
C/C++ Programming

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 1 / 74

Programming languages I

One can, e.g., distinguish:

scripting languages

bash, csh →Unix shell

Perl, Python

IRAF, IDL, Midas → especially for data reduction in astrophysics

compiler-level languages

C/C++ → very common, therefore our favorite language

Fortran → very common in astrophysics, especially in radiative transfer

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 2 / 74

Programming languages II

scripting language compiler-level language

examples shell (bash, tcsh), Perl, C/C++, Fortran, Pascal,
Mathematica, MATLAB,

source code directly executable translated to
machine code, e.g.,
0x90 → no operation (NOP)

runtime interpreter runs as a pro- error handling difficult
behavior gram → full control over → task of the program-

execution → error messages, mer, often only crash
argument testing

speed usually slow very fast by optimization
→ analysis tools → simulations, number crunching

→moreover, also bytecode compiler (JAVA) for virtual machine,
Just-in-time (JIT) compiler (JavaScript, Perl)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 3 / 74

C/C++ I

C is a procedural (imperative) language

C++ is an object oriented extension of C with the same syntax

C++ is because of its additional structures (template, class) � C

Basic structure of a C++ program
#include <iostream>
using namespace std ;
int main () {

instructions of the program ;
// comment
return 0 ;

}

every instruction must be finished with a ; (semicolon) !

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 4 / 74

C/C++ II

Compiling a C++ program:

source file
.cpp, .C

⇓

compiler + linker
.o, .so, .a

⇓

executable program
a.out, program

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 5 / 74

C/C++ III

Command for compiling + linking:

g++ -o program program.cpp

(GNU compiler for C++)

only compiling, do not link:
g++ -c program.cpp

creates program.o (object file, not executable)

option -o name defines a name for a file that contains the executable program, otherwise
program file is called: a.out
the name of the executable program can be arbitrarily chosen

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 6 / 74

Simple program for output on screen I

Example: C++ output via streams

#include <iostream>

using namespace ::std ;

int main () {

cout << endl << "Hello world!" << endl ;

return 0 ; // all correct

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 7 / 74

Simple program for output on screen II

<iostream> . . . is a C++ library (input/output)

main() . . . program (function)

return 0 . . . returns the return value 0 to main (all ok)

source code can be freely formated, i.e., it can contain an arbitrary number of spaces and
empty lines (white space) → useful for visual structuring

comments are started with // - everything after it (in the same line) is ignored,
C has only /* comment */ for comment blocks

cout . . . output on screen/terminal (C++)

<< . . . output/concatenate operator (C++)

string "Hello world!" must be set in quotation marks

endl . . . manipulator: new line and stream flush (C++)

a block several instructions which are hold together by curly braces

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 8 / 74

Functions I

C/C++ is a procedural language
The procedures of C/C++ are functions.

Main program: function with specific name main(){}

every function has a type (for return), e.g.: int main (){}

functions can get arguments by call, e.g.:
int main (int argc, char *argv[]){}

functions must be declared before they can be called in the main program,
e.g., void swap(int &a, int &b) ;
or included via a header file:
#include <cmath>

within the curly braces { }, the so-called function body, is the definition of the function
(what shall be done how), e.g.:
int main () { return 0 ; }

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 9 / 74

Functions II

Example
#include <iostream>
using namespace std ;

float cube(float x) ;

int main() {
float x = 4. ;
cout << cube(x) << endl ;
return 0 ;

}

float cube(float x) {
return x*x*x ;

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 10 / 74

Variables

A variable is a piece of memory.
in C/C++ data types are explicit and static

We distinguish regarding visibility (“scope”):
global variables → declared outside of any function, before main

local variables → declared in a function or in a block { } , only there visible
. . . regarding data types → intrinsic data types:

int → integer, e.g., int n = 3 ;

float → floats (floating point numbers),
e.g., float x = 3.14, y = 1.2E-4 ;

char → characters, e.g., char a_character ;

bool → logical (boolean) variables, e.g., bool btest = true ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 11 / 74

Integer data types I

Integer numbers are represented exactly in the memory with help of the binary number system
(base 2), e.g.

13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 =̂ 1 1 0 1 1 (binary)

In the assignment
a = 3

3 is an integer literal (literal constant). Its bit pattern (3 = 1 · 20 + 1 · 21 =̂ 1 1) is inserted
at the corresponding positions by the compiler.

1doesn’t correspond necessarily to the sequential order used by the computer → “Little Endian”: store least
significant bit first, so actually: 1011

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 12 / 74

Integer data types II

on 64-bit systems
int compiler reserves 32 bit (= 4 byte) of memory

1 bit for sign and
231 = 2 147 483 648 values (incl. 0): → range:
int = −2 147 483 648 . . . + 2 147 483 647

unsigned int 32 bit, no bit for sign → 232 values (incl. 0)
unsigned int = 0 . . . 4 294 967 295

long on 64 bit systems: 64 bit (= 8 byte),
1 bit for sign: −9.2× 1018 . . . 9.2× 1018 (quintillions)

unsigned long 64 bit without sign: 0 . . . 1.8× 1019

and also: char (1 byte), smallest addressable (!); short (2 byte) ; long long (8 bytes)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 13 / 74

Integer data types III

Two’s complement

Table: Representation: unsigned value (0s), value
and sign (sig), two’s complement (2’S) for a nibble
(1
2 byte)

binary 0s sig 2’S
0000 0 0 0
0001 1 1 1

. . .
0111 7 7 7
1000 8 -0 -8
1001 9 -1 -7

. . .
1111 15 -7 -1

Disadvantages of representration as value and
sign:
∃ 0 and -0; Which bit is sign? (→ const
number of digits, fill up with 0s);
Advantage of 2’S:
negative numbers always with highest bit=1
→ cf. +1+−1 bitwise for value & sign vs. 2’S

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 14 / 74

Floating point data types I

Floating point numbers are an approximate representation of real numbers.
Floating point numbers can be declared via, e.g.,:

float radius, pi, euler, x, y ;
double radius, z ;

Valid assignments are, e.g.,:

x = 3.0 ;
y = 1.1E-3 ;
z = x / y ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 15 / 74

Floating point data types II

representation (normalization) of floating point numbers are described by standard IEEE
754 :

x = s ·m · be (1)

with base b = 2 (IBM Power6: also b = 10), sign s, and normalized significand (mantissa)
m, bias
So for 32 Bit (Little Endian†), 8 bit exponent, 23 bit mantissa:

MMMMMMMMMMMMMMMMMMMMMMMEEEEEEEES

bits

0781516232431

mantissaexponent

sign

(† read each part: →)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 16 / 74

Floating point data types III

mantissa is normalized to the form (e.g.)
1,0100100 × 24

i.e. with a 1 before the decimal point. This 1 is not stored, so m = 1.f

Moreover, a bias (127 for 32 bit, 1023 for 64 bit) is added to the exponent (results in
non-negative integer)

Example: Conversion of a decimal number to IEEE-32-Bit

172.625 base 10
10101100.101× 20 base 2
1.0101100101× 27 base 2 normalized

add bias of 127 to exponent = 134 = 1 · 27 + . . .+ 1 · 22 + 1 · 21 + 0 · 20

0 10000110 010110010100000000000000

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 17 / 74

Floating point data types IV

single precision (32 bit) float: exponent 8 bit, significand 23 bit

−126 ≤ e ≤ 127 (basis 2)

→≈ 10−45 . . . 1038

digits: 7-8 (= log 223+1 = 24 log 2)

for 64 bit (double precision) – double: exponent 11 bit, significand 52 bit

−1022 ≤ e ≤ 1023 (basis 2)

→≈ 10−324 . . . 10308

digits: 15-16 (= log 252+1)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 18 / 74

Floating point data types V

some real numbers cannot be presented exactly in the binary numeral system (cf. 1/3 in
decimal):

0.1 ≈ 1.10011001100110011001101× 2−4 (2)

Warning
Do not compare two floating point numbers blindly for equality (e.g., 0.362 * 100.0 ==
36.2), but rather use an accuracy limit:
abs(x - y) <= eps, better: relative error
abs(1-y/x) <= eps

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 19 / 74

Floating point data types VI

Floating point arithmetics

Subtraction of floating point numbers
consider 1.000× 25 − 1.001× 21 (only 3 bit mantissa)
→ bitwise subtraction, requires same exponent

1.000 0000 ×25

− 0.000 1001 ×25

0.111 0111 ×25 infinite precision
1.110 111 ×24 shifted left to normalize
1.111 ×24 rounded up, as last digits > 1/2 ULP†

†unit in the last place = spacing between subsequent floating point numbers

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 20 / 74

Floating point data types VII

Properties of floating point arithmetics (limited precision):

loss of significance / catastrophic cancellation: occurs for subtraction of almost equal
numbers

Example for loss of significance
π − 3.141 = 3.14159265 . . .− 3.141 with 4-digit mantissa; maybe expected:
= 0.00059265 . . . ≈ 5.927× 10−4; in fact: 1.0000× 10−3, because π is already rounded to
3.142

absorption (numbers of different order of magnitude): addition of subtraction of a very
small number does not change the larger number

Example for absorption
for 4-digit mantissa: 0.001+ 100 = 100: 1.000× 102 + 1.000× 10−3 =
1.000× 102 + 0.000 01× 102 = 1.000× 102 + 0.000× 102 = 1.000× 102, same for subtraction

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 21 / 74

Floating point data types VIII

distributive and associative law usually not fulfilled, i.e. in general

(x + y) + z 6= x + (y + z) (3)
(x · y) · z 6= x · (y · z) (4)

x · (y + z) 6= (x · y) + (x · z) (5)
(x + y) · z 6= (x · z) + (y · z) (6)

solution of equations, e.g., (1+ x) = 1 for 4-bit mantissa solved by any x < 10−4 (see
absorption) → smallest float number ε with 1+ ε > 1 called machine precision

Multiplication and division of floating point numbers:
mantissas multiplied/divided, exponents added/subtracted
→ no cancellation or absorption problem

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 22 / 74

Floating point data types IX

Guard bit, round bit, sticky bit (GRS)

in floating point arithmetics: if mantissa shifted right → loss of digits

therefore: during calculation 3 extra bits (GRS)
Guard bit: 1st bit, just extended precision
Round bit: 2nd (Guard) bit, just extended precision (same as G)
Sticky bit: 3rd bit, set to 1, if any bit beyond the Guard bits non-zero, stays then 1(!)
→ sticky
example

G R S
Before 1st shift: 1.11000000000000000000100 0 0 0
After 1 shift: 0.11100000000000000000010 0 0 0
After 2 shifts: 0.01110000000000000000001 0 0 0
After 3 shifts: 0.00111000000000000000000 1 0 0
After 4 shifts: 0.00011100000000000000000 0 1 0
After 5 shifts: 0.00001110000000000000000 0 0 1
After 6 shifts: 0.00000111000000000000000 0 0 1
After 7 shifts: 0.00000011100000000000000 0 0 1
After 8 shifts: 0.00000001110000000000000 0 0 1

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 23 / 74

Floating point data types X

GRS bits – possible values and stored values

extended sum stored value why

1.0100 000 1.0100 truncated because of GR bits
1.0100 001 1.0100 truncated because of GR bits
1.0100 010 1.0100 rounded down because of GR bits
1.0100 011 1.0100 rounded down because of GR bits
1.0100 100 1.0100 rounded down because of S bit

1.0100 101 1.0101 rounded up because of S bit
1.0100 110 1.0101 rounded up because of GR bits
1.0100 111 1.0101 rounded up because of GR bits

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 24 / 74

Floating point data types XI

IEEE representation of 32 bit floats:

Number name sign, exp., f value

normal 0 < e < 255 (−1)s × 2e−127 × 1.f
subnormal e = 0, f 6= 0 (−1)s × 2−126 × 0.f
signed zero (±0) e = 0, f = 0 (−1)s × 0.0
+∞ s = 0, e = 255, f = 0 +INF
−∞ s = 1, e = 255, f = 0 -INF
Not a number e = 255, f 6= 0 NaN

if float > 2128 → overflow, result may be NaN or unpredictable

if float < 2−128 → underflow, result is set to 0

If not default by compiler: enable floating-point exception handling (e.g., -fpe-all0 for ifort)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 25 / 74

Automatic type conversion

In C/C++ many data type conversions are already predefined, which will be invoked
automatically:

int main () {
int a = 3 ;
double b ;
b = a ; // implicit conversion of a to double
b = 1. / 3 ; // implicit conversion of 3 to double
return 0.2 ; // implicit conversion of 0.2 to integer 0

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 26 / 74

Explicit type conversions (casts) I

Moreover, a type conversion/casting can be done explicitly:

C cast
int main () {

int a = 3 ;
double b ;
b = (double) a ; // type cast
return 0 ;

}

obviously possible: integer ↔ floating point

but also : pointer (see below) ↔ data types

Caution: For such C casts there is no type checking during runtime!

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 27 / 74

Explicit type conversions (casts) II

The better way: use the functions of the same name for type conversion

int i, k = 3 ;
float x = 1.5, y ;
i = int(x) + k ;
y = float(i) + x ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 28 / 74

Logical variables

bool b ;

intrinsic data type, has effectively only two different values:

bool btest, bdo ;
btest = true ; // = 1
bdot = false ; // = 0

but also:

btest = 0. ; // = false
btest = -1.3E-5 ; // = true

Output via cout yields 0 or 1 respectively. By using cout << boolalpha << b ; is also
possible to obtain t and f for output.
Note: minimum addressable piece of memory is 1 byte → bool needs more memory than necessary

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 29 / 74

Execution control - for-loops I

Executable control constructs modify the program execution by selecting a block for repetition
(loops, e.g., for) or branching to another statement (conditional, e.g., if/ unconditional, e.g.,
goto).

Repeated execution of an instruction/block:

for loop
for (int k = 0 ; k < 6 ; ++k) sum = sum + 7 ;

for (float x = 0.7 ; x < 17.2 ; x = x + 0.3) {
y = a * x + b ;
cout << x << " " << y << endl;

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 30 / 74

Execution control - for-loops II

Structure of the loop control (header) of the for loop:

There are (up to) three arguments, separated by semicolons:
1 initialization of the loop variable (loop counter), if necessary with declaration, e.g.:

int k = 0 ; †

→ is executed before the first iteration
2 condition for termination of the loop, usually via arithmetic comparison of the loop

variable, e.g.,
k < 10 ;

is tested before each iteration
3 expression: incrementing/decrementing of the loop variable, e.g.,

++k or --k or k += 3
is executed after each iteration

†interestingly also: int k = 0, j = 1;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 31 / 74

Increment operators

sum += a
→ sum = sum + a

++x
→ x = x + 1 (increment operator)

--x
→ x = x - 1 (decrement operator)

Note that there is also a post increment/decrement operator: x++, x--, i.e. incrementing/decrementing is done
after any assignemnt, e.g., y = x++.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 32 / 74

Logical operators I - Comparisons/inequalities

→ return either(!) true or false:

a > b greater than

a >= b greater than or equal

a == b equal

a != b not equal

a <= b less than or equal

a < b less than

Caution!
The exact equality == should not be used for float-type variables because of the limited
precision in the representation.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 33 / 74

Loops I

Moreover, there exist also:

while loops

while (x < 0.) x = x + 2. ;

do x = x + 2. ; // do loop is executed
while (x < 0.) ; // at least once!

Instructions for loop control
break ; // stop loop execution / exit current loop
continue ; // jump to next iteration

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 34 / 74

Loops II

In C/C++: no real “for loops”

→ loop variable (counter, limits) can be changed in loop body
slow, harder to optimize for compiler/processor

Recommendation: local loop variables

→ declaration in loop header
→ scope limited to loop body

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 35 / 74

Execution control – conditional statements I

Conditional execution via if:

if (z != 1.0) k = k + 1 ;

Conditional/branching
if (a == 0) cout << "result" ; // one-liner

if (a == 0) a = x2 ; // branching
else if (a > 1) {

a = x1 ;
}
else a = x3 ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 36 / 74

Execution control – conditional statements II

If the variable used for branching has only discrete values (e.g., int, char, but not floats!), it is
possible to formulate conditional statements via switch/case:

Branching II
switch (Ausdruck) {

case value1 : instruction ; break ;
case value2 : instruction1 ;

instruction2 ; break ;
default : instruction ;

}

Heads up!
Every case instruction section should be finished with a break, otherwise the next case
instruction section will be executed automatically.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 37 / 74

Execution control – conditional statements III

Example: switch
int k ;

cout << "Please enter number, 0 or 1: " ;
cin >> k ;

switch (k) {
case 0 : cout << "pessimist" << endl ; break ;
case 1 : cout << "optimist" << endl ; break ;
default : cout << "neutral" << endl ;

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 38 / 74

Declaration and visibility of variables I

Declarations of variables should be at the beginning of a block, exception: loop variables

float x, y ; // declaration of x and y
int n = 3 ; // declaration and initialization of n

Local variables / variables in general

are only visible within the block (e.g., in int main() { }), where they have been declared

are local regarding this block, their value can only be changed within this block

are unknown outside of this block, i.e., they don’t exist there

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 39 / 74

Declaration and visibility of variables II

Global variables

must be declared outside of any function, e.g., before main()

are visible/known to all following functions within the same program

have file wide visibility (i.e., if you split your source code into different files, you have to
put the declaration into every file)

are only removed from memory when execution of the program is ended

A locally declared variable will hide a global variable of the same name. The global variable can be still accessed
with help of the scope operator ::, e.g., cout << ::m ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 40 / 74

Declaration and visibility of variables III

Global and local variables
int m = 0 ; // global variable

void calc() {
int k = 0; // local variable
m = 1 ; // ok, global variable
++j ; // error, as j only known in main

}

int main() {
int j = 3 ;
++j ; // ok
for (int i = 1 ; i < 10 ; ++i)
{

j = m + i ; // ok, all visible
}
m = j - i ; // error: i not visible
return j ;

}

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 41 / 74

Defining constants

Values (e.g., numbers) that do not change during the program execution, should be defined as
constants:

const float e = 2.71828 ;

Constants must be initialized during declaration.

After initialization their value cannot be changed.

Use const whenever possible!

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 42 / 74

Character variables

char character ;

are encoded as integer numbers:

char character = ’A’ ;
char character = 65 ;

mean the same character (ASCII code)

Assignments of character literals to character variables require single quotation marks ’ :

char yes = ’Y’ ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 43 / 74

Arrays in C/C++

Static array declaration for a one-dimensional array of type double:

double a[5] ; one-dimensional array with 5 elements of type double
(e.g., vectors)

Access to individual elements:

total = a[0] + a[1] + a[2] + a[3] + a[4] ;

Heads up!
In C/C++ the index for arrays starts always at 0 and runs in this example until 4, so the last
element is a[4].

A common source of errors in C/C++ !!!

Note: While the size of the array can be set during runtime, the size cannot be changed after
declaration (static declaration).

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 44 / 74

Two-dimensional arrays I

an m × n matrix (rows × columns) :

n columns →


m a11 a12 . . . a1n
rows a21 . . .
↓ . . .

am1 amn

int a[m][n] . . . static allocation of two-dimensional array, e.g., for matrices (m, n
must be constants)

access via, e.g., a[i][j]

i is the index for the rows,
j for the columns.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 45 / 74

Two-dimensional arrays II

e.g., a =

[
1 2 3
4 5 6

]
Note that in C/C++ the second (last) index runs first, i.e. the entries of a[2][3] are in this
order in the memory :

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]
1 2 3 4 5 6

(row-major order → stored row by row)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 46 / 74

Initialization of arrays

An array can be initialized by curly braces:

int array[5] = {0, 1, 2, 3, 4} ;

short field[] = {0, 1} ; // array field is automatically
// dimensioned

float x[77] = {0} ; // set all values to 0

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 47 / 74

Strings

There are no string variables in C. Therefore strings are written to one-dimensional character
arrays:

char text[6] = "Hello" ;

The string literal constant "Hello" consists of 5 printable characters and is terminated
automatically by the compiler with the null character \0, i.e. the array must have a length of 6
characters! Note the double quotation marks!

Example
char text[80] ;
cout << endl << "Please enter a string:" ;
cin >> text ;
cout << "You have entered " << text << " ." << endl ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 48 / 74

Pointer I

Pointer variables – or pointer for short – allow a direct access (i.e. not via the name) to a
variable.

Declaration of pointers
int *pa ; // pointer to int
float *px ; // pointer to float
int **ppb ; // pointer to pointer to int

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 49 / 74

Pointer II

A pointer is a variable that contains an address, i.e. it points to a specific part of the memory.
As every variable in C/C++ a pointer variable must have a data type.
The value at address (memory) to which the pointer points, must be of the declared data type.

address value variable
1000 0.5 x
1004 42 n
1008 3.141. . . d
1012 . . . 5926
1016 H E Y ! salutation
1020 1000 px
1024 1008 pd
1028 1004 pn
1032 1016 psalutation
1036 1028 pp

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 50 / 74

Pointer III

Pointers must be always initialized before usage!

Initialization of pointers
int *pa ; // pointer to int

int b ; // int

pa = &b ; // assigning the address of b to a

The character & is called the address operator (“address of”)
(not to be confused with the reference int &i = b ;).

Declaration and initialization
int b ;
int *pa = &b ;

→ content of pa = address of b

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 51 / 74

Pointer IV

With help of the dereference operator * it is possible to get access to the value of the variable
b, one says, pointer pa is dereferenced:

Dereferencing a pointer
int b, *pa = &b ;
*pa = 5 ;

Here, * . . . is the dereference operator and means “value at address of . . . ”.
The part of the memory to which pa points, contains the value 5, that is now also the value of
the variable b.

cout << b << endl ; // yields 5
cout << pa << endl ; // e.g., 0x7fff5fbff75c

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 52 / 74

Pointer V

Once again:

Pointer declaration:

float *pz, a = 2.1 ;

Pointer initialization:

pz = &a ;

Result – output:

cout << "address of variable a (content of pz): "
<< pz << endl ;

cout << "content of variable a: "
<< *pz << endl ;

*pz = 5.2 ; // change value of a

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 53 / 74

References

int &n = m ;
m2 = n + m ;

A reference is a new name, an alias for a variable. So, it is possible to address the same
part of the memory (variable) by different names within the program. Every modification
of the reference is a modification of the variable itself - and vice versa.
References are declared via the & character (reference operator) and must be initialized
instantaneously:

int a ;
int &b = a ;

This initialization cannot be changed any more within the program!

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 54 / 74

Passing variables to functions I

Structure of functions – definition
type name (arg1, ...) { ... }

example: int main (int argc, char *argv[]) { }

in parenthesis: arguments of the function / formal parameters

when function is called: copy arguments (values of the given variables) to function context
→ call by value / pass by value

setzero (float x) { x = 0. ; }
int main () {

float y = 3. ;
setzero (y) ;
cout << y ; // prints 3. }

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 55 / 74

Passing variables to functions II

Call by value

Pros:

the value of a passed variable cannot be changed unintentionally within the function

Cons:

the value of a passed variable can also not be changed on purpose

for every function call all value must be copied
→ extra overhead (time)
(exception: if parameter is an array, only start address is passed → pointer)

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 56 / 74

Structure of functions: Call by reference

void swap(int &a, int &b) ;

Passing arguments as references:

The variables passed to the function swap are changed in the function and keep these values
after returning from swap.

void swap (int &a, int &b) {
int t = a ; a = b ; b = t ; }

→ and called via: swap (n, m) ;

Thereby we can pass an arbitrary number of values back from a function.

Hint: The keyword const prevents that a passed argument can be changed within the function:
sum (int const &a, int const &b) ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 57 / 74

Call by pointer

A function for swapping two int variables can also be written by using pointers:

void swap(int *a, int *b) { // pointers as formal parameters int tmp ;
int t = *a ; *a = *b ; *b = t ;

}

Call in main():

swap (&x, &y) ; // Passing addresses (!)
// of x and y

Passing arrays to functions
In contrast to (scalar) variables, arrays are automatically passed by address (pointer) to
functions, e.g.,
myfunc (float x[])

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 58 / 74

Pointers and references

Pointer variables
store addresses
must be dereferenced (to use the value of the spotted variable)
can be assigned as often as desired to different variables (of the same, correct type) within
the program

References
are alias names for variables,
can be used by directly using their names (without dereferencing)
the (necessary!) initialization at declaration cannot be changed later

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 59 / 74

Structs and classes – defining new data types I

Besides the intrinsic (/basic) data types there are many other data types, which can be defined
by the programmer

struct
struct complex {

float re ;
float im ;

} ; a

aNote the necessary semicolon after the } for structs

In this example the data type complex is defined, it contains the member variables for real and
imaginary part.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 60 / 74

Structs and classes – defining new data types II

Structs can be imagined as collections of variables.

struct
struct star {

char full_name[30] ;
unsigned short binarity ;
float luminosity_lsun ;

} ;

These (self defined) data types can be used in the same way as intrinsic data types:

Declaration of struct objects
complex z, c ;
star sun ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 61 / 74

Structs and classes – defining new data types III

Concrete structs which are declared in this way are called instances or objects
(→ object-oriented programming) of a class (struct).

Declaration and initialization
complex z = {1.1 , 2.2} ;
star sun = {"Sun", 1, 1.0 } ;

The access to member variables is done by the
member selection operator . (dot):

Access to members
real_part = z.re ;
sun.luminosity_lsun = 1.0 ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 62 / 74

Structs and classes – defining new data types IV

It is also possible to define functions (so-called methods) within structs:

Member functions
struct complex {

...
float absolute () {

return (sqrt(re*re + im*im)) ;
}

} ;
complex c = {2., 4.} ;
cout << c.absolute() << endl ;

The call of the member function is also done with the . , the function (method) is associated
with the object.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 63 / 74

Classes – Example: writing/reading files I

Output to a file by using library fstream:
1 #include <fstream>
2 create an object of the class ofstream:

ofstream fileout ;
3 method open of the class ofstream:

fileout.open("graphic.ps") ;
4 writing data: e.g.

fileout << x ;
5 close file via method close:

fileout.close() ;

Alternatively (Unix): Use cout and redirection operator > or >> of the shell:
./program > output.txt

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 64 / 74

Classes – Example: writing/reading files II

By including the <fstream> library, one can also read from a file

Input from a file
char line[132] ;
ifstream filein ; // create ifstream object
filein.open("data.txt") ; // open the file
while (filein.good()) {

filein.getline(line,132) ; // read in line;
// use buffer size (132)

x[i] = atof(line) ; // read into float array
}

The method good() checks, whether the end of file (EOF) is reached or an error occured.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 65 / 74

Templates I

Templates allow to create universal definitions of certain structures. The final realization for a
specific data type is done by the compiler.

Function templates
template <class T> // instead of class also typename
T sqr (const T &x) {
return x * x ; }

The keyword template and the angle brackets < > signalize the compiler that T is a template
parameter. The compiler will process this function if a specific data type is invoked by a
function call, e.g.,

double w = 3.34 ; int k = 2 ;
cout << sqr(w) << " " << sqr(k) ;

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 66 / 74

Templates II

Moreover, templates can be used to create structs/classes. For example, the class complex of
the standard C++ library (#include <complex>) is realized as template class:

Class templates
template <class T>
class std::complex {

T re, im ;
public:

...
T real() const return re ;

}

Therefore, the member variables re and im can be arbitrary (numerical) data types.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 67 / 74

Typ definitions via typedef

By using typedef datatype aliasname one can declare new names for data types:

typedef unsigned long large ;
typedef char* pchar ;
typedef std:complex<double> complex_d ;

These new type names can then be used for variable declarations:

large mmm ;
pchar Bpoint ;
complex_d z = complex_d (1.2, 3.4) ;

In the last example, the constructor for the class template complex gets the same name as the
variable through the typedef command.

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 68 / 74

Exception handling – exceptions I

A major strength of C++ is the ability to handle runtime errors, so called exceptions:

Throwing exceptions: try – throw – catch
try {

cin >> x ;
if (x < 0.) throw "Negative value!" ;
y = g(x) ;

}
catch (char* info) { // catch exception from try block

cout << "Program stops, because of: << info << endl ;
exit (1) ;

}
double g (double x) {

if (x > 1000.) throw "x too large!" ; ... }

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 69 / 74

Exception handling – exceptions II

try { ...}

within a try block an arbitrary exception can be thrown

throw e ;

throw an exception e

the data type of e is used to identify to the corresponding catch block to which the
program will jump

exceptions can be intrinsic or self defined data types

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 70 / 74

Exception handling – exceptions III

catch (type e) { ...}

after a try one or more catch blocks can be defined

from the data type of e the first matching catch block will be selected

any exception can be catched by catch (...)

if after a try no matching catch block is found, the search is continued in the next higher
call level

if no matching block at all is found, the terminate function is called; its default is to call
abort

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 71 / 74

Reading arguments from program call

Sometimes it is more convenient to pass the parameters the program nees directly at the call of
the program, e.g,
./rstarcalc 3.5 35.3

this can be realized with help of the library stdlib.h

Read an integer number from command line call
#include "stdlib.h"
int main (int narg, char *args[]) {

int k ;
// convert char array to integer
if (narg > 1) k = atoi(args[1]) ;

}

if the string cannot be converted to int, the returned value is 0
there exist also atol and atof for conversion to long and float

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 72 / 74

Summary

Common mistakes in C/C++:
forgotten semicolon ;

wrong dimensioning/access to arrays
int m[4] ; imax = m[4] ; → imax = m[3] ;

wrong data type in instructions / function calls
float x ; ... switch (x)
void swap (int *i, int *j) ; ... swap(n,m) ;

confusing assignment operator = with the equality operator ==
if(i = j) → if(i == j)

forgotten function parenthesis for functions without parameters
clear ; → clear();

ambiguous expressions
if (i == 0 && ++j == 1)
no increment of j, if i 6= 0

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 73 / 74

Some recommendations I

use always(!) the . for floating point literals: x = 1. / 3. instead of x = 1 / 3

whitespace is for free → use it extensively for structuring your source code (indentation,
blank lines)

comment so that you(!) understand your source code in a year

use self-explaining variable names, e.g., Teff instead of T (think about searching for this
variable in the editor)

use integer loop variables:
for (int i = 1; i < n ; ++i) {
x = x + 0.1 ; ... }

instead of
for (float x = 0.; x < 100. ; x = x + 0.1) {... }

take special care of user input, usually: tinput � tcalc, so exception catching for input is
never wasted computing time

H. Todt (UP) Computational Astrophysics SoSe 2021, 19.2.2021 74 / 74

	Introduction and review
	Programming languages
	C/C++ program structure
	Functions I
	Intrinsic data types
	Integers
	Floating point data types
	Type conversion
	Bool variables

	Execution control
	for-Loops
	while/do-Loops
	if–else if–else

	Variables
	Visibility
	Constants
	Character variables

	Arrays
	C-Strings

	Pointer
	References
	Function arguments
	Call by value
	Call by reference (C++)
	Call by pointer

	Structs and classes
	Templates
	Type definitions via typedef
	Exception handling
	Arguments of program call
	Style – some comments

