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Random numbers and
Monte-Carlo methods
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Motivation I

Many physical process can be described in two pictures:

microscopic, individual, e.g., particle-particle interactions are considered
realization usually with help of →Monte-Carlo (MC) methods

macroscopic, only the effective coaction is described → usually analytical equations

Example: Thermodynamics

microscopic: motion of particles, e.g., v2 = 1
N

∑N
i=1 v

2
i

effective theory: thermodynamics (via statistical physics) averages particle quantities, e.g.,
1
2mv2 = 3

2kBT , so v2 → T

Monte-Carlo simulation
Computer algorithm based on a large number of repeated random experiments to obtain a
representative sample of the possible configurations.
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Motivation II

Example: Radiative transfer

microscopic: interaction of photons with atoms/ions/molecules
→ MOCASSIN for Monte-Carlo simulation of photon propagation in gaseous nebulae
→ MCRH (Noebauer 2015) MC radiation hydrodynamics for stellar winds
advantage: arbitrary geometries (e.g., torus) and density distributions (inhomogeneities) and

processes; good for scattering (special non-LTE case)
disadvantage: feedback on matter (often iteratively calculated) hard to implement because of

MC noise

macroscopic: radiative transfer equation (RTE) = effective theory, i.e. light (intensity Iν) instead
of single photons
→ Cloudy spectral synthesis code for astrophysical plasmas
→ PoWR for emergent spectra of stellar atmospheres
advantage: feedback on matter (non-LTE) via iteration (boundary conditions, e.g., conservation of

energy) → non-LTE population numbers
disadvantage: hard to program (numerical stability); consistent only for some geometries, usually

1d, e.g., spherical symmetry
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Random numbers I

For MC methods we need good and many random numbers. Usual base are
uniformly distributed random numbers (= same probability for every event).
Humans are not a good source for random numbers:
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Figure: random numbers, created by colleagues → not uniformly distributed, too few

→ direct, severe consequence: don’t make up your own passwords!
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Random numbers II

Other sources: rolling dices, tossing coins → low rate

most programming languages have a builtin random function, which gives pseudo-random
numbers, e.g., in C/C++ integers (!) from [0,RAND_MAX]

#include <cstdlib>
...

int i = rand () ;

output of next random number of a sequence

restart by srand(i) ;

To get uniformly distributed random numbers ∈ [0; 1]:

r = rand()/double(RAND_MAX) ;
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Random numbers III

Definition
A result (a state) is random if it was not predictable.

Quality tests for random numbers:

uniform distribution: random numbers should be fair

sequential tests: for ntuple repetitions (usually only for n = 2 und n = 3)

run tests: for monotonically increasing/decreasing sequences, and duration of stay in a
certain interval

and more . . .

→ there is no sufficient criterion for randomness tests
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Non-uniform distributions

H. Todt (UP) Computational Astrophysics SoSe 2024, 24.6.2024 8 / 28



Non-uniform random numbers I

random number generators give uniform (pseudo) random numbers ∈ [0, RAND_MAX]
→ r ∈ [0, 1] (from now on)

we often need different distributions, e.g., normal (Gaussian) distributions or uniform
distributions on an interval x ∈ [a, b]

i.e., we need a transformation that maps r to x , so

Inverse transformation

x = P−1(r) (1)
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Non-uniform random numbers II
First, for the case of discrete numbers

e.g., two events (1,2) with probabilities p1 and p2, such that

p1 + p2 = 1 (2)

How can we choose with help of r?
obvious choice: for r < p1 event 1, otherwise event 2

p1 p2

for the case of 3 possible events with p1, p2, p3: r < p1 → event 1,
p1 < r < p1 + p2 → event 2, else event 3

p1 p2 p3

in general for n events, event i is selected if for r :

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj where p0 ≡ 0 (3)
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Non-uniform random numbers III

For continuous distributions:
need the probability density function p(x), where p(x) · dx is probability that x is in the
interval [x , x + dx ]

moreover, p(x) is normalized: ∫ +∞

−∞
dx p(x) = 1 (4)

Example: uniform distribution

pu(r) =

{
1, if 0 ≤ r ≤ 1
0, else

(5)
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Non-uniform random numbers IV

for the continuous case (continuum limit i → x) in the Eqn. (3)

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj where p0 ≡ 0

both sums are equal and become the integral:

P(x) =

∫ x

−∞
p(x ′) dx ′ = r (6)
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Non-uniform random numbers V

This corresponds to the cumulated distribution function

P(x) =

∫ x

−∞
p(x ′) dx ′ (7)

i.e. the probability to get a random number smaller or equal x . Geometrically: fraction of the
area left of (smaller than) x . We state:

P(x) = r (8)
⇒ x = P−1(r) (9)

i.e. exactly as r also P(x) is uniformly distributed.
Therefore, the probability to find P(x) in the interval [P(x),P(x) + dP(x)] is dP(x) = dr
(Eq. 8).
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Non-uniform random numbers VI

The relation between dP(x) and dx is obtained by derivating Eq. (7) →Fundamental theorem
of calculus:

dP(x)

dx
= p(x) (10)

for 0 ≤ r ≤ 1 it is also:

dP(x) = p(x) dx = pu(r) dr (11)

I.e., because of Eq. (8) P(x) = r → x is distributed according to p(x)
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Non-uniform random numbers VII

To obtain such p(x) distributed random numbers, one has to solve Eq. (9) x = P−1(r)

Inverse transformation
1 Insert the required distribution p(x) into:

r = P(x) =

∫ x

−∞
p(x ′) dx ′ (12)

2 solve for x , i.e. find

P−1(r) = x (13)

Not for all p(x) are the corresponding conditions fulfilled (solvable integral and invertibility)
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Non-uniform random numbers VIII

Example for inverse transformation
Let

p(x) =

{
a e−ax , if 0 ≤ x ≤ ∞
0, x < 0

(14)

P(x) =

∫ x

0
a e−ax

′
dx ′ = 1− e−ax = r (15)

⇒ x = −a−1 ln(1− r) (16)

and (1− r) is exactly distributed as r , so:

x = P−1(r) = −a−1 ln r (17)

The evaluation of ln on a computer is relatively time consuming
→ inverse transformation not always the best method

H. Todt (UP) Computational Astrophysics SoSe 2024, 24.6.2024 16 / 28



Probability distributions in Physics I

Probability distributions are fundamental in, e.g., statistical mechanics and non-relativistic
quantum mechanics:

Boltzmann distribution: pi ∝ exp
(
− Ei

kBT

)
for some state i

usually: discrete states (statistical mechanics), hence

pi =
Ni

N
=

exp
(
− Ei

kBT

)
∑m

j=1 exp
(
− Ej

kBT

) (18)

for Ni particles in state i and a total number of N particles with m states
but might be also continuous, e.g., barometric formula for molecule of mass m, height h
above ground

ρ(h) ∝ exp

(
−mg h

kBT

)
(19)

→ computer generated samples via Markov Chain Monte Carlo (MCMC), in particular
→Metropolis algorithm (see below)
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Probability distributions in Physics II
Maxwell-Boltzmann distribution: continuous distribution of particle velocity in one

direction (e.g., radial sightline) with vth =
√

2kBT
m

p(vx) dvx =

(
m

2πkBT

)1/2

exp

(
− mv2

x

2kBT

)
dvx =

1
vth
√
π

exp

(
− v2

x

v2
th

)
(20)

Application: thermal Doppler broadening of spectral lines where ∆νth = ν0 · vth/c

Mean value 〈v2
x 〉 = 2

∫ ∞
0

v2
x p(vx)dvx =

1
2
v2
th =

kBT

m
= v2

s → isothermal sound speed

→ example for a “moment” of a distribution

For 3D, absolute value, speed v : d3v = dvx dvy dvz = v2 dv dΩ integration → 4πv2dv
and v2 = v2

x + v2
y + v2

z :

p(v) dv = 4π
(

m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
dv (21)

Hence, mean 〈v2〉 =

∫ ∞
0

v2 p(v)dv =
3kBT

m
→ compare definition of T as measure of mean kinetic energy
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Probability distributions in Physics III

in non-relativistic QM (1d):
the squared modulus of the wave function |ψ(x , t)|2 gives probability of particle in
“volume” dx around x at time t → p(x , t)dx = |ψ(x , t)|2dx
Physical quantities (observables) have corresponding operators, e.g., momentum
pop → −ı~∂/∂x ; expectation or average value of observable A:

〈A〉 =

∫
ψ∗(x , t)Aop ψ(x , t)dx (22)

And ψ evolves according to Schrödinger equation

ı~
∂ψ(x , t)

∂t
= − ~2

2m
∂2ψ(x , t)

∂x2 + V (x , t)ψ(x , t) (23)

→ because of similarity to diffusion equation (with imaginary time), solutions to Eq. (23)
can be found by random walk (see below)
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Probability distributions in Physics IV

the specific intensity Iν(~x , t, ~n, ν) = d E
d ~A·~n dΩ dν dt

is a 7-dim distribution function on a
4-dim spacetime manifold (~x , t), describing unpolarized radiation. Note:
Iν = nphotchν ≥ 0 (where nphot is photons / volume / solid angle / frequency interval)

Moments of the specific intensity (radiation field) = integrals over all directions, in 1d
(plane parallel, spherical symmetry) over µ = cos θ, n-th moment: 1

2

∫ +1
−1 µ

n Iν(µ)dµ

n symbol integral type
0. Jν = 1

2

∫ +1
−1 Iν(µ)dµ mean intensity, energy density Eν = 4π

c Jν , Jν ≥ 0

1. Hν = 1
2

∫ +1
−1 µ Iν(µ)dµ (Eddington-) flux, can be neg. (e.g. “inward” flux)

2. Kν = 1
2

∫ +1
−1 µ

2 Iν(µ)dµ radiation pressure Kν = c
4πPν

3. Nν = 1
2

∫ +1
−1 µ

3 Iν(µ)dµ flux-like, i.e., can be negative

→ usually: MC simulations of radiation field require large number of runs for individual
photons to recover macroscopic quantities I , J, etc. correctly
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Non-uniform distributions II
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Box-Muller method I

non-uniform distribution:

with help of the inversion method we can get non-uniform random numbers from uniform
random numbers → condition: P(x) invertable

for the Gaussian normal distribution:

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
(24)

P(x) is not analytical representable (error function)

idea: 2d-transformation where:

p(x , y) dx dy =
1

2πσ2 e−(x2+y2)/2σ2
dx dy (25)

change to polar coordinates:

r =
√

x2 + y2 θ = tan−1 y

x
(26)
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Box-Muller method II

let ρ = r2/2 and set σ = 1:

p(x , y)dx dy = p(ρ, θ) dρ dθ =
1
2π

e−ρ dρ dθ (27)

now generate random numbers ρ according to exponential distribution, so ρ = − ln u (u
standard uniform distributed) and θ uniform distributed on [0, 2π), then

x =
√
−2 ln u cos θ und y =

√
−2 ln u sin θ (28)

are each according to Eq. (24) with σ = 1 and µ = 0 distributed because of

reız =
√
− ln ueı2πθ =

√
−2 ln u [cos(2πθ) + ı sin(2πθ)] (29)

Alternative: Rejection method (see below)
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Example: Neutron transport
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Neutron transport I

Application for non-uniform random numbers!
Transport of neutrons through matter – one of the first MC applications!

consider a plate of thickness t
plate is infinite in z and y direction, x-axis
perpendicular to the plate
at each point within the plate: probability pc,
that neutron gets absorbed (captured) and
probability ps that neutron is scattered
after each scattering: find scattering angle θ in
xy plane
as motion in y , z direction irrelevant: azimuthal
angle φ irrelevant

y

x

n

θ

t
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Neutron transport II

Determine scattering angle & scattering path length
1. Isotropic scattering:

p(θ, φ) dθ dφ = dΩ/4π (30)
because of dΩ = sin θ dθ dφ : (31)

p(θ, φ) =
sin θ

4π
(32)

obtain p(θ) and p(φ) by integration over the complementary angle:

p(θ) =

∫ 2π

0
p(θ, φ) dφ = 2π

sin θ

4π
=

1
2

sin θ (33)

p(φ) =

∫ π

0
p(θ, φ) dθ =

1
4π

(− cosπ + cos 0) =
1
2π

(34)

I.e. p(θ, φ) = p(θ)p(φ) → independent variables
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Neutron transport III
If random variable φ is wanted (p(φ) ≡ const.):

φ = 2πr (35)

To get random θ according to Eq. (33) → inversion method:

r = P(θ) =

∫ θ

0

1
2

sin x dx = −1
2

(cos θ − cos 0) (36)

cos θ = 1− 2r (37)

I.e. cos θ is uniformly distributed on [−1; 1] and φ on [0; 2π]. Solving for θ possible, but
unnecessary, as only cos θ required for x component of the path →
2. scattering path length:

x = ` cos θ (38)

where ` from p(`) ∼ e−`/λ (see example for inversion method):

` = −λ ln r (39)

λ →mean free path (e.g., λ = (σn)−1)
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Neutron transport IV

Algorithm, start at x = 0:

1 determine, if neutron is scattered or
captured. If captured: increment number of
absorbed neutrons, go to 5 step

2 scattering: “dice” cos θ and `, move to x
position by ` cos θ

3 if x < 0: increment number of reflected
neutrons, if x > t: increment number of
transmitted neutrones;
go to 5

4 repeat step 1 - 3 until final result is achieved
for all neutrons

5 repeat step 1 - 4 with more incident
neutrons

x = 0,
generate
neutron

dice r
for ps, pc

Captured?
increment
nabs

dice cos θ
and `

move to x
by ` cos θ

increment
ntrans

increment
nrefl

yes

no

x > t

x < 0

else
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