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Matrices in physics I

Methods to solve matrix problems (e.g., inversion) useful for ODEs and PDEs, e.g., eigenvalue
problem or radiative transfer with Feautrier scheme

Example: Vibrational spectrum of a molecule 1
n degrees of vibrational freedom → potential energy

U(q1, q2, . . . , qn) ' 1
2

n∑
j,k

Ajkqjqk (1)

in generalized coordinates around equilibrium state up to 2nd order term, coupling/potential parameter
Ajk (e.g., spring constant).
Kinetic energy with generalized mass Mjk

T (q̇1, q̇2, . . . , q̇n) ' 1
2

n∑
j,k

Mjk q̇j q̇k (2)
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Matrices in physics II

Example: Vibrational spectrum of a molecule 2
Apply Lagrange equation of 2nd kind

∂L
∂qj
− d

dt

∂L
∂q̇j

= 0 with L = T − U (3)

Hence, equations of motion, for k = 1, . . . , n:
n∑

j=1

(Ajkqj + Mjk q̈j) = 0 (4)

Assume an oscillatory motion qj = xj e
ıωt → d2

dt2 (xj e
ıωt) = −xjω2 eıωt

→
n∑

j=1

(Ajk −Mjkω
2)xj = 0 or with k = 1, . . . , n : Ax = ω2Mx (5)

set of linear homogenous equations. Nontrivial solution → determinant of coefficient matrix !
= 0

→ωk =
√
λk (k = 1, . . . , n) from equation

det(A− λM) = 0 (6)
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Matrix operations I

Matrix A with elements Aij and i = 1, 2, . . . ,m and j = 1, 2, . . . , n →m × n matrix.

n columns →


m A11 A12 . . . A1n
rows A21 . . .
↓ . . .

Am1 Amn

If m = n → square matrix
Remember: Computer stores array in memory sequentially (1d), for C/C++ stored by rows
(last index runs first)

A11,A12, . . . ,A1n,A21, . . . ,Amn (7)

whereas for Fortran stored by column (first index runs first):

A11,A21, . . . ,Am1,A12, . . . ,Amn (8)
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Matrix operations II

Variable array x = (x1, x2, . . . , xn): n × 1 matrix. Hence set of linear equations for
i = 1, 2, . . . , n, where xi is unknown:

Ai1 x1 + Ai2 x2 + . . .+ Ain xn = bi (9)

with coefficients Aij and constants bi , so express Eq. (9) in matrix form

Ax = b (10)

with Ax from standard matrix multiplication for C = AB, i.e.

Cij =
∑
k

AikBkj (11)

(number of columns of A !
= number of rows of B)
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Matrix operations III

Example: Population numbers from statistical equilibrium (non-LTE)
“inflow” to level nj (from all other levels) balanced by “outflow” from level nj (to all other levels)

N∑
i=1
i 6=j

niPij =
N∑
i=1
i 6=j

njPji ∀ j = 1, . . . ,N (12)

n P = 0 with Pii := −
∑
j 6=i

Pij (13)

Remember definitions: Inverse of a matrix A is A−1:

A−1A = AA−1 = I (14)

with Iij = δij .
The transpose of a matrix AT is with column and row indices of A interchanged

AT
ij = Aji (15)
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Matrix operations IV

Trace of A (Tr A) is summation of diagonal elements of A

Tr A =
n∑

i=1

Aii (16)

The determinant of square matrix A

det(A) =
n∑

i=1

(−1)i+jAij det(R ij) (17)

where R ij is residual matrix of A with ith row and jth column removed (→ recursive
computation)

e.g., det

(
A11 A12
A21 A22

)
= A11A22 − A12A21 (18)
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Matrix operations V

Important properties of the determinant:
Determinant of a 1× 1 matrix = element itself.
Determinant of a triangular matrix (lower or upper) is the product of diagonal elements:
det(A) =

∏n
i=1 Aii

det(BA) = det(B) · det(A) (if both n × n)
det(A−1) = 1

det(A) → integer entries for A and A−1 ⇔ det(A) = ±1

det(AT ) = det(A)

The determinant is an n-linear function of the n columns (rows). It is moreover an
alternating form. Together with det(AT ) = det(A), this means:
Interchanging any pair of columns or rows of a matrix multiplies its determinant by -1.

Inverse of A via (Cramer’s rule)

A−1
ij = (−1)i+j det(R ij)

det(A)
(19)

→ if A−1 exists or det(A) 6= 0 → nonsingular matrix, singular otherwise ().
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Matrix operations VI

Examples for singular / non-singular (=regular) matrices:

the matrix

A =

(
1 2
2 3

)
(20)

is non-singular, its determinant is det(A) = −1 and its inverse is

A−1 =

(
−3 2
2 −1

)
(21)
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Matrix operations VII

the matrix

B =

(
1 2
0 0

)
(22)

is singular, its determinant is det(A) = 0 and there exists no inverse

B ·M =

(
1 2
0 0

)
·
(

a b
c d

)
=

(
1a + 2c 1b + 2d

0 0

)
6= I (23)

the matrix

C =

(
1 2
2 4

)
(24)

is singular, its determinant is det(A) = 0, as two of its lines are linearly dependent
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Matrix operations VIII

Moreover, it can be useful to perform the following transformations, represented by a matrix
multiplications : A′ = MA

1 interchanging two rows i and j , elements: Mij = 1;Mji = 1;Mkk = 1 for k 6= i , j other
elements = 0 → det(M A) = − det(A)

2 multiply one row by λ: Mkk = 1 for k 6= i ;Mii = λ 6= 0, all other elements = 0
→ det(M A) = det(M) det(A) = λ det(A)

3 add a row (or column) to another row (or column) multiplied by a factor λ:
Mii = 1, Mij = λ, Mkl = 0. This can be also be written as

A′ij = Aij + λAkj for j = 1, 2, . . . , n (25)

and i and k are row indices, which can be the same. The determinant is preserved
det(A′) = det(A).

→ see below for Gaussian elimination and matrix decomposition
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Eigenvalue problems I

The matrix eigenvalue problem is for a given matrix A

Ax = λx (26)

with eigenvector x and corresponding eigenvalue λ of the matrix.
Also for the example of the vibrating molecules:

Ax = ω2Mx | B := M−1A (27)

→ Bx = ω2x (28)
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Eigenvalue problems II

→Matrix eigenvalue problem = linear equation set problem
→ e.g., iterative solution

Axn+1 = λnxn (29)

Moreover, the eigenvalues are preserved under a similarity transformation with a non-singular
matrix S

B = S−1AS (30)
→ B y = λy ⇔ Ax = λx for x = Sy (31)

→ det(B) = det(A) =
n∏

i=1

λi (32)

→ computation of eigenvalues & eigenvectors usually complicated . . .
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Systems of linear equations – Direct methods I

The general problem:

Ax = b (33)

where matrix A and vector b given and vector x unknown.
Straightforward solutions:

Cramer’s rule:

xi =
det(Ai )

det(A)
(34)

where in Ai the i-th column is replaced by b
→ for a system of n equations: need to compute n + 1 determinants, each of order n (see
above), i.e., compute n! terms each with (n − 1) multiplications
→ (n + 1)× n!× (n − 1) multiplications,
e.g., for n = 20 → 1021 multiplications and for a computer with, e.g., 10 TFLOPS
→ t ≈ 3 a only for multiplications (also note large accumulation of roundoff error)
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Systems of linear equations – Direct methods II

find the inverse A−1

x = A−1b (35)

→ also time-consuming and instable, e.g., (n = 1, float)

7x = 21 (36)

x =
21
7

= 3 (direct division) (37)

x = (7−1)(21) (compute inverse) (38)
= (.142857)(21) = 2.999997 (less accurate) (39)

computation of the inverse, e.g., via Cramer’s rule (see above) or

H. Todt (UP) Computational Astrophysics SoSe 2023, 24.7.2023 16 / 38



Systems of linear equations – Direct methods III

with Gauß-Jordan elimination (see below) for system AA−1 = I :a11 . . . a1n
...

...
an1 . . . ann

 ·
â11 . . . â1n

...
...

ân1 . . . ânn

 =

1 0
. . .

0 1

 (40)

hence, the j-th column of the inverse âj = (â1j , â2j , . . . , ânj)
T is solution of the system of

linear equations

A · âj = ej (41)

These equations are solved simultaneously by extending matrix A with I :

(A | I ) =

 a11 . . . a1n 1 0
...

...
. . .

an1 . . . ann 0 1

 (42)
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Systems of linear equations – Direct methods IV
→ elementary row operations →matrix A into upper triangular form (forward elimination)

(D |B ) =

 ∗ . . . ∗ ∗ . . . ∗
. . .

...
...

...
0 ∗ ∗ . . . ∗

 (43)

→ if no zeros on diagonal → invertible, bring into diagonal form:

( I |A−1 ) =

 1 0 â11 . . . â1n
. . .

...
...

0 1 ân1 . . . ânn

 (44)

or compute inverse with characteristic polynomial:

A−1 =
−1

det(A)

(
α1In + α2A + . . .+ αnA

n−1) (45)

where the coefficients of the chracteristical polynomial of A can be obtained from
χ(t) = det(tI − A) = α0 + α1 · t1 + . . .+ αn · tn
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Gaussian elimination I

Matrix problems can be easily solved for an upper (lower) triangular matrix, for which elements
below (above) the diagonal = 0,


R11 R12 . . . R1n
0 R22 . . . R2n

. . .
0 0 . . . Rnn

 ·


x1
x2
. . .
xn

 =


c1
c2
. . .
cn

 (46)

via backward (forward) substitution, i.e. starting with xn = cn/Rnn and

xi =
ci −

∑n
j=i+1 Rijxj

Rii
for i = n − 1, . . . , 1 (47)

→ need algorithms for transformation into triangular form

H. Todt (UP) Computational Astrophysics SoSe 2023, 24.7.2023 19 / 38



Gaussian elimination II

Gaussian elimination

1. Forward elimination: Transform linear equation set Ax = b by a sequence of matrix
operations j from original matrix A = A(0) to A(j), hence after n − 1 steps for a n × n matrix

A(n−1)x = b(n−1) (48)

where A
(n−1)
ij = 0 for i > j :

1 multiply 1st equation (1st row A and b
(0)
1 ) by −A(0)

i1 /A
(0)
11 and add to ith equation (row)

for i > 1 → 1st element of every row except 1st row eliminated →A(1)

2 multiply 2nd equation by −A(1)
i2 /A

(1)
22 and add to ith equation for i > 2 → 2nd element of

every row except 1st & 2nd row eliminated →A(2)

3 . . .
4 upper triangular matrix A(n−1)

2. backward substitution according to Eq. (47)
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Gaussian elimination III

ad 1.: all diagonal elements Ajj are used in denominators −A(j−1)
ij /Ajj

(j−1)

→ problems if diagonal elements = 0 or ≈ 0
Solution: pivoting (from french pivot=center of rotation) → interchange rows/columns to put
always largest (absolut value) element on diagonal
full pivoting: interchange columns and rows, need to keep track of order . . .
partial pivoting: only search for pivot in remaining elements of the current column (swap rows
only)
→ partial pivoting usually good compromise between speed and accuracy
→ use index to record order of pivot elements instead of physically interchanging
→ rescaling: rescale all elements from a row by its largest element before comparing to find
pivot (reduces rounding errors)
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Gaussian elimination IV

Example: Gaussian elimination in Fortran - code sniplet

! partial pivot. Gaussian elimin.
DIMENSION A(N,N),INDX(N),C(N)
DO I = 1, N
INDX(I) = I ! init. index
C1 = 0.0
DO J = 1, N ! rescale coeff.
C1 = AMAX1(C1,ABS(A(I,J)))

ENDDO
C(I) = C1

ENDDO

DO J = 1, N-1 ! search pivots
PI1 = 0.0
DO I = J, N
PI = ABS(A(INDX(I),J)) / C(INDX(I))
IF (PI.GT.PI1) THEN

PI1 = PI
K = I

ENDIF
ENDDO
ITMP = INDX(J)
INDX(J) = INDX(K)
INDX(K) = ITMP
DO I = J + 1, N ! elimin. subdiagonal
PJ = A(INDX(I),J) / A(INDX(J),J)
A(INDX(I),J) = PJ
DO L = J + 1, N
A(INDX(I),L) = A(INDX(I),L) - &
PJ * A(INDX(J),L)

ENDDO
ENDDO

ENDDO
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Gaussian elimination V

Example: Gaussian elimination by hand I

 10 −7 0
−3 2 6
5 −1 5

x1
x2
x3

 =

7
4
6

 (49)

1.) eliminate x1 from row 2 & 3 → add 3/10 = 0.3× 1st row to 2nd row & add −5/10 = −0.5× 1st
row to 3rd row:  10 −7 0

0 −0.1 6
0 2.5 5

x1
x2
x3

 =

 7
6.1
2.5

 (50)

2.) eliminate x2 from row 3 → a) pivoting: interchange row 2 & 3 so that coefficient of x2 in row 2 is
largest (because of roundoff errors → only for computers necessary) 10 −7 0

0 2.5 5
0 −0.1 6

x1
x2
x3

 =

 7
2.5
6.1

 (51)
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Gaussian elimination VI

Example: Gaussian elimination by hand II
2.b) now add 0.1/2.5 = 0.04× 2nd row to 3rd row: 10 −7 0

0 2.5 5
0 0 6.2

x1
x2
x3

 =

 7
2.5
6.2

 (52)

Finally: backward substitution, starting with last row:

6.2 x3 = 6.2→ x3 = 1 (53)
2.5 x2 + 5 · 1 = 2.5→ x2 = −1 (54)

10 x1 + (−7) · (−1) + 0 = 7 → x1 = 0 (55)

This can be also expressed in matrix notation: Let

M1 =

 1 0 0
0.3 1 0
−0.5 0 1

→ M1A =

 10 −7 0
0 −0.1 6
0 2.5 5

 , M1b =

 7
6.1
2.5

 (56)
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Gaussian elimination VII

Example: Gaussian elimination by hand III
Let then

P2 =

 1 0 0
0 0 1
0 1 0

 , M2 =

 1 0 0
0 1 0
0 0.04 1

 (57)

→ M2P2M1A =

 10 −7 0
0 2.5 5
0 0 6.2

 = U , M2P2M1b =

 7
2.5
6.2

 = c (58)

Hence Ux = c , with upper triangular matrix U .
The matrices Pk , k = 1, . . . , n− 1 are the permutations matrices, inferred from the identity matrix I by
interchanging rows in same way as for A in the kth step, and Mk is multiplication matrix, inferred from
identy matrix by inserting mulitpliers used in kth step below diagonal in kth column →Mk are lower
triangular matrices

M := Mn−1Pn−1 . . .M1P1 (59)
U = MA (“triangular decomposition” of A) (60)
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LU decomposition I
More general approach: decompose nonsingular matrix A into two triangular matrices

A = LU (61)

with lower (left) triangular matrix L and upper (right) triangular matrix U (or R), hence

Ax = LUx = b (62)
→ first, solve 1. Ly = b → y (63)

then 2. Ux = y → x (64)

i.e. once A = LU obtained → easy to solve for any b.
More general case: re-order matrix A by, e.g., row-permutations (partial pivoting):

PA = LU , then (65)
LUx = Pb (66)
1. Ly = Pb → y (67)
2. Ux = y → x (68)
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LU decomposition II

e.g. →Crout’s method

start with Li1 = Ai1 and U1j = A1j/A11, then recursively:

Lij = Aij −
j−1∑
k=1

LikUkj (69)

Uij =
1
Lii

(
Aij −

i−1∑
k=1

LikUkj

)
(70)

Usually no need to implement by yourself, instead use libraries, e.g., LINPACK:

DGEFA performs LU decomposition by Gaussian elimination

DGESL uses that decomposition to solve the given system of linear equations

DGEDI uses decomposition to compute inverse of a matrix
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Application: Interpolating data I

Remember following measurement of a cross section

Ei [MeV] 0 25 50 75 100 125 150 175 200

σ(Ei ) [Mb] 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7
σσ(Ei ) [Mb] 1.26 1.9 3.5 2.0 1.3 1.6 0.04 1.96 0.61

0

20

40

60

80

100

0 50 100 150 200

Ei  [MeV]

σ
 [

M
b

] The cross section can be described by
Breit-Wigner formula

f (E ) =
fr

(E − Er)2 + Γ2/4
(71)
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Application: Interpolating data II

Interpolation problem
We want to determine σ(E ) for values of E which lie between measured values of E

By

numerical interpolation (assumption of data representation by polynomial in E ):
→ see previous lectures
→ ignores errors in measurement (noise)

fitting parameters of an underlying model, e.g., Breit-Wigner with fr , Er , Γ, (taking errors
into account), i.e., minimizing χ2

Fourier analysis (next semester lecture)
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Least square fitting I

Already seen for linear regression:
We have ND data points

(xi , yi ± σi ) i = 1, . . . ,ND (72)

and a function y = g(x) (=model) with parameters {am}; fit function to data, such that
χ2 = min:

χ2 :=

ND∑
i=1

(
yi − g(xi ; {am})

σi

)2

(73)

i.e. for MP parameters {am,m = 1 . . .MP}

∂χ2

∂am

!
= 0⇒

ND∑
i=1

[yi − g(xi )]

σ2
i

∂g(xi )

∂am
= 0 (m = 1, . . . ,MP) (74)

→ solve MP equations, usually nonlinear in am
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Least square fitting II

goodness of fit, assumptions

deviations to model only due to random errors

Gaussion distribution of errors

→ then, fit is good when χ2 ≈ ND −MP (degrees of freedom)

if χ2 � ND −MP → probably too many parameters or errors σi to large (fitting random
scatter)

if χ2 � ND −MP →model not good or underestimated errors or non-random errors

→ for linear fit see above
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Least square fitting III

Non-linear fit
remember Breit-Wigner resonance formula Eq. (71)

f (E ) =
fr

(E − Er)2 + Γ2/4
(75)

→ determine fr ,Er , Γ
→ nonlinear equations in the parameters

a1 = fr a2 = Er a3 = Γ2/4 (76)

⇒ g(x) =
a1

(x − a2)2 + a3
(77)

∂g

∂a1
=

1
(x − a2)2 + a3

,
∂g

∂a2
=
−2a1(x − a2)

[(x − a2)2 + a3]2
,

∂g

∂a3
=

−a1

[(x − a2)2 + a3]2
(78)
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Least square fitting IV

Insert into Eq. (74):

9∑
i=1

yi − g(xi , a)

(xi − a2)2 + a3
= 0

9∑
i=1

[yi − g(xi , a)](xi − a2)

[(xi − a2)2 + a3]2
= 0

9∑
i=1

yi − g(xi , a)

[(xi − a2)2 + a3]2
= 0 (79)

→ three nonlinear equations for unknown a1, a2, a3, i.e. cannot be solved by linear algebra
but can be solved with help of Newton-Raphson method, i.e. find the roots for the equations
above

fi (a1, . . . , aM) = 0 i = 1, . . . ,M (80)
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Least square fitting V

So

f1(a1, a2, a3) =
9∑

i=1

yi − g(xi , a)

(xi − a2)2 + a3
= 0 (81)

f2(a1, a2, a3) =
9∑

i=1

[yi − g(xi , a)](xi − a2)

[(xi − a2)2 + a3]2
= 0 (82)

f3(a1, a2, a3) =
9∑

i=1

yi − g(xi , a)

[(xi − a2)2 + a3]2
= 0 (83)

with intial guesses for a1, a2, a3.
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Least square fitting VI

Newton-Raphson method for a system of nonlinear equations
Remember for 1dim Newton-Raphson method, correction for ∆x :

f (x0) + f ′(x0) ·∆x
!

= 0 (84)

∆x = − f (x0)

f ′(x0)
(85)

For our system of equations fi (a1, . . . , aM) = 0, we assume that for our approximation (intial
guess) {ai} corrections {∆xi} exist so that

fi (a1 + ∆a1, a2 + ∆a2, a3 + ∆a3) = 0 i = 1, 2, 3 (86)

→ linear approximation (two terms of Taylor series):

fi (a1 + ∆a1, . . .) ' fi (a1, a2, a3) +
3∑

j=1

∂fi
∂aj

∆aj = 0 i = 1, 2, 3 (87)

→ set of 3 linear equations in 3 unknowns
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Least square fitting VII

as explicit equations:

f1 + ∂f1/∂a1∆a1 + ∂f1/∂a2∆a2 + ∂f1/∂a3∆a3 = 0 (88)
f2 + ∂f2/∂a1∆a1 + ∂f2/∂a2∆a2 + ∂f2/∂a3∆a3 = 0 (89)
f3 + ∂f3/∂a1∆a1 + ∂f3/∂a2∆a2 + ∂f3/∂a3∆a3 = 0 (90)

Or as single matrix equation: f1
f2
f3

+

 ∂f1/∂a1 ∂f1/∂a2 ∂f1/∂a3
∂f2/∂a1 ∂f2/∂a2 ∂f2/∂a3
∂f3/∂a1 ∂f3/∂a2 ∂f3/∂a3

 ∆a1
∆a2
∆a3

 = 0 (91)

Or in matrix notation

f + F′∆a = 0⇒ F′∆a = −f (92)

Where we want to solve for ∆a (the corrections)
Matrix F ′ sometimes written as J is called the Jacobian matrix (with entries f ′ij = ∂fi/∂aj).
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Least square fitting VIII

Equation F ′∆a = −f corresponds to standard form Ax = b for systems of linear equations.
Formally solution obtained by multiplying with inverse of F ′

∆a = −F ′
−1

f (93)

→ inverse must exist for unique solution
→ same form as for 1d Newton-Raphson: ∆x = −(1/f ′)f
→ iterate as for 1d Newton-Raphson till f ≈ 0

compute derivatives for the system numerically

f ′ij =
∂fi
∂aj
'

fi (aj + ∆aj)− fi (aj)

∆aj
(94)

with ∆aj sufficiently small, e.g., 1% of a

H. Todt (UP) Computational Astrophysics SoSe 2023, 24.7.2023 37 / 38



Least square fitting IX

Nonlinear fit with Newton-Raphson
In our nonlinear fit problem the Newton step

F′∆a = −f (95)

can be solved for ∆a with help of DGEFA and DGESL (see p. 27):

CALL DGEFA(FPRIME, NDIM, NDIM, IPVT, INFO)
IF (INFO .NE. 0) STOP ’JACOBIAN MATRIX WITH 0 ON DIAGONAL’
CALL DGESL(FPRIME, NDIM, NDIM, IPVT, F)
where the solution ∆a is written to vector F
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