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Matrices and Linear Algebra
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Matrices in physics |

Methods to solve matrix problems (e.g., inversion) useful for ODEs and PDEs, e.g., eigenvalue
problem or radiative transfer with Feautrier scheme

Example: Vibrational spectrum of a molecule 1

n degrees of vibrational freedom — potential energy
1 n
U(q1,92,---,Gn) =~ §ZAjkquk (1)
sk

in generalized coordinates around equilibrium state up to 2nd order term, coupling/potential parameter
Ajk (e.g., spring constant).
Kinetic energy with generalized mass M

. oI5,
T(q1,G2,- -+, Gn) =~ 5 > Micgjdn (2)
7k

.
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Matrices in physics Il

Example: Vibrational spectrum of a molecule 2

Apply Lagrange equation of 2nd kind
oL d oL

— ———=0 ithL=T-U 3
aqj dt 8qj WI ( )
Hence, equations of motion, for k =1,...,n: Z(Ajkqj + MjGj) =0 (4)
j=1
Assume an oscillatory motion gq; = x; et — ‘;’;2 (xj et) = —xjw? et
—>Z ik — Mypw?)x; =0 orwith k=1,....,n : Ax=w>Mx (5)

set of linear homogenous equations. Nontrivial solution — determinant of coefficient matrix = 0
—wk =V (k=1,...,n) from equation

det(A — AM) = 0 (6)
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Matrix operations |

Matrix A with elements A;j and i =1,2,...,mand j =1,2,...,n — m X n matrix.

n columns —

m A11 A12 . Aln
rows [ A»
R
Aml Amn

If m=n — square matrix

Remember: Computer stores array in memory sequentially (1d), for C/C++ stored by rows
(last index runs first)

A1, A1, ... Atn, A2t Amn (7)
whereas for Fortran stored by column (first index runs first):

A11, A1, ..., Am1, A2, .., Amn (8)
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Matrix operations |l

Variable array x = (x1,x2,...,%): n x 1 matrix. Hence set of linear equations for
i=1,2,...,n, where x; is unknown:

Airxi +Aixa + ...+ Ainxp = b; 9)
with coefficients A;; and constants b;, so express Eq. (9) in matrix form
Ax=b (10)

with A x from standard matrix multiplication for C = AB, i.e.

Gj =Y AuwBy (11)
P

(number of columns of A = number of rows of B)

H. Todt (UP) Computational Astrophysics SoSe 2024, 16.7.2024 6/38



Matrix operations IlI

Example: Population numbers from statistical equilibrium (non-LTE)

“inflow” to level n; (from all other levels) balanced by “outflow” from level n; (to all other levels)
N N
> niPy=> mPi Vj=1,...,N (12)
i=1 i=1
i#j i#j
nP=0 withP;:=—> P; (13)
J#i
V.
Remember definitions: Inverse of a matrix A is A™1:
AlA=AA1 =] (14)
with Iij = (S,J
The transpose of a matrix A7 is with column and row indices of A interchanged
T
A,-j = Aji (15)
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Matrix operations IV

Trace of A (Tr A) is summation of diagonal elements of A

TTA=) A; (16)
i=1
The determinant of square matrix A
n . .
det(A) = > (~1)""A; det(Ry) (17)
i=1

where Rj; is residual matrix of A with ith row and jth column removed (— recursive
computation)

e.g. det( A AlL2 > = A11A2 — ApAx (18)
A1 Ax
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Matrix operations V

Important properties of the determinant:

Determinant of a 1 x 1 matrix = element itself.

Determinant of a triangular matrix (lower or upper) is the product of diagonal elements:
det(A) =[], Aii

det(BA) = det(B) - det(A) (if both n x n)

det(A71) = FI(A) — integer entries for A and A™! & det(A) = +1

det(AT) = det(A)

The determinant is an n-linear function of the n columns (rows). It is moreover an

alternating form. Together with det(AT) = det(A), this means:
Interchanging any pair of columns or rows of a matrix multiplies its determinant by -1.

Inverse of A via (Cramer’s rule)

det(R,-j)

det(A) (19)

-1 i+j
Aij — (_1) +J

—if A1 exists or det(A) # 0 — nonsingular matrix, singular otherwise ().
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Matrix operations VI

Examples for singular / non-singular (=regular) matrices:

A:<§ §> (20)

is non-singular, its determinant is det(A) = —1 and its inverse is

Al= ( -3 _21 > (21)

o the matrix
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Matrix operations VII

@ the matrix

B:<é§> (22)

is singular, its determinant is det(A) = 0 and there exists no inverse

1 2 a b la+2c 1b+2d
B'M:<o 0>'<cd>:< 0 0 )7“ (23)

o the matrix

c:@ i) (24)

is singular, its determinant is det(A) = 0, as two of its lines are linearly dependent
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Matrix operations VIII

Moreover, it can be useful to perform the following transformations, represented by a matrix
multiplications : A’ = MA
@ interchanging two rows i and j, elements: Mj; = 1; Mj; = 1; Mjy = 1 for k # i, j other
elements = 0 — det(M A) = — det(A)
@ multiply one row by \: My, =1 for k # i; M;; = X\ # 0, all other elements = 0
— det(M A) = det(M) det(A) = \det(A)
© add a row (or column) to another row (or column) multiplied by a factor A:
Mii =1, Mj = X\, My = 0. This can be also be written as

Aj = A+ My forj=1,2,....n (25)

and / and k are row indices, which can be the same. The determinant is preserved
det(A") = det(A).

— see below for Gaussian elimination and matrix decomposition
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Eigenvalue problems |

The matrix eigenvalue problem is for a given matrix A
Ax = \x (26)

with eigenvector x and corresponding eigenvalue A of the matrix.
Also for the example of the vibrating molecules:

Ax =w’Mx | B:=M"A (27)
— Bx = w’x (28)
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Eigenvalue problems Il

— Matrix eigenvalue problem = linear equation set problem
— e.g., iterative solution

AXxpi1 = ApXxp (29)

Moreover, the eigenvalues are preserved under a similarity transformation with a non-singular
matrix S

B=5S"1AS (30)

— By=)\y & Ax=Xx for x = Sy (31)

— det(B) = det(A) =[] A (32)
i=1

— computation of eigenvalues & eigenvectors usually complicated . ..
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Systems of linear equations — Direct methods |

The general problem:
Ax=b (33)

where matrix A and vector b given and vector x unknown.
Straightforward solutions:

@ Cramer’s rule:
- det(A,-)
~ det(A)

X; (34)
where in A; the i-th column is replaced by b

— for a system of n equations: need to compute n+ 1 determinants, each of order n (see
above), i.e., compute n! terms each with (n — 1) multiplications

—(n+1) x n! x (n— 1) multiplications,

e.g., forn=20 — 102! multiplications and for a computer with, e.g., 10 TFLOPS

— t ~ 3a only for multiplications (also note large accumulation of roundoff error)
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Systems of linear equations — Direct methods ||

o find the inverse A~1
x=A"'b (35)

— also time-consuming and instable, e.g., (n =1, float)

7x =21 36
21 . A
x=—= 3 (direct division) 37

x = (771)(21) (compute inverse)
= (.142857)(21) = 2.999997 (less accurate)

computation of the inverse, e.g., via Cramer's rule (see above) or
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Systems of linear equations — Direct methods IlI

with GauB-Jordan elimination (see below) for system AA™! = [

dil1 ... din §11 §1,, 1 0
= (40)
dnl ... dnn é\nl 3,,,, 0 1
hence, the j-th column of the inverse &; = (41,32, . - .,4n;) " is solution of the system of
linear equations
A-3 =g (41)
These equations are solved simultaneously by extending matrix A with I:
dil1 ... din 1 0
(Al)=1] : : (42)
dnl ... danpn 0 1
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Systems of linear equations — Direct methods IV

— elementary row operations — matrix A into upper triangular form (forward elimination)

(D[B)= ST : (43)

0 O

— if no zeros on diagonal — invertible, bring into diagonal form:

1 0 §11 . §1,,
(1A = : : (44)
0 1|31 ... am

or compute inverse with characteristic polynomial:

Al = l, A+ ... +a,ATT 45
det(A)(al + A+ ..+« ) (45)

where the coefficients of the chracteristical polynomial of A can be obtained from
X(t):det(tI*A):&0+a1~t1+...+an-t”
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Gaussian elimination |

Matrix problems can be easily solved for an upper (lower) triangular matrix, for which elements
below (above) the diagonal = 0,

Rii Ri2 ... FRi, X1 c
0 Ry ... R
B N R (46)
0 0 ... Rm Xn Cn

via backward (forward) substitution, i.e. starting with x, = ¢,/Rn, and

n
Ci— Zj:i+1 Rijxj

R: fori=n—-1,...,1 (47)

X =

— need algorithms for transformation into triangular form
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Gaussian elimination |l

Gaussian elimination

1. Forward elimination: Transform linear equation set Ax = b by a sequence of matrix
operations j from original matrix A = A to AU), hence after n — 1 steps for a n x n matrix

Al x — p(n=1) (48)
where AV =0 for i > j:
© multiply 1st equation (1st row A and bgo)) by —AS?)/A(I(? and add to ith equation (row)
for i > 1 — 1st element of every row except 1st row eliminated — A()
@ multiply 2nd equation by —AS)/A%) and add to ith equation for /i > 2 — 2nd element of
every row except st & 2nd row eliminated — A®
o ...
@ upper triangular matrix A1)
2. backward substitution according to Eq. (47)
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Gaussian elimination [l

ad 1.: all diagonal elements Aj; are used in denominators —Ag_l)/Ajj(ffl)

— problems if diagonal elements = 0 or ~ 0

Solution: pivoting (from french pivot=center of rotation) — interchange rows/columns to put
always largest (absolut value) element on diagonal

full pivoting: interchange columns and rows, need to keep track of order ...

partial pivoting: only search for pivot in remaining elements of the current column (swap rows
only)

— partial pivoting usually good compromise between speed and accuracy

— use index to record order of pivot elements instead of physically interchanging

— rescaling: rescale all elements from a row by its largest element before comparing to find
pivot (reduces rounding errors)
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Gaussian elimination 1V
Example: Gaussian elimination in Fortran - code sniplet

! partial pivot. Gaussian elimin.
DIMENSION A(N,N),INDX(N),C(N)
DOI =1, N
INDX(I) = I ! init.
Cl1 =0.0
DO J =1, N ! rescale coeff.
C1 = AMAX1(C1,ABS(A(I,D))
ENDDO
c(I) =cC1
ENDDO

index

DO J = 1, N-1 ! search pivots

PI1 = 0.0

DOI=1J,N
PI = ABS(A(INDX(I),J)) / C(INDX(I))
IF (PI.GT.PI1) THEN

PI1 = PI

K =1
ENDIF
ENDDO

ITMP = INDX(J)
INDX(J) = INDX(X)
INDX(K) = ITMP
DOI =J+ 1, N ! elimin. subdiagonal
PJ = A(INDX(I),J) / A(INDX(J),J)
A(INDX(I),J) = PJ
DOL=J+1, N
A(INDX(I),L) = A(INDX(I),L) - &
PJ * A(INDX(J),L)
ENDDO
ENDDO
ENDDO

H. Todt (UP)
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Gaussian elimination V
Example: Gaussian elimination by hand |

10 -7 0 X 7
3 26 x| =4 (49)
5 -1 5 X3 6

1.) eliminate x; from row 2 & 3 — add 3/10 = 0.3 1st row to 2nd row & add —5/10 = —0.5x 1st
row to 3rd row:

10 -7 0 X1 7
0 —01 6 x| = 61 (50)
0 25 5 X3 2.5

2.) eliminate x» from row 3 — a) pivoting: interchange row 2 & 3 so that coefficient of x, in row 2 is
largest (because of roundoff errors — only for computers necessary)

10 -7 0\ /x 7
0 25 5 |[x]|=] 25 (51)
0 —01 6/ \xs 6.1

V.
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Gaussian elimination VI

Example: Gaussian elimination by hand Il
2.b) now add 0.1/2.5 = 0.04x 2nd row to 3rd row:

10 —7 0 X1 7
0 25 5 x| =] 25 (52)
0 0 6.2 X3 6.2

Finally: backward substitution, starting with last row:

6.2x3=62— x3=1 (53)
25x+5-1=25— x=—1 (54)
10X1+(—7)'(—1)+0:7 —x1 =0 (55)
This can be also expressed in matrix notation: Let
1 0 0 10 -7 0 7
M, = 03 1 0 | - MA= 0 -01 6 ), Mb=| 6.1 (56)
—05 0 1 0 25 5 2.5
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Gaussian elimination VII
Example: Gaussian elimination by hand Il

Let then
1 00 1 0 0
P,=(0o0 1], M=[01 o0 (57)
010 0 004 1
10 -7 0 7
— MyP>M;A = 0 25 5 | =U, M,P,Mib=| 25 | =c (58)
0 0 6.2 6.2

Hence Ux = c, with upper triangular matrix U.
The matrices Py, k =1,...,n— 1 are the permutations matrices, inferred from the identity matrix I by

interchanging rows in same way as for A in the kth step, and M| is multiplication matrix, inferred from
identy matrix by inserting mulitpliers used in kth step below diagonal in kth column — M are lower

triangular matrices
M = M,,,lp,,,l...Mlpl (59)
U= MA (“triangular decomposition” of A) (60)
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LU decomposition |

More general approach: decompose nonsingular matrix A into two triangular matrices
A=LU (61)

with lower (left) triangular matrix L and upper (right) triangular matrix U (or R), hence

Ax =LUx=0>b (62)
— first, solve 1. Ly =b — y (63)
then2. Ux=y — x (64)

i.e. once A = L U obtained — easy to solve for any b.
More general case: re-order matrix A by, e.g., row-permutations (partial pivoting):

PA = LU, then (65)
LUx = Pb (66)
l.Ly=Pb—y (67)

2. Ux=y — x (68)
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LU decomposition |l

e.g. — Crout's method
start with Lj; = Aj; and Uyj = Ayj/A11, then recursively:

j—1

Lj=Aj—> LUy (69)
k=1

i-1
1

Ui= 1. (Aij - Li Ukj) (70)
ii =1

Usually no need to implement by yourself, instead use libraries, e.g., LINPACK:
@ DGEFA performs LU decomposition by Gaussian elimination
@ DGESL uses that decomposition to solve the given system of linear equations

@ DGEDI uses decomposition to compute inverse of a matrix
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Application: Interpolating data |

Remember following measurement of a cross section

E; [MeV] 0 25 50 75 100 125 150 175 200

o(E;) [Mb] 106 16.0 450 835 528 199 108 825 47
owEy [Mb] 126 19 35 20 13 16 004 196 061

100 [ \ \
80 |- ! .
_ 60 |- _| The cross section can be described by
s - : { Breit-Wigner formula
© 40 ! .
* ] ) = g @)
20 P ' B (E-E)?+T2/4
[ - I i
0 Ll Ll Ll cle 0 1
0 50 100 150 200

E, [MeV]
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Application: Interpolating data Il

Interpolation problem

We want to determine o(E) for values of E which lie between measured values of E

By

@ numerical interpolation (assumption of data representation by polynomial in E):
— see previous lectures
— ignores errors in measurement (noise)

e fitting parameters of an underlying model, e.g., Breit-Wigner with 7, E,, I', (taking errors
into account), i.e., minimizing X2

e Fourier analysis (next semester lecture)
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Least square fitting |

Already seen for linear regression:
We have Np data points

(Xi7Yi:l:0i) i:]-?"'aND (72)

and a function y = g(x) (=model) with parameters {a,,}; fit function to data, such that
2 -
X* = min:

- %Ei (Yi - g(:; {am})>2 (73)
i=1 !

i.e. for Mp parameters {a,,,m=1... Mp}

—~~
Il
\.'_‘
)
N—r
—
\'
~
N

! Z [)/I 0-' X, ]8g(xl) —~0

Bam aam

— solve Mp equations, usually nonlinear in a,
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Least square fitting |l

goodness of fit, assumptions
@ deviations to model only due to random errors
@ Gaussion distribution of errors
— then, fit is good when x? ~ Np — Mp (degrees of freedom)

e if x> < Np — Mp — probably too many parameters or errors o; to large (fitting random
scatter)

e if Y>> Np — Mp — model not good or underestimated errors or non-random errors

— for linear fit see above
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Least square fitting Il

Non-linear fit

remember Breit-Wigner resonance formula Eq. (71)

f

f(E) = 75
(E) (E—-E)?+T12/4 (75)
— determine ., E,, T
— nonlinear equations in the parameters
a=f a=E a=r/4 (76)
al
= gx)= —2 77
g(x) — 27t (77)
0 1 0 -2 - 0 -
g Jg _ 2a(x—a) g a (78)

da1  (x—a)2+a3 0am [(x—a)2+as2 a3  [(x— a)2 + a3)2
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Least square fitting IV

Insert into Eq. (74):

Yi _g(Xiaa) _ [yl (XM ](Xl — 32) _
Z(.—z_o Z [(xi — a2)? + a3)? =0

P Xj — 32) + a3

9 P .
Z Yi g(Xn a) —0 (79)

— [ — a2)? + a3]?

— three nonlinear equations for unknown aj, as, a3, i.e. cannot be solved by linear algebra
but can be solved with help of Newton-Raphson method, i.e. find the roots for the equations

above

f;'(al,...,a/\/])zo iZl,...,M (80)
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Least square fitting V

So
v~ g(%,3)
f_ ’ _ ] 19 — 0 81
1(ar, 22,23) ,2; (xi — a2)? + a3 (81)
.yl g(xi, Xj —a
f(a1, a2, a3) Z [ = 32))]5_ P 2) g (82)
3(a1, a2, a3) Z[X_a2 +a3]2—

with intial guesses for ay, a5, as.

H. Todt (UP)
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Least square fitting VI

Newton-Raphson method for a system of nonlinear equations
Remember for 1dim Newton-Raphson method, correction for Ax:

f(xo) + f'(x0) - Ax =0 (84)
f(x0)
Ax = —
= ) (25)
For our system of equations fi(a1,...,am) = 0, we assume that for our approximation (intial

guess) {a;} corrections {Ax;} exist so that
ﬁ(31+A31,32+A32,a3+Aa3) =0 i=1,2,3 (86)

— linear approximation (two terms of Taylor series):

3

f,-(al + Aal, .. ) ~ f,-(al, an, 33) + Z
j=1

of; .
8—33_Aaj =0 i=1,2,3 (87)
— set of 3 linear equations in 3 unknowns
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Least square fitting VII

as explicit equations:

fi + 0f/0a1Aay + 0fi JOarAay + 0fi/DazAa3 =0 (88)
fr + 0fy/0a1Aay + Ofy /DarAay + 0f/DazAaz =0 (89)
f3 + 0fs/0a1Aay + Ofs/DarAay + 0fz/DazAaz =0 (90)

Or as single matrix equation:
fl 81‘1/831 8ﬁ/6a2 8#’1/633 Aal
f> + 8@/831 56/582 af2/833 Aas =0 (91)
f3 81%/831 81‘3/832 6@/683 Aa3
Or in matrix notation
f+FAa=0=F Aa=—f (92)

Where we want to solve for Aa (the corrections)
Matrix F" sometimes written as J is called the Jacobian matrix (with entries f; = 9f;/0a;).

H. Todt (UP) Computational Astrophysics SoSe 2024, 16.7.2024 36 /38



Least square fitting VIII

Equation F'Aa = —f corresponds to standard form Ax = b for systems of linear equations.
Formally solution obtained by multiplying with inverse of F’

Da=—F'f (93)

— inverse must exist for unique solution
— same form as for 1d Newton-Raphson: Ax = —(1/f")f
— iterate as for 1d Newton-Raphson till £ ~ 0

compute derivatives for the system numerically

_ ofi | fi(aj + Ag)j) — fi(a))
Y 6aj Aaj

with Aa; sufficiently small, e.g., 1% of a
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Least square fitting IX

Nonlinear fit with Newton-Raphson

In our nonlinear fit problem the Newton step
Fha=—f (95)

can be solved for Aa with help of DGEFA and DGESL (see p. 27):

CALL DGEFA(FPRIME, NDIM, NDIM, IPVT, INFO)
IF (INFO .NE. 0) STOP °>JACOBIAN MATRIX WITH O ON DIAGONAL’
CALL DGESL(FPRIME, NDIM, NDIM, IPVT, F)

where the solution Aa is written to vector F

.
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