# Computational Astrophysics I: Introduction and basic concepts

#### Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

#### SoSe 2023, 22.5.2023



# The two-body problem

## We remember (?)

## The Kepler's laws of planetary motion (1619)

- Each planet moves in an elliptical orbit where the Sun is at one of the foci of the ellipse.
- The velocity of a planet increases with decreasing distance to the Sun such, that the planet sweeps out equal areas in equal times. (*Consequence of which law?*)
- The ratio P<sup>2</sup>/a<sup>3</sup> is the same for all planets orbiting the Sun, where P is the orbital period and a is the semimajor axis of the ellipse. (What defines value of ratio?)



The 1. and 3. Kepler's law describe the shape of the orbit (Copernicus: circles), but not the time dependence  $\vec{r}(t)$ . This can in general not be expressed *analytically* by elementary mathematical functions (see below).

Therefore we will try to find a *numerical* solution.

#### Earth-Sun system

1.  $\rightarrow$  two-body problem  $\rightarrow$  one-body problem via reduced mass of lighter body (partition of motion) via Newton's 3. & 2. law:

$$\vec{F}_{12} = -\vec{F}_{21} \Rightarrow m_1 \vec{a}_1 = -m_2 \vec{a}_2 \Rightarrow \vec{a}_2 = -\frac{m_1}{m_2} \vec{a}_1$$
 (1)

$$\vec{a}_{rel} := \vec{a}_1 - \vec{a}_2 = \left(1 + \frac{m_1}{m_2}\right) a_1 = \frac{m_2 + m_1}{m_1 m_2} m_1 \vec{a}_1 = \mu^{-1} \vec{F}_{12}$$
 (2)

$$= \frac{d^2 \vec{x}_{\text{rel}}}{dt^2} = \frac{d^2}{dt^2} (\vec{x}_1 - \vec{x}_2)$$

$$\Rightarrow \mu = \frac{M m}{m+M} = \frac{m}{\frac{m}{M}+1}$$
(3)
(4)

as  $m_{\rm E} \ll M_{\odot}$  is  $\mu \approx m$ , i.e. motion is relative to the center of mass  $\equiv$  only motion of m. Set point of origin (0,0) to the source of the force field of M.

Hence: Newton's 2. law (with  $m \approx \mu$ ):

$$m\frac{d^2\vec{r}}{dt^2} = \vec{F}$$
(5)

and force field according to Newton's law of gravitation :

$$\vec{F} = -\frac{GMm}{r^3} \vec{r} \tag{6}$$

# Equations of motion IV

Kepler's laws, as well as the assumption of a *central force* imply  $\rightarrow$  *conservation of angular momentum*  $\rightarrow$  motion is only in a *plane* ( $\rightarrow$  Kepler's 1st law). So, we use Cartesian coordinates in the *xy*-plane:

$$F_{x} = -\frac{GMm}{r^{3}}x$$

$$F_{y} = -\frac{GMm}{r^{3}}y$$
(7)
(8)

The equations of motion are then:

$$\frac{d^2 x}{dt^2} = -\frac{GM}{r^3} x \tag{9}$$

$$\frac{d^2 y}{dt^2} = -\frac{GM}{r^3} y \tag{10}$$
where  $r = \sqrt{x^2 + y^2}$  (11)

# Excursus: Analytic solution of the Kepler problem I

To derive the *analytic* solution for equation of motion  $\vec{r}(t) \rightarrow$  use polar coordinates:  $\phi$ , r• use conservation of angular momentum  $\ell$ :

$$\mu r^2 \dot{\phi} = \ell = \text{const.}$$
(12)  
$$\dot{\phi} = \frac{\ell}{\mu r^2}$$
(13)

use conservation of total energy:

$$E = \frac{1}{2}\mu\dot{r}^{2} + \frac{\ell^{2}}{2\mu r} - \frac{GM\mu}{r}$$
(14)  
$$\dot{r}^{2} = \frac{2E}{\mu} - \frac{\ell^{2}}{\mu^{2}r^{2}} + \frac{2GM}{r}$$
(15)

 $\rightarrow \, {\rm two}$  coupled equations for r and  $\phi$ 

# Excursus: Analytic solution of the Kepler problem II

• decouple Eq. (13), use the orbit equation  $r = \frac{\alpha}{1 + e \cos \phi}$  with numeric eccentricity  $e = (=\overline{f_1 O}/a, Value \text{ for circle?})$  and  $\alpha \equiv \frac{\ell^2}{GM\mu^2}$  gives separable equation for  $\dot{\phi}$ 

$$\dot{\phi} = \frac{d\phi}{dt} = \frac{G^2 M^2 \mu^3}{\ell^3} (1 + e \cos \phi)^2$$
 (16)

$$t = \int_{t_0}^t dt' = k \int_{\phi_0}^{\phi} \frac{d\phi'}{(1 + e\cos\phi')^2} = f(\phi)$$
(17)

right-hand side integral can be looked up in, e.g., Bronstein:

$$t/k = \frac{e\sin\phi}{(e^2 - 1)(1 + e\cos\phi)} - \frac{1}{e^2 - 1} \int \frac{d\phi}{1 + e\cos\phi}$$
(18)

 $\rightarrow e \neq 1$ : parabola excluded; the integral can be further simplified for the ellipse:

$$0 \le e < 1: \int \frac{d\phi}{1 + e\cos\phi} = \frac{2}{\sqrt{1 - e^2}} \arctan\frac{(1 - e)\tan\frac{\phi}{2}}{\sqrt{1 - e^2}}$$
(19)

and for the hyperbola:

$$e > 1: \int \frac{d\phi}{1 + e\cos\phi} = \frac{1}{\sqrt{e^2 - 1}} \ln \frac{(e - 1)\tan\frac{\phi}{2} + \sqrt{e^2 - 1}}{(e - 1)\tan\frac{\phi}{2} - \sqrt{e^2 - 1}}$$
(20)

 $\rightarrow$  Eqn. (19) & (20):  $t(\phi)$  must be inverted to get  $\phi(t)$  ! (e.g., by numeric root finding)  $\rightarrow$  only easy for  $e = 0 \rightarrow$  circular orbit

$$t = k \int d\phi' = k\phi \to \phi(t) = k^{-1}t = \frac{G^2 M^2 \mu^3}{\ell^3} t$$
 (21)

and from orbit equation (for e = 0)  $r = \alpha = \frac{\ell^2}{GM\mu^2} = \text{const.}$ 

For the general case, it is much easier to solve the equations of motion numerically.

# Excursus: The Kepler equation I

Alternative formulation for time dependency in case of an ellipse ( $0 \le e < 1$ ):



Orbit, circumscribed by auxiliary circle with radius a (= semi-major axis); true anomaly  $\phi$ , eccentric anomaly  $\psi$ . Sun at S, planet at P, circle center at O. Perapsis (perhelion)  $\Pi$  and apapsis (aphelion) A:

- consider a line normal to  $\overline{A\Pi}$  through P on the ellipse, intersecting circle at Q and  $\overline{A\Pi}$ at R.
- consider an angle ψ (or E, eccentric anomaly) defined by ∠ΠOQ

## Excursus: The Kepler equation II

Then: position in polar coordinates  $(r, \phi)$  of the body P can be described in terms of  $\psi$ :

$$x_{\mathcal{S}}(P) = r\cos\phi = a\cos\psi - ae \qquad (ae = \overline{OS})$$
(22)

$$y_{\mathcal{S}}(P) = r\sin\phi = a\sin\psi\sqrt{1-e^2} \qquad (=\overline{PR} = \overline{QR}\sqrt{1-e^2} = a\sin\psi\sqrt{1-e^2})$$
(23)

(with  $\overline{PR}/\overline{QR} = b/a = \sqrt{1 - e^2}$ ), square both equations and add them up:

$$r = a(1 - e\cos\psi) \tag{24}$$

Now, to find  $\psi = \psi(t)$ , need relationship between  $d\phi$  and  $d\psi$ , so combine Eqn. (23) & (24)

$$\sin \phi = \frac{b \sin \psi}{a(1 - e \cos \psi)} \quad |d/dx' \& \text{ quotient rule } \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2} \tag{25}$$
$$\cos \phi d\phi = \frac{b}{a} \frac{(\cos \psi (1 - e \cos \psi) d\psi - e \sin^2 \psi d\psi)}{(1 - e \cos \psi)^2} \tag{26}$$
$$d\phi = \frac{b}{a(1 - e \cos \psi)} d\psi \tag{27}$$

# Excursus: The Kepler equation III

together with the angular momentum  $d\phi = \frac{\ell}{\mu r^2} dt$ , where r is replaced by Eq. (24):

$$(1 - e\cos\psi)d\psi = \frac{\ell}{\mu ab}dt$$
(28)

$$=$$
 set  $t = 0 \rightarrow \psi(0) = 0$ , integration: (29)

$$\psi - e\sin\psi = \frac{\ell t}{\mu ab} \tag{30}$$

use Kepler's 2nd law  $\frac{\pi ab}{P} = \frac{\ell}{2\mu}$  with  $\pi ab$  the area of the ellipse, we get  $\ell/(\mu ab) = 2\pi/P \equiv \omega$  (orbital angular frequency), so:

Kepler's equation for the eccentric anomaly  $\psi$  (or E)

$$\psi - e\sin\psi = \omega t \tag{31}$$

$$E - e \sin E = M$$
 (astronomer's version)

M: mean anomaly = angle for constant angular velocity

H. Todt (UP)

(32)

# Excursus: The Kepler equation IV

Kepler's equation  $E(t) - e \sin E(t) = M(t)$ 

- is a transcendental equation for the eccentric anomaly E(t)
- can be solved by, e.g., Newton's method
- because of  $E = M + e \sin E$ , also (Banach) fixed-point iteration possible (slow, but stable), already used by Kepler (1621):

```
E = M ;
for (int i = 0 ; i < n ; ++i)
E = M + e * sin(E) ;
```

 $\bullet$  can be solved, e.g., by Fourier series  $\rightarrow$  Bessel (1784-1846):

$$E = M + \sum_{n=1}^{\infty} \frac{2}{n} J_n(ne) \sin(nM)$$
(33)  
$$J_n(ne) = \frac{1}{\pi} \int_0^{\pi} \cos(nx - ne\sin x) dx$$
(34)

A special case as a solution of the equations of motion (9)&(10) is the circular orbit. Then:

$$\ddot{r} = \frac{v^2}{r}$$
(35)  
$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$
(equilibrium of forces)  
$$\Rightarrow v = \sqrt{\frac{GM}{r}}$$
(37)

The relation (37) is therefore the condition for a circular orbit. Moreover, Eq. (37) yields together with

$$P = \frac{2\pi r}{v}$$
(38)  
$$\Rightarrow P^{2} = \frac{4\pi^{2}}{GM}r^{3}$$
(39)

# Astronomical units

For our solar system it is useful to use astronomical units (AU):  $1\,\text{AU} = 1.496\times10^{11}\,\text{m}$ 

and the unit of time is the (Earth-) year

$$1\,\mathrm{a}=3.156 imes10^7\,\mathrm{s}~(pprox\pi imes10^7\,\mathrm{s})$$
,

so, for the Earth P = 1 a and r = 1 AU Therefore it follows from Eq. (39):

$$SM = \frac{4\pi^2 r^3}{P^2} = 4\pi^2 \,\mathrm{AU}^3 \,\mathrm{a}^{-2}$$
 (40)

I.e. we set  $GM \equiv 4\pi^2$  in our calculations.

Advantage: handy numbers!

Thus, e.g. r = 2 is approx.  $3 \times 10^{11}$  m and t = 0.1 corresponds to  $3.16 \times 10^{6}$  s, and v = 6.28 is roughly 30 km/s.

cf.: our rcalc program with "solar units" for R, T, L; natural units in particle physics  $\hbar = c = k_{\rm B} = \epsilon_0 = 1 \rightarrow \text{unit of } m, p, T$  is eV (also for E)

The equations of motion (9)&(10):

$$\frac{d^2\vec{r}}{dt^2} = -\frac{GM}{r^3}\vec{r}$$
(41)

are a system of differential equations of 2nd order, that we shall solve now. Formally: *integration* of the equations of motion to obtain the *trajectory*  $\vec{r}(t)$ .

## Step 1: reduction

Rewrite Newton's equations of motion as a system of differential equations of *1st order* (here: 1d):

$$v(t) = \frac{dx(t)}{dt}$$
 &  $a(t) = \frac{dv(t)}{dt} = \frac{F(x, v, t)}{m}$  (42)

### Step 2: Solving the differential equation

Differential equations of the form (initial value problem)

$$\frac{dx}{dt} = f(x, t), \quad x(t_0) = x_0$$

can be solved numerically (discretization<sup>1</sup>) by as simple method:

### Explicit Euler method ("Euler's polygonal chain method")

• choose step size  $\Delta t > 0$ , so that  $t_n = t_0 + n\Delta t$ , n = 0, 1, 2, ...

 $x_{n+1} = x_n + f(x_n, t_n)\Delta t$ 

Obvious: The smaller the step size  $\Delta t$ , the more steps are necessary, but also the more accurate is the result.

<sup>1</sup>I.e. we change from calculus to algebra, which can be solved by computers.

(43

# The Euler method III

Why "polygonal chain method"?



# The Euler method IV

#### Derivation from the Fundamental theorem of calculus

integration of the ODE 
$$\frac{dx}{dt} = f(x,t)$$
 from  $t_0$  till  $t_0 + \Delta t$  (44)  

$$\int_{t_0}^{t_0 + \Delta t} \frac{dx}{dt} dt = \int_{t_0}^{t_0 + \Delta t} f(x,t) dt$$

$$\Rightarrow x(t_0 + \Delta t) - x(t_0) = \int_{t_0}^{t_0 + \Delta t} f(x(t), t) dt$$
(45)
apply rectangle method for the integral:  

$$\int_{t_0}^{t_0 + \Delta t} f(x(t), t) dt \approx \Delta t f(x(t_0), t_0)$$
(47)

Equating (46) with (47) yields Euler step

$$x(t_0 + \Delta t) = x(t_0) + \Delta t f(x(t_0), t_0)$$
(48)

Derivation from Taylor expansion

$$x(t_0 + \Delta t) = x(t_0) + \Delta t \, \frac{dx}{dt}(t_0) + \mathcal{O}(\Delta t^2) \tag{49}$$

use 
$$\frac{dx}{dt} = f(x,t)$$
 (50)

$$x(t_0 + \Delta t) = x(t_0) + \Delta t f(x(t_0), t_0)$$
(51)

while neglecting term of higher order in  $\Delta t$ 

# The Euler method VI

For the system Eqn. (42)

$$v(t) = rac{dx(t)}{dt}$$
 &  $a(t) = rac{dv(t)}{dt} = rac{F(x,v,t)}{m}$ 

this means

| Euler method for solving Newton's equations of motion       |      |  |  |  |
|-------------------------------------------------------------|------|--|--|--|
| $v_{n+1} = v_n + a_n \Delta t = v_n + a_n(x_n, t) \Delta t$ | (52) |  |  |  |
| $x_{n+1} = x_n + v_n \Delta t$                              | (53) |  |  |  |

We note:

- the velocity at the end of the time interval  $v_{n+1}$  is calculated from  $a_n$ , which is the acceleration at the beginning of the time interval
- analogously  $x_{n+1}$  is calculated from  $v_n$

#### Example: Harmonic oscillator F = ma = -kx

```
#include <iostream>
#include <cmath>
using namespace std ;
// set k = m = 1
int main () {
 int n = 10001, nout = 500;
 double t, v, v_old, x ;
 double const dt = 2. * M_PI / double(n-1) ;
 x = 1.; t = 0.; v = 0.;
 for (int i = 0; i < n; ++i) {
   t = t + dt; v_old = v;
   v = v - x * dt:
   x = x + v_old * dt;
   if (i % nout == 0) // print out only each nout step
     cout << t << " " << x << " " << v << endl :
  }
 return 0 ;
```

We will slightly modify the explicit Euler method, but such that we obtain the same differential equations for  $\Delta t \rightarrow 0$ .

For this new method we use  $v_{n+1}$  for calculating  $x_{n+1}$ :

Euler-Cromer method (semi-implicit Euler method)

| $v_{n+1}$ | = | $v_n + a_n \Delta t$ | (as for Euler) |
|-----------|---|----------------------|----------------|
|           |   | •                    |                |

$$x_{n+1} = x_n + v_{n+1}\Delta t$$

Advantage of this method:

- as for Euler method, x, v need to be calculated only once per step
- especially appropriate for oscillating solutions, as energy is conserved much better (see below)

(54) (55)

# Excursus: Proof of stability for the Euler-Cromer method I

Proof of stability (Cromer 1981):

$$v_{n+1} = v_n + F_n \Delta t \quad (= v_n + a(x_n)\Delta t, \ m = 1)$$
(56)  
$$x_{n+1} = x_n + v_{n+1}\Delta t$$
(57)

Without loss of generality, let  $v_0 = 0$ . Iterate Eq. (56) *n* times:

$$v_n = (F_0 + F_1 + \ldots + F_{n-1})\Delta t = S_{n-1}$$
(58)

$$x_{n+1} = x_n + S_n \Delta t \tag{59}$$

$$S_n := \Delta t \sum_{j=0}^n F_j \tag{60}$$

Note that for explicit Euler Eq. (59) is  $x_{n+1} = x_n + S_{n-1}\Delta t$ .

The change in the kinetic energy K between  $t_0 = 0$  and  $t_n = n\Delta t$  is because of Eq. (56) and  $v_0 = 0$ 

$$\Delta K_n = K_n - K_0 = K_n = \frac{1}{2} S_{n-1}^2$$
(61)

The change in the potential energy U:

$$\Delta U_n = -\int_{x_0}^{x_n} F(x) dx \tag{62}$$

Now use the trapezoid rule for this integral

$$\Delta U_n = -\frac{1}{2} \sum_{i=0}^{n-1} (F_i + F_{i+1}) (x_{i+1} - x_i)$$
(63)

$$= -\frac{1}{2}\Delta t \sum_{i=0}^{n-1} (F_i + F_{i+1}) S_i \qquad (\to \text{ Eq. 57})$$
(64)

$$= -\frac{1}{2}\Delta t^{2} \sum_{i=0}^{n-1} \sum_{j=0}^{i} (F_{i} + F_{i+1})F_{j} \quad (\rightarrow \text{ Eq. 60})$$
(65)

# Excursus: Proof of stability for the Euler-Cromer method IV

As j runs from 0 to  $i \rightarrow \Delta U_n$  has same squared terms as  $\Delta K_n$ , see:

$$\Delta U_n = -\frac{1}{2} \Delta t^2 \left( \sum_{i=0}^{n-1} F_i^2 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} F_i F_j + \sum_{i=1}^n \sum_{j=0}^{i-1} F_i F_j \right)$$
(66)  
$$= -\frac{1}{2} \Delta t^2 \left( \sum_{i=0}^{n-1} F_i^2 + 2 \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} F_i F_j + F_n \sum_{j=0}^{i-1} F_j \right)$$
(67)  
$$= -\frac{1}{2} S_{n-1}^2 - \frac{1}{2} \Delta t F_n S_{n-1}$$
(68)

Hence the total energy changes as

$$\Delta E_n = \Delta K_n + \Delta U_n = \frac{1}{2} S_{n-1}^2 - \frac{1}{2} S_{n-1}^2 - \frac{1}{2} \Delta t F_n S_{n-1}$$
(69)  
=  $-\frac{1}{2} \Delta t F_n S_{n-1} = -\frac{1}{2} \Delta t F_n v_n$  (70)

# Excursus: Proof of stability for the Euler-Cromer method V

For oscillatory motion:  $v_n = 0$  at turning points,  $F_n = 0$  at equilibrium points  $\rightarrow \Delta E_n = -\frac{1}{2}\Delta t F_n v_n$  is 0 four times of each cycle  $\rightarrow \Delta E_n$  oscillates with T/2. As  $F_n$  and  $v_n$  are bound  $\rightarrow \Delta E_n$  is bound, more important: average of  $\Delta E_n$  over half a cycle (T)

$$\langle \Delta E_n \rangle = \frac{\Delta t^2}{T} \sum_{n=0}^{\frac{1}{2}T/\Delta t} F_n v_n \simeq \frac{\Delta t}{T} \int_0^{\frac{T}{2}} F v \, dt = \frac{\Delta t}{T} \int_{x(0)}^{x(\frac{T}{2})} F \, dx$$

$$= -\frac{\Delta t}{T} \left( U(T/2) - U(0) \right) = 0$$

$$(72)$$

as U has same value at each turning point

 $\rightarrow$  energy conserved on average with Euler-Cromer for oscillatory motion

For comparison: with explicit Euler method  $\Delta E_n$  contains term  $\sum_{i=0}^{n-1} F_i^2$  which increases monotonically with n and

$$\Delta E_n = -\frac{1}{8} \Delta t^2 \left( F_0^2 - F_n^2 \right)$$
(73)

with  $v_0 = 0 \rightarrow F_0^2 \ge F_n^2 \rightarrow \Delta E_n$  oscillates between 0 and  $-\frac{1}{8}\Delta t^2 F_0^2$  per cylce. Energy is bounded as for Euler-Cromer, but  $\langle \Delta E_n \rangle \neq 0$ 

# Stability analysis of the Euler method I

Consider the following ODE

$$\frac{dx}{dt} = -cx \tag{74}$$

with c > 0 and  $x(t = 0) = x_0$ . Analytic solution is  $x(t) = x_0 \exp(-ct)$ . The explicit Euler method gives:

$$x_{n+1} = x_n + \dot{x}_n \Delta t = x_n - c x_n \Delta t = x_n (1 - c \Delta t)$$
(75)

So, every step will give  $(1 - c\Delta t)$  and after *n* steps:

$$x_n = (1 - c\Delta t)^n x_0 = (a)^n x_0$$
(76)

But, with  $a = 1 - c\Delta t$ :

$$\begin{array}{ll} 0 < a < 1 & \Rightarrow \Delta t < 1/c & \text{monotonic decline of } x_n \text{ (correct)} \\ -1 < a < 0 & \Rightarrow 1/c < \Delta t < 2/c & \text{oscillating decline of } x_n \\ a < -1 & \Rightarrow \Delta t > 2/c & \text{oscillating increase of } x_n \end{array}$$

$$(77)$$

# Stability analysis of the Euler method II



Stability of the explicit Euler method for different  $a = 1 - c\Delta t$ 

In contrast, consider implicit Euler method (Euler-Cromer):

$$x_{n+1} = x_n + \dot{x}_{n+1}\Delta t = x_n - cx_{n+1}\Delta t$$

$$\Rightarrow x_{n+1} = \frac{x_n}{1 + c\Delta t}$$
(78)
(79)

declines for all  $\Delta t$  (!)

Sometimes it is better, to calculate the velocity for the midpoint of the interval:

### Euler-Richardson method ("Euler half step method")

$$a_n = F(x_n, v_n, t_n)/m \tag{80}$$

$$v_{\rm M} = v_n + a_n \frac{1}{2} \Delta t \tag{81}$$

$$x_{\mathsf{M}} = x_n + v_n \frac{1}{2} \Delta t \tag{82}$$

$$P_{M} = F\left(x_{M}, v_{M}, t_{n} + \frac{1}{2}\Delta t\right) / m$$
(83)

$$\begin{aligned}
\nu_{n+1} &= \nu_n + a_{\mathsf{M}} \Delta t \tag{84} \\
\kappa_{n+1} &= x_n + \nu_{\mathsf{M}} \Delta t \tag{85}
\end{aligned}$$

We need twice the number of steps of calculation, but may be more efficient, as we might choose a larger step size as for the Euler method.

Cromer, A. 1981, American Journal of Physics, 49, 455