Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy
University of Potsdam

SoSe 2023, 5.6.2023

The (special)

three-body problem

The (special) ${ }^{\dagger}$ three-body problem I

We will not solve the general case of the three-body problem, but consider only the following configuration $\left(m_{1}, m_{2}<M\right)$:

$$
\begin{align*}
& m_{1} \frac{d^{2} \vec{r}_{1}}{d t^{2}}=-\frac{G M m_{1}}{r_{1}^{3}} \vec{r}_{1}+\frac{G m_{1} m_{2}}{r_{21}^{3}} \vec{r}_{21} \tag{1}\\
& m_{2} \frac{d^{2} \vec{r}_{2}}{d t^{2}}=-\frac{G M m_{2}}{r_{2}^{3}} \vec{r}_{2}-\frac{G m_{1} m_{2}}{r_{21}^{3}} \vec{r}_{21} \tag{2}
\end{align*}
$$

${ }^{\dagger}$ not to confuse with the restricted three-body problem, where $m_{1} \approx m_{2} \gg m_{3}$
\rightarrow Lagrangian points, e.g, L_{1} for SOHO, L_{2} for JWST

The (special) ${ }^{\dagger}$ three-body problem II

It is useful to divide the Eqn. (1) \& (2) each by m_{1} and m_{2} respectively:

$$
\begin{align*}
\frac{d^{2} \vec{r}_{1}}{d t^{2}} & =-\frac{G M}{r_{1}^{3}} \vec{r}_{1}+\frac{G m_{2}}{r_{21}^{3}} \vec{r}_{21} \tag{3}\\
\frac{d^{2} \vec{r}_{2}}{d t^{2}} & =-\frac{G M}{r_{2}^{3}} \vec{r}_{2}-\frac{G m_{1}}{r_{21}^{3}} \vec{r}_{21} \tag{4}
\end{align*}
$$

Moreover we can set - using astronomical units - again:

$$
\begin{equation*}
G M \equiv 4 \pi^{2} \tag{5}
\end{equation*}
$$

The terms

$$
\begin{equation*}
+\frac{G m_{2}}{r_{21}^{3}} \vec{r}_{21} \quad \& \quad-\frac{G m_{1}}{r_{21}^{3}} \vec{r}_{21} \tag{6}
\end{equation*}
$$

can be written with help of mass ratios

$$
\begin{equation*}
\frac{m_{2}}{M} \quad \& \quad-\frac{m_{1}}{M} \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\text { ratio }[0]=\frac{m_{2}}{M} G M \quad \& \quad \text { ratio[1] }=-\frac{m_{1}}{M} G M \tag{8}
\end{equation*}
$$

The accelerations are then calculated like this (in $\mathrm{C} / \mathrm{C}++$):

```
dx = x[1] - x[0]
dr3 = pow(dx * dx + dy * dy , 3./2. )
ax = -GM * x[i] / r3 + ratio[i] * dx / dr3
ay = -GM * y[i] / r3 + ratio[i] * dy / dr3
```

Methods for solving the Newtonian equations of motion

Review \rightarrow Newtonian equations of motion (2nd order ODE \rightarrow reduction to 1st order)

$$
\begin{equation*}
\frac{d v}{d t}=a(t) \quad \& \quad \frac{d x}{d t}=v(t) \tag{9}
\end{equation*}
$$

Numerical solution from Taylor expansion:

$$
\begin{align*}
& v_{n+1}=v_{n}+a_{n} \Delta t+\mathcal{O}\left((\Delta t)^{2}\right) \tag{10}\\
& x_{n+1}=x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}+\mathcal{O}\left((\Delta t)^{3}\right) \tag{11}
\end{align*}
$$

Euler method: account only for $\mathcal{O}(\Delta t)$ (for $\Delta t \rightarrow 0)$:

$$
\begin{align*}
v_{n+1} & =v_{n}+a_{n} \Delta t \tag{12}\\
x_{n+1} & =x_{n}+v_{n} \Delta t \tag{13}
\end{align*}
$$

therefore, only having $\mathcal{O}(\Delta t)$:
\rightarrow local truncation error in one time step: $\sim(\Delta t)^{2}$
\rightarrow global error over $t: \sim(\Delta t)$, because n steps with $n=\frac{t}{\Delta t} \sim \frac{1}{\Delta t}$,

Numerical Integration II

so order of global error reduced by $\frac{1}{\Delta t}$
A method is of nth order, if the global error is of the order of $(\Delta t)^{n}$. The Euler method is of of 1 st order.

Note, the Euler-Cromer method (semi-implicit Euler method) is also of 1st order, but conserves energy (symplectic integrator):

$$
\begin{align*}
& v_{n+1}=v_{n}+a_{n}\left(x_{n}\right) \Delta t \tag{14}\\
& x_{n+1}=x_{n}+v_{n+1} \Delta t \tag{15}
\end{align*}
$$

but there is also a 2nd variant of the (semi-implicit) Euler method

$$
\begin{align*}
& x_{n+1}=x_{n}+v_{n} \Delta t \tag{16}\\
& v_{n+1}=v_{n}+a_{n+1}\left(x_{n+1}\right) \Delta t \tag{17}
\end{align*}
$$

\rightarrow used for Verlet integration (see below Eqn. (27) \& (28))

Numerical Integration III

Possible improvement: use velocity from the midpoint of the interval
cf. Heun's method (Karl Heun, 1859-1929)

$$
\begin{align*}
v_{n+1} & =v_{n}+a_{n} \Delta t \quad \text { (as for Euler) } \tag{18}\\
x_{n+1} & =x_{n}+\frac{1}{2}\left(v_{n}+v_{n+1}\right) \Delta t \tag{19}\\
& =x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n} \Delta t^{2} \tag{20}
\end{align*}
$$

\rightarrow accuracy of position is of 2nd order and velocity is of 1st order (only good for constant acceleration, not more accurate than Euler, as error increases with each time step)

Numerical Integration IV

Better (stable for oscillatory motions with const. $\Delta t \leq 2 / \omega$, therefore common, error bounded):

Halfstep method / Leapfrog integration

$$
\begin{align*}
& v_{n+\frac{1}{2}}=v_{n-\frac{1}{2}}+a_{n} \Delta t \tag{21}\\
& x_{n+1}=x_{n}+v_{n+\frac{1}{2}} \Delta t \tag{22}
\end{align*}
$$

Numerical Integration V

$\rightarrow 2$ nd order with same number of steps as Euler (1st order), time-reversable, exact conservation of momenta, energy conserved up to 3rd order

But: not self starting, i.e. from Eq. (21) $\rightarrow v_{\frac{1}{2}}$
therefore Euler method for the first half step:

$$
\begin{equation*}
v_{\frac{1}{2}}=v_{0}+\frac{1}{2} a_{0} \Delta t \tag{23}
\end{equation*}
$$

Moreover, velocity steps can be eliminated by using Eq. (21) \& (22):

$$
\begin{align*}
\left(x_{n+1}-x_{n}\right)-\left(x_{n}-x_{n-1}\right) & =\left(v_{n+\frac{1}{2}}-v_{n-\frac{1}{2}}\right) \Delta t \tag{24}\\
x_{n+1}-2 x_{n}+x_{n-1} & =a_{n} \Delta t \tag{25}\\
\rightarrow x_{n+1} & =2 x_{n}-x_{n-1}+a_{n} \Delta t^{2} \quad\left(\text { Størmer's method }{ }^{\dagger}\right) \tag{26}
\end{align*}
$$

with start values $x_{0}, x_{1}=x_{0}+v_{0}+\frac{1}{2} a_{0}\left(x_{0}\right) \Delta t^{2}$ (so v_{0} is still required!)

[^0]
Numerical Integration VI

Or, by interpolation of intermediate values as combination of symplectic, semi-implicit Euler methods (Eq. (14)-(17))

$$
\left.\begin{array}{l}
v_{n+\frac{1}{2}}=v_{n}+a_{n} \frac{1}{2} \Delta t \tag{27}\\
x_{n+\frac{1}{2}}=x_{n}+v_{n+\frac{1}{2}} \frac{1}{2} \Delta t
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
x_{n+1}=x_{n+\frac{1}{2}}+v_{n+\frac{1}{2}} \frac{1}{2} \Delta t \tag{28}\\
v_{n+1}=v_{n+\frac{1}{2}}+a_{n+1} \frac{1}{2} \Delta t
\end{array}\right\}
$$

by substituting system (27) into system (28) one obtains Leapfrog with integer steps:

$$
\begin{align*}
& x_{n+1}=x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n} \Delta t^{2} \tag{29}\\
& v_{n+1}=v_{n}+\frac{1}{2}\left(a_{n}+a_{n+1}\right) \Delta t \tag{30}
\end{align*}
$$

\rightarrow so-called Verlet integration ${ }^{\dagger}$ (see next slides)
${ }^{\dagger}$ Loup Verlet (1931-2019), french physicist, pioneered computer simulations

Numerical Integration VII

Higher order methods

for that purpose: Taylor expansion of x_{n-1} (negative time step):

$$
\begin{align*}
x_{n-1} & =x_{n}-v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}-\mathcal{O}\left((\Delta t)^{3}\right) \tag{31}\\
+x_{n+1} & =x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}+\mathcal{O}\left((\Delta t)^{3}\right) \tag{32}\\
=x_{n+1}+x_{n-1} & =2 x_{n}+a_{n}(\Delta t)^{2}+\mathcal{O}\left((\Delta t)^{4}\right) \tag{33}\\
\Rightarrow x_{n+1} & =2 x_{n}-x_{n-1}+a_{n}(\Delta t)^{2} \tag{34}
\end{align*}
$$

Analogously:

$$
\begin{align*}
x_{n+1} & =x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}+\mathcal{O}\left((\Delta t)^{3}\right) \tag{35}\\
-\quad\left(x_{n-1}\right. & \left.=x_{n}-v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}-\mathcal{O}\left((\Delta t)^{3}\right)\right) \tag{36}\\
=x_{n+1}-x_{n-1} & =2 v_{n} \Delta t+\mathcal{O}\left((\Delta t)^{3}\right) \tag{37}\\
\Rightarrow \quad v_{n} & =\frac{x_{n+1}-x_{n-1}}{2 \Delta t} \quad \text { (Verlet) } \tag{38}
\end{align*}
$$

Numerical Integration VIII

\rightarrow method of 2nd order in v and 3rd order in x
But:

- not self starting (needs start values $x_{0}, x_{1}=x_{0}+v_{0}+\frac{1}{2} a_{0} \Delta t^{2}$, see above)
- Eq. (38) contains differences of two values of same order of magnitude and expected $\Delta x \ll x \rightarrow$ round-off errors possible (subtractive cancelation)
Therefore, from Eq. (37)

$$
\begin{align*}
& x_{n-1}=x_{n+1}-2 v_{n} \Delta t \quad \text { insert in Eq. (34): } \tag{39}\\
& x_{n+1}=2 x_{n}-x_{n+1}+2 v_{n} \Delta t+a_{n}(\Delta t)^{2} \tag{40}
\end{align*}
$$

Solve for x_{n+1}, yields:

Velocity Verlet

$$
\begin{align*}
& x_{n+1}=x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2} \tag{41}\\
& v_{n+1}=v_{n}+\frac{1}{2}\left(a_{n+1}+a_{n}\right) \Delta t \quad \text { (see below for derivation) } \tag{42}
\end{align*}
$$

Numerical Integration IX

\rightarrow self-starting
\rightarrow minimizes round-off errors (no differences)
$\rightarrow 4$ th order in x (why? \rightarrow Eq. (35) \& (36))
Eq. (42) results from Eq. (38) for v_{n+1} :

$$
\begin{align*}
v_{n+1} & =\frac{x_{n+2}-x_{n}}{2 \Delta t} \tag{43}\\
\text { and } \quad x_{n+2} & =2 x_{n+1}-x_{n}+a_{n+1}(\Delta t)^{2} \quad \text { from Eq. (34) } \tag{44}\\
\Rightarrow \quad v_{n+1} & =\frac{2 x_{n+1}-x_{n}+a_{n+1}(\Delta t)^{2}-x_{n}}{2 \Delta t} \tag{45}\\
& =\frac{x_{n+1}-x_{n}}{\Delta t}+\frac{1}{2} a_{n+1}(\Delta t)^{2} \quad \& x_{n+1} \text { from Eq. (41) } \\
& =\frac{x_{n}+v_{n} \Delta t+\frac{1}{2} a_{n}(\Delta t)^{2}-x_{n}}{\Delta t}+\frac{1}{2} a_{n+1} \Delta t \tag{46}\\
& =v_{n}+\frac{1}{2}\left(a_{n+1}+a_{n}\right) \Delta t \tag{47}
\end{align*}
$$

Numerical Integration X

Alternatively:
(developed for liquid particles in a Lennard-Jones potential)

Beeman method (Schofield 1973; Beeman 1976)

$$
\begin{align*}
x_{n+1} & =x_{n}+v_{n} \Delta t+\frac{1}{6}\left(4 a_{n}-a_{n-1}\right)(\Delta t)^{2} \tag{48}\\
v_{n+1} & =v_{n}+\frac{1}{6}\left(2 a_{n+1}+5 a_{n}-a_{n-1}\right) \Delta t \tag{49}
\end{align*}
$$

\rightarrow not self-starting
\rightarrow locally: $\mathcal{O}(\Delta t)^{4}$ in x and $\mathcal{O}(\Delta t)^{3}$ in v, globally $\mathcal{O}(\Delta t)^{3}$
\rightarrow better energy conservation than for Verlet, but more calculation steps
even better: \rightarrow Runge-Kutta method of 4th order

The Runge-Kutta method

Remember:

Euler-Richardson method (Euler-halfstep method)

$$
\begin{align*}
a_{n} & =F\left(x_{n}, v_{n}, t_{n}\right) / m \tag{50}\\
v_{\mathrm{M}} & =v_{n}+a_{n} \frac{1}{2} \Delta t \tag{51}\\
x_{\mathrm{M}} & =x_{n}+v_{n} \frac{1}{2} \Delta t \tag{52}\\
a_{\mathrm{M}} & =F\left(x_{\mathrm{M}}, v_{\mathrm{M}}, t_{n}+\frac{1}{2} \Delta t\right) / m \tag{53}\\
v_{n+1} & =v_{n}+a_{\mathrm{M}} \Delta t \tag{54}\\
x_{n+1} & =x_{n}+v_{\mathrm{M}} \Delta t \tag{55}
\end{align*}
$$

\rightarrow calculation of F or a, respectively, for the whole step at the "midpoint" of the interval, instead of using the values from the beginning
\equiv Runge-Kutta method 2nd order

We will refine the halfstep method by using more supporting points:

With the Runge-Kutta method ${ }^{\dagger}$ the initial value problem

$$
\begin{equation*}
d y / d x=y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{56}
\end{equation*}
$$

is solved by calculating approximate values y_{i} at selected supporting points x_{i} to obtain the wanted $y(x)$. These y_{i} are calculated with help of the following scheme (cf. Bronstein), where also only linear terms are calculated, but in form of a "polygonal line":

- supporting point at the beginning and at the end of the interval
- two additional supporting points in the middle of the interval with doubled weight

Move from x_{0} to $x_{i}=x_{0}+i h($ step size $h, i=0,1,2, \ldots) \rightarrow$ single step method

x	y	$k=h \cdot f(x, y)=h \cdot d y / d x$
x_{0}	y_{0}	k_{1}
$x_{0}+h / 2$	$y_{0}+k_{1} / 2$	k_{2}
$x_{0}+h / 2$	$y_{0}+k_{2} / 2$	k_{3}
$x_{0}+h$	$y_{0}+k_{3}$	k_{4}
$x_{1}=x_{0}+h$	$y_{1}=y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$	

Cf.: Simpson's rule ${ }^{\dagger}$ (actually Kepler's rule , "Keplersche Fassregel", 1615) for integration of $y^{\prime}(x)$ via a parabola:

$$
\begin{equation*}
\int_{a}^{b} y^{\prime}(x) d x \approx \frac{b-a}{6}\left(y^{\prime}(a)+4 y^{\prime}\left(\frac{a+b}{2}\right)+y^{\prime}(b)\right) \tag{57}
\end{equation*}
$$

For the equations of motion this means therefore:

$$
\begin{align*}
& \vec{k}_{1 v}=\vec{a}\left(\vec{x}_{n}, \vec{v}_{n}, t\right) \Delta t \quad\left(=\vec{a}_{\text {grav. }}\left(\vec{x}_{n}\right) \Delta t \quad \text { in our case }\right) \tag{58}\\
& \vec{k}_{1 x}=\vec{v}_{n} \Delta t \tag{59}\\
& \vec{k}_{2 v}=\vec{a}\left(\vec{x}_{n}+\frac{\vec{k}_{1 x}}{2}, \vec{v}_{n}+\frac{\vec{k}_{1 v}}{2}, t_{n}+\frac{\Delta t}{2}\right) \Delta t \tag{60}\\
& \vec{k}_{2 x}=\left(\vec{v}_{n}+\frac{\vec{k}_{1 v}}{2}\right) \Delta t \tag{61}\\
& \vec{k}_{3 v}=\vec{a}\left(\vec{x}_{n}+\frac{\vec{k}_{2 x}}{2}, \vec{v}_{n}+\frac{\vec{k}_{2 v}}{2}, t_{n}+\frac{\Delta t}{2}\right) \Delta t \tag{62}\\
& \vec{k}_{3 x}=\left(\vec{v}_{n}+\frac{\vec{k}_{2 v}}{2}\right) \Delta t \tag{63}\\
& \vec{k}_{4 v}=\vec{a}\left(\vec{x}_{n}+\vec{k}_{3 x}, \vec{v}_{n}+\vec{k}_{3 v}, t+\Delta t\right) \Delta t \tag{64}\\
& \vec{k}_{4 x}=\left(\vec{v}_{n}+\vec{k}_{3 v}\right) \Delta t \tag{65}
\end{align*}
$$

So, finally

$$
\begin{align*}
v_{n+1} & =v_{n}+\frac{1}{6}\left(k_{1 v}+2 k_{2 v}+2 k_{3 v}+k_{4 v}\right) \tag{66}\\
x_{n+1} & =x_{n}+\frac{1}{6}\left(k_{1 x}+2 k_{2 x}+2 k_{3 x}+k_{4 x}\right) \tag{67}
\end{align*}
$$

\rightarrow Runge-Kutta methods are self-starting

Numerical integration: Improvements I

Adaptive stepsize: step doubling

(1) calculate new coordinates (\vec{x}, \vec{v}) via two Runge-Kutta steps each with Δt
(2) calculate new coordinates $(\vec{x}, \vec{v})^{\prime}$ via one Runge-Kutta step with $2 \Delta t$
\rightarrow calculation overhead increases only by $11 / 8$, because of same derivatives on the beginning of the interval
Now, if

$$
\begin{equation*}
\frac{\left|(x, v)-(x, v)^{\prime}\right|}{|(x, v)|} \geq \epsilon_{\max } \tag{68}
\end{equation*}
$$

with an accuracy criterion $\epsilon_{\max } \rightarrow$ decrease stepsize Δt If

$$
\begin{equation*}
\frac{\left|(x, v)-(x, v)^{\prime}\right|}{|(x, v)|} \leq \epsilon_{\min } \quad \text { mit } \quad \epsilon_{\min }<\epsilon_{\max } \tag{69}
\end{equation*}
$$

\rightarrow increase Δt

Numerical integration: Improvements II

Predictor-corrector method

First prediction of the new position, e.g.:

$$
\begin{equation*}
x_{p}=x_{n-1}+2 v_{n} \Delta t \tag{70}
\end{equation*}
$$

\rightarrow yields accleration $a_{p} \rightarrow$ corrected position by trapezoidal rule:

$$
\begin{align*}
& v_{n+1}^{0}=v_{n}+\frac{1}{2}\left(a_{p}+a_{n}\right) \Delta t \tag{71}\\
& x_{n+1}^{0}=x_{n}+\frac{1}{2}\left(v_{n+1}+v_{n}\right) \Delta t \tag{72}
\end{align*}
$$

\rightarrow yields better value for a_{n+1} and hence

$$
\begin{align*}
v_{n+1}^{1} & =v_{n}+a_{n+1} \Delta t \tag{73}\\
x_{n+1}^{1} & =x_{n}+v_{n+1} \Delta t \tag{74}
\end{align*}
$$

repeated iteration until $\left|x_{n+1}^{k+1}-x_{n+1}^{k}\right|<\epsilon$ with intended accuracy ϵ

Bulirsch-Stoer method I

Especially interesting for interactions of several bodys (few-body problem):

- resonances in planetary systems
- influence by one-time passage of a star
- influence of the galactic gravitational potential
\rightarrow Requires:
- high numerical accuracy
- flexibility
- high computation rate

Idea: combination of

- modified midpoint method
- Richardson extrapolation
- extrapolation via rational functions
\rightarrow Bulirsch-Stoer method (Stoer \& Bulirsch 1980) ${ }^{\dagger}$
cf. Numerical Recipes
${ }^{\top}$ Roland Bulirsch (1932-2022), Josef Stoer (${ }^{*}$ 1934)

Modified midpoint method

For an ODE $d x / d t=f(t, x)$ over a time step $H=N h$ with N equidistant sub-steps

$$
\begin{align*}
x_{0}= & x(t) \tag{75}\\
x_{1}= & x_{0}+h f\left(t, x_{0}\right) \tag{76}\\
& \ldots \tag{77}\\
x_{n}= & x_{n-2}+2 h f\left(t+[n-1] h, x_{n-1}\right) \quad n=2, \ldots, N \tag{78}\\
x(t+H) \approx \tilde{x}= & \frac{1}{2}\left[x_{N}+x_{N-1}+h f\left(t+H, x_{N}\right)\right]
\end{align*}
$$

\rightarrow 2nd order method, but with only one derivative per h-(sub)step (where 2nd order Runge-Kutta has two derivatives per step)

Gragg † (1965): error in Eq. (79) \rightarrow even power series:

$$
\begin{equation*}
\tilde{x}-x(t+H)=\sum_{i=1}^{\infty} \alpha_{i} h^{2 i} \tag{80}
\end{equation*}
$$

\rightarrow for even N (so, $N=2,4,6, \ldots$) all odd error terms cancel out Let $x_{N / 2}$ the result for $x(t+H)$ with half the number of steps:

$$
\begin{equation*}
x(t+H) \approx \frac{4 \tilde{x}_{N}-\tilde{x}_{N / 2}}{3} \tag{81}
\end{equation*}
$$

\rightarrow 4th order accuracy (as for RK4), but only with 1.5 derivatives (RK4: 4)

Bulirsch-Stoer method IV

Richardson extrapolation

Idea: result $x(t+H)$ is an analytic function of h with $h=H / N$:
(1) calculate $x_{t+H}(h=2,4,6, \ldots)$
(2) fit function $x_{t+H}(h)$ to $x_{t+H}(N=2), x_{t+H}(N=4), \ldots$
(3) extrapolate $x_{t+H}(h \rightarrow 0)$, corresponding to $N \rightarrow \infty$

Bulirsch-Stoer method V

Extrapolation via polynomial

Compute k-times x_{t+H} with $N=2,4,6, \ldots$:

$$
\begin{equation*}
x_{t+H}(h)=a_{0}+a_{1} h+a_{2} h^{2}+\ldots+a_{k} h^{k-1} \tag{82}
\end{equation*}
$$

where following Lagrange

$$
\begin{align*}
x_{t+H}(h)= & \frac{\left(h-h_{2}\right)\left(h-h_{3}\right) \ldots\left(h-h_{k}\right)}{\left(h_{1}-h_{2}\right)\left(h_{1}-h_{3}\right) \ldots\left(h_{1}-h_{k}\right)} x_{t+H}\left(h_{1}\right) \tag{83}\\
& +\frac{\left(h-h_{1}\right)\left(h-h_{3}\right) \ldots\left(h-h_{k}\right)}{\left(h_{2}-h_{1}\right)\left(h_{2}-h_{3}\right) \ldots\left(h_{2}-h_{k}\right)} x_{t+H}\left(h_{2}\right) \tag{84}\\
& +\ldots+\frac{\left(h-h_{1}\right)\left(h-h_{2}\right) \ldots\left(h-h_{k-1}\right)}{\left.h_{k}-h_{1}\right)\left(h_{k}-h_{2}\right) \ldots\left(h_{k}-h_{k-1}\right)} x_{t+H}\left(h_{k}\right) \tag{85}
\end{align*}
$$

In the original Bulirsch-Stoer method: rational function $(P(h) / Q(h))$ instead of Lagrange polynomial

Consider an N-body system with

$$
\begin{equation*}
\frac{d^{2} \vec{x}_{i}}{d t^{2}}=-\sum_{j=1 ; j \neq i}^{N} \frac{G m_{j}\left(\vec{x}_{i}-\vec{x}_{j}\right)}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}} \tag{86}
\end{equation*}
$$

problem: $a_{i j} \propto \frac{1}{r_{i j}^{2}}$ for very small distances $r_{i j}$ (close encounters)
\rightarrow small distances \rightarrow large accelerations \rightarrow requires small Δt
\rightarrow slows down calculations \& increases numerical accumulation error
possibly uncomplicated for one time encounters
But in star clusters:
\rightarrow formation of close binaries \rightarrow periodic
so-called "binary hardening": transfer of the energy of the binary system to the cluster by consecutive close encounters

Regularization II

M 62 (NGC 6266). Left: optical HST. Right: X-ray CHANDRA
\rightarrow above-average rate of close binary systems (e.g., low-mass X-ray binaries) in globular clusters (Pooley et al. 2003)
obvious (and inaccurate) idea: "softening" term in Eq. (86):

$$
\begin{equation*}
\vec{F}_{i j}=\frac{G m_{i} m_{j}\left(\vec{r}_{j}-\vec{r}_{i}\right)}{\left(\epsilon^{2}+\left|\vec{r}_{i}-\vec{r}_{j}\right|^{2}\right)^{3 / 2}} \tag{87}
\end{equation*}
$$

such that

$$
\begin{equation*}
\max \left|\vec{a}_{j}\right|=\frac{2 G m_{i}}{3^{3 / 2} \epsilon^{2}} \quad \text { at } r=\frac{1}{\sqrt{2}} \epsilon \tag{88}
\end{equation*}
$$

\rightarrow adaptive Δt not arbitrarily small; but: close binary orbits and passages not resolvable

When is "softening" applicable?

\rightarrow if close encounters are irrelevant
\rightarrow collisionless systems, e.g., galaxy

Regularization IV

Illustration: distances in a galaxy
Galaxy: $\varnothing \approx 10^{23} \mathrm{~cm}$ with 10^{11} stars with $R_{*} \approx 10^{11} \mathrm{~cm} \rightarrow d \approx 10^{19} \mathrm{~cm}$

10^{11} sand grains

\rightarrow average distance between sand grains $\approx 10 \mathrm{~km}$
$\rightarrow t_{*, \text { coll }} \gg t_{\text {Hubble }} \rightarrow$ collisionless
stars perceive only the average gravitational potential of the galaxy

Better: regularization (technique in physics to avoid ∞) with help of transformation of spacetime coordinates.
Consider vector \vec{R} between two particles (center of mass frame):

$$
\begin{equation*}
\frac{d^{2} \vec{R}}{d t^{2}}=-G\left(m_{1}+m_{2}\right) \frac{\vec{R}}{|\vec{R}|^{3}}+\vec{F}_{12} \tag{90}
\end{equation*}
$$

with external force $\vec{F}_{12}=\vec{F}_{1}-\vec{F}_{2}$ per mass, by other particles

1. regularized time τ

$$
\begin{align*}
d t & =R^{n} d \tau \tag{91}\\
\frac{d^{2}}{d t^{2}} & =\frac{1}{R^{2 n}} \frac{d^{2}}{d \tau^{2}}-\frac{n}{R^{2 n+1}} \frac{d R}{d \tau} \frac{d}{d \tau} \tag{92}\\
\frac{d^{2} \vec{R}}{d \tau^{2}} & =\frac{n}{R} \frac{d R}{d \tau} \frac{d \vec{R}}{d \tau}-G\left(m_{1}+m_{2}\right) \frac{\vec{R}}{R^{3-2 n}}+R^{2 n} \vec{F}_{12} \tag{93}
\end{align*}
$$

for $n=1 \rightarrow R \propto d t / d \tau$ and without R^{-2} - singularity, but with \vec{R} / R term (indefinite for $R \rightarrow 0$)

Regularization VI

therefore:
2. regularized distance u, initially only for 1 dimension (already known by Euler), without external force (see Aarseth 2003):

$$
\begin{equation*}
\frac{d^{2} R}{d \tau^{2}}=\frac{1}{R}\left(\frac{d R}{d \tau}\right)^{2}-G\left(m_{1}+m_{2}\right) \tag{94}
\end{equation*}
$$

and with conservation of energy, total energy h per reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$:

$$
\begin{equation*}
h=\frac{1}{2}\left(\frac{d R}{d t}\right)^{2}-\frac{G}{R}\left(m_{1}+m_{2}\right) \tag{96}
\end{equation*}
$$

$\rightarrow h$ is fixed without external force, and with

$$
\begin{align*}
\frac{d R}{d t} & =\frac{1}{R} \frac{d R}{d \tau} \tag{97}\\
\Rightarrow \quad \frac{d^{2} R}{d \tau^{2}} & =2 h R+G\left(m_{1}+m_{2}\right) \tag{98}
\end{align*}
$$

\rightarrow no more singularities. With $u^{2}=R$:

$$
\begin{equation*}
\frac{d^{2} u}{d \tau^{2}}=\frac{1}{2} h u \tag{99}
\end{equation*}
$$

\rightarrow harmonic oscilator (h is const.)
\rightarrow easy to integrate
\rightarrow method: change from (x, t) to (u, τ) below some distinct distance (for 1 d collision!)

Regularization VIII

in 2 dimensions (Levi-Civita 1904) ${ }^{\dagger}$:

$$
\begin{align*}
x & =u_{1}^{2}-u_{2}^{2} \tag{100}\\
y & =2 u_{1} u_{2} \tag{101}\\
\text { or } \vec{R} & =\mathcal{L} \vec{u} \tag{102}\\
\text { where } \mathcal{L}=\mathcal{L}(\vec{u}) & =\left(\begin{array}{rr}
u_{1} & -u_{2} \\
u_{2} & u_{1}
\end{array}\right) \tag{103}
\end{align*}
$$

With the following properties:

$$
\begin{align*}
\mathcal{L}(\vec{u})^{T} \mathcal{L}(\vec{u}) & =R \mathcal{I} \tag{104}\\
\frac{d}{d t} \mathcal{L}(\vec{u}) & =\mathcal{L}\left(\frac{d \vec{u}}{d t}\right) \tag{105}\\
\mathcal{L}(\vec{u}) \vec{v} & =\mathcal{L}(\vec{v}) \vec{u} \tag{106}\\
\vec{u} \cdot \vec{u} \mathcal{L}(\vec{v}) \vec{v}-2 \vec{u} \cdot \vec{v} \mathcal{L}(\vec{u}) \vec{v} & +\vec{v} \cdot \vec{v} \mathcal{L}(\vec{u}) \vec{u}=0 \tag{107}
\end{align*}
$$

${ }^{\dagger}$ Tullio Levi-Civita (1873-1941), Italian mathematician and physicist

With help of Eqn. (105 \& 106) coordinates change to

$$
\begin{align*}
\frac{d \vec{R}}{d \tau} & =2 \mathcal{L}(\vec{u}) \frac{d \vec{u}}{d \tau} \tag{108}\\
\frac{d^{2} \vec{R}}{d \tau^{2}} & =2 \mathcal{L}(\vec{u}) \frac{d^{2} \vec{u}}{d \tau^{2}}+2 \mathcal{L}\left(\frac{d \vec{u}}{d \tau}\right) \frac{d \vec{u}}{d \tau} \tag{109}
\end{align*}
$$

Hence in Eq. (93) with $n=1$ and with Eq. (107) and some transformations:

$$
\begin{equation*}
2 \vec{u} \cdot \vec{u} \mathcal{L}(\vec{u}) \frac{d^{2} \vec{u}}{d \tau^{2}}-2 \frac{d \vec{u}}{d \tau} \cdot \frac{d \vec{u}}{d \tau} \mathcal{L}(\vec{u}) \vec{u}+G\left(m_{1}+m_{2}\right) \mathcal{L}(\vec{u}) \vec{u}=(\vec{u} \cdot \vec{u})^{3} \vec{F}_{12} \tag{110}
\end{equation*}
$$

further transformations lead to a form without singularities and indefinitenesses:

$$
\begin{equation*}
\frac{d^{2} \vec{u}}{d \tau^{2}}=\frac{1}{2} h \vec{u}+\frac{1}{2} R \mathcal{L}^{T}(\vec{u}) \vec{F}_{12} \tag{111}
\end{equation*}
$$

Binary star without external forces $\vec{F}_{12} \rightarrow$ energy h conserved Binary star with external forces:

$$
\begin{equation*}
h=\left[2 \frac{d \vec{u}}{d \tau} \cdot \frac{d \vec{u}}{d \tau}-G\left(m_{1}+m_{2}\right)\right] / R \tag{112}
\end{equation*}
$$

The time evolution in usual coordinates

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{1}{2}\left(\frac{d R}{d t}\right)^{2}-\frac{G}{R}\left(m_{1}+m_{2}\right)\right]=\frac{d \vec{R}}{d t} \cdot \vec{F}_{12} \tag{113}
\end{equation*}
$$

after transformation

$$
\begin{equation*}
\frac{d h}{d \tau}=2 \frac{d \vec{u}}{d \tau} \cdot \mathcal{L}(\vec{u}) \vec{F}_{12} \tag{114}
\end{equation*}
$$

can be solved continuously for $R=0$ simultaneously with Eq. (111)

Regularization XI

Application of the 2d solution to the so-called Pythagoraian three-body problem $(\vec{L}=0)$ in Szebehely \& Peters (1967):

because of $\vec{L}=0$ three-body collision possible \rightarrow does not occur (3rd body gives perturbation $\left.\vec{F}_{12}\right)$

Regularization XII

Regularization for 3 dimensions (Kustaanheimo \& Stiefel 1965) requires transformation to 4d coordinates:

$$
\begin{align*}
& R_{1}=u_{1}^{2}-u_{2}^{2}-u_{3}^{2}+u_{4}^{2} \tag{115}\\
& R_{2}=2\left(u_{1} u_{2}-u_{3} u_{4}\right) \tag{116}\\
& R_{3}=2\left(u_{1} u_{3}+u_{2} u_{4}\right) \tag{117}\\
& R_{4}=0 \tag{118}
\end{align*}
$$

and $\vec{R}=\mathcal{L}(\vec{u}) \vec{u}$, such that

$$
\mathcal{L}=\left[\begin{array}{cccc}
u_{1} & -u_{2} & -u_{3} & u_{4} \tag{119}\\
u_{2} & u_{1} & -u_{4} & -u_{3} \\
u_{3} & u_{4} & u_{1} & u_{2} \\
u_{4} & -u_{3} & u_{2} & -u_{1}
\end{array}\right]
$$

\rightarrow yields again equations similar to (111) \& (114)
see Bodenheimer et al. (2007) and Aarseth (2003)

N-body simulations for large N I

Problems:
(1) number of interactions is $N(N-1) / 2 \propto \mathcal{O}\left(N^{2}\right)$
(2) multiple timescales for adaptive time steps for each particle i :

$$
\begin{equation*}
\Delta t_{i} \simeq k \sqrt{\frac{1}{\left|\overrightarrow{a_{i}}\right|}} \tag{120}
\end{equation*}
$$

with acceleration \vec{a}_{i} and small factor k

N-body simulations for large N II

possible solutions:
(1) Tree method (Barnes \& Hut 1986, 1989)
\rightarrow hierarchical structure and calculation of multipoles of the potential $\rightarrow \mathcal{O}(N \log N)$

Holmberg (Lund, 1941) even $\mathcal{O}(N)$ with help of light bulbs on 2 d grid (flux $\propto 1 / r^{2}$)
(2) Fourier transformation: compute potential $\Phi(\vec{x})$ with FFT \rightarrow CA 2
(3) Leapfrog method (2nd order integ.):

$$
\begin{align*}
\vec{r}_{i}^{n+1 / 2} & =\vec{r}_{i}^{n-1 / 2}+\Delta t_{i} \vec{v}_{i}^{n} \tag{121}\\
\vec{v}_{i}^{n+1} & =\vec{v}_{i}^{n}+\Delta t_{i} \vec{a}_{i}^{n+1 / 2} \tag{122}
\end{align*}
$$

The gravitational effect excerted by the star cluster and the single star B on star A can be approximated by a point mass. (from Barnes-Hut Galaxy Simulator)
with time step doubling $\Delta t_{i}=\Delta t_{\max } / 2^{n_{i}}$ for each particle i

N-body simulations for large N III

Example: time step doubling with \rightarrow leapfrog method

particle A : time step $\Delta t / 2$, particle B : time step Δt
starting via

$$
\begin{equation*}
\vec{r}_{i}^{n+1 / 2}=\vec{r}_{i}^{n}+\frac{1}{2} \Delta t_{i} \vec{v}_{i}^{n}+\frac{1}{8} \Delta t_{i}^{2} \vec{a}_{i}^{n} \quad \text { for } i=A, B . \tag{123}
\end{equation*}
$$

1) Hence, we get $\vec{r}_{A}(\Delta t / 4)$ and $\vec{r}_{B}(\Delta t / 2)$ and from that
2) $\vec{a}_{A}(A[\Delta t / 4], B[\Delta t / 2])$ and analogously $\vec{a}_{B} \rightarrow$ time asymmetry
3) $\vec{a}_{A} \rightarrow \vec{v}_{A}(\Delta t / 2) \rightarrow \vec{r}_{A}(3 / 4 \Delta t)$
4) $\vec{a}_{A}(A[3 / 4 \Delta t], B[\Delta t / 2]) \rightarrow \vec{v}_{A}(\Delta t) \rightarrow$ reversed time asymmetry
5) Averaging of $\vec{r}_{A}(\Delta t / 4), \vec{r}_{A}(3 / 4 \Delta t)$ to $\vec{r}_{A}(\Delta t / 2)$, then
6) $\rightarrow \vec{a}_{B}(A[\Delta t / 2], B[\Delta t / 2]) \rightarrow \vec{v}_{B}(\Delta t)$
7) from $\vec{v}_{A}(\Delta t), \vec{v}_{B}(\Delta t) \rightarrow \vec{r}_{A}(5 / 4 \Delta t)$
i.e. next cycle starts, cf. 1) $\left.\vec{r}_{A}(\Delta t / 4) \& \vec{r}_{B}(\Delta t / 2)\right)$

Methods to solve N-body interactions:

- Runge-Kutta (RK4): standard for any ODE
- 2nd order leapfrog: reasonable accuracy for extremely large number of particles, integration only over a few dynamical times (e.g., Sun orbiting Galactic center)
- Bulirsch-Stoer ${ }^{\dagger}$: highly accurate, for few-body systems
- predictor-corrector: reasonable accuracy for moderate up to large number of particles
- for close encounters: softening (collisionless) or accurate regularization (collisions)
${ }^{\dagger}$ alternatively for long-term evolution of few-body systems, e.g., over lifetime of Sun and whithout close encounters: symplectic map \rightarrow split Hamiltonian $H=H_{\text {Kepler }}+H_{\text {interaction }}$, where analytic solution (ellipse) is used for $H_{\text {Kepler }}$, requires transformation to Jacobi coordinates

Outlook: Interacting galaxies I

Arp 271 (Gemini South)

Outlook: Interacting galaxies II

Toomre \& Toomre (1972):

- bridges (connections between galaxies) and tails (structures on the opposite site of the interaction point) as the result of tidal forces between galaxies
- simplified model:
- encounter of only two galaxies, parabolic (unbound)
- galaxies as disks of non-interacting "test particles", initially on circular orbits around a central point mass

- result: mutual distortion of the galaxies just by gravitation, kinematic evolution to narrow, elongated structures

Galactic "Bridges" and "Tails" III

NGC 4676 as before, but now seen edge-on

Aarseth, S. J. 2003, Gravitational N-Body Simulations (Johns Hopkins University Press)
Barnes, J. \& Hut, P. 1986, Nature, 324, 446
Barnes, J. E. \& Hut, P. 1989, ApJS, 70, 389
Beeman, D. 1976, Journal of Computational Physics, 20, 130
Bodenheimer, P., Laughlin, G. P., Rózyczka, M., \& Yorke, H. W., eds. 2007, Numerical Methods in Astrophysics: An Introduction (CRC Press)
Pooley, D., Lewin, W. H. G., Anderson, S. F., et al. 2003, ApJ, 591, L131
Schofield, P. 1973, Computer Physics Communications, 5, 17
Szebehely, V. \& Peters, C. F. 1967, AJ, 72, 876
Toomre, A. \& Toomre, J. 1972, ApJ, 178, 623

[^0]: ${ }^{\dagger}$ Carl Størmer (1874-1957), Norwegian physicist, theoretical description of aurora borealis \rightarrow trajectories of charged particles in magnetic field

