Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

SoSe 2024, 17.6.2024

Root finding -Iterative techniques

Problem: Finding roots for equations that cannot be solved analytically, i.e. finding x_0 for $f(x_0) = 0$

Transcendent equation: quantum states in a square well

The 1d potential V(x) for the Schrödinger equation

$$V(x) = \left\{ egin{array}{cc} -V_0 & , |x| \leq a \ 0 & , |x| \geq a \end{array}
ight.$$

has bound states with energies $E = -E_{\rm B} < 0$

$$\sqrt{2m(V_0-E_{\rm B})}$$
tan $\left[a\sqrt{2m(V_0-E_{\rm B})}
ight] = \sqrt{2mE_{\rm B}}$

ightarrow e.g., for 2m= 1, a= 1 we want to find the roots E_B of

$$f(E_{\mathrm{B}}) = \sqrt{V_{0} - E_{\mathrm{B}}} \tan\left(\sqrt{V_{0} - E_{\mathrm{B}}}\right) - \sqrt{E_{\mathrm{B}}} \stackrel{!}{=} 0$$

(1)

(2)

(3)

Hints: Transcendent equation: quantum states in a square well

Roots of numerically derived functions

Some functions cannot even be written analytically, e.g.

- x(t) for the Kepler problem
- solutions of the Lane-Emden equation $\theta_n(\xi)$ for $n \neq \{0, 1, 5\}$

 \rightarrow roots can be found numerically by trial-and-error algorithms, i.e. iteratively until some specified level of precision is reached

Bisection I

 \rightarrow very stable (root is always found if conditions fulfilled), but also very slow iterative procedure \rightarrow needs *two* start values $[x_1, x_2]$ for estimating x_0 If f(x) continuous on [a, b] and $f(a) \cdot f(b) < 0$, then the intermediate value theorem guarantees the existence of an $x_0 \in [a, b]$ with $f(x_0) = 0$.

Bisection algorithm

- Start with interval [x₁, x₂] on which f(x) changes sign (so f(x₁) · f(x₂) < 0) → contains root</p>
- ② choose new x_3 as the midpoint of the interval $x_3 = \frac{x_1 + x_2}{2}$

calculate f(x₃): either f(x₃) is sufficiently close to 0 → root is x₃ or x₃ is a new interval endpoint: if f(x₃) · f(x₁) > 0 → new interval is [x₃, x₂] or if f(x₃) · f(x₁) ≤ 0 → new interval is [x₁, x₃]

```
goto step 2
```

 \rightarrow nested intervals enclosing the root

ightarrow as interval is halved every step, gain pprox 1 digit each 3 steps (2³)

H. Todt (UP)

The secant method I

ightarrow similar to Newton's method (see below), actually approximation with finite differences

Requirement: f(x) continuous and $\exists x_0 \in [a, b]$ with $f(x_0) = 0$. Then: line trough $(x_0, f(x_0))$ and $(x_1, f(x_1))$, so that

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1) + f(x_1)$$

with root

$$x = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

 \rightarrow new point $(x_2, f(x_2))$ repeat with x_1, x_2 instead of x_0, x_1

Secant method

• start with interval $x_1 \neq x_2$ close to the root

iterate

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

 \rightarrow superlinear convergence, per iteration about 1.6 more correct digits \rightarrow convergence not assured (especially as $f(x_n) \cdot f(x_{n-1})$ is not necessary 0) \rightarrow numerically limited by subtractive cancelation, as fraction $\rightarrow 0/0$ (4)

Regula falsi method l

 \rightarrow refinement of bisection by combining it with the secant method

Regula falsi (False position method)

• as for bisection: start with interval $[x_1, x_2]$ with $f(x_1) \cdot f(x_2) < 0$

② calculate the zero of the secant

$$x_3 = x_1 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_1) = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)}$$

goto 2

 \rightarrow superlinear convergence (more than one significant digit per iteration) as for secant method \rightarrow advantage: numerically stable, no evaluation of derivatives required, computation of function values is reused

 \rightarrow preferred method for 1d problems

H. Todt (UP)

(5)

or *Newton-Raphson method* (Newton 1669, Raphson 1690) to solve numerically non-linear equations or systems of equations

 \rightarrow quicker than bisection, but sometimes problematic

Idea: start with approximation x_0 , draw tangent at $(x_0, f(x_0))$, determine intersection with x-axis \rightarrow new approximation for root

Derivation: evaluate function f(x) around x_0 (Taylor expansion)

$$f(x_0 + \Delta x) \simeq f(x_0) + f'(x_0) \cdot \Delta x \tag{6}$$

(linear approximation = tangent t on x_0 shall vanish)

$$\rightarrow t(x) = f(x_0) + f'(x_0) \cdot \Delta x \stackrel{!}{=} 0$$
(8)

$$\rightarrow \Delta x = -\frac{f(x_0)}{f'(x_0)} \tag{9}$$

the correction Δx added on x_0 gives improved guess for root

(7)

Newton's method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Convergence:

If
$$f:[a,b]
ightarrow\mathbb{R}$$
 is a \mathcal{C}^2 function with

- $\bullet \ f \text{ has a root } \xi \text{ in } [a, b]$
- 2 $f'(x) \neq 0$ for $x \in [a, b]$
- f is either convex $(f'' \ge 0)$ or concave $(f'' \le 0)$ in [a, b]
- the iterated x_1 for $x_0 = a$ and $x_0 = b$ are in [a, b]

Then: For any $x_0 \in [a, b]$ the values x_1, x_2, \ldots from Eq. (10) are in [a, b] and the sequence converges monotonically to ξ .

(10)

Newton's method III

Remarks:

• only locally convergent,

i.e. result depends on start approximation for x_0 \rightarrow Newton fractal for $z^3 - 1 = 0$

- in some situations Newton's method may fail (see requirements):
 - if x_n is at local extremum

with $f(x_n) \neq 0 \rightarrow$ tangent with slope 0, i.e. $f'(x_n) = 0 \rightarrow$ infinite correction \rightarrow solution: start over with different x_0

• infinite loop,

e.g., $f(x) = x^3 - 2x + 2$ with $x_0 = 0 \rightarrow f(0) = 2$, f'(0) = -2 $\rightarrow x_1 = 0 - \frac{2}{-2} = 1$ and for $x_0 = 1 \rightarrow f(1) = 1$, f'(1) = 1 $\rightarrow x_1 = 1 - \frac{1}{1} = 0$

 \rightarrow happens if x_0 in region where f(x) not "linear enough" (vizualization may help to find better initial guess)

- convergence is quadratic, i.e. with every step two more significant digits
- instead of analytic f'(x) numeric approximation $f'(x_n) \simeq \frac{f(x_n+h)-f(x_n)}{h}$ sufficient \rightarrow even rough (or constant!) approximation may be sufficient
- if convergent, method is stable

Backtracing

 \rightarrow solution to some problems (i.e. infinite loop) with large corrections So: if for new guess $x_0+\Delta x$

$$|f(x_0 + \Delta x)|^2 > |f(x_0)|^2 \tag{11}$$

 \rightarrow backtrack, try smaller guess, e.g., $x_0 + \Delta x/2$, if still condition (11), try $x_0 + \Delta x/4$ and so on \rightarrow because tangent line will lead to *decrease* in f(x), even small step Δx sufficient

Newton's method VI

Extension to multidimensional case for multidimensional function $f : \mathbb{R}^n \to \mathbb{R}^n$

$$f(x+h) = f(x) + J(x) \cdot h + \mathcal{O}(||h||^2)$$
(12)

where $J(x) = f'(x) = \frac{\partial f}{\partial x}(x)$ the Jacobi matrix, the matrix of the partial derivatives w.r.t. x:

$$J(\mathbf{x}) := \left(\frac{\partial f_i}{\partial x_j}(\mathbf{x})\right)_{ij} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & & & \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$
(13)

Therefore

$$x_{n+1} = x_n - J^{-1}(x) f(x_n) \to \Delta x_n = -J^{-1}(x_n) f(x_n)$$
(14)

As inversion of J is expensive, usually solve system of linear equations:

$$J(\mathbf{x}_n)\Delta\mathbf{x}_n = -f(\mathbf{x}_n) \tag{15}$$

to get Δx_n and then $x_{n+1} = x_n + \Delta x_n$

 \rightarrow Newton-Raphson method in *n* dimensions (i.e. system of equations) is expensive, therefore often used: *quasi Newton methods*

Example: statistical equilibrium

In the non-LTE case population numbers of ions n from statistical equations with transition rates P_{ij} , stationary: $\sum_{i \neq j} n_i P_{ij} = \sum_{j \neq i} n_j P_{ji}$ with $P_{ij} := -\sum_i P_{ji} \rightarrow n \cdot P(n, J, T_e) = 0$, matrix has block structure (but coupling extra line from charge conservation / electron density):

$$\mathbf{P} = \begin{bmatrix} \mathbf{H} & | \\ \hline & \mathbf{He} \\ \hline & | \\ \hline & | \\ \hline & | \\ \hline & N \end{bmatrix}$$

together with $J = \Lambda S(n)$. When using net-radiative brackets or accelerated Λ iteration: \rightarrow non-linear system of N equations $\rightarrow N^3$ derivatives (N derivatives for $N \times N$ rates) (16)

Instead of calculating n^3 derivatives use modified *secant* equation

$$x_{k+1} = x_k - f(x_k)B_k^{-1}$$
(17)

with "slope"
$$B_{k+1} = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k} = \frac{\Delta y_k}{\Delta x_k} \longrightarrow \Delta y_k = B_{k+1} \Delta x_k$$
 (18)

But: Eq. (18) defines B only as n-1 dimensional subspace \rightarrow need further constraints. Broyden (1965): use updating algorithm

$$B_{k+1} = B_k + \frac{\Delta x_k^T \otimes (\Delta y_k - \Delta x_k B_k)}{|\Delta x_k|^2}$$
(19)

with dyadic product of two vectors (columns \times rows) yielding matrix elements: $(u^T \otimes v)_{ij} = u_i v_j$ Advantage: Broyden's formula (19) can be inverted analytically by help of Sherman-Morrison-Woodbury lemma

$$(A + u^{\mathsf{T}} \otimes v)^{-1} = A^{-1} - \frac{A^{-1}u^{\mathsf{T}} \otimes vA^{-1}}{1 + v A^{-1}u^{\mathsf{T}}}$$
(20)

with row-vectors u, v and an invertible matrix A the required B_{k+1}^{-1} can be directly obtained from previous B_k^{-1} :

$$B_{k+1}^{-1} = B_k^{-1} + \frac{(B_k^{-1}\Delta x_k^{\mathsf{T}}) \otimes (\Delta x_k - \Delta y_k B_k^{-1})}{(\Delta y_k B_k^{-1}) \cdot \Delta x_k^{\mathsf{T}}}$$
(21)

 \rightarrow no operations between full matrices involved \rightarrow only \sim N^2 multiplications

Broyden method

- select starting point x_0 (e.g., initial guess on n from LTE population numbers) and starting matrix $B_0^{-1} = (f')^{-1}$ (Newton step)
- **2** $x_{k+1} = x_k f(x_k)B_k^{-1}$
- ${\small \textcircled{0}} \hspace{0.1 cm} \text{stop if } |\Delta \mathbf{x}| < \epsilon$
- else update Broyden matrix Eq. (21)

$$B_{k+1}^{-1} = B_k^{-1} + \frac{(B_k^{-1} \Delta x_k^\mathsf{T}) \otimes (\Delta x_k - \Delta y_k B_k^{-1})}{(\Delta y_k B_k^{-1}) \cdot \Delta x_k^\mathsf{T}}$$

• k = k + 1 goto 2

Interpolation

Interpolating data I

Consider following measurement of a cross section

+

150

$$f(E) = \frac{f_{\rm r}}{(E - E_{\rm r})^2 + \Gamma^2/4}$$
(22)

50

100

E_i [MeV]

+

20

0

0

200

Interpolation problem

Task: Determine $\sigma(E)$ for values of E which lie between measured values of E

By, e.g.,

- numerical interpolation (assumption of data representation by polynomial in E):
 - piecewise constant \rightarrow step function (easy to implement, error goes as $\sim y'_i(x_{i+1} x_i)$)
 - piecewise linear (special case of polynomial)
 - polynomial (Lagrange)
 - piecewise Lagrange, cubic spline
 - \rightarrow ignores errors in measurement (noise)
- fitting parameters of an underlying model, e.g., Breit-Wigner with f_r , E_r , Γ , (taking errors into account), i.e., minimizing χ^2
- Fourier analysis

Interpolating data III

Linear interpolation

tabulated function $y_i = y(x_i)$, i = 1 ... N, e.g., for interval x_i, x_{i+1} , linear interpolation in this interval is by

$$y = A(x)y_i + B(x)y_{i+1}$$
 (23)

H. Todt (UP)

Interpolating data IV

Cosine interpolation

a smoother transition between intervals can be achieved by piecewise cosine functions:

$$t = \frac{x - x_i}{x_{i+1} - x_i} \quad (\text{mapping on unit interval } [0, 1]) \tag{25}$$

$$B = (y_{i+1} + y_i)/2; \quad A = y_i - B \tag{26}$$

$$y = A \cos(\pi t) + B \tag{27}$$

note, that at the nodes x_i because of $\cos'(0) = 0 = \cos'(\pi) \rightarrow y'_i = 0$

H. Todt (UP)

Lagrange interpolation (global)

• fit (n-1)th degree polynomial through n data points

$$p(x) = y_1\lambda_1(x) + y_2\lambda_2(x) + \ldots + y_n\lambda_n(x)$$
(28)

$$\lambda_i(x) = \prod_{j=1, j \neq i}^n \frac{x - x_j}{x_i - x_j} = \frac{x - x_1}{x_i - x_1} \frac{x - x_2}{x_i - x_2} \cdots \frac{x - x_n}{x_i - x_n}$$
(29)

where $\sum_{i=1}^{n} \lambda_i(x) = 1$

- practical: the λ_i are independent from the values of the function values f_i → for same nodes x_i → same λ_is (e.g., when measuring different y_is for same x_is)
- so, for n=9
 ightarrow(n-1)=8th degree polynomial
- note that $\lambda_i(x_j) = \delta_{ij}$

Example: Lagrange interpolation polynomial n = 3

n = 3 data points $\rightarrow n - 1 = 2$ degree polynomial, e.g., for points $P_1 = (-1; 4), P_2 = (0; 1), P_3 = (2; 5)$ ($x_1 = -1; x_2 = 0; x_3 = 2$)

$$\lambda_{1} = \frac{x - x_{2}}{x_{1} - x_{2}} \cdot \frac{x - x_{3}}{x_{1} - x_{3}} = \frac{(x - 0)}{(-1 - 0)} \cdot \frac{(x - 2)}{(-1 - 2)} = \frac{x^{2} - 2x}{3}$$
(30)

$$\lambda_{2} = \frac{x - x_{1}}{x_{2} - x_{1}} \cdot \frac{x - x_{3}}{x_{2} - x_{3}} = \frac{(x - (-1))}{(0 - (-1))} \cdot \frac{(x - 2)}{(0 - 2)} = \frac{x^{2} - 2 - x}{-2}$$
(31)

$$\lambda_{3} = \frac{x - x_{1}}{x_{3} - x_{1}} \cdot \frac{x - x_{2}}{x_{3} - x_{2}} = \frac{(x - (-1))}{(-2 - (-1))} \cdot \frac{(x - 0)}{(2 - 0)} = \frac{x^{2} + x}{6}$$
(32)

$$p(x) = y_{1} \cdot \lambda_{1} + y_{2} \cdot \lambda_{2} + y_{3} \cdot \lambda_{3} = 4 \cdot \frac{x^{2} - 2x}{3} + 1 \cdot \frac{x^{2} - 2 - x}{-2} + 5 \cdot \frac{x^{2} + x}{6}$$
(33)

$$= \frac{5}{3}x^{2} - \frac{4}{3}x + 1$$
(34)
Check:
$$\lambda_{1} + \lambda_{2} + \lambda_{3} = \frac{x^{2} - 2x}{3} + \frac{x^{2} - 2 - x}{-2} + \frac{x^{2} + x}{6} = 1$$

Interpolating data VII

Application: Newton-Cotes formulae for integration

Idea: interpolate f(x) in $\int_a^b f(x) dx$ with polynomial of degree *n* and integrate this polynomial exactly (note: now *n* =degree, start with *j* = 0):

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) \cdot \lambda_{i}(x)$$
(35)

$$\lambda_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j} \xrightarrow{x=a+ht} \phi_i(t) := \prod_{\substack{j=0\\j\neq i}}^n \frac{t-j}{i-j}$$
(36)

Note that the transformation x = a + ht means that $x_0 = a + h \cdot 0$, $x_1 = a + h \cdot 1$, ... (equidistant subintervals h on x-axis) Therefore the integration of $p_n(x)$ yields

$$\int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) \cdot \lambda_{i}(x) = h \sum_{i=0}^{n} f_{i} \int_{0}^{n} \phi_{i}(t) dt = h \sum_{i=0}^{n} f_{i} w_{i}$$
(37)

Interpolating data VIII

Example: Newton-Cotes formula n = 1

$$w_{0} = \int_{0}^{n} \phi_{0}(t) dt = \int_{0}^{1} \frac{t-1}{0-1} dt = \int_{0}^{1} (1-t) dt = \frac{1}{2}$$
(38)
$$w_{1} = \int_{0}^{n} \phi_{1}(t) dt = \int_{0}^{1} \frac{t-0}{1-0} dt = \int_{0}^{1} t dt = \frac{1}{2}$$
(39)
$$\int_{a}^{b} p_{1}(x) dx = h \sum_{i=0}^{1} f_{i} w_{i} = h \left(f_{0} \frac{1}{2} + f_{1} \frac{1}{2} \right) = \frac{h}{2} (f_{0} + f_{1})$$
(40)

 \rightarrow trapezoid rule

Analogously for n = 2, e.g.,

$$w_0 = \int_0^2 \frac{t-1}{0-1} \cdot \frac{t-2}{0-2} dt = \frac{1}{2} \int_0^2 (t^2 - 3t + 2) dt = \frac{1}{3}$$
(41)

and $w_1 = \frac{4}{3}$, $w_2 = \frac{1}{3} \rightarrow \int_a^b p_2(x) dx = \frac{h}{3}(f_0 + 4f_1 + f_2) \rightarrow \text{Simpson's rule}$

Interpolating data IX

 \rightarrow closed Newton-Cotes formulae with nodes t_i on [0,1]: $t_0 = 0$, $t_i = \frac{i}{n}$, $t_n = 1$, use mapping $x_i = a + t_i(b-a)$, so

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} p_{n}(x) dx + E_{f} = (b - a) \sum_{i=0}^{n} w_{i} f(x_{i}) + E_{f}$$
(42)

n	name	nodes <i>t</i> i	weights <i>w</i> _i	E _f
1	trapezoid rule	01	$\frac{1}{2}$ $\frac{1}{2}$	$-\frac{(b-a)^3}{(l^2)^5}f''$
2	Simpson's rule	$0 \frac{1}{2} 1$	$\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$	$-\frac{(b-a)^{3}}{2880}f^{(4)}$
3	3/8 rule	$0 \frac{1}{3} \frac{2}{3} 1$	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$-\frac{(b-a)^5}{6480}f^{(4)}$
4	Milne rule	$0 \frac{1}{4} \frac{2}{4} \frac{3}{4} 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-rac{(b-a)^7}{1935360}f^{(6)}$

for $n \ge 8$ some weights w_i are also negative \rightarrow subtractive cancellation \rightarrow useless Note, again: $\sum w_i = 1$. The error: $E_f = h^{p+1} \cdot K \cdot f^{(p)}(\xi), \xi \in (a, b)$

H. Todt (UP)

Y1

Trick: Neville's algorithm (sometimes confused with Aitken's method)

Instead of computing the whole Lagrange polynomial: nested linear interpolations Where the $f_{i...i}$ are recursively computed, e.g., f.

$$f_{123} = \frac{f_{12}}{f_{23}} f_{123} \qquad f_{123} = \frac{x - x_j}{x_i - x_j} f_{1...j - 1} + \frac{x - x_i}{x_j - x_i} f_{i+1...j} \qquad (43)$$

$$f_{123} = \frac{x - x_3}{x_1 - x_3} f_{12} + \frac{x - x_1}{x_3 - x_1} f_{23} \qquad (44)$$

 \rightarrow sequence of ... linear interpolations = interpolation with polynomial of n-1 degree \rightarrow error can be estimated from $\frac{|f_{i...j}-f_{i...j-1}|+|f_{i...j}-f_{i+1..j}|}{2}$, e.g. $\frac{|f_{12345}-f_{1234}|+|f_{12345}-f_{2345}|}{2}$

Neville's algorithm: code

// input : given points xi[], fi[], value of x for interpolation
// output: f at position x, error estimate df

```
for (i = 1 ; i <= n ; ++i) ft[i] = fi[i] ;</pre>
```

```
for (i = 1 ; i <= n-1 ; ++i) {
  for (j = 1 ; j <= n-i ; ++j) {
    x1 = xi[j] ; x2 = xi[j+1] ;
    f1 = ft[j] ; f2 = ft[j+1] ;
    ft[j] = (x - x1)/(x2 - x1) * f2 + (x - x2)/(x1 - x2) * f1
  }
}
f = ft[1] ;
df = (fabs(f - f1) + fabs(f - f2))/2. ;</pre>
```


Interpolating data XIII

one possible solution for the problem of Runge's phenomenon: piecewise polynomials here: 2nd degree polynomials (parabola, requires 3 points)

better: Cubic Hermite spline

• remember: piecewise linear interpolation with functions

$$A(x) = \frac{x_{i+1} - x}{x_{i+1} - x_i} \qquad B(x) = 1 - A = \frac{x - x_i}{x_{i+1} - x_i}$$
(45)

$$\Rightarrow y(x) = A(x) y_i + B(x) y_{i+1}$$
(46)

 $\rightarrow 2 nd$ derivative=0 in interval and undefined/infinite at interval points

• idea: get interpolation with smooth 1st derivative and continuous in 2nd derivative

A flat spline (lath) with fixed points (ducks) has minimum energy of bending \rightarrow e.g., used for construction of hulls

Burmester stencils are splines of 3rd degree

Interpolating data XV

• if (assume!): not only y_i given, but also $y''_i \to \text{add}$ cubic polynomial with 2nd derivative varying linearly between y''_i to y''_{i+1} and zero values for x_i and x_{i+1} (so y_i , y_{i+1} unchanged):

$$y(x) = A(x) y_i + B(x) y_{i+1} + C(x) y_i'' + D(x) y_{i+1}''$$
(47)

$$C(x) \equiv \frac{1}{6}(A^{3}(x) - A(x))(x_{i+1} - x_{i})^{2} \qquad D(x) \equiv \frac{1}{6}(B^{3}(x) - B(x))(x_{i+1} - x_{i})^{2}$$
(48)

 $\rightarrow x$ dependence only through A(x), $B(x) \rightarrow$ cubic x-dependence in C(x), D(x)

• check: now y_i'' is 2nd derivative of interpolating polynomial (calculating dA/dx, ...):

$$\frac{dy}{dx} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} - \frac{3A^2 - 1}{6}(x_{i+1} - x_i)y_i'' + \frac{3B^2 - 1}{6}(x_{i+1} - x_i)y_{i+1}''$$
(49)
$$\frac{d^2y}{dx^2} = Ay_i'' + By_{i+1}''$$
(50)

note that A = 1 and B = 0 at x_i ; and A = 0 and B = 1 at x_{i+1} , so y'' is ok (\checkmark)

H. Todt (UP)

- however: in most cases y''_i not known idea \rightarrow 1st derivative shall be continuous across interval boundaries \rightarrow gives equation for 2nd derivatives
- so: Eq. (49) shall be same for x_i on $[x_{i-1}, x_i]$ and on $[x_i, x_{i+1}]$ (for i = 2, ..., N 1) yielding N 2 equations

$$\frac{x_i - x_{i-1}}{6}y_{i-1}'' + \frac{x_{i+1} - x_{i-1}}{3}y_i'' + \frac{x_{i+1} - x_i}{6}y_{i+1}'' = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} - \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$$
(51)

with N unknown $y_i'' \rightarrow \text{need further constraint}$

- often: y_1'' and y_N'' set to $0 \rightarrow$ natural cubic spline
- advantage of cubic splines: linear set of equations and also tridiagonal, each y''_i couples only to nearest neighbors

Interpolating data XVII

• hence with mapping $t = (x - x_i)/(x_{i+1} - x_i)$ on unit interval [0,1]

$$p(t) = T M_{h} C = (t^{3} t^{2} t) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_{i} \\ y_{i+1} \\ m_{i} \\ m_{i+1} \end{pmatrix}$$
(52)
$$p(t) = (2t^{3} - 3t^{2} + 1)y_{i} + (-2t^{3} + 3t^{2})y_{i+1} \\ + (t^{3} - 2t^{2} + t)m_{i} + (t^{3} - t^{2})m_{i+1}$$
(53)

with the numericial 1st derivatives $m_i = \frac{1}{2} \left(\frac{y_i - y_{i-1}}{x_i - x_{i-1}} + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \right)$ and $m_{i+1} = \frac{1}{2} \left(\frac{y_{i+1} - y_i}{x_{i+1} - x_i} + \frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_{i+1}} \right)$ and $m_1 = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$ and $m_n = 0$

Interpolating data XVIII

Interpolating data XIX

Catmull-Rom splines

The "width" of the curve segment can be controlled by a parameter T_k according to (for k = 2, ..., n-2):

H. Todt (UP)

(54)

Simplest method on a rectilinear 2D grid: <u>bilinear interpolation</u>, i.e, linear interpolation in one direction, then again in another direction \rightarrow as for Neville's algorithm 2× linear = quadratic order If four *f* values are given as follows: $f_1 : Q_{11} = (x_1, y_1), f_2 : Q_{12} = (x_1, y_2), f_3 : Q_{21} = (x_2, y_1), f_4 : Q_{22} = (x_2, y_2)$ then

1. linear interpolation in *x*-direction:

$$f(x, y_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})$$
(55)

$$f(x, y_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$
(56)

2. linear interpolation in y-direction:

$$f(x,y) \approx \frac{y_2 - y}{y_2 - y_1} f(x,y_1) + \frac{y - y_1}{y_2 - y_1} f(x,y_2)$$

$$= \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \right)$$

$$+ \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \right)$$

$$= \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(f(Q_{11})(x_2 - x)(y_2 - y) + f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y - y_1) + f(Q_{22})(x - x_1)(y - y_1) \right)$$
(57)

 \rightarrow same result as for 1. *y*-direction + 2. *x* direction

So:

$$f(x,y) = \frac{1}{(x_2 - x_1)(y_2 - y_1)} \\ \cdot (f_1(x_2 - x)(y_2 - y)) \\ + f_3(x - x_1)(y_2 - y) \\ + f_2(x_2 - x)(y - y_1) \\ + f_4(x - x_1)(y - y_1))$$
(58)

Example, here: rgb colors on corner points $f_{11} = b$, $f_{12} = f_{21} = r$, $f_{22} = g$

As the interpolation can also be written as:

$$f(x,y) = \sum_{i=0}^{1} \sum_{j=0}^{1} a_{ij} x^{i} y^{j} = a_{00} + a_{10} x + a_{01} y + a_{11} x y$$
(59)

$$a_{00} = f(0,0),$$
 (60)

$$a_{10} = f(1,0) - f(0,0),$$
 (61)

$$a_{01} = f(0,1) - f(0,0),$$
 (62)

$$a_{11} = f(1,1) + f(0,0) - (f(1,0) + f(0,1)).$$
(63)

 \rightarrow interpolation only linear along lines of const. x or const. y, any other direction: quadratic in position (but linear in f)

 \rightarrow other method: bicubic interpolation $f(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$ with 16 coefficients

 \rightarrow extension to 3D: trilinear interpolation, tricubic interpolation (64 coefficients)