Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy
University of Potsdam

SoSe 2023, 10.7.2023

Monte-Carlo integration

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

- pool with area F_{n} in a field with area A
- fraction of the randomly thrown stones which fall into the pool:

$$
\begin{equation*}
\frac{n_{\mathrm{p}}}{n}=\frac{F_{n}}{A} \tag{1}
\end{equation*}
$$

(n stones, n_{p} hit pool)

- determine F_{n} with help of the hit-or-miss method:

$$
\begin{equation*}
F_{n}=A \frac{n_{\mathrm{p}}}{n} \tag{2}
\end{equation*}
$$

- choose rectangle of height h, width $(b-a)$, area $A=h \cdot(b-a)$, such that $f(x)$ within the rectangle
- generate n pairs of random variables x_{i}, y_{i} with $a \leq x_{i} \leq b$ and $0 \leq y_{i} \leq h$
- fraction n_{t} of the points, which fulfill $y_{i} \leq f\left(x_{i}\right)$ gives estimate for area under $f(x)$ (integral)

Excursus: Buffon's needle problem - determine π by throwing matches

Buffon's question (1773): What is the probability that a needle or a match of length ℓ will lie accross a line between two strips on a floor made of parallel strips, each of same width t ?
$\rightarrow x$ is distance from center of the needle to closest line, θ angle between needle and lines $\left(\theta<\frac{\pi}{2}\right)$, hence the uniform probability density functions are

$$
p(x)=\left\{\begin{array}{ccc}
\frac{2}{t} & : & 0 \leq x \leq \frac{t}{2} \\
0 & : & \text { elsewhere }
\end{array} \quad p(\theta)=\left\{\begin{array}{ccc}
\frac{2}{\pi} & : & 0 \leq \theta \leq \frac{\pi}{2} \\
0 & : & \text { elsewhere }
\end{array}\right.\right.
$$

x, θ independent $\rightarrow p(x, \theta)=\frac{4}{t \pi}$ with condition $x \leq \frac{\ell}{2} \sin \theta$. If $\ell \leq t$ (short needle):

$$
P(\text { hit })=\int_{\theta=0}^{\frac{\pi}{2}} \int_{x=0}^{\frac{\ell}{2} \sin \theta} \frac{4}{t \pi} d x d \theta=\frac{2 \ell}{t \pi}
$$

\rightarrow count hits and misses and then:
$\pi=\frac{2 \ell}{t} \frac{n_{\text {hit }}+n_{\text {miss }}}{n_{\text {hit }}}$

Sample-mean method

- the integral

$$
\begin{equation*}
F(x)=\int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

is given in the interval $[a, b]$ by the mean $\langle f(x)\rangle$ (mean value theorem for integration)

- choose arbitrary x_{i} (instead of regular intervals) and calculate

$$
\begin{equation*}
F_{n}=(b-a)\langle f(x)\rangle=(b-a) \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{4}
\end{equation*}
$$

where x_{i} are uniform random numbers in $[a, b]$

$$
\begin{equation*}
\text { (cf. rectangle rule } \left.F_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \text { with fixed } x_{i}, \Delta x=\frac{b-a}{n}\right) \tag{5}
\end{equation*}
$$

Idea: improve MC integration by a better sampling \rightarrow introduce a positive function $p(x)$ with

$$
\begin{equation*}
\int_{a}^{b} p(x) d x=1 \tag{6}
\end{equation*}
$$

and rewrite integral $\int_{a}^{b} f(x) d x$ as

$$
\begin{equation*}
F=\int_{a}^{b}\left[\frac{f(x)}{p(x)}\right] p(x) d x \tag{7}
\end{equation*}
$$

this integral can be evaluated by sampling according to $p(x)$:

$$
\begin{equation*}
F_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{f(x)}{p(x)} \tag{8}
\end{equation*}
$$

Note that for the uniform case $p(x)=1 /(b-a) \rightarrow$ the sample mean method is recovered. Now, try to minimize variance σ^{2} of integrand $\frac{f(x)}{p(x)}$ by choosing $p(x) \approx f(x)$, especially for large $f(x)$

Importance sampling II

\rightarrow slowly varying integrand $f(x) / p(x)$
\rightarrow smaller variance σ^{2}

Example: Normal distribution

Evaluate integral $F=\int_{a}^{b} f(x) d x=\int_{0}^{1} e^{-x^{2}} d x$ (error function) $\rightarrow F_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{e^{-x^{2}}}{p(x)}$

	$p(x)=1$	$p(x)=A e^{-x}$
x	$(b-a) * r+a$	$-\log \left(e^{-a}-\frac{r}{A}\right)$
n	4×10^{5}	8×10^{3}
σ	0.0404	0.0031
σ / \sqrt{n}	6×10^{-5}	3×10^{-5}
total CPU time ${ }^{\dagger \dagger}$	19 ms	0.8 ms
CPU time $/$ trial	50 ns	100 ns

\dagger from normalization $A=(\exp (-a)-\exp (-b))^{-1},{ }^{\dagger \dagger} \mathrm{CPU}$ time on a Intel Core $\mathrm{i} 7-47713.5 \mathrm{GHz}$
\rightarrow the extra time needed per trial for getting x from uniform r is usually overcompensated by the smaller number of necessary trials for same σ / \sqrt{n}

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller \& Teller 1953) useful for averages of the form

$$
\begin{equation*}
\langle f\rangle=\frac{\int p(x) f(x) d x}{\int p(x) d x} \quad \text { e.g. } \quad\langle f\rangle=\frac{\int e^{-\frac{E(x)}{k_{\mathrm{B}} T}} f(x) d x}{\int e^{-\frac{E(x)}{k_{\mathrm{B}} T}} d x} \tag{9}
\end{equation*}
$$

The Metropolis algorithm uses random walk (see below) of points $\left\{x_{i}\right\}$ (1D or higher) with asymptotic probability distribution approaching $p(x)$ for $n \gg 1$. Random walk from transition probability $T\left(x_{i} \rightarrow x_{j}\right)$, such that

$$
\begin{align*}
p\left(x_{i}\right) T\left(x_{i} \rightarrow x_{j}\right) & =p\left(x_{j}\right) T\left(x_{j} \rightarrow x_{i}\right) \quad \text { (detailed balance) } \tag{10}\\
\text { e.g., choose } T\left(x_{i} \rightarrow x_{j}\right) & \left.=\min \left[1, \frac{p\left(x_{j}\right)}{p\left(x_{i}\right)}\right] \quad \text { (where, e.g., } p_{j} / p_{i}=\exp \left(-\frac{E_{j}-E_{i}}{k_{\mathrm{B}} T}\right)\right) \tag{11}
\end{align*}
$$

Metropolis algorithm II

Metropolis algorithm

(1) choose trial position $x_{\text {trial }}=x_{i}+\delta_{i}$ with random $\delta_{i} \in[-\delta,+\delta]$
(2) calculate $w=p\left(x_{\text {trial }}\right) / p\left(x_{i}\right) \quad$ (might be: $w=\exp \left(-\frac{E\left(x_{\text {trial }}\right)-E\left(x_{i}\right)}{k_{\mathrm{B}} T}\right)$)
(3) if $w \geq 1$, accept and $x_{i+1}=x_{\text {trial }}(\rightarrow \Delta E \leq 0)$
(4) if $w<1(\rightarrow \Delta E>0)$, generate random $r \in[0 ; 1]$
(5) if $r \leq w$, accept and $x_{i+1}=x_{\text {trial }}$ (and compute desired quantities, e.g. $f\left(x_{i+1}\right)$)
(6) if not, $x_{i+1}=x_{i}$
(finally: $\langle f\rangle=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$)
problem: optimum choice of δ;
if too large, only small number of accepted trials \rightarrow inefficient sampling
if too small, only slow sampling of $p(x)$.
Hence, rule of thumb: choose δ for which $\frac{1}{3} \ldots \frac{1}{2}$ trials accepted also: choose x_{0} for which $p\left(x_{0}\right)$ is largest \rightarrow faster approach of $\left\{x_{i}\right\}$ to $p(x)$

Typical applications for Metropolis algorithm: computation of integrals with weight functions $p(x) \sim e^{-x}$, e.g.,

$$
\begin{align*}
\langle x\rangle & =\frac{\int_{0}^{\infty} x e^{-x} d x}{\int_{0}^{\infty} e^{-x} d x} \tag{12}\\
\langle A\rangle & =\frac{\int A(\vec{X}) e^{-U(\vec{X}) / k_{B} T} d \vec{X}}{\int e^{-U(\vec{X}) / k_{B} T} d \vec{X}} \tag{13}
\end{align*}
$$

where the latter is the average of a physical quantity A in a liquid system with good contact to a thermal bath, fixed number of particles (with $\vec{X}=\left(\vec{x}_{1}, \vec{x}_{2}, \ldots\right)$ of all particles) and volume \rightarrow canonical ensemble, e.g.,

$$
\begin{equation*}
\left\langle\frac{m v_{i k}^{2}}{2}\right\rangle=\frac{1}{2} k_{\mathrm{B}} T \tag{14}
\end{equation*}
$$

Rejection sampling (acceptance-rejection method)

Rejection sampling (acceptance-rejection method) I

Problem: get random x for any $p(x)$, also if $P(r)^{-1}$ not (easily) computable Idea:

- area under $p(x)$ in $[x, x+d x]$ is probability of getting x in that range
- if we can choose a random point in two dimensions with uniform probability in the area under $p(x)$, then x component of that point is distributed according to $p(x)$
- so, on same graph draw an $f(x)$ with $f(x)>p(x) \forall x$
- if we can uniformly distribute points in the area under curve $f(x)$, then all points (x, y) with $y<p(x)$ are uniform under $p(x)$

Creation of arbitrary probability distributions with help of rejection sampling (especially for compact intervals $[a, b]$):

- let $p(x)$ be the required distribution in $[a, b]$
- choose a $f(x)$ such that $p(x)<f(x)$ in $[a, b]$, e.g., $f(x)=c \cdot \max (p(x))=$ const. where $c>1$
- it is $A:=\int_{a}^{b} f(x) d x$, i.e. $A(x)$ must exist and must be invertible: $A(x) \rightarrow x(A)$
- generate uniform random number in $[0, A]$ and get the corresponding $x(A)$
- generate 2nd uniform random number y in $[0, f(x)]$, so x, y are uniformly distributed on A (area under $f(x)$)
- accept this point if $y<p(x)$, otherwise reject it

Rejection sampling (acceptance-rejection method) III

Example: normal distribution $p(x)$ sampled by $f(x)=\left(x^{2}+1\right)^{-1}$

$\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ (blue solid line) sampled with help of the function $\frac{1}{x^{2}+1}$ (red dashed) whose integral is $\arctan (x)$ (thick dashed red) and hence $F(x)^{-1}=\tan (x)$, see source code on page 18

Requirements:

- $p(x)$ must be computable for every x in the intervall
- $f(x)>p(x) \rightarrow$ always possible, as $\int_{-\infty}^{+\infty} p(x) d x=1$ (i.e. $A>1$)
- to get x_{0} for a chosen value in $[0, A]$ requires usually: $\int f(x) d x=F$ is analytically invertible, i.e. $F(x)^{-1}$ exists
\rightarrow this is easy for a compact interval $[a, b]$, e.g., choose a $c>1$ such $F(x)=c \cdot \max (p(x)) \cdot(x-a)=k(x-a)$
$\rightarrow x=F / k-a$ for randomly chosen F in $[0, A]$, where $A=k \cdot(b-a)$

```
Example: acceptance-rejection for normal distribution (see p. 16)
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
for (int i = 0; i < nmax; ++i){
    // get random value between O and A:
    ax = A * double(rand())/double(RAND_MAX);
    // obtain the corresponding x value:
    x = inv_int_f(ax);
    // get random y value in interval [0,f(x)]:
    y = f(x) * double(rand())/double(RAND_MAX);
    // test for y =< p(x) for acceptance:
    if ( y <= p(x) ) { cout << x << endl ;}
}
```

In our example:

- it is $p(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ the standard normal distribution; normal distributions with $\sigma \neq 1, \mu \neq 0$ can be obtained by transformation
- the comparison function $f(x)=\frac{1}{x^{2}+1}$ is always $f(x)>p(x)$, moreover:
- $F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}=\arctan (x)-\arctan (-\infty)=\arctan (x)-\left(-\frac{\pi}{2}\right)$
$\rightarrow F(x)=\arctan (x)+\frac{\pi}{2}$
- the total area A under $f(x)$ is $\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) d x^{\prime}=\arctan (+\infty)-\arctan (-\infty)=\pi$
- the inverse $F(x)^{-1}$, which returns x for a given value $F \in[0, A]$ simply $x=\tan \left(F-\frac{\pi}{2}\right)$
- efficiency of the acceptance is $N_{\text {accepted }} /$ NMAX $=\int p(x) / \int f(x)=1 / \pi \approx 0.32$, i.e. efficiency can be increased by choosing $f(x)=\frac{1}{2} \frac{1}{x^{2}+1}$, then $x=\tan \left(2 F-\frac{\pi}{2}\right) \rightarrow 63 \%$ acceptance

Alternative choice I: $f(x)=\exp (-x)$ only for $x \geq 0$, then

- the integral $F(x)$ is $\int_{0}{ }^{x}=-\exp (-x)+1$
- the total area $\int_{0}^{\infty} \exp (-x) d x=1>0.5=\int_{0}^{\infty} p(x)$
- the inverse is $x=-\log (-x+1)$
- to obtain also negative $x \rightarrow$ add random sign \pm

Rejection sampling (acceptance-rejection method) VIII

Alternative choice II: $f(x)=1.1 \cdot \max (p(x))$ in the compact interval $[0,3]$, then

- it is $\max (p(x))=\frac{1}{\sqrt{2 \pi}}$ in $[0,3]$ $\rightarrow f(x)=\frac{1.1}{\sqrt{2 \pi}}$ in $[0,3]$
- hence $F(x)^{-1}$ is $x=\frac{F \sqrt{2 \pi}}{1.1}-0$.
- the total area A is $\frac{1.1}{\sqrt{2 \pi}} \cdot(3-0)$
\rightarrow clear: this choice (const. function) works only for compact intervals, otherwise A is infinite and $F(x)^{-1}$ does not exist

Random walk

Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient $D=\frac{\left\langle x^{2}\right\rangle}{2 t}$, with Fick's laws of diffusion: $j=-D \partial_{x} c$ and $\dot{c}=D \partial_{x}^{2} c$)
frequent collisions between dust particles and water molecules
\rightarrow frequent change of direction
\rightarrow trajectory not predictable even for few collisions
\rightarrow motion of dust particle into any direction with same probability

\rightarrow Random walk
like "drunken sailor": N steps of equal length in arbitrary direction will lead to which distance from start point?

Random walk II

In one dimension:

- let's start at $x=0$, each step with length ℓ
- for each step: probability p for step to the right and $q=1-p$ to the left (independent from previous step)
- displacement after N steps

$$
\begin{equation*}
x(N)=\sum_{i=1}^{N} s_{i} \quad \text { where } s_{i}= \pm \ell \quad \rightarrow x^{2}(N)=\left(\sum_{i=1}^{N} s_{i}\right)^{2} \tag{15}
\end{equation*}
$$

- for $p=q=1 / 2 \rightarrow$ coin flipping
- for large $N:\langle x(N)\rangle=0$ expected
- but for $\left\langle x^{2}(N)\right\rangle$? \rightarrow rewrite Eq. (15)

$$
\begin{equation*}
x^{2}(N)=\sum_{i=1}^{N} s_{i}^{2}+\sum_{i \neq j=1}^{N} s_{i} s_{j} \tag{16}
\end{equation*}
$$

where (for $i \neq j) s_{i} s_{j}= \pm \ell^{2}$ with same probability, so: $\sum_{i \neq j}^{N} s_{i} s_{j}=0$

- because of $s_{i}^{2}=\ell^{2} \rightarrow \sum_{i=1}^{N} s_{i}^{2}=N \ell^{2}$:

$$
\begin{equation*}
\left\langle x^{2}(N)\right\rangle=\ell^{2} N \tag{17}
\end{equation*}
$$

- especially for constant time intervals of the random walk

$$
\begin{equation*}
\left\langle x^{2}(t)\right\rangle=\frac{\ell^{2}}{\Delta t} N \Delta t \quad\left(=\frac{\ell^{2}}{\Delta t} t\right) \tag{18}
\end{equation*}
$$

- generally: if $p \neq 1 / 2$ and p for $+\ell$

$$
\begin{equation*}
\langle x(N)\rangle=(p-q) \ell N \tag{19}
\end{equation*}
$$

\rightarrow linear dependance on N

Example: Diffusion of photons in the Sun

Simplification: constant density n, only elastic Thomson scattering (free e^{-}) with (frequency independent) cross section $\sigma_{\text {Th }}=6.652 \times 10^{-25} \mathrm{~cm}^{2}$ mean free path length:

$$
\begin{equation*}
\ell=\frac{1}{n \sigma_{\mathrm{Th}}}=\left(\frac{\varrho}{m_{\mathrm{H}}} \sigma_{\mathrm{Th}}\right)^{-1} \tag{20}
\end{equation*}
$$

one dimension \rightarrow only $R=R_{\odot}$, total time $t=N \Delta t$

$$
\Rightarrow t=9 \times 10^{10} \mathrm{~s}=2900 \mathrm{a} \ll t_{\mathrm{KH}}\left(=3 \times 10^{7} \mathrm{a}\right)
$$

Random walk V

Importance of the random walk model
many processes can be described by differential equation similar to diffusion equation (e.g., heat equation, Schrödinger equation with imaginary time)

$$
\begin{equation*}
\frac{\partial p(x, t)}{\partial t}=D \frac{\partial^{2} p(x, t)}{\partial x^{2}} \tag{21}
\end{equation*}
$$

with diffusion coefficient D and probability $p(x, t) d x$ to find particle at time t in $[x, d x]$ in 3 dimensions: $\partial^{2} / \partial x^{2} \equiv \nabla^{2}$
Moments: mean value of a function $f(x)$

$$
\begin{align*}
\langle f(x, t)\rangle & =\int_{-\infty}^{+\infty} f(x, t) p(x, t) d x \tag{22}\\
\Rightarrow \quad\langle x(t)\rangle & =\int_{-\infty}^{+\infty} x p(x, t) d x \tag{23}
\end{align*}
$$

Random walk VI

Compute integral in Eq. (23) \rightarrow multiply Eq. (21) by x and integrate over x

$$
\begin{equation*}
\int_{-\infty}^{+\infty} x \frac{\partial p(x, t)}{\partial t} d x=D \int_{-\infty}^{+\infty} x \frac{\partial^{2} p(x, t)}{\partial x^{2}} d x \tag{24}
\end{equation*}
$$

left hand side

$$
\begin{equation*}
\int_{-\infty}^{+\infty} x \frac{\partial p(x, t)}{\partial t} d x=\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} x p(x, t) d x=\frac{\partial}{\partial t}\langle x\rangle \tag{25}
\end{equation*}
$$

right hand side via integration by parts $\left(\int g f d x=g F \mid-\int g^{\prime} F d x\right)$, note that $p(x= \pm \infty, t)=0$, as well as all spatial derivatives $\left(\partial_{x} p(x= \pm \infty, t)=0\right)$:

$$
\begin{align*}
D \int_{-\infty}^{+\infty} x \frac{\partial^{2} p(x, t)}{\partial x^{2}} d x & =\left.D x \frac{\partial p(x, t)}{\partial x}\right|_{x=-\infty} ^{x=+\infty}-D \int_{-\infty}^{+\infty} 1 \cdot \frac{\partial p(x, t)}{\partial x} d x \tag{26}\\
& =0 \tag{27}\\
\Rightarrow \frac{\partial}{\partial t}\langle x\rangle & =0 \tag{28}
\end{align*}
$$

I.e. $\langle x\rangle \equiv$ const. for all t. For $x(t=0)=0 \rightarrow\langle x\rangle=0$ for all t.

Analogously for $\left\langle x^{2}(t)\right\rangle$: integration by parts twice

$$
\begin{align*}
\frac{\partial}{\partial t}\left\langle x^{2}(t)\right\rangle & =0+0+2 D \int_{-\infty}^{+\infty} p(x, t) d x=2 D \tag{29}\\
\rightarrow\left\langle x^{2}(t)\right\rangle & =2 D t \tag{30}
\end{align*}
$$

compare with Eq. (18) $\left\langle x^{2}(t)\right\rangle=\frac{\ell^{2}}{\Delta t} N \Delta t=\frac{\ell^{2}}{\Delta t} t$
\rightarrow random walk and diffusion equation have same time dependence (linear)
(with $2 D=\frac{\ell^{2}}{\Delta t}$)

Random numbers

Pseudorandom numbers I

for scientific purposes

- fast method to generate huge number of "random numbers"
- sequence should be reproducable
\rightarrow use deterministic algorithm to generate pseudorandom numbers

Linear congruential method

start with a seed x_{0}, use one-dimensional map

$$
\begin{equation*}
x_{n}=\left(a x_{n-1}+c\right) \quad \bmod m \tag{31}
\end{equation*}
$$

- with integers: a (multiplier), c (increment), m (modulus)
- m largest possible integer from Eq. (31) \rightarrow maximum possible period is $m \rightarrow$ obtain $r \in[0,1)$ by x_{n} / m
- real period depends on a, c, m, e.g.,
$a=3, c=4, m=32, x_{0}=1 \rightarrow 1,7,25,15,17,23,9,31,1,7,25, \ldots \rightarrow$ period is 8 not 32

Other sources of random numbers I

Better randomness can be obtained from physical processes:

- nuclear decay (real randomness!), e.g, \rightarrow measure Δt (difficult to implement)
- image noise, thermal noise (Johnson-Nyquist noise), e.g., \rightarrow darkened USB camera (simple), special expansion cards with a diode
- "activity noise" in Unix:
/dev/random
/dev/urandom
\rightarrow random bit patterns from input/output streams (entropy pool) of the computer /dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf. /proc/sys/kernel/random/poolsize)
urandom uses pseudorandom numbers seeded with "real" random numbers For readout of Unix random devices need to interpret random bits(!) as numbers

Other sources of random numbers II

```
Reading from urandom
E.g., by using fstream and union
ifstream fin("/dev/urandom/") ;
union {unsigned int num ;
    char buf[sizeof(unsigned int)]; } u ;
fin.read(u.buf, sizeof(u.buf)) ;
cout << u.num ;
fstream reads only char, buf and num are at the same address }->\mathrm{ read bits in as char
output as unsigned int
```

quality check for uniformly distributed random numbers

- equal distribution: random numbers should be fair
- entropy: bits of information per byte of a sequence of random numbers (same as equal distribution)
- serial tests: for n-tuple repetitions (often only for $n=2, n=3$)
- run test: for monotonically increasing/decreasing sequences, also for length of stay for a distinct interval
- and more ...

Be careful!

There is no necessary or sufficient test for the randomness of a finite sequence of numbers.
\rightarrow can only check if it is "apparently" random

Correlation tests I

\rightarrow testing for "clumping" of numbers

Test for doublets

- define a square lattice $L \times L$ and fill each cell at random:
- array $n(x, y)$ with discrete coordinates
- choose random $1 \leq x_{i}, y_{i} \leq L$ where x_{i}, y_{i} consecutive numbers of random number sequence
- fill cell $n\left(x_{i}, y_{i}\right)$ (e.g. set boolean to true)
- repeat procedure $t \cdot L^{2}$ times, t is MC time step
- \rightarrow similar to nuclear decay, therefore expected:
fraction of empty cells $\propto \exp (-t)$

Correlation tests II

Simple correlation test

- just plot x_{i+1} over $x_{i} \rightarrow$ look for suspicious patterns

correlation plot for linear congruential method with bad parameters

same plot but for $C++$ rand() function

Confidence level I

Testing for randomness (also: numbers or detections)
$\rightarrow \underline{\chi^{2} \text { test }}$

- let y_{i} the number of events in bin i and E_{i} the expectation value
- e.g., $N=10^{4}$ random numbers, $M=100$ bins $\rightarrow E_{i}=100$ (numbers/bin)
- the χ^{2} value (with y_{i} measured number of random numbers in bin i):

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{M} \frac{\left(y_{i}-E_{i}\right)^{2}}{E_{i}} \tag{32}
\end{equation*}
$$

measures the conformity of the measured and the expected distribution

- the individual terms in Eq. (32) should be ≤ 1, so for M terms $\chi^{2} \leq M \rightarrow$ reduced χ^{2} by deviding by $M \rightarrow$ "minimum" red. $\chi^{2}=1$
- e.g., 5 independent runs (each $n=10000$) yield $\chi^{2} \approx 92,124,85,91,99 \rightarrow$ as expected for equal distribution,
in general: χ^{2} should be small (but $\chi^{2}=0$ is suspicious, e.g., here: N-periodicity in random numbers?)

Confidence level II

Confidence

- need a quantitative measure that shows normal distribution of the "error" ($y_{i}-E_{i}$) (in particular, we test the hypothesis of uniform distribution) \rightarrow chi-squared distribution

$$
\begin{align*}
p(x, \nu) & =\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} x^{(\nu-2) / 2} e^{-x / 2} \tag{33}\\
\text { where } \Gamma(z) & =\int_{0}^{\infty} t^{z-1} e^{-t} d t \text { and } \Gamma(z+1)=z! \tag{34}
\end{align*}
$$

\rightarrow cumulated χ^{2} distribution $P(x, \nu)$:

$$
\begin{equation*}
P(x, \nu)=\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} \int_{0}^{x} t^{(\nu-2) / 2} e^{-t / 2} d t \tag{35}
\end{equation*}
$$

with ν degrees of freedom, here: $\nu=M-1=99$, because of constraint $\sum_{i=1}^{M} E_{i}=N$

Confidence level III

- chi-square distribution

for $\nu>30$ is $\sqrt{2 x}-\sqrt{2 \nu-1}$ approximately normally distributed, for $\nu>100$ is x approximately normally distributed with $E=\nu$ and and $\sigma=\sqrt{2 \nu}$
chi-square PDF for different degrees of freedom

```
\nu
```

- function $Q(x, \nu)=1-P(x, \nu)$
\rightarrow probability that $\chi^{2}>x$

- we want to check: How likely to get a χ^{2} of, e.g., 124 (our largest measured χ^{2})? \rightarrow solve $Q(x, \nu)=q$ (probability $\chi^{2}>x$ for given x, ν) for x, or look it up in tables for $\nu=M-1=99$ (e.g., https://www.medcalc.org/manual/chi-square-table.php)

$$
\begin{array}{cccccc}
x & 138.9 & 134.6 & 123.2 & 110.6 & 98 \\
\hline q & 0.005 & 0.01 & 0.05 & 0.2 & 0.5
\end{array}
$$

- for our case: 1 out of 5 runs (20%) had $y_{2}=124$, but $Q(x, \nu)$ implies for $x=123$ only 5%, i.e., 1 out of 20 runs with $\chi^{2} \geq 123$
- therefore: confidence level $<95 \%$, rather 80% (because of $q=0.2$ for $x=111$)
- try to increase confidence level: more runs \rightarrow if still only 1 out 20 with $\chi^{2}>123$ \rightarrow confidence level at 95%

