Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

SoSe 2024, 26.6.2024

Monte-Carlo integration

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

• pool with area F_n in a field with known(!) area A

• fraction of the *randomly* thrown stones which fall into the pool:

$$\frac{n_{\rm p}}{n} = \frac{F_n}{A} \tag{1}$$

(*n* stones, n_p hit pool)

• determine F_n with help of the <u>hit-or-miss method</u>:

$$F_n = A \frac{n_p}{n} \tag{2}$$

- choose rectangle of height h, width (b a), area $A = h \cdot (b a)$, such that f(x) within the rectangle
- generate *n* pairs of random variables x_i, y_i with $a \le x_i \le b$ and $0 \le y_i \le h$
- fraction n_t of the points, which fulfill $y_i \le f(x_i)$ gives estimate for area under f(x) (integral)

Excursus: Buffon's needle problem – determine π by throwing matches

Buffon's question (1773): What is the probability that a needle or a match of length ℓ will lie across a line between two strips on a floor made of parallel strips, each of same width t? $\rightarrow x$ is distance from center of the needle to closest line, θ angle between needle and lines ($\theta < \frac{\pi}{2}$), hence the *uniform* probability density functions are

$$p(x) = \begin{cases} \frac{2}{t} & : & 0 \le x \le \frac{t}{2} \\ 0 & : & \text{elsewhere} \end{cases} \qquad p(\theta) = \begin{cases} \frac{2}{\pi} & : & 0 \le \theta \le \frac{\pi}{2} \\ 0 & : & \text{elsewhere} \end{cases}$$

x, θ independent $\rightarrow p(x, \theta) = \frac{4}{t\pi}$ with condition $x \leq \frac{\ell}{2} \sin \theta$. If $\ell \leq t$ (short needle):

$$P(\mathsf{hit}) = \int_{\theta=0}^{\frac{\pi}{2}} \int_{x=0}^{\frac{\ell}{2}\sin\theta} \frac{4}{t\pi} dx d\theta = \frac{2\ell}{t\pi}$$

 $\begin{array}{l} \rightarrow \text{ count hits and misses and then:} \\ \pi = \frac{2\ell}{t} \frac{1}{P(\text{hit})} = \frac{2\ell}{t} \frac{n_{\text{hit}} + n_{\text{miss}}}{n_{\text{hit}}} \end{array}$

Sample-mean method

• the integral

$$F(x) = \int_{a}^{b} f(x) \, dx \tag{3}$$

is given in the interval [a, b] by the mean $\langle f(x) \rangle$ (mean value theorem for integration) • choose arbitrary x_i (instead of regular intervals) and calculate

$$F_n = (b-a)\langle f(x)\rangle = (b-a)\frac{1}{n}\sum_{i=1}^n f(x_i)$$
(4)

where x_i are uniform random numbers in [a, b]

$$\left(\text{cf. rectangle rule} \quad F_n = \sum_{i=1}^n f(x_i) \Delta x \quad \text{with fixed } x_i, \Delta x = \frac{b-a}{n}\right) \tag{5}$$

Importance sampling I

Idea: improve MC integration by a better sampling \rightarrow introduce a positive function p(x) with

$$\int_{a}^{b} p(x) dx = 1 \tag{6}$$

and rewrite integral $\int_{a}^{b} f(x) dx$ as

$$F = \int_{a}^{b} \left[\frac{f(x)}{p(x)} \right] p(x) dx$$
(7)

this integral can be evaluated by sampling according to p(x):

$$F_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x)}{p(x)}$$
(8)

Note that for the uniform case $p(x) = 1/(b-a) \rightarrow$ the sample mean method is recovered. Now, try to minimize variance σ^2 of integrand $\frac{f(x)}{p(x)}$ by choosing $p(x) \approx f(x)$, especially for large f(x)

Importance sampling II

ightarrow slowly varying integrand f(x)/p(x)ightarrow smaller variance σ^2

Example: Normal distribution

Evaluate integral
$$F = \int_a^b f(x) dx = \int_0^1 e^{-x^2} dx$$
 (error function) $\rightarrow F_n = \frac{1}{n} \sum_{i=1}^n \frac{e^{-x^2}}{p(x)}$

	p(x) = 1	$p(x) = Ae^{-x \dagger}$
x	(b-a)*r+a	$-\log(e^{-a}-rac{r}{A})$
п	$4 imes 10^5$	$8 imes10^3$
σ	0.0404	0.0031
σ/\sqrt{n}	$6 imes 10^{-5}$	3×10^{-5}
total CPU time ^{††} CPU time / trial	19 ms 50 ns	0.8 ms 100 ns

[†] A from normalization $A = (\exp(-a) - \exp(-b))^{-1}$, ^{††}CPU time on a Intel Core i7-4771 3.5 GHz

 \rightarrow the extra time needed per trial for getting x from uniform r is usually overcompensated by the smaller number of necessary trials for same σ/\sqrt{n}

H. Todt (UP)

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953) useful for averages of the form

$$\langle f \rangle = \frac{\int p(x)f(x)dx}{\int p(x)dx} \quad \text{e.g.} \quad \langle f \rangle = \frac{\int e^{-\frac{E(x)}{k_{\rm B}T}}f(x)dx}{\int e^{-\frac{E(x)}{k_{\rm B}T}}dx},\tag{9}$$

The Metropolis algorithm uses random walk (see below) of points $\{x_i\}$ (1D or higher) with asymptotic probability distribution approaching p(x) for $n \gg 1$. Random walk from transition probability $T(x_i \rightarrow x_j)$, such that

$$p(x_i)T(x_i \to x_j) = p(x_j)T(x_j \to x_i) \quad \text{(detailed balance)} \tag{10}$$

e.g., choose $T(x_i \to x_j) = \min\left[1, \frac{p(x_j)}{p(x_i)}\right] \quad \text{(where, e.g., } p_j/p_i = \exp\left(-\frac{E_j - E_i}{k_{\rm B}T}\right)) \tag{11}$

Metropolis algorithm II

Metropolis algorithm

• choose trial position $x_{trial} = x_i + \delta_i$ with random $\delta_i \in [-\delta, +\delta]$

2 calculate
$$w = p(x_{trial})/p(x_i)$$
 (might be: $w = \exp\left(-\frac{E(x_{trial})-E(x_i)}{k_B T}\right)$)

- $\textbf{ if } w \geq 1 \text{, accept and } x_{i+1} = x_{\text{trial}} \ (\rightarrow \Delta E \leq 0)$
- if $w < 1 \ (\rightarrow \Delta E > 0)$, generate random $r \in [0; 1]$
- if r ≤ w, accept and x_{i+1} = x_{trial} (and compute desired quantities, e.g. f(x_{i+1}))
 if not, x_{i+1} = x_i

(finally: $\langle f \rangle = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$) problem: optimum choice of δ ;

if too large, only small number of accepted trials \rightarrow inefficient sampling if too small, only slow sampling of p(x).

Hence, rule of thumb: choose δ for which $\frac{1}{3} \dots \frac{1}{2}$ trials accepted also: choose x_0 for which $p(x_0)$ is largest \rightarrow faster approach of $\{x_i\}$ to p(x)

Metropolis algorithm III

Metropolis algorithm for Gaussian standard distribution

Typical applications for Metropolis algorithm: computation of integrals with weight functions $p(x) \sim e^{-x}$, e.g.,

$$\langle x \rangle = \frac{\int_0^\infty x e^{-x} dx}{\int_0^\infty e^{-x} dx}$$
(12)
$$\langle A \rangle = \frac{\int A(\vec{X}) e^{-U(\vec{X})/k_{\rm B}T} d\vec{X}}{\int e^{-U(\vec{X})/k_{\rm B}T} d\vec{X}}$$
(13)

where the latter is the average of a physical quantity A in a liquid system with good contact to a thermal bath, fixed number of particles (with $\vec{X} = (\vec{x_1}, \vec{x_2}, ...)$ of all particles) and volume \rightarrow canonical ensemble, e.g.,

$$\left\langle \frac{m v_{ik}^2}{2} \right\rangle = \frac{1}{2} k_{\rm B} T \tag{14}$$

Rejection sampling (acceptance-rejection method)

Rejection sampling (acceptance-rejection method) I

Problem: get random x for any p(x), also if $P(r)^{-1}$ not (easily) computable Idea:

- area under p(x) in [x, x + dx] is probability of getting x in that range
- if we can choose a random point in *two dimensions* with uniform probability in the area under p(x), then x component of that *point* is distributed according to p(x)
- so, on same graph draw an f(x) with $f(x) > p(x) \quad \forall x$
- if we can uniformly distribute points in the area under curve f(x), then all points (x, y) with y < p(x) are uniform under p(x)

Creation of arbitrary probability distributions with help of rejection sampling (especially for compact intervals [a, b]):

- let p(x) be the required distribution in [a, b]
- choose a f(x) such that p(x) < f(x) in [a, b], e.g., $f(x) = c \cdot \max(p(x)) = \text{const.}$ where c > 1
- it is $A := \int_a^b f(x) dx$, i.e. A(x) must exist and must be invertible: $A(x) \to x(A)$
- generate uniform random number in [0, A] and get the corresponding x(A)
- generate 2nd uniform random number y in [0, f(x)], so x, y are uniformly distributed on A (area under f(x))
- accept this point if y < p(x), otherwise reject it

Rejection sampling (acceptance-rejection method) III

Requirements:

- p(x) must be computable for every x in the intervall
- $f(x) > p(x) \rightarrow \text{always possible, as } \int_{-\infty}^{+\infty} p(x) dx = 1 \text{ (i.e. } A > 1)$
- to get x_0 for a chosen value in [0, A] requires usually: $\int f(x)dx = F$ is analytically invertible, i.e. $F(x)^{-1}$ exists
- → this is easy for a compact interval [a, b], e.g., choose a c > 1 such $F(x) = c \cdot \max(p(x)) \cdot (x - a) = k(x - a)$ $\rightarrow x = F/k - a$ for randomly chosen F in [0, A], where $A = k \cdot (b - a)$

Example: acceptance-rejection for normal distribution (see p. 17)

```
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
 . . .
for (int i = 0; i < nmax; ++i){
  // get random value between 0 and A:
  ax = A * double(rand())/double(RAND_MAX);
  // obtain the corresponding x value:
  x = inv_int_f(ax);
  // get random y value in interval [0,f(x)]:
  y = f(x) * double(rand())/double(RAND_MAX);
  // test for y = \langle p(x)  for acceptance:
  if (y \le p(x)) \{ cout \le x \le endl ; \}
}
```

In our example:

- it is $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ the standard normal distribution; normal distributions with $\sigma \neq 1, \mu \neq 0$ can be obtained by transformation
- the comparison function $f(x) = \frac{1}{x^2+1}$ is always f(x) > p(x), moreover:

•
$$F(x) = \int_{-\infty}^{x} f(x') dx' = \arctan(x) - \arctan(-\infty) = \arctan(x) - \left(-\frac{\pi}{2}\right)$$

 $\rightarrow F(x) = \arctan(x) + \frac{\pi}{2}$

- the total area A under f(x) is $\int_{-\infty}^{+\infty} f(x') dx' = \arctan(+\infty) \arctan(-\infty) = \pi$
- the inverse $F(x)^{-1}$, which returns x for a given value $F \in [0, A]$ simply $x = \tan \left(F \frac{\pi}{2}\right)$
- efficiency of the acceptance is N_{accepted} /NMAX = $\int p(x) / \int f(x) = 1/\pi \approx 0.32$, i.e. efficiency can be increased by choosing $f(x) = \frac{1}{2} \frac{1}{x^2+1}$, then $x = \tan(2F \frac{\pi}{2}) \rightarrow 63\%$ acceptance

Rejection sampling (acceptance-rejection method) VII

Alternative choice I: $f(x) = \exp(-x)$ only for $x \ge 0$, then

- the integral F(x) is $\int_0^x = -\exp(-x) + 1$
- the total area $\int_0^\infty \exp(-x) dx = 1 > 0.5 = \int_0^\infty p(x)$
- the inverse is $x = -\log(-x+1)$
- ullet to obtain also negative $x \rightarrow {\sf add}$ random sign \pm

Alternative choice II: $f(x) = 1.1 \cdot \max(p(x))$ in the compact interval [0,3], then

• it is $\max(p(x)) = \frac{1}{\sqrt{2\pi}}$ in [0,3] $\rightarrow f(x) = \frac{1.1}{\sqrt{2\pi}}$ in [0,3]

• hence
$$F(x)^{-1}$$
 is $x = \frac{F\sqrt{2\pi}}{1.1} - 0$.

• the total area A is
$$\frac{1.1}{\sqrt{2\pi}} \cdot (3-0)$$

 \rightarrow clear: this choice (const. function) works only for compact intervals, otherwise A is infinite and $F(x)^{-1}$ does not exist

Random walk

Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient $D = \frac{\langle x^2 \rangle}{2t}$, with Fick's laws of diffusion: $j = -D\partial_x c$ and $\dot{c} = D\partial_x^2 c$)

frequent collisions between dust particles and water molecules

- \rightarrow frequent change of direction
- ightarrow trajectory not predictable even for few collisions
- \rightarrow motion of dust particle into any direction with same probability

\rightarrow Random walk

like "drunken sailor": *N* steps of equal length in arbitrary direction will lead to which distance from start point?

Random walk II

In one dimension:

- let's start at x = 0, each step with length ℓ
- for each step: probability p for step to the right and q = 1 p to the left (independent from previous step)
- displacement after N steps

$$x(N) = \sum_{i=1}^{N} s_i$$
 where $s_i = \pm \ell \rightarrow x^2(N) = \left(\sum_{i=1}^{N} s_i\right)^2$ (15)

- for $p=q=1/2
 ightarrow {
 m coin}$ flipping
- for large N: $\langle x(N) \rangle = 0$ expected
- but for $\langle x^2(N) \rangle$? \rightarrow rewrite Eq. (15)

$$x^{2}(N) = \sum_{i=1}^{N} s_{i}^{2} + \sum_{i \neq j=1}^{N} s_{i} s_{j}$$
(16)

where (for $i \neq j$) $s_i s_j = \pm \ell^2$ with same probability, so: $\sum_{i \neq j}^N s_i s_j = 0$

• because of
$$s_i^2 = \ell^2 \rightarrow \sum_{i=1}^N s_i^2 = N\ell^2$$
:

$$\langle x^2(N) \rangle = \ell^2 N \tag{17}$$

• especially for constant time intervals of the random walk

$$\langle x^{2}(t) \rangle = \frac{\ell^{2}}{\Delta t} N \Delta t \quad \left(= \frac{\ell^{2}}{\Delta t} t \right)$$
 (18)

• generally: if $p \neq 1/2$ and p for $+\ell$

$$\langle x(N) \rangle = (p-q)\ell N$$
 (19)

 \rightarrow linear dependence on N

Example: Diffusion of photons in the Sun

Simplification: constant density *n*, only elastic Thomson scattering (free e⁻) with (frequency independent) cross section $\sigma_{\rm Th} = 6.652 \times 10^{-25} \, {\rm cm}^2$ mean free path length:

$$\ell = \frac{1}{n\sigma_{\rm Th}} = \left(\frac{\varrho}{m_{\rm H}}\sigma_{\rm Th}\right)^{-1}$$

one dimension \rightarrow only $R = R_{\odot}$, total time $t = N\Delta t$

$$\Rightarrow t = 9 \times 10^{10} \, \text{s} = 2900 \, a \, \ll \, t_{\text{KH}} (= 3 \times 10^7 \, \text{a})$$

(20)

Importance of the random walk model

many processes can be described by differential equation similar to diffusion equation (e.g., heat equation, Schrödinger equation with imaginary time)

$$\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}$$
(21)

with diffusion coefficient D and probability p(x, t)dx to find particle at time t in [x, dx]in 3 dimensions: $\partial^2/\partial x^2 \equiv \nabla^2$ Moments: mean value of a function f(x)

$$\langle f(x,t) \rangle = \int_{-\infty}^{+\infty} f(x,t) p(x,t) dx$$

$$\Rightarrow \quad \langle x(t) \rangle = \int_{-\infty}^{+\infty} x p(x,t) dx$$
(22)
(23)

Random walk VI

Compute integral in Eq. (23) \rightarrow multiply Eq. (21) by x and integrate over x

$$\int_{-\infty}^{+\infty} x \frac{\partial p(x,t)}{\partial t} dx = D \int_{-\infty}^{+\infty} x \frac{\partial^2 p(x,t)}{\partial x^2} dx$$
(24)

left hand side

$$\int_{-\infty}^{+\infty} x \frac{\partial p(x,t)}{\partial t} dx = \frac{\partial}{\partial t} \int_{-\infty}^{+\infty} x \, p(x,t) dx = \frac{\partial}{\partial t} \langle x \rangle \tag{25}$$

right hand side via integration by parts ($\int g f dx = g F | - \int g' F dx$), note that $p(x = \pm \infty, t) = 0$, as well as all spatial derivatives ($\partial_x p(x = \pm \infty, t) = 0$):

$$D\int_{-\infty}^{+\infty} x \frac{\partial^2 p(x,t)}{\partial x^2} dx = Dx \left. \frac{\partial p(x,t)}{\partial x} \right|_{x=-\infty}^{x=+\infty} - D\int_{-\infty}^{+\infty} 1 \cdot \frac{\partial p(x,t)}{\partial x} dx$$
(26)

$$= 0 - D p(x, t)|_{x=-\infty}^{x=+\infty} = 0 (27)$$

$$\Rightarrow \frac{\partial}{\partial t} \langle x \rangle = 0 \tag{28}$$

I.e. $\langle x \rangle \equiv \text{const.}$ for all t. For $x(t=0) = 0 \rightarrow \langle x \rangle = 0$ for all t.

H. Todt (UP)

Analogously for $\langle x^2(t) \rangle$: integration by parts twice

$$\frac{\partial}{\partial t} \langle x^{2}(t) \rangle = 0 + 0 + 2D \int_{-\infty}^{+\infty} p(x, t) dx = 2D$$

$$\rightarrow \langle x^{2}(t) \rangle = 2D t$$
(29)
(30)

compare with Eq. (18) $\langle x^2(t) \rangle = \frac{\ell^2}{\Delta t} N \Delta t = \frac{\ell^2}{\Delta t} t$ \rightarrow random walk and diffusion equation have same time dependence (linear) (with $2D = \frac{\ell^2}{\Delta t}$)

Random numbers

for scientific purposes

- fast method to generate huge number of "random numbers"
- sequence should be reproducible

 \rightarrow use deterministic algorithm to generate pseudorandom numbers

Linear congruential method

start with a seed x_0 , use one-dimensional map

$$x_n = (a x_{n-1} + c) \mod m$$

(31)

- with integers: a (multiplier), c (increment), m (modulus)
- *m* largest possible integer from Eq. (31) \rightarrow maximum possible period is $m \rightarrow$ obtain $r \in [0,1)$ by x_n/m
- real period depends on a, c, m, e.g.,
 - a = 3, c = 4, m = 32, $x_0 = 1 \rightarrow 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, \ldots \rightarrow \text{period}$ is 8 not 32

Better randomness can be obtained from physical processes:

- nuclear decay (*real* randomness!), e.g, \rightarrow measure Δt (difficult to implement)
- image noise, thermal noise (Johnson-Nyquist noise), e.g., \rightarrow darkened USB camera (simple), special expansion cards with a diode
- "activity noise" in Unix:

/dev/random /dev/urandom

 \rightarrow random *bit* patterns from input/output streams (entropy pool) of the computer /dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf. /proc/sys/kernel/random/poolsize)

urandom uses pseudorandom numbers seeded with "real" random numbers

For readout of Unix random devices need to interpret random bits(!) as numbers

Reading from urandom

```
E.g., by using fstream and union
```

 $\rightarrow \texttt{fstream}$ reads only char, buf and num are at the same address \rightarrow read bits in as char output as unsigned int

quality check for uniformly distributed random numbers

- equal distribution: random numbers should be fair
- *entropy:* bits of information per byte of a sequence of random numbers (same as equal distribution)
- serial tests: for *n*-tuple repetitions (often only for n = 2, n = 3)
- *run test:* for monotonically increasing/decreasing sequences, also for length of stay for a distinct interval
- \bullet and more \ldots

Be careful!

There is no necessary or sufficient test for the randomness of a finite sequence of numbers.

 $\rightarrow\, {\rm can}$ only check if it is "apparently" random

 \rightarrow testing for "clumping" of numbers

Test for doublets

- define a square lattice $L \times L$ and fill each cell at random:
- array n(x, y) with discrete coordinates
- choose random 1 ≤ x_i, y_i ≤ L where x_i, y_i consecutive numbers of random number sequence
- fill cell $n(x_i, y_i)$ (e.g. set boolean to true)
- repeat procedure $t \cdot L^2$ times, t is MC time step
- ightarrow similar to nuclear decay, therefore expected: fraction of empty cells $\propto \exp(-t)$

Correlation tests II

Simple correlation test

• just plot x_{i+1} over $x_i \rightarrow \text{look}$ for suspicious patterns

Confidence level I

Testing for randomness (also: numbers or detections) $\rightarrow \chi^2$ test

- let y_i the number of events in bin *i* and E_i the expectation value
- e.g., $N = 10^4$ random numbers, M = 100 bins $\rightarrow E_i = 100$ (numbers/bin)
- the χ^2 value (with y_i measured number of random numbers in bin *i*):

$$\chi^2 = \sum_{i=1}^{M} \frac{(y_i - E_i)^2}{E_i}$$
(32)

measures the conformity of the measured and the expected distribution

- the individual terms in Eq. (32) should be ≤ 1 , so for M terms $\chi^2 \leq M \rightarrow reduced \chi^2$ by deviding by $M \rightarrow$ "minimum" red. $\chi^2 = 1$
- e.g., 5 independent runs (each $n = 10\,000$) yield $\chi^2 \approx 92, 124, 85, 91, 99 \rightarrow$ as expected for equal distribution,

in general: χ^2 should be small (but $\chi^2 = 0$ is suspicious, e.g., here: *N*-periodicity in random numbers?)

Confidence

• need a quantitative measure that shows normal distribution of the "error" $(y_i - E_i)$ (in particular, we test the hypothesis of uniform distribution) \rightarrow chi-squared distribution

$$p(x,\nu) = \frac{1}{2^{\nu/2} \, \Gamma(\nu/2)} x^{(\nu-2)/2} \, e^{-x/2} \tag{33}$$

where
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
 and $\Gamma(z+1) = z!$ (34)

 \rightarrow cumulated χ^2 distribution $P(x, \nu)$:

$$P(x,\nu) = \frac{1}{2^{\nu/2} \,\Gamma(\nu/2)} \int_0^x t^{(\nu-2)/2} \, e^{-t/2} dt \tag{35}$$

with ν degrees of freedom, here: $\nu = M - 1 = 99$, because of constraint $\sum_{i=1}^{M} E_i = N$

Confidence level III

• chi-square distribution

chi-square PDF for different degrees of freedom ν

Confidence level IV

- function $Q(x,\nu) = 1 P(x,\nu)$
 - \rightarrow probability that $\chi^2 > x$

• we want to check: How likely to get a χ^2 of, e.g., 124 (our largest measured χ^2)? \rightarrow solve $Q(x, \nu) = q$ (probability $\chi^2 > x$ for given x, ν) for x, or look it up in tables for $\nu = M - 1 = 99$ (e.g.,

https://www.medcalc.org/manual/chi-square-table.php)

X	138.9	134.6	123.2	110.6	98
q	0.005	0.01	0.05	0.2	0.5

- for our case: 1 out of 5 runs (20%) had $y_2 = 124$, but $Q(x, \nu)$ implies for x = 123 only 5%, i.e., 1 out of 20 runs with $\chi^2 \ge 123$
- therefore: confidence level < 95%, rather 80% (because of q = 0.2 for x = 111)
- try to increase confidence level: more runs \rightarrow if still only 1 out 20 with $\chi^2 > 123 \rightarrow$ confidence level at 95%