Computational Astrophysics I: Introduction and basic concepts #### Helge Todt Astrophysics Institute of Physics and Astronomy University of Potsdam SoSe 2023, 5.6.2023 The (special) three-body problem # The (special)[†] three-body problem I We will not solve the general case of the three-body problem, but consider only the following configuration $(m_1, m_2 < M)$: $$m_1 \frac{d^2 \vec{r_1}}{dt^2} = -\frac{GMm_1}{r_1^3} \vec{r_1} + \frac{Gm_1 m_2}{r_{21}^3} \vec{r_{21}}$$ (1) $$m_2 \frac{d^2 \vec{r}_2}{dt^2} = -\frac{GMm_2}{r_2^3} \vec{r}_2 - \frac{Gm_1 m_2}{r_{21}^3} \vec{r}_{21}$$ (2) [†]not to confuse with the restricted three-body problem, where $m_1 \approx m_2 \gg m_3$ \rightarrow Lagrangian points, e.g, L_1 for SOHO, L_2 for JWST # The (special)[†] three-body problem II It is useful to divide the Eqn. (1) & (2) each by m_1 and m_2 respectively: $$\frac{d^2\vec{r}_1}{dt^2} = -\frac{GM}{r_1^3}\vec{r}_1 + \frac{Gm_2}{r_{21}^3}\vec{r}_{21} \tag{3}$$ $$\frac{d^2\vec{r}_2}{dt^2} = -\frac{GM}{r_2^3}\vec{r}_2 - \frac{Gm_1}{r_{21}^3}\vec{r}_{21} \tag{4}$$ Moreover we can set – using astronomical units – again: $$GM \equiv 4\pi^2 \tag{5}$$ The terms $$+\frac{Gm_2}{r_{21}^3}\vec{r}_{21} \quad \& \quad -\frac{Gm_1}{r_{21}^3}\vec{r}_{21} \tag{6}$$ can be written with help of mass ratios $$\frac{m_2}{M} \quad \& \quad -\frac{m_1}{M} \tag{7}$$ # The (special)[†] three-body problem III so that $$ratio[0] = \frac{m_2}{M}GM \quad \& \quad ratio[1] = -\frac{m_1}{M}GM \tag{8}$$ The *accelerations* are then calculated like this (in C/C++): ``` dx = x[1] - x[0] ... dr3 = pow(dx * dx + dy * dy , 3./2.) ... ax = -GM * x[i] / r3 + ratio[i] * dx / dr3 ay = -GM * y[i] / r3 + ratio[i] * dy / dr3 ``` Methods for solving the Newtonian equations of motion # Numerical Integration I Review \rightarrow Newtonian equations of motion (2nd order ODE \rightarrow reduction to 1st order) $$\frac{dv}{dt} = a(t) \quad \& \quad \frac{dx}{dt} = v(t) \tag{9}$$ Numerical solution from Taylor expansion: $$v_{n+1} = v_n + a_n \Delta t + \mathcal{O}((\Delta t)^2)$$ (10) $$x_{n+1} = x_n + v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2 + \mathcal{O}((\Delta t)^3)$$ (11) Euler method: account only for $\mathcal{O}(\Delta t)$ (for $\Delta t \to 0$): $$v_{n+1} = v_n + a_n \, \Delta t \tag{12}$$ $$x_{n+1} = x_n + v_n \Delta t \tag{13}$$ therefore, only having $\mathcal{O}(\Delta t)$: - \rightarrow local truncation error in one time step: $\sim (\Delta t)^2$ - ightarrow global error over t: $\sim (\Delta t)$, because n steps with $n= rac{t}{\Delta t}\sim rac{1}{\Delta t}$, ## Numerical Integration II so order of global error reduced by $\frac{1}{\Delta t}$ A method is of *n*th order, if the global error is of the order of $(\Delta t)^n$. The Euler method is of of 1st order. Note, the Euler-Cromer method (semi-implicit Euler method) is also of 1st order, but conserves energy (symplectic integrator): $$v_{n+1} = v_n + a_n(x_n)\Delta t \tag{14}$$ $$x_{n+1} = x_n + v_{n+1} \Delta t \tag{15}$$ but there is also a 2nd variant of the (semi-implicit) Euler method $$x_{n+1} = x_n + v_n \Delta t \tag{16}$$ $$v_{n+1} = v_n + a_{n+1}(x_{n+1})\Delta t \tag{17}$$ \rightarrow used for Verlet integration (see below Eqn. (27) & (28)) ## Numerical Integration III Possible improvement: use velocity from the *midpoint* of the interval cf. Heun's method (Karl Heun, 1859-1929) $$v_{n+1} = v_n + a_n \Delta t$$ (as for Euler) (18) $$x_{n+1} = x_n + \frac{1}{2}(v_n + v_{n+1})\Delta t$$ (19) $$=x_n+v_n\,\Delta t+\frac{1}{2}\,a_n\Delta t^2\qquad (20)$$ \rightarrow accuracy of position is of 2nd order and velocity is of 1st order (only good for constant acceleration, not more accurate than Euler, as error increases with each time step) #### Numerical Integration IV Better (stable for oscillatory motions with const. $\Delta t \leq 2/\omega$, therefore common, error bounded): #### Halfstep method / Leapfrog integration $$v_{n+\frac{1}{2}} = v_{n-\frac{1}{2}} + a_n \Delta t \tag{21}$$ $$x_{n+1} = x_n + v_{n+\frac{1}{2}} \Delta t \tag{22}$$ # Numerical Integration V ightarrow 2nd order with same number of steps as Euler (1st order), time-reversable, exact conservation of momenta, energy conserved up to 3rd order But: not self starting, i.e. from Eq. (21) $\rightarrow v_{\frac{1}{2}}$ therefore Euler method for the first half step: $$v_{\frac{1}{2}} = v_0 + \frac{1}{2} a_0 \Delta t \tag{23}$$ Moreover, velocity steps can be eliminated by using Eq. (21) & (22): $$(x_{n+1} - x_n) - (x_n - x_{n-1}) = (v_{n+\frac{1}{2}} - v_{n-\frac{1}{2}})\Delta t$$ (24) $$x_{n+1} - 2x_n + x_{n-1} = a_n \Delta t (25)$$ $$\rightarrow x_{n+1} = 2x_n - x_{n-1} + a_n \Delta t^2 \quad \text{(Størmer's method}^{\dagger})$$ (26) with start values $x_0, x_1 = x_0 + v_0 + \frac{1}{2}a_0(x_0)\Delta t^2$ (so v_0 is still required!) $^{^{\}dagger}$ Carl Størmer (1874-1957), Norwegian physicist, theoretical description of aurora borealis \rightarrow trajectories of charged particles in magnetic field #### Numerical Integration VI Or, by interpolation of intermediate values as combination of symplectic, semi-implicit Euler methods (Eq. (14)-(17)) $$\begin{vmatrix} v_{n+\frac{1}{2}} &= v_n + a_n \frac{1}{2} \Delta t \\ x_{n+\frac{1}{2}} &= x_n + v_{n+\frac{1}{2}} \frac{1}{2} \Delta t \end{vmatrix}$$ $$\begin{vmatrix} x_{n+1} &= x_{n+\frac{1}{2}} + v_{n+\frac{1}{2}} \frac{1}{2} \Delta t \\ v_{n+1} &= v_{n+\frac{1}{2}} + a_{n+1} \frac{1}{2} \Delta t \end{vmatrix}$$ (28) by substituting system (27) into system (28) one obtains Leapfrog with integer steps: $$x_{n+1} = x_n + v_n \Delta t + \frac{1}{2} a_n \Delta t^2$$ (29) $$v_{n+1} = v_n + \frac{1}{2}(a_n + a_{n+1})\Delta t \tag{30}$$ \rightarrow so-called Verlet integration[†] (see next slides) ^TLoup Verlet (1931-2019), french physicist, pioneered computer simulations #### Numerical Integration VII #### Higher order methods for that purpose: Taylor expansion of x_{n-1} (negative time step): $$x_{n-1} = x_n - v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2 - \mathcal{O}((\Delta t)^3)$$ (31) $$+ x_{n+1} = x_n + v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2 + \mathcal{O}((\Delta t)^3)$$ (32) $$= x_{n+1} + x_{n-1} = 2x_n + a_n(\Delta t)^2 + \mathcal{O}((\Delta t)^4)$$ $$\Rightarrow x_{n+1} = 2x_n - x_{n-1} + a_n(\Delta t)^2$$ (33) $$\Rightarrow x_{n+1} = 2x_n - x_{n-1} + a_n(\Delta t)^2$$ Analogously: $$x_{n+1} = x_n + v_n \, \Delta t + \frac{1}{2} a_n (\Delta t)^2 + \mathcal{O}((\Delta t)^3)$$ (35) $$- (x_{n-1} = x_n - v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2 - \mathcal{O}((\Delta t)^3))$$ $$= x_{n+1} - x_{n-1} = 2v_n \Delta t + \mathcal{O}((\Delta t)^3)$$ (37) $$\Rightarrow v_n = \frac{x_{n+1} - x_{n-1}}{2\Delta t} \qquad \text{(Verlet)}$$ (38) (36) # Numerical Integration VIII \rightarrow method of 2nd order in v and 3rd order in x #### But: - not self starting (needs start values $x_0, x_1 = x_0 + v_0 + \frac{1}{2}a_0\Delta t^2$, see above) - Eq. (38) contains differences of two values of same order of magnitude and expected $\Delta x \ll x \rightarrow$ round-off errors possible (subtractive cancelation) Therefore, from Eq. (37) $$x_{n-1} = x_{n+1} - 2v_n \Delta t$$ insert in Eq. (34): $$x_{n+1} = 2x_n - x_{n+1} + 2v_n \Delta t + a_n (\Delta t)^2$$ (40) Solve for x_{n+1} , yields: #### Velocity Verlet $$x_{n+1} = x_n + v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2$$ (41) $$v_{n+1} = v_n + \frac{1}{2}(a_{n+1} + a_n)\Delta t$$ # Numerical Integration IX - \rightarrow self-starting - → minimizes round-off errors (no differences) - \rightarrow 4th order in x (why? \rightarrow Eq. (35) & (36)) Eq. (42) results from Eq. (38) for v_{n+1} : $$v_{n+1} = \frac{x_{n+2} - x_n}{2\Delta t} \tag{43}$$ and $$x_{n+2} = 2x_{n+1} - x_n + a_{n+1}(\Delta t)^2$$ from Eq. (34) $$\Rightarrow v_{n+1} = \frac{2x_{n+1} - x_n + a_{n+1}(\Delta t)^2 - x_n}{2\Delta t}$$ $$= \frac{x_{n+1} - x_n}{\Delta t} + \frac{1}{2}a_{n+1}(\Delta t)^2 & \& x_{n+1} \text{ from Eq. (41)}$$ $$= \frac{x_n + v_n \Delta t + \frac{1}{2}a_n(\Delta t)^2 - x_n}{\Delta t} + \frac{1}{2}a_{n+1}\Delta t$$ (45) $$= v_n + \frac{1}{2}(a_{n+1} + a_n)\Delta t \tag{47}$$ # Numerical Integration X #### Alternatively: (developed for liquid particles in a Lennard-Jones potential) #### Beeman method (Schofield 1973; Beeman 1976) $$x_{n+1} = x_n + v_n \Delta t + \frac{1}{6} (4a_n - a_{n-1})(\Delta t)^2$$ (48) $$v_{n+1} = v_n + \frac{1}{6}(2a_{n+1} + 5a_n - a_{n-1})\Delta t$$ (49) - \rightarrow not self-starting - ightarrow locally: $\mathcal{O}(\Delta t)^4$ in x and $\mathcal{O}(\Delta t)^3$ in v, globally $\mathcal{O}(\Delta t)^3$ - → better energy conservation than for Verlet, but more calculation steps even better: \rightarrow Runge-Kutta method of 4th order # The Runge-Kutta method # Runge-Kutta method of 4th order I #### Remember: ## Euler-Richardson method (Euler-halfstep method) $$a_n = F(x_n, v_n, t_n)/m (50)$$ $$v_{\mathsf{M}} = v_n + a_n \frac{1}{2} \Delta t \tag{51}$$ $$x_{\mathsf{M}} = x_n + v_n \frac{1}{2} \Delta t \tag{52}$$ $$a_{\mathsf{M}} = F\left(x_{\mathsf{M}}, v_{\mathsf{M}}, t_{\mathsf{n}} + \frac{1}{2}\Delta t\right)/m \tag{53}$$ $$v_{n+1} = v_n + a_M \Delta t$$ $$x_{n+1} = x_n + v_{\mathsf{M}} \Delta t \tag{55}$$ - \rightarrow calculation of F or a, respectively, for the whole step at the "midpoint" of the interval, instead of using the values from the beginning - ≡ Runge-Kutta method 2nd order (54) # Runge-Kutta method of 4th order II We will refine the halfstep method by using more supporting points: # Runge-Kutta method of 4th order III With the Runge-Kutta method[†] the initial value problem $$dy/dx = y' = f(x, y), \quad y(x_0) = y_0$$ (56) is solved by calculating approximate values y_i at selected supporting points x_i to obtain the wanted y(x). These y_i are calculated with help of the following scheme (cf. Bronstein), where also only linear terms are calculated, but in form of a "polygonal line": - supporting point at the beginning and at the end of the interval - two additional supporting points in the middle of the interval with doubled weight [†]Carl Runge (1856-1927), Wilhelm Kutta (1867-1944) H. Todt (UP) # Runge-Kutta method of 4th order IV Move from x_0 to $x_i = x_0 + ih$ (step size h, i = 0, 1, 2, ...) \rightarrow single step method | X | y | $k = h \cdot f(x, y) = h \cdot dy/dx$ | |-----------------------|--|---------------------------------------| | <i>x</i> ₀ | <i>y</i> ₀ | k_1 | | $x_0 + h/2$ | $y_0 + k_1/2$ | k_2 | | $x_0 + h/2$ | $y_0 + k_1/2$
$y_0 + k_2/2$ | k_3 | | $x_0 + h$ | $y_0 + k_3$ | k ₄ | | $x_1 = x_0 + h$ | $y_1 = x_0 + h$ $y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ | | Cf.: Simpson's rule[†] (actually Kepler's rule , "Keplersche Fassregel", 1615) for integration of y'(x) via a parabola: $$\int_{a}^{b} y'(x)dx \approx \frac{b-a}{6} \left(y'(a) + 4y'\left(\frac{a+b}{2}\right) + y'(b) \right)$$ (57) [†]Thomas Simpson (1710-1761) ## Runge-Kutta method of 4th order V For the equations of motion this means therefore: $$\vec{k}_{1v} = \vec{a}(\vec{x}_n, \vec{v}_n, t) \Delta t \quad (= \vec{a}_{grav.}(\vec{x}_n) \Delta t \quad \text{in our case})$$ (58) $$\vec{k}_{1x} = \vec{v}_n \Delta t \tag{59}$$ $$\vec{k}_{2v} = \vec{a} \left(\vec{x}_n + \frac{\vec{k}_{1x}}{2}, \vec{v}_n + \frac{\vec{k}_{1v}}{2}, t_n + \frac{\Delta t}{2} \right) \Delta t$$ (60) $$\vec{k}_{2x} = \left(\vec{v}_n + \frac{\vec{k}_{1v}}{2}\right) \Delta t \tag{61}$$ $$\vec{k}_{3v} = \vec{a}\left(\vec{x}_n + \frac{\vec{k}_{2x}}{2}, \vec{v}_n + \frac{\vec{k}_{2v}}{2}, t_n + \frac{\Delta t}{2}\right) \Delta t$$ $$\vec{k}_{3x} = \left(\vec{v}_n + \frac{\vec{k}_{2v}}{2}\right) \Delta t \tag{63}$$ $$\vec{k}_{4v} = \vec{a}(\vec{x}_n + \vec{k}_{3x}, \vec{v}_n + \vec{k}_{3v}, t + \Delta t) \Delta t$$ $$\vec{k}_{4x} = (\vec{v}_n + \vec{k}_{3v}) \Delta t \tag{65}$$ (64) (62) # Runge-Kutta method of 4th order VI So, finally $$v_{n+1} = v_n + \frac{1}{6}(k_{1\nu} + 2k_{2\nu} + 2k_{3\nu} + k_{4\nu})$$ $$x_{n+1} = x_n + \frac{1}{6}(k_{1x} + 2k_{2x} + 2k_{3x} + k_{4x})$$ (66) (67) $$x_{n+1} = x_n + \frac{1}{6}(k_{1x} + 2k_{2x} + 2k_{3x} + k_{4x})$$ (67) → Runge-Kutta methods are self-starting # Numerical integration: Improvements I #### Adaptive stepsize: step doubling - calculate new coordinates (\vec{x}, \vec{v}) via two Runge-Kutta steps each with Δt - 2 calculate new coordinates $(\vec{x}, \vec{v})'$ via one Runge-Kutta step with $2\Delta t$ - ightarrow calculation overhead increases only by 11/8, because of same derivatives on the beginning of the interval Now, if $$\frac{|(x,v)-(x,v)'|}{|(x,v)|} \ge \epsilon_{\max} \tag{68}$$ with an accuracy criterion $\epsilon_{\sf max} o {\sf decrease}$ stepsize Δt If $$\frac{|(x,v)-(x,v)'|}{|(x,v)|} \le \epsilon_{\min} \quad \text{mit} \quad \epsilon_{\min} < \epsilon_{\max}$$ (69) \rightarrow increase Δt # Numerical integration: Improvements II #### Predictor-corrector method First *prediction* of the new position, e.g.: $$x_{\mathsf{p}} = x_{\mathsf{n}-1} + 2v_{\mathsf{n}}\Delta t \tag{70}$$ \rightarrow yields accleration $a_p \rightarrow corrected$ position by trapezoidal rule: $$v_{n+1}^0 = v_n + \frac{1}{2}(a_p + a_n)\Delta t$$ (71) $$x_{n+1}^0 = x_n + \frac{1}{2}(v_{n+1} + v_n)\Delta t$$ (72) \rightarrow yields better value for a_{n+1} and hence $$v_{n+1}^{1} = v_n + a_{n+1} \Delta t$$ $$x_{n+1}^{1} = x_n + v_{n+1} \Delta t$$ (73) $$x_{n+1}^1 = x_n + v_{n+1} \Delta t (74)$$ repeated iteration until $|x_{n+1}^{k+1} - x_{n+1}^{k}| < \epsilon$ with intended accuracy ϵ #### Bulirsch-Stoer method I Especially interesting for interactions of several bodys (few-body problem): - resonances in planetary systems - influence by one-time passage of a star - influence of the galactic gravitational potential - \rightarrow Requires: - high numerical accuracy - flexibility - high computation rate Idea: combination of - modified midpoint method - Richardson extrapolation - extrapolation via rational functions - → Bulirsch-Stoer method (Stoer & Bulirsch 1980)[†] - cf. Numerical Recipes [†]Roland Bulirsch (1932-2022), Josef Stoer (*1934) #### Modified midpoint method For an ODE dx/dt = f(t,x) over a time step H = Nh with N equidistant sub-steps $$x_0 = x(t) (75)$$ $$x_1 = x_0 + hf(t, x_0)$$ (76) $$x_n = x_{n-2} + 2hf(t + [n-1]h, x_{n-1}) \quad n = 2, ..., N$$ (77) $$x(t+H) \approx \tilde{x} = \frac{1}{2}[x_N + x_{N-1} + hf(t+H, x_N)]$$ (79) \rightarrow 2nd order method, but with only one derivative per h-(sub)step (where 2nd order Runge-Kutta has two derivatives per step) #### Bulirsch-Stoer method III Gragg[†] (1965): error in Eq. (79) \rightarrow even power series: $$\tilde{x} - x(t+H) = \sum_{i=1}^{\infty} \alpha_i h^{2i}$$ (80) \rightarrow for even N (so, $N=2,4,6,\ldots$) all odd error terms cancel out Let $x_{N/2}$ the result for x(t+H) with half the number of steps: $$x(t+H) \approx \frac{4\tilde{x}_N - \tilde{x}_{N/2}}{3} \tag{81}$$ \rightarrow 4th order accuracy (as for RK4), but only with 1.5 derivatives (RK4: 4) †William B. Gragg (1936-2016) #### Bulirsch-Stoer method IV #### Richardson extrapolation Idea: result x(t + H) is an analytic function of h with h = H/N: - **1** calculate $x_{t+H}(h = 2, 4, 6, ...)$ - ② fit function $x_{t+H}(h)$ to $x_{t+H}(N=2)$, $x_{t+H}(N=4)$, ... - **3** extrapolate $x_{t+H}(h \to 0)$, corresponding to $N \to \infty$ #### Extrapolation via polynomial Compute k-times x_{t+H} with N = 2, 4, 6, ...: $$x_{t+H}(h) = a_0 + a_1 h + a_2 h^2 + \ldots + a_k h^{k-1}$$ (82) where following Lagrange $$x_{t+H}(h) = \frac{(h-h_2)(h-h_3)\dots(h-h_k)}{(h_1-h_2)(h_1-h_3)\dots(h_1-h_k)} x_{t+H}(h_1)$$ $$+ \frac{(h-h_1)(h-h_3)\dots(h-h_k)}{(h_2-h_1)(h_2-h_3)\dots(h_2-h_k)} x_{t+H}(h_2)$$ $$+ \dots + \frac{(h-h_1)(h-h_2)\dots(h-h_{k-1})}{h_k-h_1)(h_k-h_2)\dots(h_k-h_{k-1})} x_{t+H}(h_k)$$ (85) In the original Bulirsch-Stoer method: rational function (P(h)/Q(h)) instead of Lagrange polynomial # Regularization I Consider an N-body system with $$\frac{d^2\vec{x}_i}{dt^2} = -\sum_{j=1; j\neq i}^{N} \frac{Gm_j(\vec{x}_i - \vec{x}_j)}{|\vec{x}_i - \vec{x}_j|^3}$$ (86) problem: $a_{ij} \propto \frac{1}{r_{ij}^2}$ for very small distances r_{ij} (close encounters) - ightarrow small distances ightarrow large accelerations ightarrow requires small Δt - \rightarrow slows down calculations & increases numerical accumulation error possibly uncomplicated for one time encounters But in star clusters: \rightarrow formation of close binaries \rightarrow *periodic* so-called "binary hardening": transfer of the energy of the binary system to the cluster by consecutive close encounters # Regularization II M 62 (NGC 6266). Left: optical HST. Right: X-ray CHANDRA $\rightarrow\!$ above-average rate of close binary systems (e.g., low-mass X-ray binaries) in globular clusters (Pooley et al. 2003) # Regularization III obvious (and inaccurate) idea: "softening" term in Eq. (86): $$\vec{F}_{ij} = \frac{G \, m_i \, m_j (\vec{r}_j - \vec{r}_i)}{(\epsilon^2 + |\vec{r}_i - \vec{r}_i|^2)^{3/2}} \tag{87}$$ $$\max |\vec{a}_j| = \frac{2G m_i}{3^{3/2} \epsilon^2} \text{ at } r = \frac{1}{\sqrt{2}} \epsilon$$ (89) \rightarrow adaptive Δt not arbitrarily small; but: close binary orbits and passages not resolvable #### When is "softening" applicable? - \rightarrow if close encounters are irrelevant - \rightarrow collisionless systems, e.g., galaxy # Regularization IV #### Illustration: distances in a galaxy Galaxy: Ø $pprox 10^{23}\,\mathrm{cm}$ with $10^{11}\,\mathrm{stars}$ with $R_* pprox 10^{11}\,\mathrm{cm} o d pprox 10^{19}\,\mathrm{cm}$ 10¹¹ sand grains ightarrow 100 imes width of - \rightarrow average distance between sand grains $\approx 10\,\text{km}$ - $o t_{*,coll} \gg t_{Hubble} o collisionless$ stars perceive only the average gravitational potential of the galaxy # Regularization V Better: regularization (technique in physics to avoid ∞) with help of transformation of spacetime coordinates. Consider vector \vec{R} between two particles (center of mass frame): $$\frac{d^2\vec{R}}{dt^2} = -G(m_1 + m_2)\frac{\vec{R}}{|\vec{R}|^3} + \vec{F}_{12}$$ (90) with external force $\vec{F}_{12} = \vec{F}_1 - \vec{F}_2$ per mass, by other particles 1. regularized time au $$dt = R^n d\tau (91)$$ $$\frac{d^2}{dt^2} = \frac{1}{R^{2n}} \frac{d^2}{d\tau^2} - \frac{n}{R^{2n+1}} \frac{dR}{d\tau} \frac{d}{d\tau}$$ (92) $$\frac{d^2\vec{R}}{d\tau^2} = \frac{n}{R} \frac{dR}{d\tau} \frac{d\vec{R}}{d\tau} - G(m_1 + m_2) \frac{\vec{R}}{R^{3-2n}} + R^{2n} \vec{F}_{12}$$ (93) for $n=1 \to R \propto dt/d\tau$ and without R^{-2} - singularity, but with \vec{R}/R term (indefinite for $R \to 0$) # Regularization VI therefore: 2. regularized distance u, initially only for 1 dimension (already known by Euler), without external force (see Aarseth 2003): $$\frac{d^2R}{d\tau^2} = \frac{1}{R} \left(\frac{dR}{d\tau}\right)^2 - G(m_1 + m_2) \tag{94}$$ (95) and with conservation of energy, total energy h per reduced mass $\mu = m_1 m_2/(m_1 + m_2)$: $$h = \frac{1}{2} \left(\frac{dR}{dt} \right)^2 - \frac{G}{R} (m_1 + m_2) \tag{96}$$ $\rightarrow h$ is fixed without external force, and with $$\frac{dR}{dt} = \frac{1}{R} \frac{dR}{d\tau} \tag{97}$$ $$\Rightarrow \frac{d^2R}{d\tau^2} = 2hR + G(m_1 + m_2) \tag{98}$$ H. Todt (UP) ## Regularization VII \rightarrow no more singularities. With $u^2 = R$: $$\frac{d^2u}{d\tau^2} = \frac{1}{2}hu\tag{99}$$ - \rightarrow harmonic oscilator (h is const.) - \rightarrow easy to integrate - \rightarrow method: change from (x, t) to (u, τ) below some distinct distance (for 1d collision!) #### Regularization VIII in 2 dimensions (Levi-Civita 1904)†: $$x = u_1^2 - u_2^2 (100)$$ $$y = 2u_1u_2 (101)$$ or $$\vec{R} = \mathcal{L}\vec{u}$$ (102) where $$\mathcal{L} = \mathcal{L}(\vec{u}) = \begin{pmatrix} u_1 & -u_2 \\ u_2 & u_1 \end{pmatrix}$$ (103) With the following properties: $$\mathcal{L}(\vec{u})^{T} \mathcal{L}(\vec{u}) = R\mathcal{I}$$ (104) $$\frac{d}{dt}\mathcal{L}(\vec{u}) = \mathcal{L}\left(\frac{d\vec{u}}{dt}\right) \tag{105}$$ $$\mathcal{L}(\vec{u})\vec{v} = \mathcal{L}(\vec{v})\vec{u} \tag{106}$$ $$\vec{u} \cdot \vec{u} \mathcal{L}(\vec{v}) \vec{v} - 2 \vec{u} \cdot \vec{v} \mathcal{L}(\vec{u}) \vec{v} + \vec{v} \cdot \vec{v} \mathcal{L}(\vec{u}) \vec{u} = 0$$ (107) [†] Tullio Levi-Civita (1873-1941), Italian mathematician and physicist #### Regularization IX With help of Eqn. (105 & 106) coordinates change to $$\frac{d\vec{R}}{d\tau} = 2\mathcal{L}(\vec{u})\frac{d\vec{u}}{d\tau} \tag{108}$$ $$\frac{d^2\vec{R}}{d\tau^2} = 2\mathcal{L}(\vec{u})\frac{d^2\vec{u}}{d\tau^2} + 2\mathcal{L}\left(\frac{d\vec{u}}{d\tau}\right)\frac{d\vec{u}}{d\tau}$$ (109) Hence in Eq. (93) with n = 1 and with Eq. (107) and some transformations: $$2\vec{u} \cdot \vec{u} \mathcal{L}(\vec{u}) \frac{d^2 \vec{u}}{d\tau^2} - 2 \frac{d\vec{u}}{d\tau} \cdot \frac{d\vec{u}}{d\tau} \mathcal{L}(\vec{u}) \vec{u} + G(m_1 + m_2) \mathcal{L}(\vec{u}) \vec{u} = (\vec{u} \cdot \vec{u})^3 \vec{F}_{12}$$ $$(110)$$ further transformations lead to a form without singularities and indefinitenesses: $$\frac{d^2\vec{u}}{d\tau^2} = \frac{1}{2}h\vec{u} + \frac{1}{2}R\mathcal{L}^T(\vec{u})\vec{F}_{12}$$ (111) ## Regularization X Binary star without external forces $\vec{F}_{12} \to \text{energy } h$ conserved Binary star with external forces: $$h = \left[2 \frac{d\vec{u}}{d\tau} \cdot \frac{d\vec{u}}{d\tau} - G(m_1 + m_2) \right] / R$$ (112) The time evolution in usual coordinates $$\frac{d}{dt}\left[\frac{1}{2}\left(\frac{dR}{dt}\right)^2 - \frac{G}{R}(m_1 + m_2)\right] = \frac{d\vec{R}}{dt} \cdot \vec{F}_{12}$$ (113) after transformation $$\frac{dh}{d\tau} = 2\frac{d\vec{u}}{d\tau} \cdot \mathcal{L}(\vec{u})\vec{F}_{12} \tag{114}$$ can be solved continuously for R=0 simultaneously with Eq. (111) ## Regularization XI Application of the 2d solution to the so-called Pythagoraian three-body problem ($\vec{L}=0$) in Szebehely & Peters (1967): because of $\vec{L}=0$ three-body collision possible \to does not occur (3rd body gives perturbation \vec{F}_{12}) #### Regularization XII Regularization for 3 dimensions (Kustaanheimo & Stiefel 1965) requires transformation to 4d coordinates: $$R_1 = u_1^2 - u_2^2 - u_3^2 + u_4^2 (115)$$ $$R_2 = 2(u_1u_2 - u_3u_4) (116)$$ $$R_3 = 2(u_1u_3 + u_2u_4) (117)$$ $$R_4 = 0 (118)$$ and $\vec{R} = \mathcal{L}(\vec{u})\vec{u}$, such that $$\mathcal{L} = \begin{bmatrix} u_1 & -u_2 & -u_3 & u_4 \\ u_2 & u_1 & -u_4 & -u_3 \\ u_3 & u_4 & u_1 & u_2 \\ u_4 & -u_3 & u_2 & -u_1 \end{bmatrix}$$ (119) \rightarrow yields again equations similar to (111) & (114) see Bodenheimer et al. (2007) and Aarseth (2003) ## N-body simulations for large N I #### Problems: - number of interactions is $N(N-1)/2 \propto \mathcal{O}(N^2)$ - 2 multiple timescales for adaptive time steps for each particle i: $$\Delta t_i \simeq k \sqrt{\frac{1}{|\vec{a}_i|}} \tag{120}$$ with acceleration $\vec{a_i}$ and small factor k ## N-body simulations for large N II #### possible solutions: **1** Tree method (Barnes & Hut 1986, 1989) → hierarchical structure and calculation of multipoles of the potential $\rightarrow \mathcal{O}(N \log N)$ Holmberg (Lund, 1941) even $\mathcal{O}(\textit{N})$ with help of light bulbs on 2d grid (flux $\propto 1/r^2$) - **9** Fourier transformation: compute potential $\Phi(\vec{x})$ with FFT \rightarrow CA 2 - Seapfrog method (2nd order integ.): $$\vec{r}_i^{n+1/2} = \vec{r}_i^{n-1/2} + \Delta t_i \vec{v}_i^n$$ $$\vec{v}_i^{n+1} = \vec{v}_i^n + \Delta t_i \vec{a}_i^{n+1/2}$$ (121) with time step doubling $\Delta t_i = \Delta t_{\mathsf{max}}/2^{n_i}$ for each particle i The gravitational effect excerted by the star cluster and the single star B on star A can be approximated by a point mass. (from Barnes-Hut Galaxy Simulator) #### N-body simulations for large N III #### Example: time step doubling with \rightarrow leapfrog method particle A: time step $\Delta t/2$, particle B: time step Δt starting via $$\vec{r_i}^{n+1/2} = \vec{r_i}^n + \frac{1}{2} \Delta t_i \vec{v_i}^n + \frac{1}{8} \Delta t_i^2 \vec{a_i}^n \quad \text{for } i = A, B.$$ (123) - 1) Hence, we get $\vec{r}_A(\Delta t/4)$ and $\vec{r}_B(\Delta t/2)$ and from that - 2) $\vec{a}_A(A[\Delta t/4], B[\Delta t/2])$ and analogously $\vec{a}_B \to \text{time asymmetry}$ - 3) $\vec{a}_A \rightarrow \vec{v}_A(\Delta t/2) \rightarrow \vec{r}_A(3/4\Delta t)$ - 4) $ec{a}_{A}(A[3/4\Delta t],B[\Delta t/2]) ightarrow ec{v}_{A}(\Delta t) ightarrow$ reversed time asymmetry - 5) Averaging of $\vec{r}_A(\Delta t/4)$, $\vec{r}_A(3/4\Delta t)$ to $\vec{r}_A(\Delta t/2)$, then - 6) $ightarrow ec{a}_B(A[\Delta t/2],B[\Delta t/2]) ightarrow ec{v}_B(\Delta t)$ - 7) from $\vec{v}_A(\Delta t), \vec{v}_B(\Delta t) \rightarrow \vec{r}_A(5/4\Delta t)$ - i.e. next cycle starts, cf. 1) $\vec{r}_A(\Delta t/4)$ & $\vec{r}_B(\Delta t/2)$) ## Summary #### Methods to solve *N*-body interactions: - Runge-Kutta (RK4): standard for any ODE - 2nd order leapfrog: reasonable accuracy for extremely large number of particles, integration only over a few dynamical times (e.g., Sun orbiting Galactic center) - Bulirsch-Stoer[†]: highly accurate, for few-body systems - predictor-corrector: reasonable accuracy for moderate up to large number of particles - for close encounters: softening (collisionless) or accurate regularization (collisions) [†]alternatively for long-term evolution of few-body systems, e.g., over lifetime of Sun and whithout close encounters: symplectic map \rightarrow split Hamiltonian $H = H_{Kepler} + H_{interaction}$, where analytic solution (ellipse) is used for H_{Kepler} , requires transformation to Jacobi coordinates # Outlook: Interacting galaxies I Arp 271 (Gemini South) # Outlook: Interacting galaxies II NGC 4676 "Mice" (HST / NASA) # Galactic "Bridges" and "Tails" I #### Toomre & Toomre (1972): - bridges (connections between galaxies) and tails (structures on the opposite site of the interaction point) as the result of tidal forces between galaxies - simplified model: - encounter of only two galaxies, parabolic (unbound) - galaxies as disks of non-interacting "test particles", initially on circular orbits around a central point mass result: mutual distortion of the galaxies just by gravitation, kinematic evolution to narrow, elongated structures # Galactic "Bridges" and "Tails" II simulation of NGC 4676 from Toomre & Toomre (1972) \rightarrow two identical galaxies # Galactic "Bridges" and "Tails" III NGC 4676 as before, but now seen edge-on #### Literature I Aarseth, S. J. 2003, Gravitational N-Body Simulations (Johns Hopkins University Press) Barnes, J. & Hut, P. 1986, Nature, 324, 446 Barnes, J. E. & Hut, P. 1989, ApJS, 70, 389 Beeman, D. 1976, Journal of Computational Physics, 20, 130 Bodenheimer, P., Laughlin, G. P., Rózyczka, M., & Yorke, H. W., eds. 2007, Numerical Methods in Astrophysics: An Introduction (CRC Press) Pooley, D., Lewin, W. H. G., Anderson, S. F., et al. 2003, ApJ, 591, L131 Schofield, P. 1973, Computer Physics Communications, 5, 17 Szebehely, V. & Peters, C. F. 1967, AJ, 72, 876 Toomre, A. & Toomre, J. 1972, ApJ, 178, 623