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Monte-Carlo integration
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MC integration I

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

FN

A

pool with area Fn in a field with known(!) area A
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MC integration II

fraction of the randomly thrown stones which fall into the pool:

np

n
=

Fn
A

(1)

(n stones, np hit pool)

determine Fn with help of the hit-or-miss method:

Fn = A
np

n
(2)
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MC integration III

f(x)

h

a b

choose rectangle of height h, width (b − a), area A = h · (b − a), such that f (x) within
the rectangle

generate n pairs of random variables xi , yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h

fraction nt of the points, which fulfill yi ≤ f (xi ) gives estimate for area under f (x)
(integral)
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MC integration IV

Excursus: Buffon’s needle problem – determine π by throwing matches
Buffon’s question (1773): What is the probability that a needle or a match of length ` will lie across a line
between two strips on a floor made of parallel strips, each of same width t?
→ x is distance from center of the needle to closest line, θ angle between needle and lines (θ < π

2 ), hence the
uniform probability density functions are

p(x) =

{ 2
t

: 0 ≤ x ≤ t
2

0 : elsewhere p(θ) =

{ 2
π

: 0 ≤ θ ≤ π
2

0 : elsewhere

x , θ independent → p(x , θ) = 4
tπ

with condition x ≤ `
2 sin θ. If ` ≤ t (short needle):

P(hit) =
∫ π

2

θ=0

∫ `
2 sin θ

x=0

4
tπ

dxdθ =
2`
tπ

→ count hits and misses and then:

π =
2`
t

1
P(hit)

=
2`
t

nhit + nmiss

nhit
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MC integration V

Sample-mean method

the integral

F (x) =

∫ b

a
f (x) dx (3)

is given in the interval [a, b] by the mean 〈f (x)〉 (mean value theorem for integration)

choose arbitrary xi (instead of regular intervals) and calculate

Fn = (b − a)〈f (x)〉 = (b − a)
1
n

n∑
i=1

f (xi ) (4)

where xi are uniform random numbers in [a, b](
cf. rectangle rule Fn =

n∑
i=1

f (xi )∆x with fixed xi ,∆x =
b − a

n

)
(5)
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Importance sampling I

Idea: improve MC integration by a better sampling → introduce a positive function p(x) with∫ b

a
p(x)dx = 1 (6)

and rewrite integral
∫ b
a f (x)dx as

F =

∫ b

a

[
f (x)

p(x)

]
p(x)dx (7)

this integral can be evaluated by sampling according to p(x):

Fn =
1
n

n∑
i=1

f (x)

p(x)
(8)

Note that for the uniform case p(x) = 1/(b − a) → the sample mean method is recovered.
Now, try to minimize variance σ2 of integrand f (x)

p(x) by choosing p(x) ≈ f (x), especially for
large f (x)
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Importance sampling II

→ slowly varying integrand f (x)/p(x)
→ smaller variance σ2

Example: Normal distribution

Evaluate integral F =
∫ b
a f (x)dx =

∫ 1
0 e−x

2
dx (error function) →Fn = 1

n

∑n
i=1

e−x2

p(x)

p(x) = 1 p(x) = Ae−x †

x (b − a) ∗ r + a − log(e−a − r
A
)

n 4× 105 8× 103

σ 0.0404 0.0031

σ/
√
n 6× 10−5 3× 10−5

total CPU time†† 19ms 0.8 ms
CPU time / trial 50 ns 100 ns

† A from normalization A = (exp(−a)− exp(−b))−1, ††CPU time on a Intel Core i7-4771 3.5 GHz

→ the extra time needed per trial for getting x from uniform r is usually overcompensated by
the smaller number of necessary trials for same σ/

√
n
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Metropolis algorithm I

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953)
useful for averages of the form

〈f 〉 =

∫
p(x)f (x)dx∫
p(x)dx

e.g. 〈f 〉 =

∫
e
− E(x)

kBT f (x)dx∫
e
− E(x)

kBT dx
, (9)

The Metropolis algorithm uses random walk (see below) of points {xi} (1D or higher) with
asymptotic probability distribution approaching p(x) for n� 1. Random walk from transition
probability T (xi → xj), such that

p(xi )T (xi → xj) = p(xj)T (xj → xi ) (detailed balance) (10)

e.g., chooseT (xi → xj) = min

[
1,

p(xj)

p(xi )

]
(where, e.g., pj/pi = exp

(
−
Ej − Ei

kBT

)
) (11)
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Metropolis algorithm II

Metropolis algorithm
1 choose trial position xtrial = xi + δi with random δi ∈ [−δ,+δ]

2 calculate w = p(xtrial)/p(xi ) (might be: w = exp
(
−E(xtrial)−E(xi )

kBT

)
)

3 if w ≥ 1, accept and xi+1 = xtrial (→∆E ≤ 0)
4 if w < 1 (→∆E > 0), generate random r ∈ [0; 1]

5 if r ≤ w , accept and xi+1 = xtrial (and compute desired quantities, e.g. f (xi+1))
6 if not, xi+1 = xi

(finally: 〈f 〉 = 1
n

∑n
i=1 f (xi ))

problem: optimum choice of δ;
if too large, only small number of accepted trials → inefficient sampling
if too small, only slow sampling of p(x).
Hence, rule of thumb: choose δ for which 1

3 . . .
1
2 trials accepted

also: choose x0 for which p(x0) is largest → faster approach of {xi} to p(x)
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Metropolis algorithm III

Metropolis algorithm for Gaussian standard distribution
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〈x〉 and 〈x2〉 computed from

xmean = xmean + xtrial ; xxmean = xxmean + xtrial * xtrial ;
...
xmean = xmean / naccept ; xxmean = xxmean / naccept ;
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Metropolis algorithm IV

Typical applications for Metropolis algorithm: computation of integrals with weight functions
p(x) ∼ e−x , e.g.,

〈x〉 =

∫∞
0 xe−xdx∫∞
0 e−xdx

(12)

〈A〉 =

∫
A(~X )e−U(~X )/kBTd ~X∫

e−U(~X )/kBTd ~X
(13)

where the latter is the average of a physical quantity A in a liquid system with good contact to
a thermal bath, fixed number of particles (with ~X = (~x1, ~x2, . . .) of all particles) and volume
→ canonical ensemble, e.g., 〈

mv2
ik

2

〉
=

1
2
kBT (14)
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Rejection sampling
(acceptance-rejection method)
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Rejection sampling (acceptance-rejection method) I

Problem: get random x for any p(x), also if P(r)−1 not (easily) computable

Idea:

area under p(x) in [x , x + dx ] is probability of getting x in that range

if we can choose a random point in two dimensions with uniform probability in the area
under p(x), then x component of that point is distributed according to p(x)

so, on same graph draw an f (x) with f (x) > p(x) ∀ x
if we can uniformly distribute points in the area under curve f (x), then all points (x , y)
with y < p(x) are uniform under p(x)
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Rejection sampling (acceptance-rejection method) II

Creation of arbitrary probability distributions with help of rejection sampling (especially for
compact intervals [a, b]):

let p(x) be the required distribution in [a, b]

choose a f (x) such that p(x) < f (x) in [a, b], e.g., f (x) = c ·max(p(x)) = const. where
c > 1

it is A :=
∫ b
a f (x)dx , i.e. A(x) must exist and must be invertible: A(x)→ x(A)

generate uniform random number in [0,A] and get the corresponding x(A)

generate 2nd uniform random number y in [0, f (x)], so x , y are uniformly distributed on A
(area under f (x))

accept this point if y < p(x), otherwise reject it
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Rejection sampling (acceptance-rejection method) III

Example: normal distribution p(x) sampled by f (x) = (x2 + 1)−1

0

1

2

3

-10 -5 0 5 10

x

y

1st random

from [0, A]

x0

A

f (x0)
2nd random

from [0, f (x0)]

F(x) =
∫ x

−∞ f (x′)dx′

f (x)

p(x)

reject x0

accept x0

1√
2π

e−
x2
2 (blue solid line) sampled with help of the function 1

x2+1 (red dashed) whose integral is
arctan(x) (thick dashed red) and hence F (x)−1 = tan(x), see source code on page 19
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Rejection sampling (acceptance-rejection method) IV

Requirements:

p(x) must be computable for every x in the intervall

f (x) > p(x) → always possible, as
∫ +∞
−∞ p(x)dx = 1 (i.e. A > 1)

to get x0 for a chosen value in [0,A] requires usually:
∫
f (x)dx = F is analytically

invertible, i.e. F (x)−1 exists

→ this is easy for a compact interval [a, b], e.g., choose a c > 1 such
F (x) = c ·max(p(x)) · (x − a) = k(x − a)
→ x = F/k − a for randomly chosen F in [0,A], where A = k · (b − a)
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Rejection sampling (acceptance-rejection method) V

Example: acceptance-rejection for normal distribution (see p. 17)
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
...

for (int i = 0; i < nmax; ++i){
// get random value between 0 and A:
ax = A * double(rand())/double(RAND_MAX);
// obtain the corresponding x value:
x = inv_int_f(ax);
// get random y value in interval [0,f(x)]:
y = f(x) * double(rand())/double(RAND_MAX);
// test for y =< p(x) for acceptance:
if ( y <= p(x) ) { cout << x << endl ;}

}
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Rejection sampling (acceptance-rejection method) VI

In our example:

it is p(x) = 1√
2π
e−

x2
2 the standard normal distribution; normal distributions with

σ 6= 1, µ 6= 0 can be obtained by transformation

the comparison function f (x) = 1
x2+1 is always f (x) > p(x), moreover:

F (x) =
∫ x

−∞ f (x ′)dx ′ = arctan(x)− arctan(−∞) = arctan(x)−
(
−π

2

)
→F (x) = arctan(x) + π

2

the total area A under f (x) is
∫ +∞
−∞ f (x ′)dx ′ = arctan(+∞)− arctan(−∞) = π

the inverse F (x)−1, which returns x for a given value F ∈ [0,A] simply x = tan
(
F − π

2

)
efficiency of the acceptance is Naccepted/NMAX =

∫
p(x)/

∫
f (x) = 1/π ≈ 0.32, i.e. efficiency

can be increased by choosing f (x) = 1
2

1
x2+1 , then x = tan

(
2F − π

2

)
→ 63% acceptance
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Rejection sampling (acceptance-rejection method) VII

Alternative choice I: f (x) = exp(−x) only for x ≥ 0, then

the integral F (x) is
∫
0
x = − exp(−x) + 1

the total area
∫∞
0 exp(−x)dx = 1 > 0.5 =

∫∞
0 p(x)

the inverse is x = − log(−x + 1)

to obtain also negative x → add random sign ±
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Rejection sampling (acceptance-rejection method) VIII

Alternative choice II: f (x) = 1.1 ·max(p(x)) in the compact interval [0, 3], then
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it is max(p(x)) = 1√
2π

in [0, 3]

→ f (x) = 1.1√
2π

in [0, 3]

hence F (x)−1 is x = F
√

2π
1.1 − 0.

the total area A is 1.1√
2π
· (3− 0)

→ clear: this choice (const. function) works only for compact intervals, otherwise A is infinite
and F (x)−1 does not exist
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Random walk
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Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient
D = 〈x2〉

2t , with Fick’s laws of diffusion: j = −D∂xc and ċ = D∂2
xc)

frequent collisions between dust particles and water
molecules
→ frequent change of direction
→ trajectory not predictable even for few collisions
→motion of dust particle into any direction with same

probability

→Random walk
like “drunken sailor”: N steps of equal length in arbitrary direction will lead to which distance
from start point?
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Random walk II
In one dimension:

let’s start at x = 0, each step with length `
for each step: probability p for step to the right and q = 1− p to the left (independent
from previous step)
displacement after N steps

x(N) =
N∑
i=1

si where si = ±` → x2(N) =

(
N∑
i=1

si

)2

(15)

for p = q = 1/2 → coin flipping
for large N: 〈x(N)〉 = 0 expected
but for 〈x2(N)〉? → rewrite Eq. (15)

x2(N) =
N∑
i=1

s2
i +

N∑
i 6=j=1

si sj (16)

where (for i 6= j) si sj = ±`2 with same probability, so:
∑N

i 6=j si sj = 0
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Random walk III

because of s2
i = `2 →

∑N
i=1 s

2
i = N`2:

〈x2(N)〉 = `2N (17)

especially for constant time intervals of the random walk

〈x2(t)〉 =
`2

∆t
N∆t

(
=

`2

∆t
t

)
(18)

generally: if p 6= 1/2 and p for +`

〈x(N)〉 = (p − q)`N (19)

→ linear dependence on N
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Random walk IV

Example: Diffusion of photons in the Sun
Simplification: constant density n, only elastic Thomson scattering (free e−) with (frequency
independent) cross section σTh = 6.652× 10−25 cm2

mean free path length:

` =
1

nσTh
=

(
%

mH
σTh

)−1

(20)

one dimension → only R = R�, total time t = N∆t

⇒ t = 9× 1010 s = 2900 a � tKH(= 3× 107 a)
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Random walk V

Importance of the random walk model

many processes can be described by differential equation similar to diffusion equation (e.g.,
heat equation, Schrödinger equation with imaginary time)

∂p(x , t)

∂t
= D

∂2p(x , t)

∂x2 (21)

with diffusion coefficient D and probability p(x , t)dx to find particle at time t in [x , dx ]
in 3 dimensions: ∂2/∂x2 ≡ ∇2

Moments: mean value of a function f (x)

〈f (x , t)〉 =

∫ +∞

−∞
f (x , t) p(x , t)dx (22)

⇒ 〈x(t)〉 =

∫ +∞

−∞
x p(x , t)dx (23)
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Random walk VI
Compute integral in Eq. (23) →multiply Eq. (21) by x and integrate over x∫ +∞

−∞
x
∂p(x , t)

∂t
dx = D

∫ +∞

−∞
x
∂2p(x , t)

∂x2 dx (24)

left hand side ∫ +∞

−∞
x
∂p(x , t)

∂t
dx =

∂

∂t

∫ +∞

−∞
x p(x , t)dx =

∂

∂t
〈x〉 (25)

right hand side via integration by parts (
∫
g f dx = g F | −

∫
g ′F dx), note that

p(x = ±∞, t) = 0, as well as all spatial derivatives (∂xp(x = ±∞, t) = 0):

D

∫ +∞

−∞
x
∂2p(x , t)

∂x2 dx = Dx
∂p(x , t)

∂x

∣∣∣∣x=+∞

x=−∞
− D

∫ +∞

−∞
1 · ∂p(x , t)

∂x
dx (26)

= 0 − D p(x , t)|x=+∞
x=−∞ = 0 (27)

⇒ ∂

∂t
〈x〉 = 0 (28)

I.e. 〈x〉 ≡ const. for all t. For x(t = 0) = 0 →〈x〉 = 0 for all t.
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Random walk VII

Analogously for 〈x2(t)〉: integration by parts twice

∂

∂t
〈x2(t)〉 = 0 + 0 + 2D

∫ +∞

−∞
p(x , t)dx = 2D (29)

→ 〈x2(t)〉 = 2D t (30)

compare with Eq. (18) 〈x2(t)〉 = `2

∆tN∆t = `2

∆t t
→ random walk and diffusion equation have same time dependence (linear)

(with 2D = `2

∆t )
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Random numbers

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 31 / 41



Pseudorandom numbers I

for scientific purposes

fast method to generate huge number of “random numbers”

sequence should be reproducible

→ use deterministic algorithm to generate pseudorandom numbers

Linear congruential method
start with a seed x0, use one-dimensional map

xn = (a xn−1 + c) mod m (31)

with integers: a (multiplier), c (increment), m (modulus)

m largest possible integer from Eq. (31) →maximum possible period is m → obtain
r ∈ [0, 1) by xn/m

real period depends on a, c , m, e.g.,
a = 3, c = 4, m = 32, x0 = 1 → 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, . . . → period is 8 not 32
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Other sources of random numbers I

Better randomness can be obtained from physical processes:

nuclear decay (real randomness!), e.g, →measure ∆t (difficult to implement)

image noise, thermal noise (Johnson-Nyquist noise), e.g., → darkened USB camera
(simple), special expansion cards with a diode

“activity noise” in Unix:
/dev/random
/dev/urandom

→ random bit patterns from input/output streams (entropy pool) of the computer
/dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf.
/proc/sys/kernel/random/poolsize)
urandom uses pseudorandom numbers seeded with “real” random numbers

For readout of Unix random devices need to interpret random bits(!) as numbers
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Other sources of random numbers II

Reading from urandom
E.g., by using fstream and union

ifstream fin("/dev/urandom/") ;
union {unsigned int num ;

char buf[sizeof(unsigned int)]; } u ;
fin.read(u.buf, sizeof(u.buf)) ;
cout << u.num ;

→ fstream reads only char, buf and num are at the same address → read bits in as char
output as unsigned int
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Tests for random numbers I

quality check for uniformly distributed random numbers

equal distribution: random numbers should be fair

entropy: bits of information per byte of a sequence of random numbers (same as equal
distribution)

serial tests: for n-tuple repetitions (often only for n = 2, n = 3)

run test: for monotonically increasing/decreasing sequences, also for length of stay for a
distinct interval

and more . . .

Be careful!
There is no necessary or sufficient test for the randomness of a finite sequence of numbers.

→ can only check if it is “apparently” random
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Correlation tests I

→ testing for “clumping” of numbers

Test for doublets
define a square lattice L× L and fill each cell at random:

array n(x , y) with discrete coordinates

choose random 1 ≤ xi , yi ≤ L where xi , yi consecutive numbers of random number
sequence

fill cell n(xi , yi ) (e.g. set boolean to true)

repeat procedure t · L2 times, t is MC time step

→ similar to nuclear decay, therefore expected:
fraction of empty cells ∝ exp(−t)
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Correlation tests II

Simple correlation test
just plot xi+1 over xi → look for suspicious patterns
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Confidence level I
Testing for randomness (also: numbers or detections)
→χ2 test

let yi the number of events in bin i and Ei the expectation value
e.g., N = 104 random numbers, M = 100 bins →Ei = 100 (numbers/bin)
the χ2 value (with yi measured number of random numbers in bin i):

χ2 =
M∑
i=1

(yi − Ei )
2

Ei
(32)

measures the conformity of the measured and the expected distribution
the individual terms in Eq. (32) should be ≤ 1, so for M terms χ2 ≤ M → reduced χ2 by
deviding by M → “minimum” red. χ2 = 1
e.g., 5 independent runs (each n = 10 000) yield χ2 ≈ 92, 124, 85, 91, 99 → as expected for
equal distribution,
in general: χ2 should be small (but χ2 = 0 is suspicious, e.g., here: N-periodicity in
random numbers?)
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Confidence level II

Confidence
need a quantitative measure that shows normal distribution of the “error” (yi − Ei )
(in particular, we test the hypothesis of uniform distribution) → chi-squared distribution

p(x , ν) =
1

2ν/2 Γ(ν/2)
x (ν−2)/2 e−x/2 (33)

where Γ(z) =

∫ ∞
0

tz−1e−tdt and Γ(z + 1) = z! (34)

→ cumulated χ2 distribution P(x , ν):

P(x , ν) =
1

2ν/2 Γ(ν/2)

∫ x

0
t(ν−2)/2 e−t/2dt (35)

with ν degrees of freedom, here: ν = M − 1 = 99, because of constraint
∑M

i=1 Ei = N
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Confidence level III
chi-square distribution
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Confidence level IV

function Q(x , ν) = 1− P(x , ν)

→ probability that χ2 > x

we want to check: How likely to get a χ2 of, e.g., 124 (our largest measured χ2)?
→ solve Q(x , ν) = q (probability χ2 > x for given x , ν) for x , or look it up in tables
for ν = M − 1 = 99 (e.g.,
https://www.medcalc.org/manual/chi-square-table.php)

x 138.9 134.6 123.2 110.6 98
q 0.005 0.01 0.05 0.2 0.5

for our case: 1 out of 5 runs (20%) had y2 = 124, but Q(x , ν) implies for x = 123 only
5%, i.e., 1 out of 20 runs with χ2 ≥ 123

therefore: confidence level < 95%, rather 80% (because of q = 0.2 for x = 111)

try to increase confidence level: more runs → if still only 1 out 20 with χ2 > 123
→ confidence level at 95%
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