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MC Error estimation
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Numerical integration and error I

Numerical integration (exact or MC) gives approximation∫ b

a
f (x)dx = Q(f ) + E (f ) (1)

Q(f ) so-called quadrature formula,
E (f ) error → unknown (obvious)

Aim: estimate magnitude of error

so far: error calculated from our knowledge of the exact result

H. Todt (UP) Computational Astrophysics SoSe 2024, 20.6.2024 3 / 59



Numerical integration and error II

Obvious: for constant integrand f is E = 0, i.e. Fn is independent of n (and always the
same)

Idea: try to estimate the error with help of the standard deviation σ:

σ2 = 〈f (x)2〉 − 〈f (x)〉2 (2)

〈f (x)〉 =
1
n

n∑
i=1

f (xi ) (3)

〈f (x)2〉 =
1
n

n∑
i=1

f (xi )
2 (4)

if f constant →σ = 0
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Numerical integration and error III

consider the example f (x) = 4
√
1− x2 with F =

∫ 1
0 f (x)dx = π

Calculate σ for different n (cf. Gould et al. 1996)

Fn n E = |Fn − π| σ

3.271771 101 0.13017 0.78091
3.100276 102 0.04131 0.91441
3.173442 103 0.03185 0.85013
3.135863 104 0.00572 0.90317
3.142189 105 0.00059 0.89051
3.141798 106 0.00020 0.89236

σ almost constant and much larger than E

but: decrease of E from n = 102 to n = 104 by a factor of 10 →∼ 1/n1/2 (?)

therefore: σ says how much f varies in [a, b]
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Numerical integration and error IV

idea: estimate E by several runs α for constant n = 104, each with result Mα:

Mα α E = |F − π| |Mα+1 −Mα|

3.14892 1 0.00735 0.00845
3.13255 2 0.00904 0.01637
3.14042 3 0.00117 0.00787
3.14600 4 0.00441 0.00558
3.15257 5 0.01098 0.00657
3.13972 6 0.00187 0.01285
3.13107 7 0.01052 0.00865
3.13585 8 0.00574 0.00478
3.13442 9 0.00717 0.00143
3.14047 10 0.00112 0.00605

E varies, differences |Mα −Mβ|α 6=β between results comparable with E , therefore:
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Numerical integration and error V
define standard deviation σm of the means:

σ2m = 〈M2〉 − 〈M〉2 (5)

〈M〉 =
1
m

m∑
α=1

Mα → 〈M2〉 =
1
m

m∑
α=1

M2
α (6)

(7)

for the runs 1 till 10 one gets σm = 0.006762 → comparable with E

exact: one run has the chance of 68% that Mα is in in the range π ± σm
however method not very usefull, as several runs are required
actually for large n holds:

σm =
σ√
n − 1

≈ σ√
n

(8)

e.g., for n = 104 is σm = 0.90317/100 ≈ 0.009, i.e., consistent with our estimate
σm = 0.007 and the error E = 0.006

How can we get σ without α runs?
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Numerical integration and error VI

Hence, split one run, e.g., in s = 10 subsets k such that each contains n/s = 1000 trials and
has result Sk

Then, with the mean 〈S〉 from the different runs is also

σ2s = 〈S2〉 − 〈S〉2 (9)

and

σm = σs/
√
s (10)
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Numerical integration and error VII

Derivation/proof:

random variable x

m runs with each n trials (= m × n trials in total)

index α lables a run, i a single trial

result from one run (= measurement):

Mα =
1
n

n∑
i=1

xα,i (11)

the arithmetic mean of all mn trials is:

M =
1
m

m∑
α

Mα =
1
nm

m∑
α=1

n∑
i=1

xα,i (12)
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Numerical integration and error VIII
difference of a one run α and the total mean

eα = Mα −M (13)

Hence the variance (standard deviation2) can be written for the runs as:

σ2m =
1
m

m∑
α=1

(Mα −M)2 =
1
m

m∑
α=1

e2α (14)

Now finding the relation between σm and σ of the individual m × n trials. Difference between
one trial and the the mean of one run:

dα,i = xα,i −M (15)

Therefore the variance for all m × n trials:

σ2 =
1
mn

m∑
α=1

n∑
i=1

d2
α,i (16)
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Numerical integration and error IX

With help of Eq. (15) the Eq. (13) can be rewritten as:

eα = Mα −M =
1
n

n∑
i=1

(
xα,i −M

)
=

1
n

n∑
i=1

dα,i (17)

Insert Eq. (17) into Eq. (14):

σ2m =
1
m

m∑
α=1

(
1
n

n∑
i=1

dα,i

)1
n

n∑
j=1

dα,j

 (18)
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Numerical integration and error X

The products in Eq. (18) consist of terms i = j and terms i 6= j . As the trials are independent
of each other, for large n the differences dα,i and dα,j are on average as often negative as
positive, i.e., the terms i 6= j cancel out on average. What remains are the terms for i = j :

σ2m =
1

mn2

m∑
α=1

n∑
i=1

d2
α,i (19)

By comparison with Eq. (16) for individual variance: σ2 = 1
mn

∑m
α=1

∑n
i=1 d

2
α,i one gets

required variance of runs:

σ2m =
σ2

n
⇒ σm =

σ√
n

(20)

2
→ the standard deviation (= error estimate) scales with 1√

n
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Why Monte-Carlo (integration)?
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Performance of integration techniques I

Already seen: for 1d integration, dependence of truncation error on number of intervals
(∼ samples)

method σ(N)

rectangular rule N−1

trapezoid rule N−2

Simpson’s rule N−4

MC sample-mean method N−1/2

→ for 1d MC sample-mean inefficient integration method
Truncation error derived from Taylor series expansion of integrand f (x):

f (x) = f (xi ) + f ′(xi )(x − xi ) +
1
2
f ′′(xi )(x − xi )

2 + . . . (21)∫ xi+1

xi

f (x)dx = f (xi )∆x +
1
2
f ′(xi )(∆x)2 +

1
6
f ′′(xi )(∆x)3 + . . . (22)
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Performance of integration techniques II
For the rectangular rule (f (xi )∆x), error ∆i in leading order for [xi , xi+1] is

∆i =

[∫ xi+1

xi

f (x)dx

]
− f (xi )∆x ≈ 1

2
f ′(xi )(∆x)2 (23)

→ error per interval; as there are N intervals in total and ∆x = (b − a)/N → total error for
rectangular rule N ∆i ∼ N (∆x)2 ∼ N(b−aN )2∼ N−1

Analogously for trapezoid rule, where we estimate f (xi+1) by Eq. (21):

∆i =

[∫ xi+1

xi

f (x)dx

]
− 1

2
[f (xi ) + f (xi+1)]∆x (24)

=

[
f (xi )∆x +

1
2
f ′(xi )(∆x)2 +

1
6
f ′′(xi )(∆x)3 + . . .

]
(25)

− 1
2

∆x

[
f (xi ) + f (xi+1) + f ′(xi )∆x + f ′(xi+1)∆x +

1
2
f ′′(xi )(∆x)2 + . . .

]
(26)

≈− 1
3
f ′′(xi )(∆x)3 → total error ∼ N−2 (27)
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Performance of integration techniques III

For Simpson’s rule f (x) is approximated as parabola on [xi−1, xi+1] → terms ∼ f ′′ cancel,
moreover because of symmetry terms ∼ f ′′′(∆x)4 cancel → error for interval [xi , xi+1] is
∼ f (4)(xi )(∆x)5 and total error for [a, b] is ∼ N−4

Integration error in 2d
extend previous estimates for rectangular rule in 2d, so for f (x , y): integral → sum of volumes
of parallelograms with cross section area ∆x∆y and height f (x , y) at one corner
Taylor series expansion of f (x , y)

f (x , y) = f (xi , yi ) +
∂f (xi , yi )

∂x
(x − xi ) +

∂f (xi , yi )

∂y
(y − yi ) + . . . (28)

∆i =

[∫ ∫
f (x , y)dxdy

]
− f (xi , yi )∆x∆y (29)
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Performance of integration techniques IV

Now, substitute Taylor expansion Eq. (28) into error estimate Eq. (29), integrate each term
→ term ∼ f cancels out
and

∫
(x − xi )dx = 1

2(∆x)2 →
∫
dy gives another factor ∆y ; similar for (y − yi )

As O(∆y) = O(∆x), error for interval [xi , xi+1] and [yi , yi+1] is

∆i ≈
1
2

[f ′x(xi , yi ) + f ′y (xi , yi )](∆x)3 (30)

→ error for one parallelogram ∼ (∆x)3, for N parallelograms N · (∆x)3

But in 2d: N = A/(∆x)2

→ total error N(∆x)3 = N A3/2N−3/2 ∼ N−1/2 (whereas in 1d: N−1)
Analogously for trapezoid rule in 2d: N−1, for Simpson’s rule in 2d: N−2

In general: if in 1d integration error ∼ N−p

→ integration error in d dimensions ∼ N−p/d (curse of dimensionality)
In contrast: MC integration error ∼ N−1/2 independent of d → superior for large d
(think about integrals

∫
V

∫
Vp

f dp3dx3 in statistical mechanics)
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How to integrate in higher dimensions I

Integrals of functions of more than 1 variable, over regions with d > 1, are difficult!
1 function evaluation: if n function calls required for some accuracy in 1d →∼ nd samples

needed for d dimensions (e.g., 30 calls in 1d vs. approx. 30 000 in 3d)
2 integration region in d dimensions defined by d − 1 dimensional boundary → can be very

complicated for d > 1 (e.g. not convex, not simply connected)

Ad 1.) → try to reduce integral to lower dimensions by exploiting symmetry of function and
boundary and changing coordinates. E.g., spherically symmetric function over spherical region
→ in polar coordinates 1d integral
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How to integrate in higher dimensions II

Example: PoWR code for expanding atmospheres

non-LTE (i.e. ~n( ~J) from statistical equations + ALI
→Newton’s method) radiative transfer in wind (i.e.
CMF RT with Mio. of frequency points K , coarsend
~J(~n) for ~n →K ≈ 1000) → iteratively solved
assuming spherical symmetry with, e.g., ND = 50
depth-points, typically for each iteration ≈ 5 s, in
total ≈ 1000 iterations →∼ h
in 3D: 2500 × more “depthpoints” → each iteration
now 3.5 h (!) → total 1

2 a
z

p

r1 = RMAX

r2

rND = 1

For each depthoint: Solve nP = 0 where Pii := −
∑n

j 6=i Pij with n ∼ 500
+ radiative transfer (see sketch)
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How to integrate in higher dimensions III

Ad 2.)

if boundary complicated, integrand not strongly peaked in very small regions, relatively low
accuracy required →MC integration! (see below)

if boundary simple, smooth integrand, (+ high accuracy required) → repeated 1d integrals
or multidimensional quadrature

if integrand peaks in certain regions → split integral into several “smooth” regions (requires
knowledge of behaviour of integrand)
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How to integrate in higher dimensions IV

Repeated 1d integration

Let d = 3 with x , y , z and boundaries [x1, x2], [y1(x), y2(x)], [z1(x , y), z2(x , y)] → find x1, x2
and functions y1(x), y2(x), z1(x , y), z2(x , y) such that∫ ∫ ∫

dx dy dz f (x , y , z) =

∫ x2

x1

dx

∫ y2(x)

y1(x)
dy

∫ z2(x ,y)

z1(x ,y)
dz f (x , y , z) (31)

Example: 2d integral over circle with radius R centered on (0, 0)

∫ x2=+R

x1=−R
dx

∫ y2(x)=
√
R−x2

y1(x)=−
√
R−x2

dy f (x , y) (32)

Note that Fubini’s theorem for iterated integrals assumes that the integrand is absolutely integrable:∫ ∫
|f (x , y)|dx dy < +∞.
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How to integrate in higher dimensions V

Innermost integration over z yields a function G (x , y):

G (x , y) :=

∫ z2(x ,y)

z1(x ,y)
f (x , y , z) dz (33)

then intgration over y yields H(x):

H(x) :=

∫ y2(x)

y1(x)
G (x , y) dy (34)

finally the overall integral I is

I =

∫ x2

x1

H(x) dx (35)
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How to integrate in higher dimensions VI

y

x

inner integration

o
u

te
r 

in
te

g
ra

ti
o

n instead of using fixed Cartesian mesh of points,
better evaluate function at suitable x locations
(along y -axis), while inner integration (over y)
chooses suitable y values;
→ inner integration call (over y) many more
times than outer integration (over x)

Implementation of Eq. (33)-(35) requires 3 separate copies of some 1d integration routine, so
one for each x , y , z integration or recursive calls of the same routine

H. Todt (UP) Computational Astrophysics SoSe 2024, 20.6.2024 23 / 59



How to integrate in higher dimensions VII

Example: Fortran sniplet for 3d iterated integration

! identical copies quadx, quady, quadz
! of 1d-integration routine;
! user provides func(x,y,z), y1(x),
! y2(x), z1(x,y), z2(x,y) as in Eq. (31)

SUBROUTINE quad3d(x1, x2, ss)
REAL ss, x1, x2, h
CALL quadx(h, x1, x2, ss)
RETURN
END

FUNCTION f(zz)
REAL f, zz, func, x, y, z
COMMON /xyz/ x, y, z
z = zz
f = func(x, y, z)
RETURN
END

FUNCTION g(yy)
REAL g, yy, f, z1, z2, x, y, z
COMMON /xyz/ x, y, z
REAL ss
y = yy
CALL quadz(f, z1(x,y), z2(x,y), ss)
g = ss
RETURN
END

FUNCTION h(xx)
REAL h, xx, g, y1, y2, x, y, z
COMMON /xyz/ x, y, z
REAL ss
x = xx
CALL quady(g, y1(x), y2(x), ss)
h = ss
RETURN
END
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MC integration in higher dimensions I

Example: Mass and center of mass of cut torus
Section of a torus with radius R and cross section radius r

z2 + (
√
x2 + y2 − R)2 ≤ r (36)

section defined by

x ≥ a y ≥ b (37)

Need to evaluate following integrals

M =

∫
ρ dx dy dz Mx =

∫
xρ dx dy dz (38)

My =

∫
yρ dx dy dz Mz =

∫
zρ dx dy dz (39)

i.e., x-coordinate of center of mass is x = Mx/M and so on
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MC integration in higher dimensions II

MC integration for a torus (centered on origin,
outer radius = 4, inner radius = 2) section,
where x ≤ 1 and y ≤ −3, i.e., bounds given by
intersection of two planes. Integration limits
cannot be easily given in analytically closed
form

0 2 4

2

4

y

x 
1

from Press et al. (2007)

Choose region that encloses torus section, e.g, rectangular box with 1 ≤ x ≤ 4, −3 ≤ y ≤ 4,
and −1 ≤ z ≤ 1, hence total volume of box is V = 3 ∗ 7 ∗ 2
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MC integration in higher dimensions III

Example: C/C++ sniplet for MC integration of torus section
int N = 1000 ; // sample points
double V = 3. * 7. * 2. ; // sample volume
double den = 1. ; // density rho
double sw = 0., varw = 0. ; // mass and variance
double swx = 0., varx = 0. ; // x-coordinate and var. for center of mass
...

for (i = 0 ; i < N ; ++i) {
x = 1. + 3. * rand()/double(RAND_MAX) ; // cut of torus
y = -3. + 7. * rand()/double(RAND_MAX) ; // cut of torus
z = -1. + 2. * rand()/double(RAND_MAX) ;
if ( pow(z*z + (sqrt(x*x + y*y) -3. ), 2.) <= 1. ) {
sw = sw + den ; varw = varw + den*den ;
swx = swx + x * den ; varx = varx + (x*den)*(x*den) ;
...

} }
w = V * sw / N ; // mass of torus
x = V * swx / N ; // x-coordinate
dw = V * sqrt((varw / N - (sw/N)*(sw/N)) / N) ; // error estimate mass
dx = V * sqrt((varx / N - (swx/N)*(swx/N)) / N) ; // error estimate x-coordinate
...
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MC integration in higher dimensions IV

Conclusions about advantage of MC integration
1 MC integration error decreases independent of dimension with ∼ N−1/2 → superior for

integrals with many integration variables (e.g., phase space integrals, QM)
2 MC integration easy to implement for any geometry → superior for 3d models without

simple symmetry (e.g., spherical symmetry)
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Techniques of MC parallelization
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Neutron transport with packets I

So far: single neutron n0

Improvement/speed up: consider “neutron packets”, i.e. we follow an ensemble of neutrons
(which advances with random `, cos θ as before)
→ determine fraction of the scattered and captured neutrons

1. scattering: fraction of scattered n0: ps, fraction of absorbed n0: pc

2. scattering: fraction of scattered n0: p2
s , fraction of absorbed n0: pcps

mth scattering fraction of scattered n0: pms , fraction of absorbed n0: pcp
m−1
s

so, after mth scattering:
→ total fraction of captured neutrons:
fc = pc + pcps + pcp

2
s + . . .+ pcp

m−1
s

→ total fraction of scattered neutrons:
fs = pms
→ if position x < 0: add fs to frefl
→ if position x > t: add fs to ftrans
→Note: requires normalization of the fractions afterwards
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Neutron transport with packets II

→ see: Lucy (2002): “Monte Carlo transition probabilities”

instead of individual photons, use energy packets of photons of same frequency ν
(ε(ν) = nhν), packets always have same energy ε0 → different n

elastic scattering (e.g., Thomson, resonance): νe = νa

absorption leads to re-emission following: ε(νe) = ε(νa), no packet (= energy) lost or
created → divergence-free radiation field

macro-atoms with discrete internal states, activation via r-packet (radiative) of appropriate
CMF frequency or k-packet (kinetic); active macro-atom performs internal transitions and
gets inactive by emission of r- or k-packet
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Neutron transport with packets III

→ see Šurlan et al. (2012): “Three-dimensional radiative transfer in clumped hot star winds. I.
Influence of clumping on the resonance line formation”
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inside a realization of our clumped wind. The effect of variation of the onset of the clumping rcl on a resoance
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Parallelization

H. Todt (UP) Computational Astrophysics SoSe 2024, 20.6.2024 33 / 59



Parallelization

Many runs in MC simulations required for reliable conclusions (σ ∼ 1√
N
)

Often: Result of one run (e.g., path of a neutron through a plate) independent from other runs

→ Idea: acceleration by parallelization
Problem: concurrent access to memory resources, i.e. variables (e.g., ns, frefl)
Solution: special libraries that enable multithreading (e.g., OpenMP) or multiple processes

(e.g., MPI) for one program

→ insert: pipelining, vectorization, parallelization
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CPU Performance

What influences the performance of a CPU (= runtime of your code)?
architecture/design: out-of-order execution (all x86 except for Intel Atom), pipelining
(stages), vectorization units (width)
cache sizes (kB . . .MB) and location: L1 cache for each core, L3 for processor
clock rate (∼GHz): only within a processor family usable for comparison due to different
number of instruction per clock (IPC) of design, even more complicated because of
variable clock rates (base, peak) to exploit TDP (thermal design power)
→ impact on single-thread performance
number of cores (1 . . . ): → impact on multi-thread performance
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Pipelining I

splitting machine instruction into a sequence

independent execution of instructions, each
consisting of

instruction fetching (IF)
instruction decoding (ID) + register fetch
execution (EX)
write back (WB)

operations of instructions are processed at the
same time → quasi parallel execution, higher
throughput

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
ip

e
lin

e

Completed
instructions

0 1 2 3 4 5 6 7 8

Clock cycle

By en:User:Cburnett - Own workThis vector image was created with Inkscape., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1499754
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Pipelining II

NetBurst disaster
Pentium 4 (2000-2008) developed to achieve > 4GHz (goal: 10 GHz) clockrate by several
techniques, i.a., long pipeline:

20 stages (Pentium III: 10) up to 31 stages (Prescott core)
smaller number of instructions per clock (IPC) (!)
increased branch misprediction (also only 10%, improved by 33% for Pentium III)
larger penalty for misprediction

→ compensated by higher clock rate
higher clock rate → higher power dissipation, especially for 65 (Presler, Pentium D), 90
(Prescott) up to 180 nm (Williamette) structures
→ power barriere at 3.8 GHz (Prescott)
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SSE and AVX I
D

a
t
a
 P

o
o
l

Instruction Pool

PU

PU

PU

PU

SIMD

SSE - Streaming SIMD Extensions
(formerly: ISSE - Internet SSE)
SIMD - Single Instruction Multiple Data (
→ cf. Multivec, AMD3Dnow!),
introduced with Pentium III (Katamai,
Feb. 1999)
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SSE and AVX II

enables vectorization of instructions (not to be confused with pipelining or parallelization),
often new, complex machine instructions required,
e.g., PANDN → bitwise NOT + AND on packed integers

comprises 70 different instructions, e.g., ADDPS – add packed single-precision floats (two
“vectors” each with 4 32 bit) into a 128 bit register

works with 128 bit registers (3Dnow! only 64 bit), but first execution units (before Core
architecture) only with 64 bit

AVX - Advanced Vector Extensions with 256 bit registers, theoretically doubled speed!
since Sandy Bridge (Intel Core 2nd generation, e.g., i7-2600K) and Bulldozer (AMD)
→AVX-512 with 512 bit registers in Skylake (6th generation, e.g., Core i7-6700); AMD
Zen 4
Note: AVX-512 instructions may reduce the clockrate on Intel CPUs (heat limit)
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SSE and AVX III

supported by all common compilers, e.g.,
ifort -sse4.2
ifort -axcode COMMON-AVX512
g++ -msse4.1
g++ -mavx512f

very easy (automatic) and efficient optimization, e.g., for unrolled loops → vectorization

Caution!
Different precisions for SSE-doubles (e.g., 64 bit) and FPU-doubles (80 bit), especially for
buffering, so results of doubles, e.g.,
xx = pow(x,2) ;
sqrt( xx - x*x) ;
usually not predictable
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Multi-cores

Mulit-cores
originally one core per processor, sometimes several processors per machine/board
(supercomputer)
many units, e.g., arithmetic logic unit (ALU), register, already multiply existing in one
processor
first multi-core processors: IBM POWER4 (2001);
desktop → Smithfield (2005), e.g., Pentium D
Hyper-threading (HT): introduced in Intel Pentium 4 → for better workload of the
computing units by simulation of another, logical processor core (compare: AMD
Bulldozer design with modules)
today: up to 64 cores for desktop (AMD Zen: Ryzen Threadripper 5995WX, TDP 280W)
or 96 for servers (e.g., AMD EPYC 9654, TDP 360W – even 2 CPUs per board)
+ Hyperthreading
arms race of cores instead of clock rate (NetBurst disaster)
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Multi-cores and compilers

Acceleration by parallelization

parallelization done, e.g., by multithreading (from thread)
for shared memory (RAM on one “node”, usually on one mainboard)
“The free lunch is over” → no simple acceleration more of single-thread programs by pure
increase of clock rate (exceptions: Turbo Boost, Turbo Core, in some ways larger caches
may help)
multithreading supported by, e.g., OpenMP (shared memory), see below
different from: multiprocessing parallelization via MPI (Message Passing Interface)
→ distributed computing (cf. Co-array Fortran) but can be combined: MPI + OpenMP;
usually: MPI more complicated (and slower) than OpenMP → trend for “larger nodes”
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GPGPU

General-purpose computing on graphics processing units → further development of graphic
cards

e.g., Nvidia (Tesla, Fermi); AMD (Radeon Instinct)
→Frontier (USA, 1st since June 2022 in Top500) with 9 472 nodes (each with
AMD-EPYC-7A53 64core CPU + 4 GPU MI250X x2) reaches 1.1 ExaFLOPS (for
comparison: 24 core desktop CPU ≈ 8TeraFLOPS → 7× 10−6 of Frontier)
so-called shaders → highly specialized ALUs, often only with single precision (opposite
concept: Intel’s Larrabee)
programming (not only graphics) via CUDA (Nvidia) or OpenCL (more general)
OpenCL → parallel programming for arbitrary systems, also NUMA (non-uniform memory
access), but very abstract and complex concept and also complicated C-syntax
CUDA support, e.g., by PGI Fortran compiler → simple acceleration without code
modifications
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OpenMP
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OpenMP - Intro and Syntax I

OpenMP - Open Multi-Processing

for shared-memory systems (e.g., multi core) per node

directly available in g++, gfortran, and Intel compilers

insertion of so-called OpenMP (pragma) directives :

Example: for loop
C++
#include <omp.h>
...

#pragma omp parallel for
for (int i = 1 ; i <= n ; ++i)
{ ... }

Fortran
USE omp_lib ! ifort declarations

!$OMP PARALLEL DO
DO i = 1, n
....

ENDDO
!$OMP END PARALLEL DO

instructs parallel execution of the for loop, i.e., there are copies of the loop (different
iterations) which run in parallel
→ only the labeled section runs in parallel
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OpenMP - Intro and Syntax II

→ pragma directives are syntactically seen comments, i.e., invisible for compilers without
OpenMP support

realization during runtime by threads

number of used threads can be set, e.g., by environment variable

export OMP_NUM_THREADS=4 # bash
setenv OMP_NUM_THREADS 4 # tcsh

→ obvious: per core only one thread can run at the same time (but: Intel’s
hyper-threading, AMD’s Bulldozer design) → in HPC often reasonable:

number of threads = number of physical CPU cores

Caution!
Distributing and joining of threads produces some overhead in CPU / computing time (e.g.,
copying data) and is therefore only efficient for complex tasks within each thread. Otherwise
multithreading can slow down program execution.

H. Todt (UP) Computational Astrophysics SoSe 2024, 20.6.2024 46 / 59



OpenMP - Intro and Syntax III

Including the OpenMP library:

C++

#ifdef _OPENMP
#include <omp.h>
#endif

Fortran

! only needed for declaration of
! OMP functions etc. with ifort:
!$ use omp_lib

→ instructions between #ifdef _OPENMP and #endif (Fortran: following !$) are only
executed if compiler invokes OpenMP

Compile with
g++ -fopenmp
icpx -qopenmp (deprecated: -openmp)

gfortran -fopenmp
ifort -qopenmp (deprecated: -openmp)
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OMP functions

Useful: functions specific for OpenMP, e.g., for number of available CPU cores, generated
(maximum) number of threads, and current number of threads:

omp_get_num_procs() // number of (logical) processor cores
omp_get_max_threads() // max. number of (automatic) generated threads
omp_get_num_threads() // number of current threads
omp_get_thread_num() // number of the current thread

Join-fork model:
thread that executes
parallel directive
becomes master of
thread group with ID= 0

Master Thread

Master Thread Thread 1 Thread n -1

Master Thread

...
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OMP – Access to variables: shared and private I

Very important: organization of the accessibility of the involved data, i.e. assign attributes
shared or private to thread variables

shared
→ default for variables declared outside the parallel section
data are visible in all threads and can be modified (concurrent access)

int sum = 0 ;
#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) {

sum += k ; // sum is implicitly shared

NSUM = 0
!$OMP PARALLEL DO

DO K = KMAX, 1, -1
NSUM = NSUM + K ! NSUM is implicitly shared
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OMP – Access to variables: shared and private II

in contrast to:

private
each thread has its own copy of the data, which are invisible for other threads, especially from
outside of the parallel section.
Loop iteration variables are private by default and should be declared in the loop header for
clarity:

#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) // k is implicitly private

!$OMP PARALLEL DO
DO K = KMAX, 1, -1 ! K is implicitly private

Moreover, there are further so-called data clauses, e.g., firstprivate (initialization before
the parallel section), lastprivate (last completed thread determines the value of the variable
after the parallel section) and many more . . .
→This is the complicated part of OpenMP!
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OMP – Access to variables: shared and private III

Example private
C++:
int j, m = 4 ;
#pragma omp parallel for private (j)
for (int i = 0 ; i < max ; i++) {

j = i + m ;
... ;

}

Fortran:
INTEGER :: j, m

!$OMP PARALLEL DO PRIVATE (j)
DO i = 0, max

j = i + m
...

ENDDO
!$OMP END PARALLEL DO

→ loop variable i and explicitly private variable j as “local” copies in each thread
→ variable m implicitly shared (be careful in Fortran because of implicit declarations within, e.g. loops)
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OMP – critical and reduction I

General form of OpenMP directive for parallelization:

#pragma omp parallel
→ parallel section also possible without a loop, section is executed per thread
(in C/C++: { } block required for multiple commands):

C++:

#pragma omp parallel
{
cout << "Hi!" ;
cout << endl ;

}

Fortran:

!$OMP PARALLEL
print *, "Hi!"

!$OMP END PARALLEL
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OMP – critical and reduction II

#pragma omp critical
→within a parallel section
is executed by each thread, but never at the same time (avoiding race conditions for shared
resources)

C++:

#pragma omp critical
{

WDrawPoint(myworld, x, y, c) ;
}

Fortran:

!$OMP CRITICAL
CALL PGDRAW (x, y)

!$OMP END CRITICAL
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OMP – critical and reduction III

Example: critical access to an array
C++:

#pragma omp parallel for private (j)
for (int i = 0 ; i < nymax ; ++i) {

for (j = 0 ; j < nxmax ; ++j ) {
...
#pragma omp critical
subset[i][j] = result ;

}
}

Fortran:

!$OMP PARALLEL DO private (j)
DO i = 0, nymax - 1

DO j = 0, nxmax - 1
...

!$OMP CRITICAL
subset(i,j) = result

ENDDO
ENDDO

→ critical forces threads to queue, hence slows down execution, better: if possible, use
reduction clause:
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OMP – critical and reduction IV
#pragma omp parallel reduction (operator:list of variables)
The reduction clause defines corresponding (scalar) variables in a parallel section.

Example: summing up with reduction
C++:

#pragma omp parallel for \
private(x) reduction(+:sum_this)

for (int i = 1; i <= nmax ; i++) {
x = 0.01 / (i + 0.5) ;
sum_this += x ;

}

Fortran:

!$OMP PARALLEL DO PRIVATE(x)
!$ > REDUCTION(+:sum_this)

DO i = 1, nmax
x = 0.01 / (i + 0.5)
sum_this = sum_this + x

ENDDO

There are a number of allowed operators for reduction, e.g.:
operator meaning data type neutral element / initial value

+,- sum int, float 0
* product int, float 1
& bitwise and int all bits 1
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Syntax II

Heads up! OpenMP needs clear syntax for loop parallelization:

for (int i = 0 ; i < n ; i++)

make sure that your loop has canonical loop form, especially the loop iteration variable (here:
i) is integer as well as variables used for comparison (here: n). OpenMP is very picky and
might otherwise (e.g., if n is float) stop compilation:
error: invalid controlling predicate.

Note that omp parallel for / OMP PARALLEL DO is the contracted form of

C++:
#pragma omp parallel
{
#pragma omp for
for ( ... ) {
...

}
}

Fortran:
!$OMP PARALLEL
!$OMP DO

...
!$OMP END DO
!$OMP END PARALLEL
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OMP – Scheduling I

schedule(runtime)
Examples:
#pragma omp parallel for schedule (runtime)

→way of distributing the parallel section to threads is defined at runtime, e.g., by (bash)

export OMP_SCHEDULE "dynamic,1"

→ each thread gets a chunk of size 1 (e.g., one iteration) as soon as it is ready

export OMP_SCHEDULE "static"

→ the parallel section (e.g., loop iterations) is divided by the number of threads (e.g., 4)
and each thread gets a chunk of the same size

→ static is the default
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OMP – Performance and infos

Useful for performance measurement:

omp_get_wtime() // → returns the so-called wall clock time (not the cpu time)

omp_get_thread_num() // → returns the number of the current thread

Weblinks:
http://www.openmp.org/
especially the documentation of the specifications:
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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