
Numerical precision

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 1 / 43

Machine precision I

as seen for float 7 + 1.E-7: because of only 23 bit for mantissa result is 7

therefore: machine precision εm is maximum possible number for which
1c + εm = 1c, where c means computer representation

hence: for any number xc
xc = x(1± ε), |ε| ≤ εm
remember: for all 32 bit floats → error in 6th decimal place,
for 64 bit doubles → error in 15th place

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 2 / 43

Machine precision II

Determining machine precision
float eps = 1.f ;
for (int i = 1 ; i < 100 ; ++i){

eps = eps / 2.f ; // float literal 2.f
cout << i << " " << eps << " "

<< setprecision(9)
<< 1.f + eps << endl ;

}

e.g., for float:
23 1.1920929e-07 1.00000012
24 5.96046448e-08 1

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 3 / 43

Types of errors I

We may distinguish:

random errors: caused by non-perfect hardware, e.g., aging of RAM cells; can be
minimized by, e.g., by ECC techniques (corrects 1 bit errors, recognizes 2 bit errors)
→ likelihood increases with runtime

approximation errors: because of finiteness of computers, e.g., stopping series calculation,
finite integration steps, . . .

e−x =
∞∑

n=0

(−x)n

n!
≈

N∑
n=0

(−x)n

n!
= e−x + E(x ,N) (1)

where E vanishes for N → ∞, hence we require N � x , expecting large E for x ≈ N

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 4 / 43

Types of errors II

roundoff errors: limitation in the representation of real numbers (finite number of digits),
e.g., if only three decimals are stored: 1/9=0.111 and 5/9=0.556, hence

5
(
1
9

)
− 5

9
= 0.555− 0.556 = −0.001 6= 0 (2)

→ error is intrinsic and accumulates with the number of calculation steps
→ some algorithms unstable because of roundoff errors

again: for a float number like

x = 11223344556677889900. = 1.1223344556677889900× 1019 (3)

only the first part (32 bit: 1.12233) is stored, while exponent is stored exactly

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 5 / 43

Subtractive cancellation I

consider computer representation xc of an exact number x :

xc ' x(1 + εx) (4)

with relative error εx in xc (similar to machine precision)

so for subtraction

a = b − c → ac ' bc − cc ' b(1 + εb)− c(1 + εc) (5)

→ ac
a
' 1 + εb

b
a
− εc

c
a

(6)

(weighted errors) and if b ' c

ac
a

=1 + εa ' 1 +
b
a

(εb − εc) ' 1 +
b
a
max(|εb|, |εc |) (7)

as b ' c → b/a� 1 → relative error in a blown up

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 6 / 43

Subtractive cancellation II

Warning
When subtracting two large numbers resulting in a small number, significance is lost.

Examples:

computation of derivatives according to f (x+h)−f (x)
h

the original Verlet method: vn =
xn+1 − xn−1

2∆t
solution of quadratic equation for b � 4ac :

x1,2 =
−b ±

√
b2 − 4ac
2a

or x1,2 =
−2c

b ±
√
b2 − 4ac

(8)

in e−x for large x : the first terms (1− x + x2/2− . . .) are large → as result is small
→ subtraction by other large terms → improve algorithm by calculating 1/ex

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 7 / 43

Errors in algorithms I

Roundoff error accumulation:

a = b ∗ c → ac = bc ∗ cc = b(1 + εb) ∗ c(1 + εc) (9)

→ ac
a

= (1 + εb)(1 + εc) ' 1 + εb + εc (10)

(neglecting very small ε2 terms) → as for physical error-propagation: adding up relative errors
so, model for error-propagation: similar to random-walk (see later) where accumulated distance
after N steps of length ` is ≈

√
N`, roundoff error may accumulate randomly :

εroundoff ≈
√
N εm (11)

→ if no detailed error analysis available;
otherwise, if not random: εroundoff ≈ Nε

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 8 / 43

Errors in algorithms II

Usually: if A is correct result and numerical approximation is A(N), accuracy of A(N) improves
by adding more terms, i.e.

εappr '
α

Nβ
(12)

with some constants α, β depending on algorithm
However, each calculation step might increase roundoff error, so

εtot = εappr + εroundoff '
α

Nβ
+
√
Nεm (13)

Hopefully: εappr dominant, but εroundoff grows slowly
→ stop calculation (optimum N) for minimum εtot

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 9 / 43

Errors in algorithms III

If we knew exact A (then we also wouldn’t need to calculate A(N)):

A(N) ' A +
α

Nβ
(14)

Can get handle on εappr by performing calculation 2nd time with 2N steps, then (if
εappr � εroundoff):

A(N)− A(2N) ' α

Nβ
' εappr (15)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 10 / 43

Errors in algorithms IV

Minimize the error
Let’s assume that some algorithm behaves like

εappr '
1

N2 → εtot '
1

N2 +
√

N εm (16)

Then the best result (minimum total error) is achieved for an N from

dεtot

dN
= 0→ N

5
2 =

4
εm

(17)

So, for single precision (εm ' 10−7)

N
5
2 =

4
10−7 → N ' 1099→ εtot = 4× 10−6 (18)

→ total error dominated by εm, typical for single precision

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 11 / 43

Errors in algorithms V

Minimize the error II
So, if another algorithm

εappr '
2
N4 → εtot '

2
N4 +

√
N εm (19)

And again minimum error obtained for an N

dεtot
dN

= 0→ N
9
2 =

16
εm
→ N ' 67→ εtot = 9× 10−7 (20)

So, need less steps and also obtain better precision

The better algorithm is not more elegant but needs less calculation steps and achieves a better
precision.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 12 / 43

Arrays, libraries,
make, X11

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 13 / 43

Arrays

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 14 / 43

Passing arrays to functions in C++ I

Declaration of a 1d-array:

int m[6] ; // statically dimensioned

Declaration of a function with an array type argument:

int sumsort (int m[], int n) ; // n = lenght of m

Calling a function with an array type argument:

sum = sumsort (m, 6) ;

→ passing the array is implicitly done by a pointer, i.e. only the start address of the array will
be passed to the function

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 15 / 43

Passing arrays to functions in C++ II

Correspondence of pointers and arrays
→ see exercise

the assignment

a[i] = 1 ;

is equivalent to

*(a + i) = 1 ;

when passing 1d-arrays to functions the start address and the data type (size of the
entries) is sufficient

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 16 / 43

Passing arrays to functions in C++ III

Problem:
When using multi-dimensional arrays, passing of the start address alone is not sufficient.
Every dimensioning after the first one must be explicitly written.

Therefore:

float absv (float vector[], int n) ; \\ 1d-array
float trace (float matrix[][10]) ; \\ 2d-array
float maxel (float tensor[][13][13]) ; \\ 3d-array

→ special matrix-classes simplify the passing to functions
→ in Fortran, passing arrays to functions is much easier

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 17 / 43

Libraries

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 18 / 43

Excursus: Libraries I

→ collection of functions, variables, operators

#include <iostream>

already seen: even simple input/output needs an additional library (e.g., iostream)

idea of C/C++ in contrast to many other languages: only a few builtin instructions
(e.g., return),
everything else realized by corresponding libraries
⇒ high flexibility because of “outsourcing”

also mathematical functions only available by corresponding libraries (e.g., cmath
for sin and power)

libraries allow easily the reuse of functions in different programs

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 19 / 43

Excursus: Libraries II

Including libraries in C++:

at compile time:
automatic call of the C preprocessor (cpp) by g++:
read all instructions which start with a #, especially

#include <iostream>

→ look in the specified (default) directory paths (e.g.,
/usr/include/) for header files, usually with extension .h,
here: iostream

→ include the corresponding header file
→ pass output to compiler

The <iostream> header
The header file for the iostream library is in /usr/include/c++/x.x/iostream, where x.x
depends on the specific version. It basically contains further include instructions.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 20 / 43

Excursus: Libraries III

The C preprocessor
CPP statements start with #, no semicolon ; at the end, but can be commented out via //

If the preprocessor is called explicitly:
cpp rcalc.cpp output

then from the source file rcalc.cpp, it generates an output file output, in which, e.g.,
#define instructions are resolved

at link time:
look for the libraries which belong to the header files, translate the names (symbols) used
in the library to (relative) memory addresses;
static linking: include the necessary library symbols in the program

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 21 / 43

Excursus: Libraries IV

Dynamic libraries

The Unix command ldd lists the dynamically linked-in libraries for a given program (or object
file/library), e.g., ldd -v rcalc:
linux-vdso.so.1 (0x00007fff72bff000) †

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff2d9c0b000)

The path to the library and the memory address is printed.

at runtime:
dynamic linking: loading program and libraries to memory (RAM)
advantage (over static linking): library is loaded only once and can be used by other
programs

†vdso = virtual dynamic shared object

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 22 / 43

Excursus: Libraries V

C Preprocessor
(cpp)

⇓

Compiler
(g++)

⇓

Linker
(ld)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 23 / 43

Excursus: Libraries VI

Overview: Unix commands for developers
cpp: C preprocessor for the #-instructions

g++: C++ compiler

ld: link editor (usually called by the compiler)

ldd: lists the used libraries of an object file (also program or library)

nm: lists the symbols of an object file (etc.)

Symbols
In a C++ program main belongs to the symbols labeled with letter T. I.e., it is a symbol from
the text (code) section of the file.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 24 / 43

Linking and libraries I

sometimes necessary for using some specific libraries: explicit specification (name) of the
library at link time

specification of a library libpthread.so via lower case l:

-lpthread

when calling the compiler for creation of the executables

specification of the path to the library via upper case L:

-L/usr/lib/ -lpthread

when calling the compiler for creation of the executables
Heads up: The path must be given before the library!

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 25 / 43

Linking and libraries II

dynamic libraries must be located in a default system path (e.g., /lib) or the the path
must be added to the environment variable

LD_LIBRARY_PATH

E.g. for the bash via

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:.

and for the csh respectively

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:.

→ extending the path to dynamic libraries for the current working directory

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 26 / 43

Static linking I

static libraries (file extension .a) are archives of object files

these objects files are fixed included in the binary output during the procedure of static
linking (→ large program files)

Sequence for static linking
If a library/program libA needs symbols from the library libB, the name of libA must be
given before that of libB at link time for static linking: -lA -lB

(complete) static linking isn’t supported anymore by modern OSs (e.g. MacOS) at normal
developer level

but against some libraries (e.g., libgfortran, MKL) it can be selectively statically linked

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 27 / 43

make

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 28 / 43

make I

Purpose of make:
automatic determination of the program parts (usually source files) that must be
re-compiled via

a given definition of the dependencies (implicit, explicit)
comparison of time stamps (file system)

calling the required commands for re-compilation:

typical use: ./configure ; make ; make install
useful especially for large programs with many source files

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 29 / 43

make II

Main idea of make is the rule:

Target : Dependencies
<TAB> command for creation of the target

e.g.,

myprogram : myprogram.o
<TAB> g++ -o $@ $?

Note
explicit rules are defined via an ASCII file, the so-called makefile
every command belonging to a rule must be started with a <TAB>!
the macros $@ and $? are called automatic variables, i.e., they are replaced by make: $@ is
replaced by the target, $? by the dependencies that are newer than the target

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 30 / 43

make III

Implicit rules:

some rules for compilation are re-occurring, e.g., for C++ .o files are always created from
.cpp files

make has therefore a number of implicit rules, hence make can also be used without a
makefile

Example
echo ’int main() {}’ > myprog.cpp
make myprog

executes g++ -o myprog myprog.cpp1

make uses implicit rules if no explicit rule for creation of the target has been found
1make invokes g++ automatically, or the C++ compiler that is specified in the environment variable CXX

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 31 / 43

make IV

Explicit rules

an explicit rule is usually specified in a text file that has one of the following default
names: makefile, Makefile

every rule must define at least one target

it is possible to define several dependencies for one target

a rule can contain an arbitrary number of commands

Moreover, explicit rules overwrite implicit rules:

.c.o :
<TAB> $CPP -c $?

$(PROJECT) : $(OBJECTS)
<TAB> $(CPP) $(CPPLAGS) -o $(@) $(OBJECTS)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 32 / 43

make V

Usual run of a make call:
1 after calling make the makefile is parsed (read)
2 read and substitute variables (see below) and determination of the highest target(s) (given

in the beginning), evaluation of the dependencies
3 creation of a tree of dependencies
4 determination of the time stamps for all dependencies of the corresponding files and

comparison with those of the next step in the tree
5 targets whose dependencies are newer than the targets are re-compiled

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 33 / 43

make VI

Variables

during processing of the rules make uses automatic variables, e.g., $@ and $? (see above)

variables can also be defined explicitly before the first rule, syntax is shell-like:

CC = gcc
CFLAGS = -O3
PROJECT = galaxy

variables can, as in the shell, be hold together with help of curly braces ${OBJECTFILES},
or with help of round parentheses $(CFLAGS)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 34 / 43

make VII

Usual pseudo targets →Call via make pseudo target

don’t create a file, or don’t have dependencies, e.g.

clean, for make clean, defines explicitly how the intermediate and final products
(targets) of the compilation shall be removed

all creates all project files

install if the targets (programs, libraries) shall be copied to a specific directory (or
similar), it should be stated in install

Pseudo targets (e.g., clean) can only be used if defined in the makefile.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 35 / 43

make VIII

Example of a makefile
CXX = g++ -O3
CPFLAGS = -Wall
LIBRARIES = -lX11

OBJECTS = componentA.o componentB.o
PROJECT = myprogram

$(PROJECT) : $(OBJECTS)
${CXX} $(CPFLAGS) $(OBJECTS) -o $@ ${LIBRARIES}

.cpp.o :
${CXX} -c ${CPFLAGS} $?

clean :
rm -f $(OBJECTS)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 36 / 43

make IX

Makefile uses a shell-like syntax:

comments are started with a #:
a comment

one command per line, multiple commands via ; and line continuation via \
$FC $? ; ldconfig

every command corresponds to a shell command, and is printed before execution:

.c.o :
echo "Hello ${USER}"

the print-out of commands can be suppressed with @ before the command

@echo "Hi ${DATE}"

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 37 / 43

make X

variables are set without $ and used/referenced with a $

progname = opdat
PROJECT = $(progname).exe

Variable names that contain multiple characters should always hold together with parentheses
() or curly braces {}.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 38 / 43

make XI

Special targets:

problem: pseudo target clean is not executed, if a file with that name exists (why?)

solution: pseudo targets can be marked as such via the special target .PHONY:

.PHONY: clean install

special targets start with a .

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 39 / 43

make XII

Some more special targets:

.INTERMEDIATE : dependencies are only created if another dependency before the target is
newer, or if a dependency of an intermediate file is newer than the actual target. The
intermediate target is deleted after the target was created:

.INTERMEDIATE : colortable.o

xapple.exe : xapple.cpp colortable.o
$(CXX) -o xapple.exe xapple.cpp colortable.o

colortable.o : colortable.cpp
$(CXX) -c colortable.cpp

Here, colortable.o is only created if xapple.cpp or if colortable.cpp are newer than
xapple.exe. After the creation of xapple.exe the target colortable.o will be
removed.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 40 / 43

make XIII

.SECONDARY : like .INTERMEDIATE, but the dependencies are not removed automatically

.IGNORE : errors during creation of the specified dependencies will not lead to an abort of
the make procedure

Hint
The tool make is not bound to programming languages, but can also be used for, e.g.,
automatic compilation of .tex files etc.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 41 / 43

Graphics with X11

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 42 / 43

Graphical output with X11

there are many libraries for graphical output:
Qt, e.g., for Mathematica
Simple DirectMedia Layer for simple games
. . .

Pros: large support, comprehensive literature, often platform independent (e.g. via ports)
Cons: often huge frameworks even for simplest tasks, huge libraries (memory
consumption), usually high thresholds for beginners
always available under Unix/Linux: X11 or just X with many abilities:

creation of windows incl. internal structures (panels)
simple routines for drawing lines, circles, colors
keyboard and mouse inquiry
graphical forwarding (ssh -X)

→We want to use X11 more or less directly with help of the library Xgraphics.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 43 / 43

	Introduction and review
	Numerical precision
	Arrays and pointers
	Libraries
	Make
	Graphics with X11

