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The (special)
three-body problem
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The (special)† three-body problem I

We will not solve the general case of the three-body problem, but consider only the following
configuration (m1,m2 < M):

M

r1

m1

r21

m2

r2

x

y

m1
d2~r1
dt2

= −GMm1

r31
~r1 +

Gm1m2

r321
~r21 (1)

m2
d2~r2
dt2

= −GMm2

r32
~r2 −

Gm1m2

r321
~r21 (2)

†not to confuse with the restricted three-body problem, where m1 ≈ m2 � m3

→ Lagrangian points, e.g, L1 for SOHO, L2 for JWST
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The (special)† three-body problem II
It is useful to divide the Eqn. (1)& (2) each by m1 and m2 respectively:

d2~r1
dt2

= −GM

r31
~r1 +

Gm2

r321
~r21 (3)

d2~r2
dt2

= −GM

r32
~r2 −

Gm1

r321
~r21 (4)

Moreover we can set – using astronomical units – again:

GM ≡ 4π2 (5)

The terms

+
Gm2

r321
~r21 & − Gm1

r321
~r21 (6)

can be written with help of mass ratios

m2

M
& − m1

M
(7)
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The (special)† three-body problem III

so that

ratio[0] =
m2

M
GM & ratio[1] = −m1

M
GM (8)

The accelerations are then calculated like this (in C/C++):

dx = x[1] - x[0]
...

dr3 = pow(dx * dx + dy * dy , 3./2. )
...

ax = -GM * x[i] / r3 + ratio[i] * dx / dr3
ay = -GM * y[i] / r3 + ratio[i] * dy / dr3
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Methods for solving
the Newtonian

equations of motion
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Numerical Integration I

Review →Newtonian equations of motion (2nd order ODE → reduction to 1st order)

dv

dt
= a(t) &

dx

dt
= v(t) (9)

Numerical solution from Taylor expansion:

vn+1 = vn + an ∆t +O((∆t)2) (10)

xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (11)

Euler method: account only for O(∆t) (for ∆t → 0):

vn+1 = vn + an ∆t (12)
xn+1 = xn + vn ∆t (13)

therefore, only having O(∆t):
→ local truncation error in one time step: ∼ (∆t)2

→ global error over t: ∼ (∆t), because n steps with n = t
∆t ∼

1
∆t ,
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Numerical Integration II

so order of global error reduced by 1
∆t

A method is of n th order, if the global error is of the order of (∆t)n. The Euler method is of of
1st order.

Note, the Euler-Cromer method (semi-implicit Euler method) is also of 1st order, but conserves
energy (symplectic integrator):

vn+1 = vn + an(xn)∆t (14)
xn+1 = xn + vn+1∆t (15)

but there is also a 2nd variant of the (semi-implicit) Euler method

xn+1 = xn + vn∆t (16)
vn+1 = vn + an+1(xn+1)∆t (17)

→ used for Verlet integration (see below Eqn. (27) & (28))
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Numerical Integration III

Possible improvement: use velocity from the midpoint of the interval

cf. Heun’s method (Karl Heun, 1859-1929)

vn+1 = vn + an∆t (as for Euler) (18)

xn+1 = xn +
1
2

(vn + vn+1)∆t (19)

= xn + vn ∆t +
1
2
an∆t2 (20)

tn

xn

tn+1

xn+1

xn+1 (vn+1 )

xn+1 (vn )

t

→ accuracy of position is of 2nd order and velocity is of 1st order (only good for constant
acceleration, not more accurate than Euler, as error increases with each time step)
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Numerical Integration IV

Better (stable for oscillatory motions with const. ∆t ≤ 2/ω, therefore common, error bounded):

Halfstep method / Leapfrog integration

vn+ 1
2

= vn− 1
2

+ an∆t (21)

xn+1 = xn + vn+ 1
2
∆t (22)

t0 t1 ... tn tn+1

x0 x1 ... xn xn+1

v1/2 v3/2 ... vn/2 vn/2+1
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Numerical Integration V

→ 2nd order with same number of steps as Euler (1st order), time-reversable, exact
conservation of momenta, energy conserved up to 3rd order

But: not self starting, i.e. from Eq. (21) 9 v 1
2

therefore Euler method for the first half step:

v 1
2

= v0 +
1
2
a0∆t (23)

Moreover, velocity steps can be eliminated by using Eq. (21) & (22):

(xn+1 − xn)− (xn − xn−1) = (vn+ 1
2
− vn− 1

2
)∆t (24)

xn+1 − 2xn + xn−1 = an∆t (25)

→ xn+1 = 2xn − xn−1 + an∆t2 (Størmer’s method†) (26)

with start values x0, x1 = x0 + v0 + 1
2a0(x0)∆t2 (so v0 is still required!)

† Carl Størmer (1874-1957), Norwegian physicist, theoretical description of aurora borealis → trajectories of
charged particles in magnetic field
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Numerical Integration VI
Or, by interpolation of intermediate values as combination of symplectic, semi-implicit Euler
methods (Eq. (14)-(17))

vn+ 1
2

= vn + an
1
2∆t

xn+ 1
2

= xn + vn+ 1
2

1
2∆t

}
(27)

xn+1 = xn+ 1
2

+ vn+ 1
2

1
2∆t

vn+1 = vn+ 1
2

+ an+1
1
2∆t

}
(28)

by substituting system (27) into system (28) one obtains Leapfrog with integer steps:

xn+1 = xn + vn∆t +
1
2
an∆t2 (29)

vn+1 = vn +
1
2

(an + an+1)∆t (30)

→ so-called Verlet integration† (see next slides)

†Loup Verlet (1931-2019), french physicist, pioneered computer simulations
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Numerical Integration VII
Higher order methods
for that purpose: Taylor expansion of xn−1 (negative time step):

xn−1 = xn − vn∆t +
1
2
an(∆t)2 −O((∆t)3) (31)

+ xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (32)

= xn+1 + xn−1 = 2xn + an(∆t)2 +O((∆t)4) (33)

⇒ xn+1 = 2xn − xn−1 + an(∆t)2 (34)

Analogously:

xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (35)

− (xn−1 = xn − vn∆t +
1
2
an(∆t)2 −O((∆t)3)) (36)

= xn+1 − xn−1 = 2vn∆t +O((∆t)3) (37)

⇒ vn =
xn+1 − xn−1

2∆t
(Verlet) (38)
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Numerical Integration VIII
→method of 2nd order in v and 3rd order in x
But:

not self starting (needs start values x0, x1 = x0 + v0 + 1
2a0∆t2, see above)

Eq. (38) contains differences of two values of same order of magnitude and expected
∆x � x → round-off errors possible (subtractive cancelation)

Therefore, from Eq. (37)

xn−1 = xn+1 − 2vn∆t insert in Eq. (34): (39)

xn+1 = 2xn − xn+1 + 2vn∆t + an(∆t)2 (40)

Solve for xn+1, yields:

Velocity Verlet

xn+1 = xn + vn∆t +
1
2
an(∆t)2 (41)

vn+1 = vn +
1
2

(an+1 + an)∆t (see below for derivation) (42)
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Numerical Integration IX

→ self-starting
→minimizes round-off errors (no differences)
→ 4th order in x (why? →Eq. (35) & (36))
Eq. (42) results from Eq. (38) for vn+1:

vn+1 =
xn+2 − xn

2∆t
(43)

and xn+2 = 2xn+1 − xn + an+1(∆t)2 from Eq. (34) (44)

⇒ vn+1 =
2xn+1 − xn + an+1(∆t)2 − xn

2∆t
(45)

=
xn+1 − xn

∆t
+

1
2
an+1(∆t)2 & xn+1 from Eq. (41)

=
xn + vn∆t + 1

2an(∆t)2 − xn

∆t
+

1
2
an+1∆t (46)

= vn +
1
2

(an+1 + an)∆t (47)
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Numerical Integration X

Alternatively:
(developed for liquid particles in a Lennard-Jones potential)

Beeman method (Schofield 1973; Beeman 1976)

xn+1 = xn + vn∆t +
1
6

(4an − an−1)(∆t)2 (48)

vn+1 = vn +
1
6

(2an+1 + 5an − an−1)∆t (49)

→ not self-starting
→ locally: O(∆t)4 in x and O(∆t)3 in v , globally O(∆t)3

→ better energy conservation than for Verlet, but more calculation steps

even better: →Runge-Kutta method of 4th order
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The Runge-Kutta method
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Runge-Kutta method of 4th order I

Remember:

Euler-Richardson method (Euler-halfstep method)

an = F (xn, vn, tn)/m (50)

vM = vn + an
1
2

∆t (51)

xM = xn + vn
1
2

∆t (52)

aM = F

(
xM, vM, tn +

1
2

∆t

)
/m (53)

vn+1 = vn + aM∆t (54)
xn+1 = xn + vM∆t (55)

→ calculation of F or a, respectively, for the whole step at the “midpoint” of the interval,
instead of using the values from the beginning
≡ Runge-Kutta method 2nd order
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Runge-Kutta method of 4th order II

We will refine the halfstep method by using more supporting points:
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Runge-Kutta method of 4th order III

With the Runge-Kutta method† the initial value problem

dy/dx = y ′ = f (x , y), y(x0) = y0 (56)

is solved by calculating approximate values yi at selected supporting points xi to obtain the
wanted y(x). These yi are calculated with help of the following scheme (cf. Bronstein), where
also only linear terms are calculated, but in form of a “polygonal line”:

supporting point at the beginning and at the end of the interval
two additional supporting points in the middle of the interval with doubled weight

†Carl Runge (1856-1927), Wilhelm Kutta (1867-1944)
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Runge-Kutta method of 4th order IV
Move from x0 to xi = x0 + ih (step size h, i = 0, 1, 2, . . .) → single step method

x y k = h · f (x , y) = h · dy/dx
x0 y0 k1
x0 + h/2 y0 + k1/2 k2
x0 + h/2 y0 + k2/2 k3
x0 + h y0 + k3 k4

x1 = x0 + h y1 = y0 + 1
6(k1 + 2k2 + 2k3 + k4)

Cf.: Simpson’s rule† (actually Kepler’s rule , “Keplersche Fassregel”, 1615) for integration of
y ′(x) via a parabola:∫ b

a
y ′(x)dx ≈ b − a

6

(
y ′(a) + 4 y ′

(
a + b

2

)
+ y ′(b)

)
(57)

†Thomas Simpson (1710-1761)
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Runge-Kutta method of 4th order V

For the equations of motion this means therefore:

~k1v = ~a(~xn, ~vn, t) ∆t (= ~agrav.(~xn) ∆t in our case) (58)
~k1x = ~vn ∆t (59)

~k2v = ~a

(
~xn +

~k1x

2
, ~vn +

~k1v

2
, tn +

∆t

2

)
∆t (60)

~k2x =

(
~vn +

~k1v

2

)
∆t (61)

~k3v = ~a

(
~xn +

~k2x

2
, ~vn +

~k2v

2
, tn +

∆t

2

)
∆t (62)

~k3x =

(
~vn +

~k2v

2

)
∆t (63)

~k4v = ~a(~xn + ~k3x , ~vn + ~k3v , t + ∆t) ∆t (64)
~k4x = (~vn + ~k3v ) ∆t (65)
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Runge-Kutta method of 4th order VI

So, finally

vn+1 = vn +
1
6

(k1v + 2k2v + 2k3v + k4v ) (66)

xn+1 = xn +
1
6

(k1x + 2k2x + 2k3x + k4x) (67)

→Runge-Kutta methods are self-starting
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Numerical integration: Improvements I

Adaptive stepsize: step doubling
1 calculate new coordinates (~x , ~v) via two Runge-Kutta steps each with ∆t

2 calculate new coordinates (~x , ~v)′ via one Runge-Kutta step with 2∆t

→ calculation overhead increases only by 11/8, because of same derivatives on the beginning of
the interval
Now, if

|(x , v)− (x , v)′|
|(x , v)|

≥ εmax (68)

with an accuracy criterion εmax → decrease stepsize ∆t
If

|(x , v)− (x , v)′|
|(x , v)|

≤ εmin mit εmin < εmax (69)

→ increase ∆t
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Numerical integration: Improvements II

Predictor-corrector method
First prediction of the new position, e.g.:

xp = xn−1 + 2vn∆t (70)

→ yields accleration ap → corrected position by trapezoidal rule:

v0n+1 = vn +
1
2

(ap + an)∆t (71)

x0n+1 = xn +
1
2

(vn+1 + vn)∆t (72)

→ yields better value for an+1 and hence

v1n+1 = vn + an+1∆t (73)
x1n+1 = xn + vn+1∆t (74)

repeated iteration until |xk+1
n+1 − xkn+1| < ε with intended accuracy ε
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Bulirsch-Stoer method I
Especially interesting for interactions of several bodys (few-body problem):

resonances in planetary systems
influence by one-time passage of a star
influence of the galactic gravitational
potential

→Requires:
high numerical accuracy
flexibility
high computation rate

Idea: combination of
modified midpoint method
Richardson extrapolation
extrapolation via rational functions

→Bulirsch-Stoer method (Stoer & Bulirsch 1980)†

cf. Numerical Recipes

†Roland Bulirsch (1932-2022), Josef Stoer (∗1934)
H. Todt (UP) Computational Astrophysics SoSe 2023, 5.6.2023 26 / 52



Bulirsch-Stoer method II

Modified midpoint method

For an ODE dx/dt = f (t, x) over a time step H = Nh with N equidistant sub-steps

x0 = x(t) (75)
x1 = x0 + hf (t, x0) (76)

. . . (77)
xn = xn−2 + 2hf (t + [n − 1]h, xn−1) n = 2, . . . ,N (78)

x(t + H) ≈ x̃ =
1
2

[xN + xN−1 + hf (t + H, xN)] (79)

→ 2nd order method, but with only one derivative per h-(sub)step
(where 2nd order Runge-Kutta has two derivatives per step)
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Bulirsch-Stoer method III

Gragg† (1965): error in Eq. (79) → even power series:

x̃ − x(t + H) =
∞∑
i=1

αih
2i (80)

→ for even N (so, N = 2, 4, 6, . . .) all odd error terms cancel out
Let xN/2 the result for x(t + H) with half the number of steps:

x(t + H) ≈
4x̃N − x̃N/2

3
(81)

→ 4th order accuracy (as for RK4), but only with 1.5 derivatives
(RK4: 4)

†William B. Gragg (1936-2016)
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Bulirsch-Stoer method IV

Richardson extrapolation

Idea: result x(t + H) is an analytic function of h with h = H/N:
1 calculate xt+H(h = 2, 4, 6, . . .)
2 fit function xt+H(h) to xt+H(N = 2), xt+H(N = 4), . . .
3 extrapolate xt+H(h→ 0), corresponding to N →∞

h
H/6 H/4 H/20

x
(t

+
H

)
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Bulirsch-Stoer method V

Extrapolation via polynomial

Compute k-times xt+H with N = 2, 4, 6, . . .:

xt+H(h) = a0 + a1h + a2h
2 + . . .+ akh

k−1 (82)

where following Lagrange

xt+H(h) =
(h − h2)(h − h3) . . . (h − hk)

(h1 − h2)(h1 − h3) . . . (h1 − hk)
xt+H(h1) (83)

+
(h − h1)(h − h3) . . . (h − hk)

(h2 − h1)(h2 − h3) . . . (h2 − hk)
xt+H(h2) (84)

+ . . .+
(h − h1)(h − h2) . . . (h − hk−1)

hk − h1)(hk − h2) . . . (hk − hk−1)
xt+H(hk) (85)

In the original Bulirsch-Stoer method: rational function (P(h)/Q(h)) instead of Lagrange
polynomial
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Regularization I

Consider an N-body system with

d2~xi
dt2

= −
N∑

j=1;j 6=i

Gmj(~xi − ~xj)
|~xi − ~xj |3

(86)

problem: aij ∝
1
r2ij

for very small distances rij (close encounters)

→ small distances → large accelerations → requires small ∆t
→ slows down calculations & increases numerical accumulation error

possibly uncomplicated for one time encounters

But in star clusters:
→ formation of close binaries → periodic
so-called “binary hardening”: transfer of the energy of the binary system to the cluster by
consecutive close encounters
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Regularization II

M62 (NGC6266). Left: optical HST. Right: X-ray CHANDRA

→ above-average rate of close binary systems (e.g., low-mass X-ray binaries) in globular clusters
(Pooley et al. 2003)
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Regularization III

obvious (and inaccurate) idea: “softening” term in Eq. (86):

~Fij =
G mi mj(~rj − ~ri )

(ε2 + |~ri − ~rj |2)3/2
(87)

such that (88)

max |~aj | =
2G mi

33/2 ε2
at r =

1√
2
ε (89)

→ adaptive ∆t not arbitrarily small; but: close binary orbits and passages not resolvable

When is “softening” applicable?
→ if close encounters are irrelevant
→ collisionless systems, e.g., galaxy
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Regularization IV

Illustration: distances in a galaxy
Galaxy: Ø≈ 1023 cm with 1011 stars with R∗ ≈ 1011 cm → d ≈ 1019 cm

1011 sand grains

→
100×
width
of

→ average distance between sand grains ≈ 10 km
→ t∗,coll � tHubble → collisionless

stars perceive only the average gravitational potential of the galaxy
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Regularization V

Better: regularization (technique in physics to avoid ∞) with help of transformation of
spacetime coordinates.
Consider vector ~R between two particles (center of mass frame):

d2 ~R

dt2
= −G (m1 + m2)

~R

|~R|3
+ ~F12 (90)

with external force ~F12 = ~F1 − ~F2 per mass, by other particles
1. regularized time τ

dt = Rndτ (91)
d2

dt2
=

1
R2n

d2

dτ2
− n

R2n+1
dR

dτ

d

dτ
(92)

d2 ~R

dτ2
=

n

R

dR

dτ

d ~R

dτ
− G (m1 + m2)

~R

R3−2n + R2n ~F12 (93)

for n = 1 →R ∝ dt/dτ and without R−2- singularity,
but with ~R/R term (indefinite for R → 0)
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Regularization VI
therefore:
2. regularized distance u, initially only for 1 dimension (already known by Euler), without
external force (see Aarseth 2003):

d2R

dτ2
=

1
R

(
dR

dτ

)2

− G (m1 + m2) (94)

(95)

and with conservation of energy, total energy h per reduced mass µ = m1m2/(m1 + m2):

h =
1
2

(
dR

dt

)2

− G

R
(m1 + m2) (96)

→ h is fixed without external force, and with

dR

dt
=

1
R

dR

dτ
(97)

⇒ d2R

dτ2
= 2hR + G (m1 + m2) (98)
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Regularization VII

→ no more singularities. With u2 = R :

d2u

dτ2
=

1
2
hu (99)

→ harmonic oscilator (h is const.)
→ easy to integrate
→method: change from (x , t) to (u, τ) below some distinct distance (for 1d collision!)
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Regularization VIII
in 2 dimensions (Levi-Civita 1904)†:

x = u21 − u22 (100)
y = 2u1u2 (101)

or ~R = L~u (102)

where L = L(~u) =

(
u1 −u2
u2 u1

)
(103)

With the following properties:

L(~u)T L(~u) = RI (104)
d

dt
L(~u) = L

(
d~u

dt

)
(105)

L(~u)~v = L(~v)~u (106)
~u · ~uL(~v)~v − 2~u · ~vL(~u)~v + ~v · ~vL(~u)~u = 0 (107)

† Tullio Levi-Civita (1873-1941), Italian mathematician and physicist
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Regularization IX

With help of Eqn. (105 & 106) coordinates change to

d ~R

dτ
= 2L(~u)

d~u

dτ
(108)

d2 ~R

dτ2
= 2L(~u)

d2~u

dτ2
+ 2L

(
d~u

dτ

)
d~u

dτ
(109)

Hence in Eq. (93) with n = 1 and with Eq. (107) and some transformations:

2~u · ~uL(~u)
d2~u

dτ2
− 2

d~u

dτ
· d
~u

dτ
L(~u)~u + G (m1 + m2)L(~u)~u = (~u · ~u)3 ~F12 (110)

further transformations lead to a form without singularities and indefinitenesses:

d2~u

dτ2
=

1
2
h~u +

1
2
RLT (~u)~F12 (111)
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Regularization X

Binary star without external forces ~F12 → energy h conserved
Binary star with external forces:

h =

[
2
d~u

dτ
· d
~u

dτ
− G (m1 + m2)

]/
R (112)

The time evolution in usual coordinates

d

dt

[
1
2

(
dR

dt

)2

− G

R
(m1 + m2)

]
=

d ~R

dt
· ~F12 (113)

after transformation

dh

dτ
= 2

d~u

dτ
· L(~u)~F12 (114)

can be solved continuously for R = 0 simultaneously with Eq. (111)

H. Todt (UP) Computational Astrophysics SoSe 2023, 5.6.2023 40 / 52



Regularization XI

Application of the 2d solution to the so-called Pythagoraian three-body problem (~L = 0) in
Szebehely & Peters (1967):

because of ~L = 0 three-body collision possible → does not occur (3rd body gives perturbation
~F12)
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Regularization XII

Regularization for 3 dimensions (Kustaanheimo & Stiefel 1965) requires transformation to 4d
coordinates:

R1 = u21 − u22 − u23 + u24 (115)
R2 = 2(u1u2 − u3u4) (116)
R3 = 2(u1u3 + u2u4) (117)
R4 = 0 (118)

and ~R = L(~u)~u, such that

L =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 (119)

→ yields again equations similar to (111) & (114)

see Bodenheimer et al. (2007) and Aarseth (2003)
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N-body simulations for large N I

Problems:
1 number of interactions is N(N − 1)/2 ∝ O(N2)

2 multiple timescales for adaptive time steps for each particle i :

∆ti ' k

√
1
|~ai |

(120)

with acceleration ~ai and small factor k
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N-body simulations for large N II

possible solutions:
1 Tree method (Barnes & Hut 1986, 1989)
→ hierarchical structure and calculation of
multipoles of the potential →O(N logN)

Holmberg (Lund, 1941) even O(N) with help of light bulbs
on 2d grid (flux ∝ 1/r2)

2 Fourier transformation: compute potential Φ(~x)
with FFT →CA 2

3 Leapfrog method (2nd order integ.):

~r
n+1/2
i = ~r

n−1/2
i + ∆ti~v

n
i (121)

~vn+1
i = ~vni + ∆ti~a

n+1/2
i (122)

with time step doubling ∆ti = ∆tmax/2ni for each
particle i

Star A

r1
d1

d2

Star cluster

Star B

Star B

Star cluster

r2

The gravitational effect excerted by the star
cluster and the single star B on star A can be
approximated by a point mass. (from
Barnes-Hut Galaxy Simulator)
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N-body simulations for large N III

Example: time step doubling with → leapfrog method
particle A: time step ∆t/2, particle B : time step ∆t
starting via

~r
n+1/2

i = ~r n
i +

1
2

∆ti~v
n

i +
1
8

∆t2i ~a
n
i for i = A,B . (123)

1) Hence, we get ~rA(∆t/4) and ~rB(∆t/2) and from that
2) ~aA(A[∆t/4],B[∆t/2]) and analogously ~aB → time asymmetry
3) ~aA → ~vA(∆t/2) →~rA(3/4∆t)
4) ~aA(A[3/4∆t],B[∆t/2]) → ~vA(∆t) → reversed time asymmetry
5) Averaging of ~rA(∆t/4), ~rA(3/4∆t) to ~rA(∆t/2), then
6) → ~aB(A[∆t/2],B[∆t/2]) → ~vB(∆t)

7) from ~vA(∆t), ~vB(∆t) →~rA(5/4∆t)
i.e. next cycle starts, cf. 1) ~rA(∆t/4) & ~rB(∆t/2))
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Summary

Methods to solve N-body interactions:
Runge-Kutta (RK4): standard for any ODE
2nd order leapfrog: reasonable accuracy for extremely large number of particles,
integration only over a few dynamical times (e.g., Sun orbiting Galactic center)
Bulirsch-Stoer†: highly accurate, for few-body systems
predictor-corrector: reasonable accuracy for moderate up to large number of particles
for close encounters: softening (collisionless) or accurate regularization (collisions)

†alternatively for long-term evolution of few-body systems, e.g., over lifetime of Sun and whithout close
encounters: symplectic map → split Hamiltonian H = HKepler + Hinteraction, where analytic solution (ellipse) is
used for HKepler, requires transformation to Jacobi coordinates
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Outlook: Interacting galaxies I

Arp 271 (Gemini South)
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Outlook: Interacting galaxies II

NGC4676 “Mice” (HST / NASA)
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Galactic “Bridges” and “Tails” I

Toomre & Toomre (1972):

bridges (connections between galaxies) and tails (structures on the opposite site of the
interaction point) as the result of tidal forces between galaxies

simplified model:

encounter of only two galaxies, parabolic
(unbound)

galaxies as disks of non-interacting “test
particles”, initially on circular orbits around a
central point mass

result: mutual distortion of the galaxies just by gravitation, kinematic evolution to narrow,
elongated structures
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Galactic “Bridges” and “Tails” II

simulation of NGC4676 from Toomre & Toomre (1972)
→ two identical galaxies
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Galactic “Bridges” and “Tails” III

NGC4676 as before, but now seen edge-on
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