Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy
University of Potsdam

SoSe 2023, 24.7.2023

Matrices and Linear Algebra

Methods to solve matrix problems (e.g., inversion) useful for ODEs and PDEs, e.g., eigenvalue problem or radiative transfer with Feautrier scheme

Example: Vibrational spectrum of a molecule 1

n degrees of vibrational freedom \rightarrow potential energy

$$
\begin{equation*}
U\left(q_{1}, q_{2}, \ldots, q_{n}\right) \simeq \frac{1}{2} \sum_{j, k}^{n} A_{j k} q_{j} q_{k} \tag{1}
\end{equation*}
$$

in generalized coordinates around equilibrium state up to 2 nd order term, coupling/potential parameter $A_{j k}$ (e.g., spring constant).
Kinetic energy with generalized mass $M_{j k}$

$$
\begin{equation*}
T\left(\dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{q}_{n}\right) \simeq \frac{1}{2} \sum_{j, k}^{n} M_{j k} \dot{q}_{j} \dot{q}_{k} \tag{2}
\end{equation*}
$$

Matrices in physics II

Example: Vibrational spectrum of a molecule 2

Apply Lagrange equation of 2nd kind

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial q_{j}}-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}=0 \quad \text { with } \mathcal{L}=T-U \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { Hence, equations of motion, for } k=1, \ldots, n: \sum_{j=1}^{n}\left(A_{j k} q_{j}+M_{j k} \ddot{q}_{j}\right)=0 \tag{4}
\end{equation*}
$$

Assume an oscillatory motion $q_{j}=x_{j} e^{\imath \omega t} \rightarrow \frac{d^{2}}{d t^{2}}\left(x_{j} e^{\imath \omega t}\right)=-x_{j} \omega^{2} e^{\imath \omega t}$

$$
\begin{equation*}
\rightarrow \sum_{j=1}^{n}\left(A_{j k}-M_{j k} \omega^{2}\right) x_{j}=0 \quad \text { or with } k=1, \ldots, n: \quad \boldsymbol{A} \boldsymbol{x}=\omega^{2} \boldsymbol{M} \boldsymbol{x} \tag{5}
\end{equation*}
$$

set of linear homogenous equations. Nontrivial solution \rightarrow determinant of coefficient matrix $\stackrel{!}{=} 0$ $\rightarrow \omega_{k}=\sqrt{\lambda_{k}}(k=1, \ldots, n)$ from equation

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{M})=0 \tag{6}
\end{equation*}
$$

Matrix operations I

Matrix \boldsymbol{A} with elements $A_{i j}$ and $i=1,2, \ldots, m$ and $j=1,2, \ldots, n \rightarrow m \times n$ matrix.

$$
\underset{\boldsymbol{c}}{\quad n \text { columns } \rightarrow} \text { rows }\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & \ldots & & \\
\ldots & & & \\
A_{m 1} & & & A_{m n}
\end{array}\right)
$$

If $m=n \rightarrow$ square matrix
Remember: Computer stores array in memory sequentially (1d), for $\mathrm{C} / \mathrm{C}++$ stored by rows (last index runs first)

$$
\begin{equation*}
A_{11}, A_{12}, \ldots, A_{1 n}, A_{21}, \ldots, A_{m n} \tag{7}
\end{equation*}
$$

whereas for Fortran stored by column (first index runs first):

$$
\begin{equation*}
A_{11}, A_{21}, \ldots, A_{m 1}, A_{12}, \ldots, A_{m n} \tag{8}
\end{equation*}
$$

Matrix operations II

Variable array $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right): n \times 1$ matrix. Hence set of linear equations for $i=1,2, \ldots, n$, where x_{i} is unknown:

$$
\begin{equation*}
A_{i 1} x_{1}+A_{i 2} x_{2}+\ldots+A_{i n} x_{n}=b_{i} \tag{9}
\end{equation*}
$$

with coefficients $A_{i j}$ and constants b_{i}, so express Eq. (9) in matrix form

$$
\begin{equation*}
\boldsymbol{A x}=\boldsymbol{b} \tag{10}
\end{equation*}
$$

with $\boldsymbol{A} \boldsymbol{x}$ from standard matrix multiplication for $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$, i.e.

$$
\begin{equation*}
C_{i j}=\sum_{k} A_{i k} B_{k j} \tag{11}
\end{equation*}
$$

(number of columns of $\boldsymbol{A} \stackrel{!}{=}$ number of rows of \boldsymbol{B})

Matrix operations III

Example: Population numbers from statistical equilibrium (non-LTE)

"inflow" to level n_{j} (from all other levels) balanced by "outflow" from level n_{j} (to all other levels)

$$
\begin{align*}
\sum_{\substack{i=1 \\
i \neq j}}^{N} n_{i} P_{i j} & =\sum_{\substack{i=1 \\
i \neq j}}^{N} n_{j} P_{j i} \quad \forall j=1, \ldots, N \tag{12}\\
\boldsymbol{n} \boldsymbol{P} & =0 \quad \text { with } P_{i j}:=-\sum_{j \neq i} P_{i j} \tag{13}
\end{align*}
$$

Remember definitions: Inverse of a matrix \boldsymbol{A} is \boldsymbol{A}^{-1} :

$$
\begin{equation*}
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{A A}^{-1}=\boldsymbol{I} \tag{14}
\end{equation*}
$$

with $\iota_{i j}=\delta_{i j}$.
The transpose of a matrix \boldsymbol{A}^{T} is with column and row indices of \boldsymbol{A} interchanged

$$
\begin{equation*}
A_{i j}^{T}=A_{j i} \tag{15}
\end{equation*}
$$

Matrix operations IV

Trace of $\boldsymbol{A}(\operatorname{Tr} \boldsymbol{A})$ is summation of diagonal elements of \boldsymbol{A}

$$
\begin{equation*}
\operatorname{Tr} \boldsymbol{A}=\sum_{i=1}^{n} A_{i i} \tag{16}
\end{equation*}
$$

The determinant of square matrix \boldsymbol{A}

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det}\left(\boldsymbol{R}_{i j}\right) \tag{17}
\end{equation*}
$$

where $\boldsymbol{R}_{i j}$ is residual matrix of \boldsymbol{A} with i th row and j th column removed (\rightarrow recursive computation)

$$
\text { e.g., } \operatorname{det}\left(\begin{array}{ll}
A_{11} & A 12 \tag{18}\\
A_{21} & A_{22}
\end{array}\right)=A_{11} A_{22}-A_{12} A_{21}
$$

Matrix operations V

Important properties of the determinant:

- Determinant of a 1×1 matrix $=$ element itself.
- Determinant of a triangular matrix (lower or upper) is the product of diagonal elements: $\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} A_{i i}$
- $\operatorname{det}(\boldsymbol{B A})=\operatorname{det}(\boldsymbol{B}) \cdot \operatorname{det}(\boldsymbol{A})$ (if both $n \times n$)
- $\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\frac{1}{\operatorname{det}(\boldsymbol{A})} \rightarrow$ integer entries for \boldsymbol{A} and $\boldsymbol{A}^{-1} \Leftrightarrow \operatorname{det}(\boldsymbol{A})= \pm 1$
- $\operatorname{det}\left(\boldsymbol{A}^{T}\right)=\operatorname{det}(\boldsymbol{A})$
- The determinant is an n-linear function of the n columns (rows). It is moreover an alternating form. Together with $\operatorname{det}\left(\boldsymbol{A}^{T}\right)=\operatorname{det}(\boldsymbol{A})$, this means:
Interchanging any pair of columns or rows of a matrix multiplies its determinant by -1 .
Inverse of \boldsymbol{A} via (Cramer's rule)

$$
\begin{equation*}
A_{i j}^{-1}=(-1)^{i+j} \frac{\operatorname{det}\left(\boldsymbol{R}_{i j}\right)}{\operatorname{det}(\boldsymbol{A})} \tag{19}
\end{equation*}
$$

\rightarrow if \boldsymbol{A}^{-1} exists or $\operatorname{det}(\boldsymbol{A}) \neq 0 \rightarrow$ nonsingular matrix, singular otherwise ().

Examples for singular / non-singular (=regular) matrices:

- the matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \tag{20}\\
2 & 3
\end{array}\right)
$$

is non-singular, its determinant is $\operatorname{det}(\boldsymbol{A})=-1$ and its inverse is

$$
\boldsymbol{A}^{-1}=\left(\begin{array}{cc}
-3 & 2 \tag{21}\\
2 & -1
\end{array}\right)
$$

- the matrix

$$
\boldsymbol{B}=\left(\begin{array}{ll}
1 & 2 \tag{22}\\
0 & 0
\end{array}\right)
$$

is singular, its determinant is $\operatorname{det}(\boldsymbol{A})=0$ and there exists no inverse

$$
\boldsymbol{B} \cdot \boldsymbol{M}=\left(\begin{array}{ll}
1 & 2 \tag{23}\\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 a+2 c & 1 b+2 d \\
0 & 0
\end{array}\right) \neq \boldsymbol{I}
$$

- the matrix

$$
\boldsymbol{C}=\left(\begin{array}{ll}
1 & 2 \tag{24}\\
2 & 4
\end{array}\right)
$$

is singular, its determinant is $\operatorname{det}(\boldsymbol{A})=0$, as two of its lines are linearly dependent

Matrix operations VIII

Moreover, it can be useful to perform the following transformations, represented by a matrix multiplications: $\boldsymbol{A}^{\prime}=\boldsymbol{M A}$
(1) interchanging two rows i and j, elements: $M_{i j}=1 ; M_{j i}=1 ; M_{k k}=1$ for $k \neq i, j$ other elements $=0 \rightarrow \operatorname{det}(\boldsymbol{M} \boldsymbol{A})=-\operatorname{det}(\boldsymbol{A})$
(2) multiply one row by $\lambda: M_{k k}=1$ for $k \neq i ; M_{i i}=\lambda \neq 0$, all other elements $=0$ $\rightarrow \operatorname{det}(\boldsymbol{M} \boldsymbol{A})=\operatorname{det}(\boldsymbol{M}) \operatorname{det}(\boldsymbol{A})=\lambda \operatorname{det}(\boldsymbol{A})$
(3) add a row (or column) to another row (or column) multiplied by a factor λ : $M_{i i}=1, M_{i j}=\lambda, M_{k l}=0$. This can be also be written as

$$
\begin{equation*}
A_{i j}^{\prime}=A_{i j}+\lambda A_{k j} \quad \text { for } j=1,2, \ldots, n \tag{25}
\end{equation*}
$$

and i and k are row indices, which can be the same. The determinant is preserved $\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)=\operatorname{det}(\boldsymbol{A})$.
\rightarrow see below for Gaussian elimination and matrix decomposition

Eigenvalue problems I

The matrix eigenvalue problem is for a given matrix \boldsymbol{A}

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \tag{26}
\end{equation*}
$$

with eigenvector \boldsymbol{x} and corresponding eigenvalue λ of the matrix.
Also for the example of the vibrating molecules:

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{x} & =\omega^{2} \boldsymbol{M} \boldsymbol{x} \quad \mid \quad \boldsymbol{B}:=\boldsymbol{M}^{-1} \boldsymbol{A} \tag{27}\\
\rightarrow \boldsymbol{B} \boldsymbol{x} & =\omega^{2} \boldsymbol{x} \tag{28}
\end{align*}
$$

Eigenvalue problems II

\rightarrow Matrix eigenvalue problem $=$ linear equation set problem
\rightarrow e.g., iterative solution

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{x}_{n+1}=\lambda_{n} \boldsymbol{x}_{n} \tag{29}
\end{equation*}
$$

Moreover, the eigenvalues are preserved under a similarity transformation with a non-singular matrix S

$$
\begin{align*}
\boldsymbol{B} & =\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S} \tag{30}\\
\rightarrow \boldsymbol{B} \boldsymbol{y} & =\lambda \boldsymbol{y} \quad \Leftrightarrow \quad \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \quad \text { for } \boldsymbol{x}=\boldsymbol{S} \boldsymbol{y} \tag{31}\\
\rightarrow \operatorname{det}(\boldsymbol{B}) & =\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} \lambda_{i} \tag{32}
\end{align*}
$$

\rightarrow computation of eigenvalues \& eigenvectors usually complicated ...

The general problem:

$$
\begin{equation*}
\boldsymbol{A x}=\boldsymbol{b} \tag{33}
\end{equation*}
$$

where matrix \boldsymbol{A} and vector \boldsymbol{b} given and vector \boldsymbol{x} unknown.
Straightforward solutions:

- Cramer's rule:

$$
\begin{equation*}
x_{i}=\frac{\operatorname{det}\left(\boldsymbol{A}_{i}\right)}{\operatorname{det}(\boldsymbol{A})} \tag{34}
\end{equation*}
$$

where in \boldsymbol{A}_{i} the i-th column is replaced by \boldsymbol{b}
\rightarrow for a system of n equations: need to compute $n+1$ determinants, each of order n (see above), i.e., compute n ! terms each with $(n-1)$ multiplications
$\rightarrow(n+1) \times n!\times(n-1)$ multiplications,
e.g., for $n=20 \rightarrow 10^{21}$ multiplications and for a computer with, e.g., 10 TFLOPS
$\rightarrow t \approx 3$ a only for multiplications (also note large accumulation of roundoff error)

- find the inverse \boldsymbol{A}^{-1}

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \tag{35}
\end{equation*}
$$

\rightarrow also time-consuming and instable, e.g., ($n=1$, float)

$$
\begin{align*}
7 x & =21 \tag{36}\\
x & =\frac{21}{7}=3 \quad(\text { direct division }) \tag{37}\\
x & =\left(7^{-1}\right)(21) \quad \text { (compute inverse) } \tag{38}\\
& =(.142857)(21)=2.999997 \quad \text { (less accurate) } \tag{39}
\end{align*}
$$

computation of the inverse, e.g., via Cramer's rule (see above) or
with Gauß-Jordan elimination (see below) for system $\boldsymbol{A A}^{-1}=\boldsymbol{I}$:

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \tag{40}\\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
\hat{a}_{11} & \ldots & \hat{a}_{1 n} \\
\vdots & & \vdots \\
\hat{a}_{n 1} & \ldots & \hat{a}_{n n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

hence, the j-th column of the inverse $\hat{a}_{j}=\left(\hat{a}_{1 j}, \hat{a}_{2 j}, \ldots, \hat{a}_{n j}\right)^{T}$ is solution of the system of linear equations

$$
\begin{equation*}
A \cdot \hat{a}_{j}=e_{j} \tag{41}
\end{equation*}
$$

These equations are solved simultaneously by extending matrix \boldsymbol{A} with I:

$$
(A \mid I)=\left(\begin{array}{ccc|ccc}
a_{11} & \ldots & a_{1 n} & 1 & & 0 \tag{42}\\
\vdots & & \vdots & & \ddots & \\
a_{n 1} & \ldots & a_{n n} & 0 & & 1
\end{array}\right)
$$

\rightarrow elementary row operations \rightarrow matrix \boldsymbol{A} into upper triangular form (forward elimination)

$$
(D \mid B)=\left(\begin{array}{ccc|ccc}
* & \ldots & * & * & \ldots & * \tag{43}\\
& \ddots & \vdots & \vdots & & \vdots \\
0 & & * & * & \ldots & *
\end{array}\right)
$$

\rightarrow if no zeros on diagonal \rightarrow invertible, bring into diagonal form:

$$
\left(I \mid A^{-1}\right)=\left(\begin{array}{ccc|ccc}
1 & & 0 & \hat{a}_{11} & \ldots & \hat{a}_{1 n} \tag{44}\\
& \ddots & & \vdots & & \vdots \\
0 & & 1 & \hat{a}_{n 1} & \ldots & \hat{a}_{n n}
\end{array}\right)
$$

or compute inverse with characteristic polynomial:

$$
\begin{equation*}
A^{-1}=\frac{-1}{\operatorname{det}(A)}\left(\alpha_{1} I_{n}+\alpha_{2} A+\ldots+\alpha_{n} A^{n-1}\right) \tag{45}
\end{equation*}
$$

where the coefficients of the chracteristical polynomial of \boldsymbol{A} can be obtained from $\chi(t)=\operatorname{det}(t \boldsymbol{I}-\boldsymbol{A})=\alpha_{0}+\alpha_{1} \cdot t^{1}+\ldots+\alpha_{n} \cdot t^{n}$

Matrix problems can be easily solved for an upper (lower) triangular matrix, for which elements below (above) the diagonal $=0$,

$$
\left(\begin{array}{cccc}
R_{11} & R_{12} & \ldots & R_{1 n} \tag{46}\\
0 & R_{22} & \ldots & R_{2 n} \\
& & \ddots & \\
0 & 0 & \ldots & R_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
c_{n}
\end{array}\right)
$$

via backward (forward) substitution, i.e. starting with $x_{n}=c_{n} / R_{n n}$ and

$$
\begin{equation*}
x_{i}=\frac{c_{i}-\sum_{j=i+1}^{n} R_{i j} x_{j}}{R_{i i}} \quad \text { for } i=n-1, \ldots, 1 \tag{47}
\end{equation*}
$$

\rightarrow need algorithms for transformation into triangular form

Gaussian elimination

1. Forward elimination: Transform linear equation set $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by a sequence of matrix operations j from original matrix $\boldsymbol{A}=\boldsymbol{A}^{(0)}$ to $\boldsymbol{A}^{(j)}$, hence after $n-1$ steps for a $n \times n$ matrix

$$
\begin{equation*}
\boldsymbol{A}^{(n-1)} \boldsymbol{x}=\boldsymbol{b}^{(n-1)} \tag{48}
\end{equation*}
$$

where $A_{i j}^{(n-1)}=0$ for $i>j$:
(1) multiply 1st equation (1st row \boldsymbol{A} and $b_{1}^{(0)}$) by $-A_{i 1}^{(0)} / A_{11}^{(0)}$ and add to i th equation (row) for $i>1 \rightarrow 1$ st element of every row except 1 st row eliminated $\rightarrow \boldsymbol{A}^{(1)}$
(2) multiply 2 nd equation by $-A_{i 2}^{(1)} / A_{22}^{(1)}$ and add to i th equation for $i>2 \rightarrow 2$ nd element of every row except 1st \& 2nd row eliminated $\rightarrow \boldsymbol{A}^{(2)}$
(3)...
(9) upper triangular matrix $\boldsymbol{A}^{(n-1)}$
2. backward substitution according to Eq. (47)
ad 1.: all diagonal elements $A_{j j}$ are used in denominators $-A_{i j}^{(j-1)} / A_{j j}{ }^{(j-1)}$
\rightarrow problems if diagonal elements $=0$ or ≈ 0
Solution: pivoting (from french pivot=center of rotation) \rightarrow interchange rows/columns to put always largest (absolut value) element on diagonal
full pivoting: interchange columns and rows, need to keep track of order...
partial pivoting: only search for pivot in remaining elements of the current column (swap rows only)
\rightarrow partial pivoting usually good compromise between speed and accuracy
\rightarrow use index to record order of pivot elements instead of physically interchanging
\rightarrow rescaling: rescale all elements from a row by its largest element before comparing to find pivot (reduces rounding errors)

Gaussian elimination IV

Example: Gaussian elimination in Fortran - code sniplet

```
! partial pivot. Gaussian elimin.
DIMENSION A(N,N),INDX(N),C(N)
DO I = 1, N
    INDX(I) = I ! init. index
    C1 = 0.0
    DO J = 1, N ! rescale coeff.
        C1 = AMAX1(C1,ABS(A(I,J)))
    ENDDO
    C(I) = C1
ENDDO
DO J = 1, N-1 ! search pivots
    PI1 = 0.0
    DO I = J, N
    PI = ABS(A(INDX(I),J)) / C(INDX(I))
    IF (PI.GT.PI1) THEN
```


Gaussian elimination V

Example: Gaussian elimination by hand I

$$
\left(\begin{array}{rrr}
10 & -7 & 0 \tag{49}\\
-3 & 2 & 6 \\
5 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
4 \\
6
\end{array}\right)
$$

1.) eliminate x_{1} from row $2 \& 3 \rightarrow$ add $3 / 10=0.3 \times 1$ st row to 2 nd row \& add $-5 / 10=-0.5 \times 1$ st row to 3rd row:

$$
\left(\begin{array}{rrr}
10 & -7 & 0 \tag{50}\\
0 & -0.1 & 6 \\
0 & 2.5 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
6.1 \\
2.5
\end{array}\right)
$$

2.) eliminate x_{2} from row $3 \rightarrow$ a) pivoting: interchange row 2 \& 3 so that coefficient of x_{2} in row 2 is largest (because of roundoff errors \rightarrow only for computers necessary)

$$
\left(\begin{array}{rrr}
10 & -7 & 0 \tag{51}\\
0 & 2.5 & 5 \\
0 & -0.1 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
2.5 \\
6.1
\end{array}\right)
$$

Gaussian elimination VI

Example: Gaussian elimination by hand II

2.b) now add $0.1 / 2.5=0.04 \times 2$ nd row to 3 rd row:

$$
\left(\begin{array}{rrl}
10 & -7 & 0 \tag{52}\\
0 & 2.5 & 5 \\
0 & 0 & 6.2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
2.5 \\
6.2
\end{array}\right)
$$

Finally: backward substitution, starting with last row:

$$
\begin{align*}
6.2 x_{3} & =6.2 \rightarrow x_{3}=1 \tag{53}\\
2.5 x_{2}+5 \cdot 1 & =2.5 \rightarrow x_{2}=-1 \tag{54}\\
10 x_{1}+(-7) \cdot(-1)+0 & =7 \rightarrow x_{1}=0 \tag{55}
\end{align*}
$$

This can be also expressed in matrix notation: Let

$$
\boldsymbol{M}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{56}\\
0.3 & 1 & 0 \\
-0.5 & 0 & 1
\end{array}\right) \rightarrow \boldsymbol{M}_{1} \boldsymbol{A}=\left(\begin{array}{rrr}
10 & -7 & 0 \\
0 & -0.1 & 6 \\
0 & 2.5 & 5
\end{array}\right), \quad \boldsymbol{M}_{1} \boldsymbol{b}=\left(\begin{array}{l}
7 \\
6.1 \\
2.5
\end{array}\right)
$$

Gaussian elimination VII

Example: Gaussian elimination by hand III

Let then

$$
\begin{align*}
\boldsymbol{P}_{2} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \boldsymbol{M}_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0.04 & 1
\end{array}\right) \tag{57}\\
\rightarrow \boldsymbol{M}_{2} \boldsymbol{P}_{2} \boldsymbol{M}_{1} \boldsymbol{A} & =\left(\begin{array}{rrr}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & 0 & 6.2
\end{array}\right)=\boldsymbol{U}, \quad \boldsymbol{M}_{2} \boldsymbol{P}_{2} \boldsymbol{M}_{1} \boldsymbol{b}=\left(\begin{array}{l}
7 \\
2.5 \\
6.2
\end{array}\right)=\boldsymbol{c} \tag{58}
\end{align*}
$$

Hence $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$, with upper triangular matrix \boldsymbol{U}.
The matrices $\boldsymbol{P}_{k}, k=1, \ldots, n-1$ are the permutations matrices, inferred from the identity matrix \boldsymbol{I} by interchanging rows in same way as for \boldsymbol{A} in the k th step, and \boldsymbol{M}_{k} is multiplication matrix, inferred from identy matrix by inserting mulitpliers used in k th step below diagonal in k th column $\rightarrow \boldsymbol{M}_{k}$ are lower triangular matrices

$$
\begin{align*}
\boldsymbol{M} & :=\boldsymbol{M}_{n-1} \boldsymbol{P}_{n-1} \ldots \boldsymbol{M}_{1} \boldsymbol{P}_{1} \tag{59}\\
\boldsymbol{U} & =\boldsymbol{M} \boldsymbol{A} \quad \text { ("triangular decomposition" of } \boldsymbol{A}) \tag{60}
\end{align*}
$$

LU decomposition I

More general approach: decompose nonsingular matrix \boldsymbol{A} into two triangular matrices

$$
\begin{equation*}
A=L U \tag{61}
\end{equation*}
$$

with lower (left) triangular matrix \boldsymbol{L} and upper (right) triangular matrix \boldsymbol{U} (or \boldsymbol{R}), hence

$$
\begin{align*}
& \qquad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{L} \boldsymbol{U} \boldsymbol{x}=\boldsymbol{b} \tag{62}\\
& \rightarrow \text { first, solve 1. } \boldsymbol{L} \boldsymbol{y}=\boldsymbol{b} \rightarrow \boldsymbol{y} \tag{63}\\
& \text { then 2. } \boldsymbol{U x}=\boldsymbol{y} \rightarrow \boldsymbol{x} \tag{64}
\end{align*}
$$

i.e. once $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ obtained \rightarrow easy to solve for any b.

More general case: re-order matrix \boldsymbol{A} by, e.g., row-permutations (partial pivoting):

$$
\begin{align*}
\boldsymbol{P A} & =\boldsymbol{L} \boldsymbol{U}, \text { then } \tag{65}\\
\boldsymbol{L} \boldsymbol{U} \boldsymbol{x} & =\boldsymbol{P} \boldsymbol{b} \tag{66}\\
\text { 1. } \boldsymbol{L} \boldsymbol{y} & =\boldsymbol{P} \boldsymbol{b} \rightarrow \boldsymbol{y} \tag{67}\\
\text { 2. } \boldsymbol{U} \boldsymbol{x} & =\boldsymbol{y} \rightarrow \boldsymbol{x} \tag{68}
\end{align*}
$$

e.g. \rightarrow Crout's method
start with $L_{i 1}=A_{i 1}$ and $U_{1 j}=A_{1 j} / A_{11}$, then recursively:

$$
\begin{align*}
& L_{i j}=A_{i j}-\sum_{k=1}^{j-1} L_{i k} U_{k j} \tag{69}\\
& U_{i j}=\frac{1}{L_{i i}}\left(A_{i j}-\sum_{k=1}^{i-1} L_{i k} U_{k j}\right) \tag{70}
\end{align*}
$$

Usually no need to implement by yourself, instead use libraries, e.g., LINPACK:

- DGEFA performs LU decomposition by Gaussian elimination
- DGESL uses that decomposition to solve the given system of linear equations
- DGEDI uses decomposition to compute inverse of a matrix

Application: Interpolating data I

Remember following measurement of a cross section

$E_{i}[\mathrm{MeV}]$	0	25	50	75	100	125	150	175	200
$\sigma\left(E_{i}\right)[\mathrm{Mb}]$	10.6	16.0	45.0	83.5	52.8	19.9	10.8	8.25	4.7
$\sigma_{\sigma\left(E_{i}\right)}[\mathrm{Mb}]$	1.26	1.9	3.5	2.0	1.3	1.6	0.04	1.96	0.61

The cross section can be described by Breit-Wigner formula

$$
\begin{equation*}
f(E)=\frac{f_{r}}{\left(E-E_{r}\right)^{2}+\Gamma^{2} / 4} \tag{71}
\end{equation*}
$$

Application: Interpolating data II

Interpolation problem

We want to determine $\sigma(E)$ for values of E which lie between measured values of E
By

- numerical interpolation (assumption of data representation by polynomial in E):
\rightarrow see previous lectures
\rightarrow ignores errors in measurement (noise)
- fitting parameters of an underlying model, e.g., Breit-Wigner with f_{r}, E_{r}, Γ, (taking errors into account), i.e., minimizing χ^{2}
- Fourier analysis (next semester lecture)

Already seen for linear regression:
We have N_{D} data points

$$
\begin{equation*}
\left(x_{i}, y_{i} \pm \sigma_{i}\right) \quad i=1, \ldots, N_{D} \tag{72}
\end{equation*}
$$

and a function $y=g(x)$ (=model) with parameters $\left\{a_{m}\right\}$; fit function to data, such that $\chi^{2}=m i n:$

$$
\begin{equation*}
\chi^{2}:=\sum_{i=1}^{N_{D}}\left(\frac{y_{i}-g\left(x_{i} ;\left\{a_{m}\right\}\right)}{\sigma_{i}}\right)^{2} \tag{73}
\end{equation*}
$$

i.e. for M_{P} parameters $\left\{a_{m}, m=1 \ldots M_{P}\right\}$

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a_{m}} \stackrel{!}{=} 0 \Rightarrow \sum_{i=1}^{N_{D}} \frac{\left[y_{i}-g\left(x_{i}\right)\right]}{\sigma_{i}^{2}} \frac{\partial g\left(x_{i}\right)}{\partial a_{m}}=0 \quad\left(m=1, \ldots, M_{P}\right) \tag{74}
\end{equation*}
$$

\rightarrow solve M_{P} equations, usually nonlinear in a_{m}
goodness of fit, assumptions

- deviations to model only due to random errors
- Gaussion distribution of errors
\rightarrow then, fit is good when $\chi^{2} \approx N_{D}-M_{P}$ (degrees of freedom)
- if $\chi^{2} \ll N_{D}-M_{P} \rightarrow$ probably too many parameters or errors σ_{i} to large (fitting random scatter)
- if $\chi^{2} \gg N_{D}-M_{P} \rightarrow$ model not good or underestimated errors or non-random errors \rightarrow for linear fit see above

Non-linear fit

remember Breit-Wigner resonance formula Eq. (71)

$$
\begin{equation*}
f(E)=\frac{f_{r}}{\left(E-E_{r}\right)^{2}+\Gamma^{2} / 4} \tag{75}
\end{equation*}
$$

\rightarrow determine f_{r}, E_{r}, Γ
\rightarrow nonlinear equations in the parameters

$$
\begin{align*}
& a_{1}=f_{r} \quad a_{2}=E_{r} \quad a_{3}=\Gamma^{2} / 4 \tag{76}\\
& \Rightarrow g(x)=\frac{a_{1}}{\left(x-a_{2}\right)^{2}+a_{3}} \tag{77}\\
& \frac{\partial g}{\partial a_{1}}=\frac{1}{\left(x-a_{2}\right)^{2}+a_{3}}, \quad \frac{\partial g}{\partial a_{2}}=\frac{-2 a_{1}\left(x-a_{2}\right)}{\left[\left(x-a_{2}\right)^{2}+a_{3}\right]^{2}}, \quad \frac{\partial g}{\partial a_{3}}=\frac{-a_{1}}{\left[\left(x-a_{2}\right)^{2}+a_{3}\right]^{2}} \tag{78}
\end{align*}
$$

Insert into Eq. (74):

$$
\begin{align*}
& \sum_{i=1}^{9} \frac{y_{i}-g\left(x_{i}, a\right)}{\left(x_{i}-a_{2}\right)^{2}+a_{3}}=0 \quad \sum_{i=1}^{9} \frac{\left[y_{i}-g\left(x_{i}, a\right)\right]\left(x_{i}-a_{2}\right)}{\left[\left(x_{i}-a_{2}\right)^{2}+a_{3}\right]^{2}}=0 \\
& \sum_{i=1}^{9} \frac{y_{i}-g\left(x_{i}, a\right)}{\left[\left(x_{i}-a_{2}\right)^{2}+a_{3}\right]^{2}}=0 \tag{79}
\end{align*}
$$

\rightarrow three nonlinear equations for unknown a_{1}, a_{2}, a_{3}, i.e. cannot be solved by linear algebra but can be solved with help of Newton-Raphson method, i.e. find the roots for the equations above

$$
\begin{equation*}
f_{i}\left(a_{1}, \ldots, a_{M}\right)=0 \quad i=1, \ldots, M \tag{80}
\end{equation*}
$$

Least square fitting

So

$$
\begin{align*}
& f_{1}\left(a_{1}, a_{2}, a_{3}\right)=\sum_{i=1}^{9} \frac{y_{i}-g\left(x_{i}, a\right)}{\left(x_{i}-a_{2}\right)^{2}+a_{3}}=0 \tag{81}\\
& f_{2}\left(a_{1}, a_{2}, a_{3}\right)=\sum_{i=1}^{9} \frac{\left[y_{i}-g\left(x_{i}, a\right)\right]\left(x_{i}-a_{2}\right)}{\left[\left(x_{i}-a_{2}\right)^{2}+a_{3}\right]^{2}}=0 \tag{82}\\
& f_{3}\left(a_{1}, a_{2}, a_{3}\right)=\sum_{i=1}^{9} \frac{y_{i}-g\left(x_{i}, a\right)}{\left[\left(x_{i}-a_{2}\right)^{2}+a_{3}\right]^{2}}=0 \tag{83}
\end{align*}
$$

with intial guesses for a_{1}, a_{2}, a_{3}.

Least square fitting VI

Newton-Raphson method for a system of nonlinear equations
Remember for 1dim Newton-Raphson method, correction for Δx :

$$
\begin{align*}
& f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot \Delta x \stackrel{!}{=} 0 \tag{84}\\
& \Delta x=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{85}
\end{align*}
$$

For our system of equations $f_{i}\left(a_{1}, \ldots, a_{M}\right)=0$, we assume that for our approximation (intial guess) $\left\{a_{i}\right\}$ corrections $\left\{\Delta x_{i}\right\}$ exist so that

$$
\begin{equation*}
f_{i}\left(a_{1}+\Delta a_{1}, a_{2}+\Delta a_{2}, a_{3}+\Delta a_{3}\right)=0 \quad i=1,2,3 \tag{86}
\end{equation*}
$$

\rightarrow linear approximation (two terms of Taylor series):

$$
\begin{equation*}
f_{i}\left(a_{1}+\Delta a_{1}, \ldots\right) \simeq f_{i}\left(a_{1}, a_{2}, a_{3}\right)+\sum_{j=1}^{3} \frac{\partial f_{i}}{\partial a_{j}} \Delta a_{j}=0 \quad i=1,2,3 \tag{87}
\end{equation*}
$$

\rightarrow set of 3 linear equations in 3 unknowns

Least square fitting VII

as explicit equations:

$$
\begin{align*}
& f_{1}+\partial f_{1} / \partial a_{1} \Delta a_{1}+\partial f_{1} / \partial a_{2} \Delta a_{2}+\partial f_{1} / \partial a_{3} \Delta a_{3}=0 \tag{88}\\
& f_{2}+\partial f_{2} / \partial a_{1} \Delta a_{1}+\partial f_{2} / \partial a_{2} \Delta a_{2}+\partial f_{2} / \partial a_{3} \Delta a_{3}=0 \tag{89}\\
& f_{3}+\partial f_{3} / \partial a_{1} \Delta a_{1}+\partial f_{3} / \partial a_{2} \Delta a_{2}+\partial f_{3} / \partial a_{3} \Delta a_{3}=0 \tag{90}
\end{align*}
$$

Or as single matrix equation:

$$
\left(\begin{array}{l}
f_{1} \tag{91}\\
f_{2} \\
f_{3}
\end{array}\right)+\left(\begin{array}{lll}
\partial f_{1} / \partial a_{1} & \partial f_{1} / \partial a_{2} & \partial f_{1} / \partial a_{3} \\
\partial f_{2} / \partial a_{1} & \partial f_{2} / \partial a_{2} & \partial f_{2} / \partial a_{3} \\
\partial f_{3} / \partial a_{1} & \partial f_{3} / \partial a_{2} & \partial f_{3} / \partial a_{3}
\end{array}\right)\left(\begin{array}{c}
\Delta a_{1} \\
\Delta a_{2} \\
\Delta a_{3}
\end{array}\right)=0
$$

Or in matrix notation

$$
\begin{equation*}
\mathrm{f}+\mathrm{F}^{\prime} \boldsymbol{\Delta} \boldsymbol{a}=0 \Rightarrow \mathrm{~F}^{\prime} \boldsymbol{\Delta} \boldsymbol{a}=-\boldsymbol{f} \tag{92}
\end{equation*}
$$

Where we want to solve for $\boldsymbol{\Delta} \boldsymbol{a}$ (the corrections) Matrix \boldsymbol{F}^{\prime} sometimes written as \boldsymbol{J} is called the Jacobian matrix (with entries $f_{i j}^{\prime}=\partial f_{i} / \partial a_{j}$).

Least square fitting VIII

Equation $\boldsymbol{F}^{\prime} \Delta a=-\boldsymbol{f}$ corresponds to standard form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for systems of linear equations. Formally solution obtained by multiplying with inverse of \boldsymbol{F}^{\prime}

$$
\begin{equation*}
\Delta \boldsymbol{a}=-\boldsymbol{F}^{\prime-1} \boldsymbol{f} \tag{93}
\end{equation*}
$$

\rightarrow inverse must exist for unique solution
\rightarrow same form as for 1d Newton-Raphson: $\Delta x=-\left(1 / f^{\prime}\right) f$
\rightarrow iterate as for 1d Newton-Raphson till $\boldsymbol{f} \approx 0$
compute derivatives for the system numerically

$$
\begin{equation*}
f_{i j}^{\prime}=\frac{\partial f_{i}}{\partial a_{j}} \simeq \frac{f_{i}\left(a_{j}+\Delta a_{j}\right)-f_{i}\left(a_{j}\right)}{\Delta a_{j}} \tag{94}
\end{equation*}
$$

with Δa_{j} sufficiently small, e.g., 1% of a

Nonlinear fit with Newton-Raphson

In our nonlinear fit problem the Newton step

$$
\begin{equation*}
F^{\prime} \boldsymbol{\Delta} \boldsymbol{a}=-\boldsymbol{f} \tag{95}
\end{equation*}
$$

can be solved for $\boldsymbol{\Delta} \boldsymbol{a}$ with help of DGEFA and DGESL (see p. 27):
CALL DGEFA(FPRIME, NDIM, NDIM, IPVT, INFO)
IF (INFO .NE. O) STOP 'JACOBIAN MATRIX WITH O ON DIAGONAL'
CALL DGESL(FPRIME, NDIM, NDIM, IPVT, F)
where the solution $\boldsymbol{\Delta} \boldsymbol{a}$ is written to vector F

