
Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy

University of Potsdam

SoSe 2024, 26.6.2024

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 1 / 41

Monte-Carlo integration

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 2 / 41

MC integration I

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

FN

A

pool with area Fn in a field with known(!) area A

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 3 / 41

MC integration II

fraction of the randomly thrown stones which fall into the pool:

np

n
=

Fn
A

(1)

(n stones, np hit pool)

determine Fn with help of the hit-or-miss method:

Fn = A
np

n
(2)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 4 / 41

MC integration III

f(x)

h

a b

choose rectangle of height h, width (b − a), area A = h · (b − a), such that f (x) within
the rectangle

generate n pairs of random variables xi , yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h

fraction nt of the points, which fulfill yi ≤ f (xi) gives estimate for area under f (x)
(integral)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 5 / 41

MC integration IV

Excursus: Buffon’s needle problem – determine π by throwing matches
Buffon’s question (1773): What is the probability that a needle or a match of length ` will lie across a line
between two strips on a floor made of parallel strips, each of same width t?
→ x is distance from center of the needle to closest line, θ angle between needle and lines (θ < π

2), hence the
uniform probability density functions are

p(x) =

{ 2
t

: 0 ≤ x ≤ t
2

0 : elsewhere p(θ) =

{ 2
π

: 0 ≤ θ ≤ π
2

0 : elsewhere

x , θ independent → p(x , θ) = 4
tπ

with condition x ≤ `
2 sin θ. If ` ≤ t (short needle):

P(hit) =
∫ π

2

θ=0

∫ `
2 sin θ

x=0

4
tπ

dxdθ =
2`
tπ

→ count hits and misses and then:

π =
2`
t

1
P(hit)

=
2`
t

nhit + nmiss

nhit

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 6 / 41

MC integration V

Sample-mean method

the integral

F (x) =

∫ b

a
f (x) dx (3)

is given in the interval [a, b] by the mean 〈f (x)〉 (mean value theorem for integration)

choose arbitrary xi (instead of regular intervals) and calculate

Fn = (b − a)〈f (x)〉 = (b − a)
1
n

n∑
i=1

f (xi) (4)

where xi are uniform random numbers in [a, b](
cf. rectangle rule Fn =

n∑
i=1

f (xi)∆x with fixed xi ,∆x =
b − a

n

)
(5)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 7 / 41

Importance sampling I

Idea: improve MC integration by a better sampling → introduce a positive function p(x) with∫ b

a
p(x)dx = 1 (6)

and rewrite integral
∫ b
a f (x)dx as

F =

∫ b

a

[
f (x)

p(x)

]
p(x)dx (7)

this integral can be evaluated by sampling according to p(x):

Fn =
1
n

n∑
i=1

f (x)

p(x)
(8)

Note that for the uniform case p(x) = 1/(b − a) → the sample mean method is recovered.
Now, try to minimize variance σ2 of integrand f (x)

p(x) by choosing p(x) ≈ f (x), especially for
large f (x)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 8 / 41

Importance sampling II

→ slowly varying integrand f (x)/p(x)
→ smaller variance σ2

Example: Normal distribution

Evaluate integral F =
∫ b
a f (x)dx =

∫ 1
0 e−x

2
dx (error function) →Fn = 1

n

∑n
i=1

e−x2

p(x)

p(x) = 1 p(x) = Ae−x †

x (b − a) ∗ r + a − log(e−a − r
A
)

n 4× 105 8× 103

σ 0.0404 0.0031

σ/
√
n 6× 10−5 3× 10−5

total CPU time†† 19ms 0.8 ms
CPU time / trial 50 ns 100 ns

† A from normalization A = (exp(−a)− exp(−b))−1, ††CPU time on a Intel Core i7-4771 3.5 GHz

→ the extra time needed per trial for getting x from uniform r is usually overcompensated by
the smaller number of necessary trials for same σ/

√
n

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 9 / 41

Metropolis algorithm I

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953)
useful for averages of the form

〈f 〉 =

∫
p(x)f (x)dx∫
p(x)dx

e.g. 〈f 〉 =

∫
e
− E(x)

kBT f (x)dx∫
e
− E(x)

kBT dx
, (9)

The Metropolis algorithm uses random walk (see below) of points {xi} (1D or higher) with
asymptotic probability distribution approaching p(x) for n� 1. Random walk from transition
probability T (xi → xj), such that

p(xi)T (xi → xj) = p(xj)T (xj → xi) (detailed balance) (10)

e.g., chooseT (xi → xj) = min

[
1,

p(xj)

p(xi)

]
(where, e.g., pj/pi = exp

(
−
Ej − Ei

kBT

)
) (11)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 10 / 41

Metropolis algorithm II

Metropolis algorithm
1 choose trial position xtrial = xi + δi with random δi ∈ [−δ,+δ]

2 calculate w = p(xtrial)/p(xi) (might be: w = exp
(
−E(xtrial)−E(xi)

kBT

)
)

3 if w ≥ 1, accept and xi+1 = xtrial (→∆E ≤ 0)
4 if w < 1 (→∆E > 0), generate random r ∈ [0; 1]

5 if r ≤ w , accept and xi+1 = xtrial (and compute desired quantities, e.g. f (xi+1))
6 if not, xi+1 = xi

(finally: 〈f 〉 = 1
n

∑n
i=1 f (xi))

problem: optimum choice of δ;
if too large, only small number of accepted trials → inefficient sampling
if too small, only slow sampling of p(x).
Hence, rule of thumb: choose δ for which 1

3 . . .
1
2 trials accepted

also: choose x0 for which p(x0) is largest → faster approach of {xi} to p(x)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 11 / 41

Metropolis algorithm III

Metropolis algorithm for Gaussian standard distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2 0 2 4 6

p(
x)

x

delta=1
Gaussian

δ = 1.
faccept = 0.72
〈x〉 = 0.0007533
〈x2〉 = 0.90306

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2 0 2 4 6

p(
x)

x

delta=1.5
Gaussian

δ = 1.5
faccept = 0.64
〈x〉 = −0.0000153
〈x2〉 = 0.935376

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2 0 2 4 6

p(
x)

x

delta=2
Gaussian

δ = 2.
faccept = 0.56
〈x〉 = 0.000200396
〈x2〉 = 0.988051

〈x〉 and 〈x2〉 computed from

xmean = xmean + xtrial ; xxmean = xxmean + xtrial * xtrial ;
...
xmean = xmean / naccept ; xxmean = xxmean / naccept ;

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 12 / 41

Metropolis algorithm IV

Typical applications for Metropolis algorithm: computation of integrals with weight functions
p(x) ∼ e−x , e.g.,

〈x〉 =

∫∞
0 xe−xdx∫∞
0 e−xdx

(12)

〈A〉 =

∫
A(~X)e−U(~X)/kBTd ~X∫

e−U(~X)/kBTd ~X
(13)

where the latter is the average of a physical quantity A in a liquid system with good contact to
a thermal bath, fixed number of particles (with ~X = (~x1, ~x2, . . .) of all particles) and volume
→ canonical ensemble, e.g., 〈

mv2
ik

2

〉
=

1
2
kBT (14)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 13 / 41

Rejection sampling
(acceptance-rejection method)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 14 / 41

Rejection sampling (acceptance-rejection method) I

Problem: get random x for any p(x), also if P(r)−1 not (easily) computable

Idea:

area under p(x) in [x , x + dx] is probability of getting x in that range

if we can choose a random point in two dimensions with uniform probability in the area
under p(x), then x component of that point is distributed according to p(x)

so, on same graph draw an f (x) with f (x) > p(x) ∀ x
if we can uniformly distribute points in the area under curve f (x), then all points (x , y)
with y < p(x) are uniform under p(x)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-3 -2 -1 0 1 2 3

p(x)
f(x)

uniform under f(x)

=⇒

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-3 -2 -1 0 1 2 3

p(x)
f(x)

uniform under p(x)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 15 / 41

Rejection sampling (acceptance-rejection method) II

Creation of arbitrary probability distributions with help of rejection sampling (especially for
compact intervals [a, b]):

let p(x) be the required distribution in [a, b]

choose a f (x) such that p(x) < f (x) in [a, b], e.g., f (x) = c ·max(p(x)) = const. where
c > 1

it is A :=
∫ b
a f (x)dx , i.e. A(x) must exist and must be invertible: A(x)→ x(A)

generate uniform random number in [0,A] and get the corresponding x(A)

generate 2nd uniform random number y in [0, f (x)], so x , y are uniformly distributed on A
(area under f (x))

accept this point if y < p(x), otherwise reject it

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 16 / 41

Rejection sampling (acceptance-rejection method) III

Example: normal distribution p(x) sampled by f (x) = (x2 + 1)−1

0

1

2

3

-10 -5 0 5 10

x

y

1st random

from [0, A]

x0

A

f (x0)
2nd random

from [0, f (x0)]

F(x) =
∫ x

−∞ f (x′)dx′

f (x)

p(x)

reject x0

accept x0

1√
2π

e−
x2
2 (blue solid line) sampled with help of the function 1

x2+1 (red dashed) whose integral is
arctan(x) (thick dashed red) and hence F (x)−1 = tan(x), see source code on page 19

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 17 / 41

Rejection sampling (acceptance-rejection method) IV

Requirements:

p(x) must be computable for every x in the intervall

f (x) > p(x) → always possible, as
∫ +∞
−∞ p(x)dx = 1 (i.e. A > 1)

to get x0 for a chosen value in [0,A] requires usually:
∫
f (x)dx = F is analytically

invertible, i.e. F (x)−1 exists

→ this is easy for a compact interval [a, b], e.g., choose a c > 1 such
F (x) = c ·max(p(x)) · (x − a) = k(x − a)
→ x = F/k − a for randomly chosen F in [0,A], where A = k · (b − a)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 18 / 41

Rejection sampling (acceptance-rejection method) V

Example: acceptance-rejection for normal distribution (see p. 17)
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
...

for (int i = 0; i < nmax; ++i){
// get random value between 0 and A:
ax = A * double(rand())/double(RAND_MAX);
// obtain the corresponding x value:
x = inv_int_f(ax);
// get random y value in interval [0,f(x)]:
y = f(x) * double(rand())/double(RAND_MAX);
// test for y =< p(x) for acceptance:
if (y <= p(x)) { cout << x << endl ;}

}

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 19 / 41

Rejection sampling (acceptance-rejection method) VI

In our example:

it is p(x) = 1√
2π
e−

x2
2 the standard normal distribution; normal distributions with

σ 6= 1, µ 6= 0 can be obtained by transformation

the comparison function f (x) = 1
x2+1 is always f (x) > p(x), moreover:

F (x) =
∫ x

−∞ f (x ′)dx ′ = arctan(x)− arctan(−∞) = arctan(x)−
(
−π

2

)
→F (x) = arctan(x) + π

2

the total area A under f (x) is
∫ +∞
−∞ f (x ′)dx ′ = arctan(+∞)− arctan(−∞) = π

the inverse F (x)−1, which returns x for a given value F ∈ [0,A] simply x = tan
(
F − π

2

)
efficiency of the acceptance is Naccepted/NMAX =

∫
p(x)/

∫
f (x) = 1/π ≈ 0.32, i.e. efficiency

can be increased by choosing f (x) = 1
2

1
x2+1 , then x = tan

(
2F − π

2

)
→ 63% acceptance

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 20 / 41

Rejection sampling (acceptance-rejection method) VII

Alternative choice I: f (x) = exp(−x) only for x ≥ 0, then

the integral F (x) is
∫
0
x = − exp(−x) + 1

the total area
∫∞
0 exp(−x)dx = 1 > 0.5 =

∫∞
0 p(x)

the inverse is x = − log(−x + 1)

to obtain also negative x → add random sign ±

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

p(x)
exp(-x)

F(x)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 21 / 41

Rejection sampling (acceptance-rejection method) VIII

Alternative choice II: f (x) = 1.1 ·max(p(x)) in the compact interval [0, 3], then

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

p(x)
f(x)

1.1/sqrt(2.*pi)*x

it is max(p(x)) = 1√
2π

in [0, 3]

→ f (x) = 1.1√
2π

in [0, 3]

hence F (x)−1 is x = F
√

2π
1.1 − 0.

the total area A is 1.1√
2π
· (3− 0)

→ clear: this choice (const. function) works only for compact intervals, otherwise A is infinite
and F (x)−1 does not exist

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 22 / 41

Random walk

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 23 / 41

Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient
D = 〈x2〉

2t , with Fick’s laws of diffusion: j = −D∂xc and ċ = D∂2
xc)

frequent collisions between dust particles and water
molecules
→ frequent change of direction
→ trajectory not predictable even for few collisions
→motion of dust particle into any direction with same

probability

→Random walk
like “drunken sailor”: N steps of equal length in arbitrary direction will lead to which distance
from start point?

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 24 / 41

Random walk II
In one dimension:

let’s start at x = 0, each step with length `
for each step: probability p for step to the right and q = 1− p to the left (independent
from previous step)
displacement after N steps

x(N) =
N∑
i=1

si where si = ±` → x2(N) =

(
N∑
i=1

si

)2

(15)

for p = q = 1/2 → coin flipping
for large N: 〈x(N)〉 = 0 expected
but for 〈x2(N)〉? → rewrite Eq. (15)

x2(N) =
N∑
i=1

s2
i +

N∑
i 6=j=1

si sj (16)

where (for i 6= j) si sj = ±`2 with same probability, so:
∑N

i 6=j si sj = 0
H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 25 / 41

Random walk III

because of s2
i = `2 →

∑N
i=1 s

2
i = N`2:

〈x2(N)〉 = `2N (17)

especially for constant time intervals of the random walk

〈x2(t)〉 =
`2

∆t
N∆t

(
=

`2

∆t
t

)
(18)

generally: if p 6= 1/2 and p for +`

〈x(N)〉 = (p − q)`N (19)

→ linear dependence on N

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 26 / 41

Random walk IV

Example: Diffusion of photons in the Sun
Simplification: constant density n, only elastic Thomson scattering (free e−) with (frequency
independent) cross section σTh = 6.652× 10−25 cm2

mean free path length:

` =
1

nσTh
=

(
%

mH
σTh

)−1

(20)

one dimension → only R = R�, total time t = N∆t

⇒ t = 9× 1010 s = 2900 a � tKH(= 3× 107 a)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 27 / 41

Random walk V

Importance of the random walk model

many processes can be described by differential equation similar to diffusion equation (e.g.,
heat equation, Schrödinger equation with imaginary time)

∂p(x , t)

∂t
= D

∂2p(x , t)

∂x2 (21)

with diffusion coefficient D and probability p(x , t)dx to find particle at time t in [x , dx]
in 3 dimensions: ∂2/∂x2 ≡ ∇2

Moments: mean value of a function f (x)

〈f (x , t)〉 =

∫ +∞

−∞
f (x , t) p(x , t)dx (22)

⇒ 〈x(t)〉 =

∫ +∞

−∞
x p(x , t)dx (23)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 28 / 41

Random walk VI
Compute integral in Eq. (23) →multiply Eq. (21) by x and integrate over x∫ +∞

−∞
x
∂p(x , t)

∂t
dx = D

∫ +∞

−∞
x
∂2p(x , t)

∂x2 dx (24)

left hand side ∫ +∞

−∞
x
∂p(x , t)

∂t
dx =

∂

∂t

∫ +∞

−∞
x p(x , t)dx =

∂

∂t
〈x〉 (25)

right hand side via integration by parts (
∫
g f dx = g F | −

∫
g ′F dx), note that

p(x = ±∞, t) = 0, as well as all spatial derivatives (∂xp(x = ±∞, t) = 0):

D

∫ +∞

−∞
x
∂2p(x , t)

∂x2 dx = Dx
∂p(x , t)

∂x

∣∣∣∣x=+∞

x=−∞
− D

∫ +∞

−∞
1 · ∂p(x , t)

∂x
dx (26)

= 0 − D p(x , t)|x=+∞
x=−∞ = 0 (27)

⇒ ∂

∂t
〈x〉 = 0 (28)

I.e. 〈x〉 ≡ const. for all t. For x(t = 0) = 0 →〈x〉 = 0 for all t.
H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 29 / 41

Random walk VII

Analogously for 〈x2(t)〉: integration by parts twice

∂

∂t
〈x2(t)〉 = 0 + 0 + 2D

∫ +∞

−∞
p(x , t)dx = 2D (29)

→ 〈x2(t)〉 = 2D t (30)

compare with Eq. (18) 〈x2(t)〉 = `2

∆tN∆t = `2

∆t t
→ random walk and diffusion equation have same time dependence (linear)

(with 2D = `2

∆t)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 30 / 41

Random numbers

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 31 / 41

Pseudorandom numbers I

for scientific purposes

fast method to generate huge number of “random numbers”

sequence should be reproducible

→ use deterministic algorithm to generate pseudorandom numbers

Linear congruential method
start with a seed x0, use one-dimensional map

xn = (a xn−1 + c) mod m (31)

with integers: a (multiplier), c (increment), m (modulus)

m largest possible integer from Eq. (31) →maximum possible period is m → obtain
r ∈ [0, 1) by xn/m

real period depends on a, c , m, e.g.,
a = 3, c = 4, m = 32, x0 = 1 → 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, . . . → period is 8 not 32

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 32 / 41

Other sources of random numbers I

Better randomness can be obtained from physical processes:

nuclear decay (real randomness!), e.g, →measure ∆t (difficult to implement)

image noise, thermal noise (Johnson-Nyquist noise), e.g., → darkened USB camera
(simple), special expansion cards with a diode

“activity noise” in Unix:
/dev/random
/dev/urandom

→ random bit patterns from input/output streams (entropy pool) of the computer
/dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf.
/proc/sys/kernel/random/poolsize)
urandom uses pseudorandom numbers seeded with “real” random numbers

For readout of Unix random devices need to interpret random bits(!) as numbers

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 33 / 41

Other sources of random numbers II

Reading from urandom
E.g., by using fstream and union

ifstream fin("/dev/urandom/") ;
union {unsigned int num ;

char buf[sizeof(unsigned int)]; } u ;
fin.read(u.buf, sizeof(u.buf)) ;
cout << u.num ;

→ fstream reads only char, buf and num are at the same address → read bits in as char
output as unsigned int

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 34 / 41

Tests for random numbers I

quality check for uniformly distributed random numbers

equal distribution: random numbers should be fair

entropy: bits of information per byte of a sequence of random numbers (same as equal
distribution)

serial tests: for n-tuple repetitions (often only for n = 2, n = 3)

run test: for monotonically increasing/decreasing sequences, also for length of stay for a
distinct interval

and more . . .

Be careful!
There is no necessary or sufficient test for the randomness of a finite sequence of numbers.

→ can only check if it is “apparently” random

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 35 / 41

Correlation tests I

→ testing for “clumping” of numbers

Test for doublets
define a square lattice L× L and fill each cell at random:

array n(x , y) with discrete coordinates

choose random 1 ≤ xi , yi ≤ L where xi , yi consecutive numbers of random number
sequence

fill cell n(xi , yi) (e.g. set boolean to true)

repeat procedure t · L2 times, t is MC time step

→ similar to nuclear decay, therefore expected:
fraction of empty cells ∝ exp(−t)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 36 / 41

Correlation tests II

Simple correlation test
just plot xi+1 over xi → look for suspicious patterns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a = 57, c = 1, m = 256 , nx = 10

correlation plot for linear congruential method
with bad parameters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x_

{i+
1}

x_i

rand()

same plot but for C++ rand() function

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 37 / 41

Confidence level I
Testing for randomness (also: numbers or detections)
→χ2 test

let yi the number of events in bin i and Ei the expectation value
e.g., N = 104 random numbers, M = 100 bins →Ei = 100 (numbers/bin)
the χ2 value (with yi measured number of random numbers in bin i):

χ2 =
M∑
i=1

(yi − Ei)
2

Ei
(32)

measures the conformity of the measured and the expected distribution
the individual terms in Eq. (32) should be ≤ 1, so for M terms χ2 ≤ M → reduced χ2 by
deviding by M → “minimum” red. χ2 = 1
e.g., 5 independent runs (each n = 10 000) yield χ2 ≈ 92, 124, 85, 91, 99 → as expected for
equal distribution,
in general: χ2 should be small (but χ2 = 0 is suspicious, e.g., here: N-periodicity in
random numbers?)

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 38 / 41

Confidence level II

Confidence
need a quantitative measure that shows normal distribution of the “error” (yi − Ei)
(in particular, we test the hypothesis of uniform distribution) → chi-squared distribution

p(x , ν) =
1

2ν/2 Γ(ν/2)
x (ν−2)/2 e−x/2 (33)

where Γ(z) =

∫ ∞
0

tz−1e−tdt and Γ(z + 1) = z! (34)

→ cumulated χ2 distribution P(x , ν):

P(x , ν) =
1

2ν/2 Γ(ν/2)

∫ x

0
t(ν−2)/2 e−t/2dt (35)

with ν degrees of freedom, here: ν = M − 1 = 99, because of constraint
∑M

i=1 Ei = N

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 39 / 41

Confidence level III
chi-square distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8

p
ν
(x

)

x

χν
2

ν=1
ν=2
ν=3
ν=4
ν=6
ν=9

chi-square PDF for different degrees of freedom
ν

50 100 150 200

0.005

0.010

0.015

0.020

0.025

for ν > 30 is
√
2x −

√
2ν − 1 approximately

normally distributed, for ν > 100 is x
approximately normally distributed with E = ν
and and σ =

√
2ν

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 40 / 41

Confidence level IV

function Q(x , ν) = 1− P(x , ν)

→ probability that χ2 > x

we want to check: How likely to get a χ2 of, e.g., 124 (our largest measured χ2)?
→ solve Q(x , ν) = q (probability χ2 > x for given x , ν) for x , or look it up in tables
for ν = M − 1 = 99 (e.g.,
https://www.medcalc.org/manual/chi-square-table.php)

x 138.9 134.6 123.2 110.6 98
q 0.005 0.01 0.05 0.2 0.5

for our case: 1 out of 5 runs (20%) had y2 = 124, but Q(x , ν) implies for x = 123 only
5%, i.e., 1 out of 20 runs with χ2 ≥ 123

therefore: confidence level < 95%, rather 80% (because of q = 0.2 for x = 111)

try to increase confidence level: more runs → if still only 1 out 20 with χ2 > 123
→ confidence level at 95%

H. Todt (UP) Computational Astrophysics SoSe 2024, 26.6.2024 41 / 41

https://www.medcalc.org/manual/chi-square-table.php

	Introduction and tools
	C++ – Review
	From the two-body problem to N-body simulations
	Numerical methods
	Monte-Carlo-Simulations and transport processes
	Monte-Carlo integration
	Hit-or-miss method
	Buffon's needle problem
	Sample-mean method
	Importance sampling
	Metropolis algorithm

	Acceptance-rejection method
	Random walk
	Random numbers
	Confidence level

