Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

SoSe 2023, 10.7.2023

Monte-Carlo integration

MC integration I

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

• pool with area F_n in a field with area A

MC integration II

• fraction of the *randomly* thrown stones which fall into the pool:

$$\frac{n_{\mathsf{p}}}{n} = \frac{F_n}{A} \tag{1}$$

(n stones, n_p hit pool)

• determine F_n with help of the <u>hit-or-miss method</u>:

$$F_n = A \frac{n_p}{n} \tag{2}$$

MC integration III

- choose rectangle of height h, width (b-a), area $A=h\cdot (b-a)$, such that f(x) within the rectangle
- generate *n* pairs of random variables x_i, y_i with $a \le x_i \le b$ and $0 \le y_i \le h$
- fraction n_t of the points, which fulfill $y_i \leq f(x_i)$ gives estimate for area under f(x) (integral)

MC integration IV

Excursus: Buffon's needle problem – determine π by throwing matches

Buffon's question (1773): What is the probability that a needle or a match of length ℓ will lie accross a line between two strips on a floor made of parallel strips, each of same width t?

 $\to x$ is distance from center of the needle to closest line, θ angle between needle and lines $(\theta < \frac{\pi}{2})$, hence the *uniform* probability density functions are

$$p(x) = \left\{ \begin{array}{ll} \frac{2}{t} & : & 0 \le x \le \frac{t}{2} \\ 0 & : & \text{elsewhere} \end{array} \right. \qquad p(\theta) = \left\{ \begin{array}{ll} \frac{2}{\pi} & : & 0 \le \theta \le \frac{\pi}{2} \\ 0 & : & \text{elsewhere} \end{array} \right.$$

x, θ independent $\to p(x,\theta) = \frac{4}{t\pi}$ with condition $x \le \frac{\ell}{2} \sin \theta$. If $\ell \le t$ (short needle):

$$P(\mathsf{hit}) = \int_{\theta=0}^{\frac{\pi}{2}} \int_{x=0}^{\frac{\ell}{2} \sin \theta} \frac{4}{t\pi} dx d\theta = \frac{2\ell}{t\pi}$$

 \rightarrow count hits and misses and then:

$$\pi = \frac{2\ell}{t} \frac{n_{\mathsf{hit}} + n_{\mathsf{miss}}}{n_{\mathsf{hit}}}$$

MC integration V

Sample-mean method

the integral

$$F(x) = \int_{a}^{b} f(x) dx \tag{3}$$

is given in the interval [a, b] by the mean $\langle f(x) \rangle$ (mean value theorem for integration)

 \bullet choose arbitrary x_i (instead of regular intervals) and calculate

$$F_n = (b-a)\langle f(x)\rangle = (b-a)\frac{1}{n}\sum_{i=1}^n f(x_i)$$
 (4)

where x_i are uniform random numbers in [a, b]

(cf. rectangle rule
$$F_n = \sum_{i=1}^n f(x_i) \Delta x$$
 with fixed $x_i, \Delta x = \frac{b-a}{n}$) (5)

Importance sampling I

Idea: improve MC integration by a better sampling \rightarrow introduce a positive function p(x) with

$$\int_{a}^{b} p(x)dx = 1 \tag{6}$$

and rewrite integral $\int_a^b f(x)dx$ as

$$F = \int_{a}^{b} \left[\frac{f(x)}{p(x)} \right] p(x) dx \tag{7}$$

this integral can be evaluated by sampling according to p(x):

$$F_n = \frac{1}{n} \sum_{i=1}^{n} \frac{f(x)}{p(x)}$$
 (8)

Note that for the *uniform case* $p(x) = 1/(b-a) \to \text{the sample mean method}$ is recovered. Now, try to minimize variance σ^2 of integrand $\frac{f(x)}{p(x)}$ by choosing $p(x) \approx f(x)$, especially for large f(x)

Importance sampling II

- \rightarrow slowly varying integrand f(x)/p(x)
- \rightarrow smaller variance σ^2

Example: Normal distribution

Evaluate integral
$$F = \int_a^b f(x) dx = \int_0^1 e^{-x^2} dx$$
 (error function) $\to F_n = \frac{1}{n} \sum_{i=1}^n \frac{e^{-x^2}}{p(x)}$

	p(x) = 1	$p(x) = Ae^{-x}$
X	(b-a)*r+a	$-\log(e^{-a}-\frac{r}{A})$
n	$4 imes 10^5$	8×10^3
σ	0.0404	0.0031
σ/\sqrt{n}	$6 imes 10^{-5}$	$3 imes 10^{-5}$
total CPU time ^{††} CPU time / trial	19 ms 50 ns	0.8 ms 100 ns

 $^{^\}dagger$ from normalization $A=(\exp(-a)-\exp(-b))^{-1}$, †† CPU time on a Intel Core i7-4771 3.5 GHz

 \rightarrow the extra time needed per trial for getting x from uniform r is usually overcompensated by the smaller number of necessary trials for same σ/\sqrt{n}

H. Todt (UP)

Metropolis algorithm I

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953) useful for averages of the form

$$\langle f \rangle = \frac{\int p(x)f(x)dx}{\int p(x)dx} \quad \text{e.g.} \quad \langle f \rangle = \frac{\int e^{-\frac{E(x)}{k_B T}} f(x)dx}{\int e^{-\frac{E(x)}{k_B T}} dx}, \tag{9}$$

The Metropolis algorithm uses random walk (see below) of points $\{x_i\}$ (1D or higher) with asymptotic probability distribution approaching p(x) for $n \gg 1$. Random walk from transition probability $T(x_i \to x_i)$, such that

$$p(x_i)T(x_i \to x_j) = p(x_j)T(x_j \to x_i) \qquad \text{(detailed balance)}$$

e.g., choose
$$T(x_i \to x_j) = \min \left[1, \frac{p(x_j)}{p(x_i)} \right]$$
 (where, e.g., $p_j/p_i = \exp \left(-\frac{E_j - E_i}{k_B T} \right)$) (11)

Metropolis algorithm II

Metropolis algorithm

- **①** choose trial position $x_{\text{trial}} = x_i + \delta_i$ with random $\delta_i \in [-\delta, +\delta]$
- **2** calculate $w = p(x_{trial})/p(x_i)$ (might be: $w = \exp\left(-\frac{E(x_{trial})-E(x_i)}{k_B T}\right)$)
- \bullet if $w \ge 1$, accept and $x_{i+1} = x_{\mathsf{trial}} \ (\to \Delta E \le 0)$
- if $w < 1 \ (\rightarrow \Delta E > 0)$, generate random $r \in [0; 1]$
- if $r \leq w$, accept and $x_{i+1} = x_{trial}$ (and compute desired quantities, e.g. $f(x_{i+1})$)
- **6** if not, $x_{i+1} = x_i$

(finally: $\langle f \rangle = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$) problem: optimum choice of δ ;

if too large, only small number of accepted trials \rightarrow inefficient sampling if too small, only slow sampling of p(x).

Hence, rule of thumb: choose δ for which $\frac{1}{3} \dots \frac{1}{2}$ trials accepted also: choose x_0 for which $p(x_0)$ is largest \to faster approach of $\{x_i\}$ to p(x)

Metropolis algorithm III

Typical applications for Metropolis algorithm: computation of integrals with weight functions $p(x) \sim e^{-x}$, e.g.,

$$\langle x \rangle = \frac{\int_0^\infty x e^{-x} dx}{\int_0^\infty e^{-x} dx} \tag{12}$$

$$\langle A \rangle = \frac{\int A(\vec{X}) e^{-U(\vec{X})/k_{\rm B}T} d\vec{X}}{\int e^{-U(\vec{X})/k_{\rm B}T} d\vec{X}}$$
(13)

where the latter is the average of a physical quantity A in a liquid system with good contact to a thermal bath, fixed number of particles (with $\vec{X} = (\vec{x_1}, \vec{x_2}, \ldots)$) of all particles) and volume \rightarrow canonical ensemble, e.g.,

$$\left\langle \frac{m v_{ik}^2}{2} \right\rangle = \frac{1}{2} k_{\rm B} T \tag{14}$$

Rejection sampling (acceptance-rejection method)

Rejection sampling (acceptance-rejection method) I

Problem: get random x for any p(x), also if $P(r)^{-1}$ not (easily) computable

Idea:

- area under p(x) in [x, x + dx] is probability of getting x in that range
- if we can choose a random point in *two dimensions* with uniform probability in the area under p(x), then x component of that *point* is distributed according to p(x)
- so, on same graph draw an f(x) with $f(x) > p(x) \ \forall x$
- if we can uniformly distribute points in the area under curve f(x), then all points (x, y) with y < p(x) are uniform under p(x)

Rejection sampling (acceptance-rejection method) II

Creation of arbitrary probability distributions with help of rejection sampling (especially for compact intervals [a, b]):

- let p(x) be the required distribution in [a, b]
- choose a f(x) such that p(x) < f(x) in [a, b], e.g., $f(x) = c \cdot \max(p(x)) = \text{const.}$ where c > 1
- it is $A := \int_a^b f(x) dx$, i.e. A(x) must exist and must be invertible: $A(x) \to x(A)$
- generate uniform random number in [0, A] and get the corresponding x(A)
- generate 2nd uniform random number y in [0, f(x)], so x, y are uniformly distributed on A (area under f(x))
- accept this point if y < p(x), otherwise reject it

Rejection sampling (acceptance-rejection method) III

Example: normal distribution p(x) sampled by $f(x) = (x^2 + 1)^{-1}$

 $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ (blue solid line) sampled with help of the function $\frac{1}{x^2+1}$ (red dashed) whose integral is arctan(x) (thick dashed red) and hence $F(x)^{-1} = tan(x)$, see source code on page 18

H. Todt (UP) Computational Astrophysics

Rejection sampling (acceptance-rejection method) IV

Requirements:

- p(x) must be computable for every x in the intervall
- $f(x) > p(x) \rightarrow$ always possible, as $\int_{-\infty}^{+\infty} p(x) dx = 1$ (i.e. A > 1)
- to get x_0 for a chosen value in [0, A] requires usually: $\int f(x)dx = F$ is analytically invertible, i.e. $F(x)^{-1}$ exists
- \rightarrow this is easy for a compact interval [a,b], e.g., choose a c>1 such $F(x)=c\cdot \max(p(x))\cdot (x-a)=k(x-a)$ $\rightarrow x=F/k-a$ for randomly chosen F in [0,A], where $A=k\cdot (b-a)$

Rejection sampling (acceptance-rejection method) V

Example: acceptance-rejection for normal distribution (see p. 16)

```
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
 . . .
for (int i = 0; i < nmax; ++i){
  // get random value between 0 and A:
  ax = A * double(rand())/double(RAND_MAX);
  // obtain the corresponding x value:
  x = inv_int_f(ax);
  // get random y value in interval [0,f(x)]:
  y = f(x) * double(rand())/double(RAND_MAX);
  // test for y = \langle p(x) | for acceptance:
  if (y \le p(x)) \{ cout \le x \le endl ; \}
```

Rejection sampling (acceptance-rejection method) VI

In our example:

- it is $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ the standard normal distribution; normal distributions with $\sigma \neq 1, \mu \neq 0$ can be obtained by transformation
- the comparison function $f(x) = \frac{1}{x^2+1}$ is always f(x) > p(x), moreover:
 - $F(x) = \int_{-\infty}^{x} f(x')dx' = \arctan(x) \arctan(-\infty) = \arctan(x) \left(-\frac{\pi}{2}\right)$ $\to F(x) = \arctan(x) + \frac{\pi}{2}$
 - the total area A under f(x) is $\int_{-\infty}^{+\infty} f(x') dx' = \arctan(+\infty) \arctan(-\infty) = \pi$
 - the inverse $F(x)^{-1}$, which returns x for a given value $F \in [0,A]$ simply $x = \tan\left(F \frac{\pi}{2}\right)$
 - efficiency of the acceptance is $N_{\text{accepted}}/\text{NMAX} = \int p(x)/\int f(x) = 1/\pi \approx 0.32$, i.e. efficiency can be increased by choosing $f(x) = \frac{1}{2}\frac{1}{x^2+1}$, then $x = \tan\left(2F \frac{\pi}{2}\right) \to 63\%$ acceptance

Rejection sampling (acceptance-rejection method) VII

Alternative choice I: $f(x) = \exp(-x)$ only for $x \ge 0$, then

- the integral F(x) is $\int_0^x = -\exp(-x) + 1$
- the total area $\int_0^\infty \exp(-x) dx = 1 > 0.5 = \int_0^\infty p(x)$
- the inverse is $x = -\log(-x + 1)$
- ullet to obtain also negative x o add random sign \pm

Rejection sampling (acceptance-rejection method) VIII

Alternative choice II: $f(x) = 1.1 \cdot \max(p(x))$ in the compact interval [0, 3], then

- it is $\max(p(x)) = \frac{1}{\sqrt{2\pi}}$ in [0,3] $\to f(x) = \frac{1.1}{\sqrt{2\pi}}$ in [0,3]
- hence $F(x)^{-1}$ is $x = \frac{F\sqrt{2\pi}}{1.1} 0$.
- the total area A is $\frac{1.1}{\sqrt{2\pi}} \cdot (3-0)$

 \rightarrow clear: this choice (const. function) works only for compact intervals, otherwise A is infinite and $F(x)^{-1}$ does not exist

Random walk

Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient $D=\frac{\langle x^2\rangle}{2t}$, with Fick's laws of diffusion: $j=-D\partial_x c$ and $\dot{c}=D\partial_x^2 c$)

frequent collisions between dust particles and water molecules

- \rightarrow frequent change of direction
- \rightarrow trajectory not predictable even for few collisions
- \rightarrow motion of dust particle into any direction with same probability

 \rightarrow Random walk

like "drunken sailor": *N* steps of equal length in arbitrary direction will lead to which distance from start point?

Random walk II

In one dimension:

- let's start at x = 0, each step with length ℓ
- for each step: probability p for step to the right and q=1-p to the left (independent from previous step)
- displacement after N steps

$$x(N) = \sum_{i=1}^{N} s_i$$
 where $s_i = \pm \ell$ $\rightarrow x^2(N) = \left(\sum_{i=1}^{N} s_i\right)^2$ (15)

- for $p = q = 1/2 \rightarrow \text{coin flipping}$
- for large N: $\langle x(N) \rangle = 0$ expected
- but for $\langle x^2(N) \rangle$? \rightarrow rewrite Eq. (15)

$$x^{2}(N) = \sum_{i=1}^{N} s_{i}^{2} + \sum_{i \neq i=1}^{N} s_{i} s_{j}$$
(16)

where (for $i \neq j$) $s_i s_j = \pm \ell^2$ with same probability, so: $\sum_{i \neq j}^{N} s_i s_j = 0$

H. Todt (UP)

Random walk III

• because of $s_i^2 = \ell^2 \rightarrow \sum_{i=1}^N s_i^2 = N\ell^2$:

$$\langle x^2(N)\rangle = \ell^2 N \tag{17}$$

• especially for constant time intervals of the random walk

$$\langle x^2(t) \rangle = \frac{\ell^2}{\Delta t} N \Delta t \quad \left(= \frac{\ell^2}{\Delta t} t \right)$$
 (18)

• generally: if $p \neq 1/2$ and p for $+\ell$

$$\langle x(N) \rangle = (p - q)\ell N \tag{19}$$

 \rightarrow linear dependance on N

Random walk IV

Example: Diffusion of photons in the Sun

Simplification: constant density n, only elastic Thomson scattering (free e⁻) with (frequency independent) cross section $\sigma_{\rm Th}=6.652\times 10^{-25}\,{\rm cm}^2$ mean free path length:

$$\ell = \frac{1}{n\sigma_{\mathsf{Th}}} = \left(\frac{\varrho}{m_{\mathsf{H}}}\sigma_{\mathsf{Th}}\right)^{-1} \tag{20}$$

one dimension \rightarrow only $R = R_{\odot}$, total time $t = N\Delta t$

$$\Rightarrow t = 9 \times 10^{10} \,\mathrm{s} = 2900 \,a \,\ll \,t_{\mathrm{KH}} (= 3 \times 10^7 \,\mathrm{a})$$

Random walk V

Importance of the random walk model

many processes can be described by differential equation similar to diffusion equation (e.g., heat equation, Schrödinger equation with imaginary time)

$$\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}$$
 (21)

with diffusion coefficient D and probability p(x,t)dx to find particle at time t in [x,dx] in 3 dimensions: $\partial^2/\partial x^2 \equiv \nabla^2$

Moments: mean value of a function f(x)

$$\langle f(x,t)\rangle = \int_{-\infty}^{+\infty} f(x,t) \, p(x,t) dx$$
 (22)

$$\Rightarrow \langle x(t) \rangle = \int_{-\infty}^{+\infty} x \, p(x, t) dx \tag{23}$$

Compute integral in Eq. (23) \rightarrow multiply Eq. (21) by x and integrate over x

$$\int_{-\infty}^{+\infty} x \frac{\partial p(x,t)}{\partial t} dx = D \int_{-\infty}^{+\infty} x \frac{\partial^2 p(x,t)}{\partial x^2} dx$$
 (24)

left hand side

$$\int_{-\infty}^{+\infty} x \frac{\partial p(x,t)}{\partial t} dx = \frac{\partial}{\partial t} \int_{-\infty}^{+\infty} x \, p(x,t) dx = \frac{\partial}{\partial t} \langle x \rangle \tag{25}$$

right hand side via integration by parts $(\int g f dx = g F | - \int g' F dx)$, note that $p(x = \pm \infty, t) = 0$, as well as all spatial derivatives $(\partial_x p(x = \pm \infty, t) = 0)$:

$$D\int_{-\infty}^{+\infty} x \frac{\partial^2 p(x,t)}{\partial x^2} dx = Dx \left. \frac{\partial p(x,t)}{\partial x} \right|_{x=-\infty}^{x=+\infty} - D\int_{-\infty}^{+\infty} 1 \cdot \frac{\partial p(x,t)}{\partial x} dx \tag{26}$$

$$-D p(x,t)|_{x=-\infty}^{x=+\infty} = 0$$
 (27)

$$\Rightarrow \frac{\partial}{\partial t} \langle x \rangle = 0 \tag{28}$$

I.e. $\langle x \rangle \equiv \text{const.}$ for all t. For $x(t=0)=0 \rightarrow \langle x \rangle = 0$ for all t.

Random walk VII

Analogously for $\langle x^2(t) \rangle$: integration by parts twice

$$\frac{\partial}{\partial t}\langle x^2(t)\rangle = 0 + 0 + 2D \int_{-\infty}^{+\infty} p(x,t)dx = 2D$$
 (29)

$$\rightarrow \langle x^2(t) \rangle = 2D t \tag{30}$$

compare with Eq. (18) $\langle x^2(t) \rangle = \frac{\ell^2}{\Delta t} N \Delta t = \frac{\ell^2}{\Delta t} t$

 \rightarrow random walk and diffusion equation have same time dependence (linear)

(with
$$2D = \frac{\ell^2}{\Delta t}$$
)

Random numbers

Pseudorandom numbers I

for scientific purposes

- fast method to generate huge number of "random numbers"
- sequence should be reproducable
- \rightarrow use deterministic algorithm to generate *pseudorandom* numbers

Linear congruential method

start with a seed x_0 , use one-dimensional map

$$x_n = (ax_{n-1} + c) \mod m \tag{31}$$

- with integers: a (multiplier), c (increment), m (modulus)
- m largest possible integer from Eq. (31) \rightarrow maximum possible period is $m \rightarrow$ obtain $r \in [0,1)$ by x_n/m
- real period depends on a, c, m, e.g., a = 3, c = 4, m = 32, $x_0 = 1 \rightarrow 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, ... <math>\rightarrow$ period is 8 not 32

Other sources of random numbers I

Better randomness can be obtained from physical processes:

- nuclear decay (<u>real</u> randomness!), e.g, \rightarrow measure Δt (difficult to implement)
- ullet image noise, thermal noise (Johnson-Nyquist noise), e.g., o darkened USB camera (simple), special expansion cards with a diode
- "activity noise" in Unix:

```
/dev/random
/dev/urandom
```

→ random bit patterns from input/output streams (entropy pool) of the computer /dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf. /proc/sys/kernel/random/poolsize) urandom uses pseudorandom numbers seeded with "real" random numbers

For readout of Unix random devices need to interpret random bits(!) as numbers

Other sources of random numbers II

Reading from urandom

Tests for random numbers I

quality check for uniformly distributed random numbers

- equal distribution: random numbers should be fair
- *entropy:* bits of information per byte of a sequence of random numbers (same as equal distribution)
- serial tests: for *n*-tuple repetitions (often only for n = 2, n = 3)
- run test: for monotonically increasing/decreasing sequences, also for length of stay for a distinct interval
- and more . . .

Be careful!

There is no necessary or sufficient test for the randomness of a finite sequence of numbers.

 \rightarrow can only check if it is "apparently" random

Correlation tests I

 \rightarrow testing for "clumping" of numbers

Test for doublets

- define a square lattice $L \times L$ and fill each cell at random:
- array n(x, y) with discrete coordinates
- choose random $1 \le x_i, y_i \le L$ where x_i, y_i consecutive numbers of random number sequence
- fill cell $n(x_i, y_i)$ (e.g. set boolean to true)
- repeat procedure $t \cdot L^2$ times, t is MC time step
- \rightarrow similar to nuclear decay, therefore expected: fraction of empty cells $\propto \exp(-t)$

Correlation tests II

Simple correlation test

• just plot x_{i+1} over $x_i \to look$ for suspicious patterns

with bad parameters

same plot but for C++ rand() function

Confidence level I

Testing for randomness (also: numbers or detections)

- $\rightarrow \chi^2$ test
 - let y_i the number of events in bin i and E_i the expectation value
 - e.g., $N = 10^4$ random numbers, M = 100 bins $\rightarrow E_i = 100$ (numbers/bin)
 - the χ^2 value (with y_i measured number of random numbers in bin i):

$$\chi^2 = \sum_{i=1}^M \frac{(y_i - E_i)^2}{E_i} \tag{32}$$

measures the conformity of the measured and the expected distribution

- the individual terms in Eq. (32) should be ≤ 1 , so for M terms $\chi^2 \leq M \to reduced \chi^2$ by deviding by $M \to$ "minimum" red. $\chi^2 = 1$
- e.g., 5 independent runs (each $n=10\,000$) yield $\chi^2\approx 92,124,85,91,99\to as$ expected for equal distribution,
 - in general: χ^2 should be small (but $\chi^2=0$ is suspicious, e.g., here: *N*-periodicity in random numbers?)

Confidence

• need a quantitative measure that shows normal distribution of the "error" $(y_i - E_i)$ (in particular, we test the hypothesis of uniform distribution) \rightarrow chi-squared distribution

$$p(x,\nu) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu-2)/2} e^{-x/2}$$
(33)

where
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
 and $\Gamma(z+1) = z!$ (34)

 \rightarrow cumulated χ^2 distribution $P(x, \nu)$:

$$P(x,\nu) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x t^{(\nu-2)/2} e^{-t/2} dt$$
 (35)

with ν degrees of freedom, here: $\nu = M - 1 = 99$, because of constraint $\sum_{i=1}^{M} E_i = N$

Confidence level III

chi-square distribution

chi-square PDF for different degrees of freedom

Confidence level IV

• function $Q(x, \nu) = 1 - P(x, \nu)$

$$\rightarrow$$
 probability that $\chi^2>x$

• we want to check: How likely to get a χ^2 of, e.g., 124 (our largest measured χ^2)? \rightarrow solve $Q(x,\nu)=q$ (probability $\chi^2>x$ for given x,ν) for x, or look it up in tables for $\nu=M-1=99$ (e.g.,

https://www.medcalc.org/manual/chi-square-table.php)

- for our case: 1 out of 5 runs (20%) had $y_2 = 124$, but $Q(x, \nu)$ implies for x = 123 only 5%, i.e., 1 out of 20 runs with $\chi^2 \ge 123$
- therefore: confidence level < 95%, rather 80% (because of q = 0.2 for x = 111)
- try to increase confidence level: more runs \rightarrow if still only 1 out 20 with $\chi^2 > 123$ \rightarrow confidence level at 95%