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Random numbers and
Monte-Carlo methods
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Motivation |

Many physical process can be described in two pictures:

@ microscopic, individual, e.g., particle-particle interactions are considered
realization usually with help of — Monte-Carlo (MC) methods

@ macroscopic, only the effective coaction is described — usually analytical equations

Example: Thermodynamics

V2 —
microscopic: motion of particles, e.g., v = § LSV v

effective theory: thermodynamics (via statistical phy5|cs) averages particle quantities, e.g.,

%mv2 = 3kBT sov2— T

Monte-Carlo simulation

Computer algorithm based on a large number of repeated random experiments to obtain a
representative sample of the possible configurations.
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Motivation Il
Example: Radiative transfer

@ microscopic: interaction of photons with atoms/ions/molecules

— MOCASSIN for Monte-Carlo simulation of photon propagation in gaseous nebulae
— MCRH (Noebauer 2015) MC radiation hydrodynamics for stellar winds

advantage: arbitrary geometries (e.g., torus) and density distributions (inhomogeneities) and
processes; good for scattering (special non-LTE case)

disadvantage: feedback on matter (often iteratively calculated) hard to implement because of
MC noise

@ macroscopic: radiative transfer equation (RTE) = effective theory, i.e. light (intensity |,,) instead
of single photons
— Cloudy spectral synthesis code for astrophysical plasmas
— PoWR for emergent spectra of stellar atmospheres

advantage: feedback on matter (non-LTE) via iteration (boundary conditions, e.g., conservation of
energy) — non-LTE population numbers

disadvantage: hard to program (numerical stability); consistent only for some geometries, usually
1d, e.g., spherical symmetry

.

H. Todt (UP) Computational Astrophysics SoSe 2024, 24.6.2024 4/28



Random numbers |

For MC methods we need good and many random numbers. Usual base are
uniformly distributed random numbers (=same probability for every event).
Humans are not a good source for random numbers:

frequency (9x4)
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Figure: random numbers, created by colleagues — not uniformly distributed, too few

— direct, severe consequence: don't make up your own passwords!
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Random numbers Il

Other sources: rolling dices, tossing coins — low rate

most programming languages have a builtin random function, which gives pseudo-random
numbers, e.g., in C/C++ integers (!) from [0,RAND_MAX]

#include <cstdlib>

int i = rand ) ;

@ output of next random number of a sequence
@ restart by srand(i) ;

To get uniformly distributed random numbers € [0; 1]:

r = rand()/double (RAND_MAX) ; J
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Random numbers Il|

Definition

A result (a state) is random if it was not predictable.

Quality tests for random numbers:
@ uniform distribution: random numbers should be fair
e sequential tests: for ntuple repetitions (usually only for n =2 und n = 3)

@ run tests: for monotonically increasing/decreasing sequences, and duration of stay in a
certain interval

@ and more . ..

— there is no sufficient criterion for randomness tests
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Non-uniform distributions
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Non-uniform random numbers |

@ random number generators give uniform (pseudo) random numbers € [0, RAND MAX]
— r € [0, 1] (from now on)

e we often need different distributions, e.g., normal (Gaussian) distributions or uniform
distributions on an interval x € [a, b]

@ i.e., we need a transformation that maps r to x, so

Inverse transformation
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Non-uniform random numbers Il

First, for the case of discrete numbers
@ e.g., two events (1,2) with probabilities p; and py, such that

prt+p=1 (2)

How can we choose with help of r?
@ obvious choice: for r < p; event 1, otherwise event 2

1 * * * |* * * * * * |

' P1 ' P2 '

@ for the case of 3 possible events with p1, ps, p3: r < p; — event 1,
p1 < r < p1+ po —event 2, else event 3

1 *  * * | * * * *I* * *I
opy P2 ' Ps '
@ in general for n events, event i is selected if for r:
i—1 i
ijgrgz:pj where pp = 0 (3)
Jj=0 j=0
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Non-uniform random numbers Il
For continuous distributions:

e need the probability density function p(x), where p(x) - dx is probability that x is in the
interval [x, x + dx]
@ moreover, p(x) is normalized:

/_+00 dx p(x) =1

(4)
o0
Example: uniform distribution
1.5 [T T T
10 [ .
1, fo<r<1 N ]
r)y= - = 5 5 - -
Pu(r) {0, else (5) o0
0.0 b e
0 1
r
.
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Non-uniform random numbers |V

e for the continuous case (continuum limit / — x) in the Eqn. (3)

i—1 i
ij <r< ij where pg =0
Jj=0 Jj=0

both sums are equal and become the integral:

1.2
1.0 — _
0.8 - _
x Zos |- |
Pe)= [ pYa=r (©)

—00 04 -
0.2 —

0.0 ‘
-3 -2 -1 0 1 2 3

x P(x)
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Non-uniform random numbers V

This corresponds to the cumulated distribution function

Pe) = [ " p() @)

i.e. the probability to get a random number smaller or equal x. Geometrically: fraction of the
area left of (smaller than) x. We state:

P(x) = r (8)
= x = Pfl(r) 9)

i.e. exactly as r also P(x) is uniformly distributed.
Therefore, the probability to find P(x) in the interval [P(x), P(x) 4+ dP(x)] is dP(x) = dr
(Eq. 8).
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Non-uniform random numbers VI

The relation between dP(x) and dx is obtained by derivating Eq. (7) — Fundamental theorem
of calculus:

P b (10)
for 0 < r <1itis also:
dP(x) = p(x) dx = pu(r) dr (11)

l.e., because of Eq. (8) P(x) = r — x is distributed according to p(x)
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Non-uniform random numbers VII

To obtain such p(x) distributed random numbers, one has to solve Eq. (9) x = P~1(r)

Inverse transformation

Q Insert the required distribution p(x) into:
r=P(x) = / p(x") dx’ (12)
@ solve for x, i.e. find
P~1(r)=x (13))

Not for all p(x) are the corresponding conditions fulfilled (solvable integral and invertibility)
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Non-uniform random numbers VII|
Example for inverse transformation

Let
P(x) = /OX ae¥dd'=1—e > =r (15)
= x = —ga1! In(1—r) (16)
and (1 — r) is exactly distributed as r, so:
x = PYr)=—-altinr (17)

The evaluation of In on a computer is relatively time consuming
— inverse transformation not always the best method

H. Todt (UP) Computational Astrophysics SoSe 2024, 24.6.2024 16 /28



Probability distributions in Physics |

Probability distributions are fundamental in, e.g., statistical mechanics and non-relativistic
quantum mechanics:

@ Boltzmann distribution: p; o< exp (— kET) for some state /

usually: discrete states (statistical mechanics), hence

exp (_ ksT)

N;
pi= = 3 (18)
N S en( i)

for N; particles in state i and a total number of N particles with m states
but might be also continuous, e.g., barometric formula for molecule of mass m, height h
above ground

p(h) o exp (- ”;BgTh ) (19)

— computer generated samples via Markov Chain Monte Carlo (MCMCQ), in particular
— Metropolis algorithm (see below)
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Probability distributions in Physics Il

@ Maxwell-Boltzmann distribution: continuous distribution of particle velocity in one
L e . _ [2keT
direction (e.g., radial sightline) with v, = /=B~

m 1/2 my?2 1 v2
X d x — - = d x — - 2
plv) dv <27rkBT) eXp< 2kBT) g vthﬁe’(p( vt2h) (20)

Application: thermal Doppler broadening of spectral lines where Awy, = 1o - wn/c
oo

1 ke T
Mean value (v2) = 2/ v2 p(vy)dvy, = ivtzh -8B

= v2 — isothermal sound speed

0
— example for a "moment” of a distribution

For 3D, absolute value, speed v: d3v = dv, dv, dv, = v2 dv dQ integration — 47v2dv
and v2 = v2 + v}% + v2:

3/2 2
m myv
dv — 4 2 - d 21
p(v) dv 7T<27r/<BT> v eXp< 2kBT) v (21)

3kg T

Hence, mean (v?) = v2p(v)dv =

— compare definition of T as measure of mean kinetic energy
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Probability distributions in Physics IlI

@ in non-relativistic QM (1d):
the squared modulus of the wave function [1(x, t)|* gives probability of particle in
“volume” dx around x at time t — p(x, t)dx = |¢(x, t)|?dx

‘ 2

Physical quantities (observables) have corresponding operators, e.g., momentum
Pop — —thd/0x; expectation or average value of observable A:

(A) = /w*(x, t) Aop Y(x, t)dx (22)

And v evolves according to Schrddinger equation

D(x,t) B2 OP(x,t)

th = om T oxZ + V(x, t)(x,t) (23)

— because of similarity to diffusion equation (with imaginary time), solutions to Eq. (23)
can be found by random walk (see below)
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Probability distributions in Physics IV

—dE 53 7-dim distribution function on a
dA-7dQ dv dt

4-dim spacetime manifold (X, t), describing unpolarized radiation. Note:
l, = npnotchr > 0 (where ngpet is photons / volume / solid angle / frequency interval)

@ the specific intensity I, (X, t,n,v) =

Moments of the specific intensity (radiation field) = integrals over all directions, in 1d
(plane parallel, spherical symmetry) over . = cos, n-th moment: %fjll w L (p)du

n symbol integral type

0. J, = %fjll L(u)dp mean intensity, energy density E, = %J,,, J,>0
1. H, 1 ,ul ( )du (Eddington-) flux, can be neg. (e.g. “inward” flux)
2. K, = 2 f dp  radiation pressure K, = =P,

3. N, = f 1 3I dp flux-like, i.e., can be negative

— usually: MC simulations of radiation field require large number of runs for individual
photons to recover macroscopic quantities /, J, etc. correctly
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Non-uniform distributions II
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Box-Muller method |

non-uniform distribution:

@ with help of the inversion method we can get non-uniform random numbers from uniform
random numbers — condition: P(x) invertable

o for the Gaussian normal distribution:
1 x2
_ X 24
P = s oo (s (24)

P(x) is not analytical representable (error function)

o idea: 2d-transformation where:

L A2 gy (25)

dxdy =
p(x,y) dx dy 53

@ change to polar coordinates:

r=+vx24+y2 6 =tan"! % (26)

H. Todt (UP) Computational Astrophysics SoSe 2024, 24.6.2024 22 /28



Box-Muller method 11

o let p=r?/2 and set o = 1:

1
p(x.y)dxdy = p(p,0) dpdf = ~—e™* dpdf (27)
i
@ now generate random numbers p according to exponential distribution, so p = —Inu (u
standard uniform distributed) and 6 uniform distributed on [0, 27), then
x=+vV—=2Inucosf und y=+—-2Inusinf (28)

are each according to Eq. (24) with o =1 and p = 0 distributed because of

re'? = v/—Inue®™ = \/—21n u[cos(276) + 2sin(276)] (29)

Alternative: Rejection method (see below)
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Example: Neutron transport
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Neutron transport |

Application for non-uniform random numbers!

Transport of neutrons through matter — one of the first MC applications!

@ consider a plate of thickness t

@ plate is infinite in z and y direction, x-axis
perpendicular to the plate

@ at each point within the plate: probability pc,

that neutron gets absorbed (captured) and
probability ps that neutron is scattered

n
e after each scattering: find scattering angle 6 in —>N ‘
xy plane A

@ as motion in y, z direction irrelevant: azimuthal
angle ¢ irrelevant
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Neutron transport |l

Determine scattering angle & scattering path length
1. Isotropic scattering:

p(0,9)d0dy = dQ/4n (30)

because of dQ2 =sinfdf d¢ : (31)
sin 0

p(0,9) = A (32)

obtain p(6) and p(¢) by integration over the complementary angle:

2 in@ 1
plo) = /0 p(0,6) do = 27 510 =~ sin (33)
p(¢) = /0 p(6, 9) d@Z%(—COSﬂ'-FCOSO):% (34)

l.e. p(0,®) = p(8)p(¢) — independent variables
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Neutron transport Il

If random variable ¢ is wanted (p(¢) = const.):
¢ = 2mr (35)

To get random 6 according to Eq. (33) — inversion method:

o1 1
ro= P(G):/ —~sinx dx = —=(cos — cos0) (36)
0 2 2
cos§ = 1-2r (37)

l.e. cos @ is uniformly distributed on [—1;1] and ¢ on [0; 27]. Solving for € possible, but
unnecessary, as only cos 6 required for x component of the path —
2. scattering path length:

x = [ cosf (38)
where ¢ from p(f) ~ e=“/* (see example for inversion method):
=—XlInr (39)

A — mean free path (e.g., A = (on)™1)
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Neutron transport 1V

z =0,
generate
neutron

Algorithm, start at x = 0:

@ determine, if neutron is scattered or
captured. If captured: increment number of
absorbed neutrons, go to 5 step

increment

@ scattering: “dice” cosf and ¢, move to x
position by £ cos 6

if x < 0: increment number of reflected

neutrons, if x > t: increment number of

transmitted neutrones;

goto 5

@ repeat step 1 - 3 until final result is achieved A
for all neutrons Titrans
repeat step 1 - 4 with more incident
neutrons

increment
Tirefl
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