynamic memory,
heap), but does not initialize it. If a STAT variable is given, this variable is set to 0 in case of
successful allocation. If no STAT variable is given, the program stops in case of error.

Deallocation – Freeing dynamically allocated arrays
DEALLOCATE (M, STAT=ERR)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 80 / 170

Functions I

Functions are a type of procedures in Fortran. Functions always return a result of a distinct
data type:

FUNCTION call
Result = NAME (arg1, ... , argN)

The definition of a the function is either after the END statement of the PROGRAM or in a
separate source file:

FUNCTION definition
FUNCTION NAME (arg1, ... , argN)

...
NAME = ...
END

Usually the result (returned value) is assigned to the variable of the same name as the function
within the function body.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 81 / 170

Functions II

A simple example:

PROGRAM cylinder_volume
IMPLICIT NONE
REAL r, h, volume
READ (*,*) r, h
WRITE (*,*) volume(r,h)
STOP
END

FUNCTION volume(radius,height)
IMPLICIT NONE
REAL radius, height, volume
volume = 3.141 * radius**2 * height
END

The type of the result must be declared if IMPLICIT NONE is used.
Arguments are identified via there order in the list of arguments.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 82 / 170

Functions III

Attributes for the declaration of functions:

Fortran compilers know different builtin (intrinsic) functions (e.g. SIN(X)). If these
intrinsics shall be overwritten (defining functions of the same name), the function must be
declared in the calling procedure as EXTERNAL:

REAL, EXTERNAL :: COS

Functions can be directly called recursively. In this case a different name for the result
must be declared:

RECURSIVE FUNCTION FAC(N) RESULT(L)
...

L = FAC(N-3)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 83 / 170

Functions IV

The type of the result can also be given in the function declaration instead of the
declaration block:

REAL FUNCTION volume(radius, height)
IMPLICIT NONE
REAL radius, height

The arguments of functions are passed by address. Hence they can be manipulated within
the function!

FUNCTION volume(r,h)
...

r = 42.

Different from passing arguments by value in C/C++ the altered argument is also changed
in the calling procedure.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 84 / 170

Functions V

Note
In Fortran the calling and called procedure work on the same memory area, which is specified in
the list of arguments.

To avoid side effects like this, a function can be declared as PURE or ELEMENTAL, this
requires a declaration of arguments to be INTENT(IN):

PURE REAL FUNCTION volumen(r,h)
INTENT(IN) :: r, h
...

r = 42. ! forbidden

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 85 / 170

Subroutines I

In addition to the FUNCTION the SUBROUTINE is another important procedure. It is some kind
of a “subprogram” and has, different from functions, no result (=̂ void in C/C++).

SUBROUTINE call
CALL rname (arg1, ... , argN)

Like for the FUNCTION, the SUBROUTINE is defined outside the calling procedure.

SUBROUTINE definition
SUBROUTINE rnam (arg1,...,argN)
...
END

The SUBROUTINE and the calling procedure share the same memory area, which is defined by
the list of arguments.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 86 / 170

Subroutines II

Although the SUBROUTINE has no result, it is possible to distinguish between input and output
arguments:

INTENT
SUBROUTINE rname (arg1,arg2,arg3,arg4)
INTEGER, INTENT(IN) :: arg3, arg4
REAL, INTENT(OUT) :: arg1
INTEGER, INTENT(INOUT) :: arg2
...

END SUBROUTINE

Arguments that are declared as INTENT(IN) cannot be changed within the subroutine.
INTENT(OUT) arguments shouldn’t be defined when entering the subroutine. These restrictions
do not apply to variables that are INTENT(INOUT).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 87 / 170

Subroutines III

The attribute PURE

PURE FUNCTION myfunc(...)
PURE SUBROUTINE mysubr(...)

allows to use procedures without side effects. Only arguments marked as INTENT(OUT) can be
changed; arguments of PURE FUNCTIONs cannot be changed.

Intrinsic functions, e.g., ABS() are always PURE.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 88 / 170

Subroutines IV

Note: While FUNCTIONS are rather used for short procedures, SUBROUTINES often contain
complex subprograms.

Both types of procedures can also be called via an ENTRY point:

ENTRY
SUBROUTINE tue123 (arg1,arg2)
...

ENTRY tue23 (arg2)

ENTRY statements cannot stay in IF or DO blocks.

Style
Avoid ENTRY points as they reduce the readability of the source code.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 89 / 170

Subroutines V

Arguments of procedures:

literal constants:

Result = MYFUNC(3.0, .FALSE.)

scalar variables: z = x * COS(alpha)

procedures, especially functions (later more . . .)

arrays: as a whole, single elements or ranges

CALL MYROUTINE (A, B(1,1), C(1:2))

Arrays must be dimensioned (again) in the called procedure:

DIMENSION A(3,2) , C(2)

especially for CHARACTER arrays the asterisk is recommended (assumed length):

CHARACTER(LEN=*) TEXT

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 90 / 170

Recommendations for the handling of procedures I

The program and other procedures can be assembled in a single source file.

This is recommended for short programs and functions (e.g., many of our exercises).

For more complex programs:

one procedure per file, which has the same name as the procedure it contains

compiling and linking:

gfortran -c myfunc.f
gfortran -o myprogram.exe myprogram.f myfunc.o

option -c generates a (not linked) object file myfunc.o.

object files can be assembled in libraries:

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 91 / 170

Recommendations for the handling of procedures II

The archive tools ar & ranlib
ar rv libmylibrary.a myfunc.o
ranlib libmylibrary.a

r replace or append a file;
if archive does not exist, it is created

v verbose

ranlib renew the “table of contents”

libraries which have been created in this way can be linked in at compile time:

gfortran -L$MY_PATH -lmylibrary myprogram.f

-L specifies the path for the library, -l the name of the library, which always starts with lib.
This prefix is omitted for the call.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 92 / 170

Names

There are the following restrictions in Fortran for names of variables and procedures:

the name must start with an ASCII-letter (ifort: also $)
the name must not be longer than 31 characters (ifort: 63)
except for letters also allowed are: numbers, underscores _, and the dollar symbol $
(gfortran: -fdollar-ok required)

Supported names
Radius123
Begin$_

Invalid names
3pel ! does not start with a letter or $
boundary-condition.2 ! invalid characters - .

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 93 / 170

Supported characters

Fortran supports the ASCII character set:
letters (uppercase/lowercase), numbers
+ the usual special characters:

blank/TAB : colon
= equality sign ! exclamation mark
+ plus “ double quotation mark
- minus % per cent
* asterisk & ampersand

slash ; semicolon
() parentheses < lesser than
. point > greater than
, comma ? question mark
’ single quotation mark $ Dollar symbol

+ some symbols which are only printable (e.g., curly braces)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 94 / 170

Source code formatting

Fortran 90/95 allows up to 132 characters per line (arbitrary in free form)
continuation lines: up to 19 (ifort: 511)

gfortran

option usual arguments
-ffixed-line-length-n 0, 72 (default), 80, 132, none (=0)
-ffree-line-length-n 0, 132 (default), none (=0)

ifort
option usual arguments alt. options
-extend-source [n] 72, 80, 132 (default) -72, -80, -132
-free – (no line limit)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 95 / 170

Some intrinsic functions and subroutines I

random numbers

result = RAND(I)

returns uniformly distributed random
numbers of a sequence (I = 0); Restart if
argument different from 0

date and time

CALL ITIME (ITARRAY)
CALL IDATE (IDARRAY)

fills ITARRAY(3) with hour, minute, second;
fills IDARRAY(3) with day, month, year

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 96 / 170

Some intrinsic functions and subroutines II

representable numbers

Result = HUGE(I) ! also for integers
Result = TINY(X)
Result = EPSILON(X)

returns the largest or smallest representable number, respectively, of the same type as the
argument X. EPSILON gives the smallest representable number E , such that 1 + E > 1
(minimal step width for floats).

command line arguments for program call

Result = IARGC()
CALL GETARG(N,TEXT)

returns the number of command line arguments; fills the CHARACTER variable TEXT with
the Nth command line argument

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 97 / 170

More intrinsic procedures I

CALL SYSTEM (TEXT): starts a shell in which the command(s) stored in TEXT are
executed, e.g.,

CALL SYSTEM("cp scratch.ps wrplot1.ps")

Note that one cannot read from STDOUT with SYSTEM, i.e. CALL SYSTEM ("ls") is useless

LEN (TEXT) returns the length of the string TEXT

TRIM (TEXT) removes trailing blanks from string TEXT

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 98 / 170

PGPLOT I

The graphical library PGPLOT can be called from C or Fortran programs. This must be
declared at link time:

Linker call
-lX11 -L$PGPLOT_DIR -lpgplot

where the environment variable $PGPLOT_DIR must contain the (absolute) path
The following environment variables should therefore be set:

PGPLOT environment (bash)
export PGPLOT_DIR=${HOME}/PGPLOT/
export LD_LIBRARY_PATH=${PGPLOT_DIR}
export PATH=${PATH}:${PGPLOT_DIR}
export PGPLOT_DEV="/XWIN"

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 99 / 170

PGPLOT II

The most important procedures of PGPLOT:

PGBEG

IER = PGBEG(0,"/XWIN",1,1)
IF (IER .NE. 1) STOP "PGPLOT failed"

a function(!) that starts PGPLOT (server). The second argument is for the output device;
this can be, e.g., "/XWIN", also "?" which implies that the user is asked for a device at
run time.
In the case of success the function returns ’1’.

PGENV

CALL PGENV (XMIN,XMAX,YMIN,YMAX,JUST,AXIS)

defines the drawing area; for JUST = 1 the x- and y-axis are scaled equally; AXIS=1 also
plots the coordinate axes and labels

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 100 / 170

PGPLOT III

PGLAB

CALL PGLAB("x","y","title")

defines the labels of the x- and y-axis and of the plot

PGPT

CALL PGPT(1,X,Y,-1)

draws a single point (1st argument) with given X- and Y-coordinate with the size given in
pixel (last argument)

PGEND

CALL PGEND

Closes the plot correctly.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 101 / 170

PGPLOT IV

PGSCI

CALL PGSCI(INDEX)

Set color index for the following drawing actions.

PGSCR

CALL PGSCR(INDEX,R,G,B)

Set the color for the given color index:
INDEX=0 is background, INDEX=1 the foreground (default: white on black). R, G, B are
the color fractions red, green, blue, each in the range 0 to 1

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 102 / 170

Programming in Fortran - Part 4

Variables and passing variables

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 103 / 170

Passing variables I

We already know:

functions and subroutines get a list of arguments (usually names of variables) when called

CALL MY_SUB (arg1, arg2)

internally: only start addresses are passed, i.e. correct dimensioning in calling and called
procedures necessary:

SUBROUTINE calcE (velo, pos)
REAL :: velo(2), pos(2)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 104 / 170

Passing variables II

the list of arguments for a declared/defined procedure and for its call must (normally) be
matching

SUBROUTINE my_sub (arg1, arg2, arg3)
...

CALL my_sub (x, y, z)

however, the last argument(s) can be omitted (not checked by compiler):

SUBROUTINE my_sub (arg1, arg2, arg3)
...

CALL my_sub (x)

→ not recommended, bad style!

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 105 / 170

Passing variables III

there is (usually) no type checking (exception: intrinsics, procedures in same source file)
and no automatic type conversion, e.g.,

CALL PGPT(1.,0_D,0,1.)

might not give the expected result . . .

as a preceeding declaration of procedures is not necessary (cf. include files in C/C+) the
compiler can usually not check the matching of argument lists

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 106 / 170

Interface I

Solution:

To make the argument list verifiable by the compiler an explicit INTERFACE block can be
included in the calling procedure.

This contains exact copies of the declaration block of the called procedure, including the
header, declaration of arguments, and the END statement.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 107 / 170

Interface II

INTERFACE

...
INTERFACE

SUBROUTINE my_sub(arg1, arg2)
REAL :: arg1
INTEGER :: arg2

END SUBROUTINE my_sub

FUNCTION my_func(N)
INTEGER :: N

RETURN

END INTERFACE
...

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 108 / 170

Interface III

Rules for (explicit) INTERFACE blocks:

the INTERFACE block is part of the declaration section must therefore appear before any
instruction

each procedure can only have one interface per calling procedure
an explicit interface is required, if one ore more arguments have the following attributes:

ALLOCATABLE
OPTIONAL (see below)
reference: POINTER
object attribute: TARGET, VOLATILE

an explicit interface is also required for functions those result is an array or a pointer

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 109 / 170

Interface IV

The OPTIONAL attribute
arguments which are marked with the OPTIONAL attribute can be omitted for the call of
the procedure, if they:

are the last ones in the list of arguments
or all following arguments of this list are passed by a keyword

INTERFACE
SUBROUTINE calcT (a, x, h)
OPTIONAL x,h

END
END INTERFACE
...

CALL calcT(a, h=r)

the keyword must be identical to the name of the dummy argument in the interface

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 110 / 170

Interface V

The PRESENT function:

the presence of optional arguments while passing them can be determined with help of the
function

PRESENT(arg)

E.g.,

SUBROUTINE calcE (velo, pos)
REAL, OPTIONAL, DIMENSION(2) :: pos
...

IF (PRESENT(pos)) THEN
r = SQRT(pos(1) * pos(1) + pos(2) * pos(2))
Eg = - GM / r

ENDIF

obvious: PRESENT has result of type LOGICAL

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 111 / 170

the SAVE statement I

Volatility of variables:

SUBROUTINE output(pos,t,fpos)
REAL :: pos(2), fpos(2), t
LOGICAL bset
...

bset = .TRUE.

the used LOGICAL is a local variable, which is by default automatic, i.e. it is removed from
memory when leaving the the procedure
→when re-entering the procedure output the value of bset is (usually) deleted

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 112 / 170

the SAVE statement II

Solution:

SAVE
variables can be made non-automatic by the SAVE attribute or by the SAVE declaration
statement (corresponds to static in C/C++). Then, the content of the variable is saved for
the re-entry of the procedure.

e.g.

SUBROUTINE output(pos,t,fpos)
REAL :: pos(2), fpos(2), t
LOGICAL, SAVE :: bset
SAVE fpos

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 113 / 170

the SAVE statement III

Moreover, the compiler can convert any automatic (local) variable to a static (SAVE)
variable (different from C++):

gfortran: -fno-automatic
ifort: -save

But, the use of local variables without SAVE attribute for buffering may cause segmentations
faults which are hard to track (randomness).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 114 / 170

Global memory I

Fortran procedures usually communicate by passing variables as arguments at call

Alternatively, a common memory area can be created, the so called COMMON block(s),
corresponding to global variables in C/C++:

COMMON
COMMON /velpar/ vfinal, vpar2
COMMON // buffer(1000)

where the name of the block (in //) is optional → blank Common block

all procedures that declare a common block with its variables have shared(!) access to the
corresponding memory area

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 115 / 170

Global memory II

the partitioning of the shared memory does not need to be the same for all procedures,
e.g.,

COMMON /coords/ x, y, z, i(10)

and an alternative declaration
COMMON /coords/ r, p, k(11)

where i(1) then is the same as k(2) and so on.

The use of COMMON blocks is generally not recommended.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 116 / 170

Programming in Fortran - Part 5

Overloading, Modules

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 117 / 170

Explicit INTERFACE – Part 2 I

Overloading

if the interface is given a name, the corresponding procedure can be overloaded, i.e. the
compiler chooses the matching procedure by the type of arguments:

INTERFACE mysub
SUBROUTINE mysub1 (n,...)

INTEGER :: n
END SUBROUTINE mysub1
SUBROUTINE mysub2 (x,...)

REAL :: x
END SUBROUTINE mysub2

END INTERFACE

and call via

CALL mysub(arg,...)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 118 / 170

Explicit INTERFACE – Part 2 II

Overloading/extending operators

an interface can also overwrite an operator:

INTERFACE OPERATOR(op)
FUNCTION myop (arg1,arg2)
type, INTENT(IN) :: arg1, arg2

END INTERFACE

in this case only functions with one (unary) or two (binary) non optional arguments with
INTENT(IN) can appear

op is, e.g.,: + or - or .myop.

if an intrinsic operator (e.g., .LE.) is extended, also the alternative notation (here: <=) is
affected and the number of arguments must be the same as for the intrinsic form

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 119 / 170

Explicit INTERFACE – Part 2 III

Extending assignments:

there is only one assignment operator in Fortran: =

this operator can only be extended by a SUBROUTINE with two arguments in the following
way:

INTERFACE ASSIGNMENT(=)
SUBROUTINE myassign (arg1,arg2)
type, INTENT(OUT) :: arg1
type, INTENT(IN) :: arg2

END INTERFACE

e.g., x = n → type casting

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 120 / 170

Explicit INTERFACE – Part 2 IV

Unambiguousness:

When overloading it must be clear from the list of arguments (type, number of arguments,
name) what to choose:

Wrong:
INTERFACE f
FUNCTION fxi (x,i)
...

FUNCTION fix (i,x)
...

END INTERFACE f

In the case of ambiguities while extending intrinsic procedures the non-intrinsic procedure
is chosen.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 121 / 170

The INCLUDE statement I

Header files

with help of an explicit INTERFACE the compiler gets informed about the data types of the
called procedures in the calling procedure

more convenient: put INTERFACE in an extra file, e.g., file.h and include it via

INCLUDE "file.h"

INCLUDE can appear anywhere in the source code

INCLUDE requires as argument a text string which contains the name of a Fortran source
file, which is included at this very position

i.e. header files can be created similar to C++

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 122 / 170

The INCLUDE statement II

Include a self-made header file:

Example
calcE.h :

INTERFACE
SUBROUTINE calcE (vel, pos, E)
REAL :: vel(2), pos(2), E

END SUBROUTINE calcE
END INTERFACE

kepler.f :
PROGRAM kepler
INCLUDE "calcE.h"

...

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 123 / 170

Modules I

Better than separated files with interfaces and procedures:
→modules

contain variables and procedures, which can be used by other procedures
procedures that shall access a module must import this module through

USE modulename

Position of USE statement
The USE statement must be put directly after any PROGRAM, FUNCTION, SUBROUTINE, or
MODULE statement and before any IMPLICIT, INCLUDE, or declaration statement.

Structure of a module
MODULE name
... declarationes ...

CONTAINS
... procedures ...

END MODULE name

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 124 / 170

Modules II

Example
MODULE energies
REAL, PARAMETER :: PI = 3.141519
CONTAINS
SUBROUTINE calcE (E, vel, pos)
...

END SUBROUTINE calcE
FUNCTION Egrav (pos)
...

RETURN
END MODULE energies

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 125 / 170

Modules III

CONTAINS

the CONTAINS statement allows the definition of functions or subroutines within another
procedure (e.g., in PROGRAM) and appears at the end of the definition of the procedure
before END

the procedures that follow a CONTAINS statement are referred to as internal subprograms
and must not contain another CONTAINS (no nesting)

ENTRY points must appear before CONTAINS, internal subprograms must not contain an
ENTRY point

internal subprograms have access to all names declared in the host procedure (e.g.,
variables), the internal subprogram has an explicit interface

the host procedure can call the internal subprogram, as well as the internal subprogram
can call itself

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 126 / 170

Modules IV

Compiling modules:

the module is compiled via

gfortan -c module.f

the result are two(!) files:

module.o module.mod

.o object file: the usual machine-readable instructions

.mod file: ASCII file with interface instructions for the compiler, i.e., the functionality is
described that is provide to the calling procedure via

USE module

(explicit interface, see below)
→ correspond to header files in C++

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 127 / 170

Modules V

compiled modules are in general not compatible for different compilers, but must exist as
source code and re-compiled for each compiler

as MODULEs are already a kind of an explicit interface, the procedures in them cannot be
overloaded by a named interface (see above)
→ instead – preferably in the MODULE:

INTERFACE mysub
MODULE PROCEDURE mysub1, mysub2

END INTERFACE mysub

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 128 / 170

Modules VI

Examples:

The Intel Fortran compiler offers a variety of procedures encapsulated in modules:
USE IFPORT: e.g., len = FULLPATHQQ (file,output) returns the full path of a file ;
CALL GETENV(variable,content) returns the content of an environment variable
→ intrinsic in gfortran
USE IFPOSIX: e.g., CALL PXFMKDIR (name, len, mask, result) makes a directory
USE IFCORE: e.g., bpressed = PEEKCHARQQ () detects, if a key is pressed (without
pausing program)
USE OMP_LIB: OpenMP library
Windows specific: e.g., USE IFLOGM for dialog boxes, etc.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 129 / 170

TYPE I

Defining structure, i.e. a collection of variables:

TYPE typename
... declaration of components ...

END TYPE typename

declares a (derived) data type with its components, e.g.,

TYPE star
REAL :: radius, mass_i, mass_c
CHARACTER :: spectraltype*2

END TYPE star

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 130 / 170

TYPE II

declaration of structures created by that:

TYPE (star) :: WR144
TYPE (star) :: sun = star (1.,1.,1.,"G2")

access to the components possible via the % symbol (cf. dot . in C++):

xinitialmass = sun%mass_i

for TYPE data types an operation can be defined with help of
INTERFACE OPERATOR (op)
e.g., addition component-by-component

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 131 / 170

Programming in Fortran - Part 6

Name spaces, scopes, pointer, C

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 132 / 170

Visibility of names I

We already know:

PROGRAM myexe
INTEGER :: init, k
init = 4 ; k = 2
CALL mysub (k)
...

SUBROUTINE mysub (m)
IMPLICT NONE
INTEGER :: m, j
j = init ! does not work

Value of variable init in subroutine mysub not available, as the variable init neither

has been passed by argument,

was made visible globally by a COMMON block,

nor is automatically globally visible (e.g., CONTAINS, MODULE)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 133 / 170

Visibility of names II

In Fortran

variables, hence “instances” of data types

program units, like functions, subroutines, modules

certain structures, e.g., named interfaces

are identified via a name by the compiler/linker

This name is only visible within a scoping unit:

TYPE definition

INTERFACE block

program unit (e.g., SUBROUTINE, FUNCTION)

(except for scoping units that are contained in these units) and therefore needs to be
unambigous only within this unit:

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 134 / 170

Visibility of names III

Example for scopes
MODULE mod1 ! 1
INTEGER hello1 ! 1
CONTAINS ! 1
SUBROUTINE sub2 ! 2
TYPE mytype3 ! 3
REAL :: r,t ! 3
INTEGER hello1 ! 3 ok, as not in scope1

END TYPE mytype3 ! 3
... ! 2

END SUBROUTINE sub2 ! 2
END MODULE mod1 ! 1

These declared names are only visible within the units where they are declared.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 135 / 170

Modules: scope

If more than one module is used:

USE std_lib
USE math_lib

the problem of name clashes can occur, i.e. identical names (variables, procedures) in both modules
Instead of parallel name spaces, as in C++, there are two methods to circumvent such problems:
Method I:

USE module, rename-list

where rename-list has the form:

USE module, name_in_module => aliasName

I.e. the name declared in the module is → replaced by another name
Method II: the export of names from a module can be restricted

USE std_module, ONLY: name1, name2

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 136 / 170

PRIVATE and PUBLIC

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 137 / 170

Restricting visibility I

We already know:

MODULE graph_ps
TYPE point
REAL :: x, y

END TYPE point
REAL :: scale = 400.0
INTEGER :: graphics_unit = 20

procedures that use module graph_ps have access to point, scale, graphics_unit

useful for usage of data type point

sometimes it is required that names (e.g., variables like graphics_unit) are not visible
from outside the module

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 138 / 170

Restricting visibility II

for the encapsulation of data the attribute

PRIVATE :: var1, ...
REAL, PRIVATE :: x

can be used.
The opposite is

PUBLIC :: var1, ...
INTEGER, PUBLIC :: k

These attributes can, used as an instruction, also define a default.

MODULE mod1
PUBLIC

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 139 / 170

Restricting visibility III

Example 1
MODULE graph_ps
PUBLIC
TYPE point
PRIVATE
REAL :: x
REAL, PUBLIC :: y

END TYPE
REAL, PRIVATE :: scale

procedures that use this module have access to point and point%y,
but no access to
scale and point%x

members (procedures) of this module have complete access to all variables

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 140 / 170

Restricting visibility IV

Example 2
MODULE example
PRIVATE only_int, only_real
INTERFACE general
MODULE PROCEDURE only_int, only_real

END INTERFACE general
CONTAINS
SUBROUTINE only_int (i)
...

SUBROUTINE only_real (x)
...

END MODULE bsp

procedures that use example can only use the named interface general

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 141 / 170

Restricting visibility V

with help of PRIVATE instruction or attribute it is possible to hide names in a module from
access by external program units

→ cf. also (same effect)
USE mod1, ONLY name1

in the same way the components of a TYPE definition can be hidden from access by
external units, so that → only procedures of the MODULE have access

The consequent use of PRIVATE helps to ensure data integrity (cf. global vs. local variables).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 142 / 170

Attributes and instructions I

Attributes

for the declaration of data types (e.g., REAL) or functions (result) attributes (modifiers)
can be given, e.g.:

Attributes
ALLOCATABLE, AUTOMATIC, DIMENSION, EXTERNAL, INTENT, OPTIONAL, PARAMETER,
PRIVATE, PUBLIC, PURE, SAVE

Example
INTEGER, SAVE, DIMENSION(2,2) :: sigma
REAL, EXTERNAL :: COS
...

FUNCTION COS (X)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 143 / 170

Attributes and instructions II

most attributes can also be given as an instruction, defining some default for the data
types and procedures declared in a procedure

Example
SUBROUTINE mysub (x, y, z)
SAVE
REAL :: x, y, z, r
INTEGER :: k

→ all local variables are put to the static memory (instead of dynamic memory/heap), cf.
compiler option -fnoautomatic (gfortran) or -save (ifort)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 144 / 170

Pointer I
We already know:

Assignment: memory ↔ variable
principle: compiler allocates (reserves) memory (accessible via memory address) for variables
following a certain scheme, e.g., INTEGER occupies 4 byte (32 bit), beginning at the start
address
variable within the source code accessible via name

Pointer:
stores addresses of something, e.g., variables, arrays, functions
in e.g. C pointers are the only realization of a reference (regarding the call behavior)

Pointer in Fortran:
only restricted pointer methods
pointer are always associated with an “object”:
either by allocation → ALLOCATE

or with help of an assignment => i.e. association with an already existing “object”
no pointer arithmetics

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 145 / 170

Pointer II

Pointer allocation
REAL, POINTER :: p ! declared, but not allocated

! -> not "existing"
ALLOCATE (p) ! p allocated, from now on usable
p = 2.7182 ! access as for normal REAL variable
DEALLOCATE (p) ! free memory

not very useful example, clearer for arrays → only number of dimensions (shape) not size for
declaration required:

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 146 / 170

Pointer III

Pointer allocation for arrays
REAL, DIMENSION (:,:,:), POINTER :: cube
...

N = 42
ALLOCATE (cube(N, N, N))
....

ALLOCATE (cube(1,2,3)) ! allocation w/o previous DEALLOCATE
! possible only for POINTER
! note: entries are not kept

...
DEALLOCATE (cube)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 147 / 170

Pointer IV

Pointer assignment
REAL, TARGET :: x, y ! attr. TARGET required
REAL, POINTER :: p, q
y = 0.75
p => x ! associates p with x
p = y ! normal assignment (values) of y to p
WRITE (*,*) x ! gives 0.75
q => p ! x, p, q are now the same

Note: For p => x the pointer p is assigned to the target x, while q => p lets the pointer q
reference the same object as p

Meaning of the TARGET attribute:

To enable optimization the compiler needs to know which variables are referenced, i.e. whether
their is an alternative method of access.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 148 / 170

Pointer V

TARGET and the corresponding POINTER must be of the same type (REAL, INTEGER, . . .),
moreover, in the case of arrays they must agree shape (rank, dimension):

REAL, TARGET :: cube (16, 16, 1000)
REAL, POINTER :: image (:,:)
...

image => cube(:,:,42) ! Sub-Array
...

NULLIFY (image)

It is not necessary, but safer to disassociate a pointer after usage with help of NULLIFY or
image => NULL ()

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 149 / 170

Applications of pointers I

Typical application: linked lists
TYPE entry
REAL :: value
INTEGER :: index
TYPE (entry), POINTER :: next

END TYPE entry

TYPE (entry), POINTER :: first, current
! with first%index and first%next%index
ALLOCATE (first)
first = entry (1.,10,null())
ALLOCATE (current)
current = entry (2.,20, first)
! = means current%next => first

first => current
! first now points to new entry w/o deleting
! the first entry

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 150 / 170

Applications of pointers II

So, from a list of two elements (each has three components):

first : (2.0, 20, associated)
first%next : (1.0, 10, null)

it is possible to create a list of three with help of current:

allocate (current)
current = entry (3., 30, first)
first => current
print *, first%value ! gives 3.0

first : (3.0, 30, associated)
first%next : (2.0, 20, associated)
first%next%next : (1.0, 10, null)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 151 / 170

Applications of pointers III

Apart from pointers there is another way to address the same memory area by a different name:

EQUIVALENCE
COMPLEX :: z, c ! complex has two real entries
REAL :: zr(2) ! real array size 2
EQUIVALENCE (zr, z, c) ! all three variables access now

! same memory

this assignment is fixed in the declaration block and cannot be changed any more

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 152 / 170

Applications of pointers IV

the access to the same memory area does not require that the involved variables have to
be of the same type:

INTEGER :: i(100)
REAL :: x(100)
EQUIVALENCE (i,x)

→ if memory is short, but very dangerous

for character variables, the sizes do not need to be the same:

CHARACTER :: a*4, b(2)*3
EQUIVALENCE (a, b(1)(3:))

character variable “a” corresponds to the last four characters of the array “b”

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 153 / 170

Access to C functions I

In Fortran, data are passed by “reference”, i.e. the calling procedure

CALL SUBROUTINE calcE (velo, pos, E)

passes only start addresses. This enables data exchange with C functions, if they use
pointers as arguments:

c_function_(int *i){ ... }

data exchange is done by the argument list, i.e. use of subroutine calls and void functions
in C:

CALL c_func (x,i) in Fortran
void c_func_ (float *x, int *i){ ... }

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 154 / 170

Access to C functions II

Note:

the Fortran compiler appends an underscore “_” to the name of the subroutine, therefore
the name of the called C function must end with an underscore in the C source code

C always expects null terminated strings, so in Fortran:

text = text // CHAR (0) ! appending null

Compiling and linking of the Fortran program:

gcc -c csource.c
gfortran -c fprogram.f
gfortran -o fprogram.exe fprogram.o csource.o

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 155 / 170

Access to C functions III

As Fortran uses column-(major)-order arrays (first index runs first), while C/C++ uses
row-(major)-order arrays (last index runs first) this must be taken into account for procedure
calls. So the correspondance is, e.g.

Fortran C/C++

INTEGER m(2,3) int m[3][2] ;
CHARACTER*6 text[4] char text[4][6] ;

However, note that C/C++ strings must be terminated by null, i.e. text element has
effectively only a length of 5.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 156 / 170

Access to Fortran from C I

From above mentioned differences in argument passing between C and Fortan, access from C
to Fortran procedures:

pointers for all arguments in your C code
especially, no literal (=constant) arguments, e.g. x = fort_func_(1.,y) ;

most probably, appending underscores in the call to the Fortran procedures is required,
e.g., Fortran: REAL MYFUNC(Z,Y) →C: x = myfunc_(a,b) ;

compilation of C and Fortran procedures separatly, linking .o files together
Fortran expects arrays in row-major order

Call to LINPACK
double a[ndim][ndim], help[ndim*ndim] ;
...

for (int i=0; i<ndim; ++i)
for (int j=0, j<ndim; ++j) help[j+ndim*i] = a[j][i];
...

dgefa_(help, &ndim, &ndim, &ipvt, &info) ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 157 / 170

Programming in Fortran - Part 7

Parallelization, Optimization

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 158 / 170

Arrays with WHERE and FORALL I

WHERE specifies a mask for an array and works like an IF, i.e.,

WHERE (mask) Instruction

or

WHERE (mask)
instruction(s)

ELSE WHERE (mask2)
instruction(s)

ELSE WHERE
instruction(s)

END WHERE

mask is a so-called logical array expression that restricts the instructions (array instruction)
correspondingly

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 159 / 170

Arrays with WHERE and FORALL II

Example: vectors (1d arrays)
REAL :: A(5), B(5), C(5)
DATA A /0.,1.,1.,1.,0./
DATA B /10.,11.,12.,13.,14./
C = -1.
WHERE (A .NE. 0.) C = B / A
WHERE (C .GT. 0.)
C = ALOG (C)

ELSE WHERE
C = OURFUNC (C)

END WHERE

Important note: difference between execution of a function (right hand side) and assignment
regarding (intrinsic) ELEMENTAL FUNCTIONs , e.g.,
ALOG: execution only for the masked elements of C (in parallel),
OURFUNC: execution for all elements of C, but assignment only to masked elements of C

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 160 / 170

Arrays with WHERE and FORALL III

A more general form of WHERE can be perfomred with FORALL:

FORALL (ind-spec,...,mask) instruction

or

FORALL (ind-spec,...,mask)
instruction

END FORALL

where ind-spec correpsonds to index triplets for arrays:
L:U:S, e.g., 2:21:2
L lower bound; U upper bound; S stepsize, optional, e.g., also −1

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 161 / 170

Arrays with WHERE and FORALL IV

Example: FORALL
FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0)

B(I, J) = 1.0 / A(I, J)
END FORALL

is equivalent to

WHERE (A .NE. 0) B = 1.0 / A

→ WHERE and FORALL instructions can be executed in “parallel” (usually vectorization)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 162 / 170

Coarray Fortran I

Coarray Fortran

since Fortran 2008 also in the standard, supported by gfortran (option -fcoarray=lib,
external library required) and ifort (option -coarray=distributed, using comercial
library)

generates multiple images of the same program and executes them on different processes
(shared or distributed) → cf. Message Passing Interface (MPI)

therefore: new syntax
→ arrays with square brackets [], i.e.,
variable is a local image, variable[2] is remote image

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 163 / 170

Coarray Fortran II

Code sniplet: Hello! with Coarray
INTEGER :: I ! local variable
CHARACTER(LEN=20) :: NAME[*] ! Coarray
! local image for user interaction
IF (THIS_IMAGE() == 1) THEN

WRITE(*,"(A)") ’Enter your name: ’
READ(*,"(A)") NAME

! distribute information
DO I = 2, NUM_IMAGES()

NAME[I] = NAME
END DO

END IF
SYNC ALL ! barriere for assuring data synchronized
! output from all processes
WRITE(*,"(3A,I0)") "Hello ", NAME," from Image ", THIS_IMAGE()

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 164 / 170

Automatic optimization I

Different levels (up to “agressive”) of automatic optimization for speed by compiler option
-O[n] with n = 0, 1, 2, 3 (gfortran, ifort), includes, e.g.

loop unrolling: replacing loop completely or partialy by multiple copies of loop body
→ saves time for loop control; pipelining, vectorization (SSE, AVX!) of loop body
operations → increases code size

Example: loop unrolling

Original loop
DO I = 1, 100

X(I) = X(I) + 5.
ENDO

Unrolled by factor 4
DO I = 1, 100, 4

X(I) = X(I) + 5.
X(I+1) = X(I+1) + 5.
X(I+2) = X(I+2) + 5.
X(I+3) = X(I+3) + 5.

ENDDO

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 165 / 170

Automatic optimization II

loop collapsing: replace nested loops by one loop → improves chances for, e.g., loop
unrolling

Example: loop collapsing
Original loop
DO I = 1, 100
DO J = 1, 200

X(I,J) = 5.
ENDDO

ENDO

Loop collapsed
DIMENSION X(100,200), Y(20000)
EQUIVALENCE (X,Y)
DO I = 1, 20000

Y(I) = 5.
ENDDO

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 166 / 170

Automatic optimization III

constant propagation: (literal) constants assigned to a variable are propagated through the
code → saves computation time at runtime

Example: constant propagation
Original

X = 3.
Y = X + 2.

Constant propagation
X = 3.
Y = 5.

constant folding: expand operations with constants at compiletime → saves computation
time at runtime

Example: constant folding
Original

X = 1. / 2.

Constant propagation
X = 0.5

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 167 / 170

Automatic optimization IV

function inlining: calls to simple functions are replaced by the function body → saves time
for call and returning → increases code size

Example: Function inlining
Original

SUM = ADD(X, Y)
...

FUNCTION ADD (X, Y)
ADD = X + Y

END

Function eliminated
SUM = X + Y

removal of, e.g., unreference variables → dangerous, in -O3 (most aggressive) this might
have unwanted effects

+ many more (see compileroptimization.com)

Due to many restrictions (declaration block, restricted DO-loops) Fortran can be easier and
faster optimized!

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 168 / 170

https://compileroptimizations.com/category/block_merge.htm

Outlook . . .

I don’t know what the language of the year 2000 will look like, but I know it will be
called Fortran.

Tony Hoare
(quick-sort algorithm, Turing Award 1980)
on a conference in 1982

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 169 / 170

Literature I

Curcic, M. 2020, Modern Fortran (MANNING PUBN)

Metcalf, M., Reid, J., & Cohen, M. 2018, Modern Fortran Explained (Oxford University Press)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 170 / 170

	Introduction and tools
	C++ – Review
	From the two-body problem to N-body simulations
	Numerical methods
	Monte-Carlo-Simulations and transport processes
	Fortran
	Fortran - Versions
	Properties of Fortran
	Fortran compilers
	Literature
	Fortran programs
	Labels and GOTO
	In- and output: WRITE, READ, PRINT
	Data types I
	Fortran 90
	Data types II
	INTEGER
	REAL
	COMPLEX
	LOGICAL
	CHARACTER
	Comparison: Data types in C/C++ and Fortran

	Formatting of input and output
	Structures: branching and loops
	Branching: IF-THEN, CASE
	Loops: DO, WHILE
	Comparison: Execution control in C/C++ and Fortran

	File access: OPEN, UNIT, READ, WRITE, CLOSE
	Arrays
	Functions: FUNCTION
	SUBROUTINE
	Restrictions for names an lengths
	Intrinsic functions subroutines
	Graphical output with PGPLOT
	Variables and passing variables
	INTERFACE
	Global variables: COMMON blocks
	Modules
	TYPE – a data structure
	Scope, namespace
	Attributes PRIVATE, PUBLIC
	POINTER
	C and Fortran
	WHERE, FORALL in Fortran
	Coarray Fortran
	Automatic Optimization

	Literature
	References

