Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

SoSe 2024, 16.7.2024

Matrices and Linear Algebra

Methods to solve matrix problems (e.g., inversion) useful for ODEs and PDEs, e.g., eigenvalue problem or radiative transfer with Feautrier scheme

Example: Vibrational spectrum of a molecule 1

n degrees of vibrational freedom \rightarrow potential energy

$$U(q_1,q_2,\ldots,q_n)\simeq rac{1}{2}\sum_{j,k}^n A_{jk}q_jq_k$$
 (1)

in generalized coordinates around equilibrium state up to 2nd order term, coupling/potential parameter A_{jk} (e.g., spring constant). Kinetic energy with generalized mass M_{ik}

$$T(\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_n) \simeq \frac{1}{2} \sum_{j,k}^n M_{jk} \dot{q}_j \dot{q}_k$$
⁽²⁾

Example: Vibrational spectrum of a molecule 2

Apply Lagrange equation of 2nd kind

$$\frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_j} = 0 \qquad \text{with } \mathcal{L} = T - U$$
(3)

Hence, equations of motion, for
$$k = 1, \dots, n$$
: $\sum_{j=1}^{n} (A_{jk}q_j + M_{jk}\ddot{q}_j) = 0$ (4)

Assume an oscillatory motion $q_j = x_j \, e^{\imath \omega t} o rac{d^2}{dt^2} (x_j \, e^{\imath \omega t}) = -x_j \omega^2 \, e^{\imath \omega t}$

$$\rightarrow \sum_{j=1}^{n} (A_{jk} - M_{jk}\omega^2) x_j = 0 \quad \text{or with } k = 1, \dots, n : \quad \mathbf{A}\mathbf{x} = \omega^2 \mathbf{M}\mathbf{x}$$
(5)

set of linear homogenous equations. Nontrivial solution \rightarrow determinant of coefficient matrix $\stackrel{!}{=} 0$ $\rightarrow \omega_k = \sqrt{\lambda_k} \ (k = 1, ..., n)$ from equation

$$\det(oldsymbol{A}-\lambdaoldsymbol{M})=0$$

(6)

Matrix operations I

Matrix **A** with elements A_{ij} and i = 1, 2, ..., m and $j = 1, 2, ..., n \rightarrow m \times n$ matrix.

$$n \text{ columns} \rightarrow$$

$$m \qquad A_{11} \quad A_{12} \quad \dots \quad A_{1n} \\ \downarrow \qquad A_{21} \quad \dots \quad A_{mn} \end{pmatrix}$$

If $m = n \rightarrow$ square matrix

Remember: Computer stores array in memory sequentially (1d), for C/C++ stored by rows (last index runs first)

$$A_{11}, A_{12}, \dots, A_{1n}, A_{21}, \dots, A_{mn}$$
 (7)

whereas for Fortran stored by <u>column</u> (first index runs first):

$$A_{11}, A_{21}, \dots, A_{m1}, A_{12}, \dots, A_{mn}$$
(8)

Variable array $\mathbf{x} = (x_1, x_2, \dots, x_n)$: $n \times 1$ matrix. Hence set of linear equations for $i = 1, 2, \dots, n$, where x_i is unknown:

$$A_{i1} x_1 + A_{i2} x_2 + \ldots + A_{in} x_n = b_i$$
(9)

with coefficients A_{ij} and constants b_i , so express Eq. (9) in matrix form

$$\mathbf{4}\,\mathbf{x} = \mathbf{b} \tag{10}$$

with Ax from standard matrix multiplication for C = AB, i.e.

$$C_{ij} = \sum_{k} A_{ik} B_{kj} \tag{11}$$

(number of columns of $\mathbf{A} \stackrel{!}{=}$ number of rows of \mathbf{B})

Example: Population numbers from statistical equilibrium (non-LTE)

"inflow" to level n_j (from all other levels) balanced by "outflow" from level n_j (to all other levels)

$$\sum_{\substack{i=1\\i\neq j}}^{N} n_i P_{ij} = \sum_{\substack{i=1\\i\neq j}}^{N} n_j P_{ji} \quad \forall j = 1, \dots, N$$
(12)

$$\boldsymbol{n} \boldsymbol{P} = 0 \quad \text{with } P_{ii} := -\sum_{j \neq i} P_{ij}$$
 (13)

Remember <u>definitions</u>: Inverse of a matrix **A** is A^{-1} :

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$
(14)

with $I_{ij} = \delta_{ij}$. The transpose of a matrix \mathbf{A}^{T} is with column and row indices of \mathbf{A} interchanged

$$A_{ij}^{T} = A_{ji} \tag{15}$$

Trace of **A** (Tr **A**) is summation of diagonal elements of **A**

$$\operatorname{Tr} \boldsymbol{A} = \sum_{i=1}^{n} A_{ii} \tag{16}$$

The determinant of square matrix **A**

$$\det(\boldsymbol{A}) = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} \det(\boldsymbol{R}_{ij})$$
(17)

where R_{ij} is residual matrix of A with *i*th row and *j*th column removed (\rightarrow recursive computation)

-

e.g., det
$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = A_{11}A_{22} - A_{12}A_{21}$$
 (18)

Matrix operations V

Important properties of the determinant:

- Determinant of a 1×1 matrix = element itself.
- Determinant of a triangular matrix (lower or upper) is the product of diagonal elements: $det(\mathbf{A}) = \prod_{i=1}^{n} A_{ii}$
- $det(BA) = det(B) \cdot det(A)$ (if both $n \times n$)
- $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})} \rightarrow \text{integer entries for } \mathbf{A} \text{ and } \mathbf{A}^{-1} \Leftrightarrow \det(\mathbf{A}) = \pm 1$
- $\bullet \ \det(\pmb{A}^{\mathcal{T}}) = \det(\pmb{A})$
- The determinant is an *n-linear function* of the *n* columns (rows). It is moreover an *alternating form*. Together with det(*A*^T) = det(*A*), this means: Interchanging any pair of columns or rows of a matrix multiplies its determinant by -1.
 Inverse of *A* via (Cramer's rule)

$$A_{ij}^{-1} = (-1)^{i+j} \frac{\det(\boldsymbol{R}_{ij})}{\det(\boldsymbol{A})}$$
(19)

 \rightarrow if \mathbf{A}^{-1} exists or det $(\mathbf{A}) \neq 0 \rightarrow$ nonsingular matrix, singular otherwise ().

Examples for singular / non-singular (=regular) matrices:

• the matrix

$$\boldsymbol{A} = \left(\begin{array}{cc} 1 & 2\\ 2 & 3 \end{array}\right) \tag{20}$$

is non-singular, its determinant is $det(\mathbf{A}) = -1$ and its inverse is

$$\boldsymbol{A}^{-1} = \begin{pmatrix} -3 & 2\\ 2 & -1 \end{pmatrix} \tag{21}$$

• the matrix

$$\boldsymbol{B} = \left(\begin{array}{cc} 1 & 2\\ 0 & 0 \end{array}\right) \tag{22}$$

is singular, its determinant is $det(\mathbf{A}) = 0$ and there exists no inverse

$$\boldsymbol{B} \cdot \boldsymbol{M} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1a+2c & 1b+2d \\ 0 & 0 \end{pmatrix} \neq \boldsymbol{I}$$
(23)

• the matrix

$$\boldsymbol{C} = \left(\begin{array}{cc} 1 & 2\\ 2 & 4 \end{array}\right) \tag{24}$$

is singular, its determinant is $det(\mathbf{A}) = 0$, as two of its lines are linearly dependent

Moreover, it can be useful to perform the following transformations, represented by a matrix multiplications : A' = MA

- interchanging two rows *i* and *j*, elements: $M_{ij} = 1$; $M_{ji} = 1$; $M_{kk} = 1$ for $k \neq i, j$ other elements $= 0 \rightarrow \det(\mathbf{M} \mathbf{A}) = -\det(\mathbf{A})$
- multiply one row by λ : $M_{kk} = 1$ for $k \neq i$; $M_{ii} = \lambda \neq 0$, all other elements = 0
 $\rightarrow \det(\mathbf{M} \mathbf{A}) = \det(\mathbf{M}) \det(\mathbf{A}) = \lambda \det(\mathbf{A})$
- **3** add a row (or column) to another row (or column) multiplied by a factor λ : $M_{ii} = 1, \ M_{ij} = \lambda, \ M_{kl} = 0$. This can be also be written as

$$A'_{ij} = A_{ij} + \lambda A_{kj} \qquad \text{for } j = 1, 2, \dots, n \tag{25}$$

and *i* and *k* are row indices, which can be the same. The determinant is preserved $det(\mathbf{A}') = det(\mathbf{A})$.

 \rightarrow see below for Gaussian elimination and matrix decomposition

The matrix eigenvalue problem is for a given matrix \boldsymbol{A}

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{26}$$

with eigenvector x and corresponding eigenvalue λ of the matrix. Also for the example of the vibrating molecules:

$$\mathbf{A}\mathbf{x} = \omega^2 \mathbf{M}\mathbf{x} | \mathbf{B} := \mathbf{M}^{-1}\mathbf{A}$$
(27)
$$\rightarrow \mathbf{B}\mathbf{x} = \omega^2 \mathbf{x}$$
(28)

 \rightarrow Matrix eigenvalue problem = linear equation set problem \rightarrow e.g., iterative solution

$$\mathbf{A} \mathbf{x}_{n+1} = \lambda_n \mathbf{x}_n \tag{29}$$

Moreover, the eigenvalues are preserved under a similarity transformation with a non-singular matrix \boldsymbol{S}

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S} \tag{30}$$

$$\rightarrow \boldsymbol{B} \boldsymbol{y} = \lambda \boldsymbol{y} \quad \Leftrightarrow \quad \boldsymbol{A} \boldsymbol{x} = \lambda \boldsymbol{x} \quad \text{for } \boldsymbol{x} = \boldsymbol{S} \boldsymbol{y}$$
(31)

$$\rightarrow \det(\boldsymbol{B}) = \det(\boldsymbol{A}) = \prod_{i=1}^{n} \lambda_{i}$$
 (32)

 \rightarrow computation of eigenvalues & eigenvectors usually complicated \ldots

The general problem:

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \tag{33}$$

where matrix \boldsymbol{A} and vector \boldsymbol{b} given and vector \boldsymbol{x} unknown.

Straightforward solutions:

• Cramer's rule:

$$x_i = \frac{\det(\boldsymbol{A}_i)}{\det(\boldsymbol{A})} \tag{34}$$

where in A_i the *i*-th column is replaced by b \rightarrow for a system of *n* equations: need to compute n + 1 determinants, each of order *n* (see above), i.e., compute *n*! terms each with (n - 1) multiplications $\rightarrow (n + 1) \times n! \times (n - 1)$ multiplications, e.g., for $n = 20 \rightarrow 10^{21}$ multiplications and for a computer with, e.g., 10 TFLOPS $\rightarrow t \approx 3$ a only for multiplications (also note large accumulation of roundoff error) • find the inverse A^{-1}

$$\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b} \tag{35}$$

 \rightarrow also time-consuming and instable, e.g., (n = 1, float)

$$7x = 21 \tag{36}$$

$$x = \frac{21}{7} = 3$$
 (direct division) (37)

$$x = (7^{-1})(21) \quad (\text{compute inverse}) \tag{38}$$

= (.142857)(21) = 2.999997 (less accurate) (39)

$$= (.142857)(21) = 2.999997$$
 (less accurate)

computation of the inverse, e.g., via Cramer's rule (see above) or

Systems of linear equations - Direct methods III

with *Gauß-Jordan elimination* (see below) for system $AA^{-1} = I$:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \hat{a}_{11} & \dots & \hat{a}_{1n} \\ \vdots & & \vdots \\ \hat{a}_{n1} & \dots & \hat{a}_{nn} \end{pmatrix} = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$
(40)

hence, the *j*-th column of the inverse $\hat{a}_j = (\hat{a}_{1j}, \hat{a}_{2j}, \dots, \hat{a}_{nj})^T$ is solution of the system of linear equations

$$A \cdot \hat{a}_j = e_j \tag{41}$$

These equations are solved simultaneously by extending matrix **A** with **I**:

$$(A | I) = \begin{pmatrix} a_{11} & \dots & a_{1n} & 1 & & 0 \\ \vdots & & \vdots & & \ddots & \\ a_{n1} & \dots & a_{nn} & 0 & & 1 \end{pmatrix}$$
(42)

Systems of linear equations - Direct methods IV

 \rightarrow elementary row operations \rightarrow matrix **A** into upper triangular form (forward elimination)

$$(D | B) = \begin{pmatrix} * \dots & * & * \dots & * \\ & \ddots & \vdots & \vdots & \vdots \\ 0 & & * & * \dots & * \end{pmatrix}$$

 \rightarrow if no zeros on diagonal \rightarrow invertible, bring into diagonal form:

$$(I | A^{-1}) = \begin{pmatrix} 1 & 0 & \hat{a}_{11} & \dots & \hat{a}_{1n} \\ & \ddots & & \vdots & & \vdots \\ 0 & 1 & \hat{a}_{n1} & \dots & \hat{a}_{nn} \end{pmatrix}$$

or compute inverse with characteristic polynomial:

$$A^{-1} = \frac{-1}{\det(A)} \left(\alpha_1 I_n + \alpha_2 A + \ldots + \alpha_n A^{n-1} \right)$$
(45)

where the coefficients of the chracteristical polynomial of **A** can be obtained from $\chi(t) = \det(tI - A) = \alpha_0 + \alpha_1 \cdot t^1 + \ldots + \alpha_n \cdot t^n$

H. Todt (UP)

(43)

(44)

Matrix problems can be easily solved for an upper (lower) triangular matrix, for which elements below (above) the diagonal = 0,

$$\begin{pmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ & & \ddots & \\ 0 & 0 & \dots & R_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix}$$

via backward (forward) substitution, i.e. starting with $x_n = c_n/R_{nn}$ and

$$x_i = rac{c_i - \sum_{j=i+1}^n R_{ij} x_j}{R_{ii}}$$
 for $i = n - 1, \dots, 1$ (47)

 \rightarrow need algorithms for transformation into triangular form

(46)

Gaussian elimination

1. Forward elimination: Transform linear equation set Ax = b by a sequence of matrix operations j from original matrix $A = A^{(0)}$ to $A^{(j)}$, hence after n - 1 steps for a $n \times n$ matrix

$$\mathbf{A}^{(n-1)}\mathbf{x} = \mathbf{b}^{(n-1)}$$
(48)

where $A_{ij}^{(n-1)} = 0$ for i > j:

- multiply 1st equation (1st row \boldsymbol{A} and $b_1^{(0)}$) by $-A_{i1}^{(0)}/A_{11}^{(0)}$ and add to *i*th equation (row) for $i > 1 \rightarrow 1$ st element of every row except 1st row eliminated $\rightarrow \boldsymbol{A}^{(1)}$
- Some multiply 2nd equation by $-A_{i2}^{(1)}/A_{22}^{(1)}$ and add to *i*th equation for $i > 2 \rightarrow 2$ nd element of every row except 1st & 2nd row eliminated $\rightarrow \mathbf{A}^{(2)}$
- 3 . . .
- upper triangular matrix $A^{(n-1)}$
- 2. backward substitution according to Eq. (47)

ad 1.: all diagonal elements A_{jj} are used in denominators $-A_{ij}^{(j-1)}/A_{jj}^{(j-1)}$ \rightarrow problems if diagonal elements = 0 or \approx 0

Solution: pivoting (from french pivot=center of rotation) \rightarrow interchange rows/columns to put always largest (absolut value) element on diagonal

full pivoting: interchange columns and rows, need to keep track of order

partial pivoting: only search for pivot in remaining elements of the current column (swap rows only)

 \rightarrow partial pivoting usually good compromise between speed and accuracy

 \rightarrow use index to record order of pivot elements instead of physically interchanging

 \rightarrow rescaling: rescale all elements from a row by its largest element before comparing to find pivot (reduces rounding errors)

Example: Gaussian elimination in Fortran - code sniplet

```
! partial pivot. Gaussian elimin.
DIMENSION A(N,N), INDX(N), C(N)
DO I = 1, N
 INDX(I) = I ! init. index
C1 = 0.0
 DO J = 1, N ! rescale coeff.
 C1 = AMAX1(C1, ABS(A(I, J)))
 ENDDO
 C(I) = C1
ENDDO
DO J = 1, N-1 ! search pivots
PT1 = 0.0
 DO I = J, N
  PI = ABS(A(INDX(I), J)) / C(INDX(I))
  IF (PI.GT.PI1) THEN
```

```
PT1 = PT
  K = I
 ENDIF
ENDDO
ITMP = INDX(J)
 INDX(J) = INDX(K)
INDX(K) = ITMP
DO I = J + 1, N ! elimin. subdiagonal
 PJ = A(INDX(I), J) / A(INDX(J), J)
  A(INDX(I), J) = PJ
  DO L = J + 1, N
   A(INDX(I),L) = A(INDX(I),L) - \&
  PJ * A(INDX(J),L)
 ENDDO
ENDDO
ENDDO
```

Example: Gaussian elimination by hand I

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$
(49)

1.) eliminate x_1 from row 2 & 3 \rightarrow add 3/10 = 0.3× 1st row to 2nd row & add $-5/10 = -0.5 \times$ 1st row to 3rd row:

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.1 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6.1 \\ 2.5 \end{pmatrix}$$
(50)

2.) eliminate x_2 from row $3 \rightarrow a$) pivoting: interchange row 2 & 3 so that coefficient of x_2 in row 2 is largest (because of roundoff errors \rightarrow only for computers necessary)

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.1 \end{pmatrix}$$
(51)

Example: Gaussian elimination by hand II

2.b) now add $0.1/2.5=0.04\times$ 2nd row to 3rd row:

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.2 \end{pmatrix}$$

Finally: backward substitution, starting with last row:

$$6.2 x_3 = 6.2 \rightarrow x_3 = 1$$

$$2.5 x_2 + 5 \cdot 1 = 2.5 \rightarrow x_2 = -1$$

$$(53)$$

$$(54)$$

$$(54)$$

$$(54)$$

$$(55)$$

This can be also expressed in matrix notation: Let

$$\boldsymbol{M}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0.3 & 1 & 0 \\ -0.5 & 0 & 1 \end{pmatrix} \rightarrow \boldsymbol{M}_{1}\boldsymbol{A} = \begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.1 & 6 \\ 0 & 2.5 & 5 \end{pmatrix}, \quad \boldsymbol{M}_{1}\boldsymbol{b} = \begin{pmatrix} 7 \\ 6.1 \\ 2.5 \end{pmatrix}$$
(56)

(52)

Example: Gaussian elimination by hand III

Let then

$$\boldsymbol{P}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \boldsymbol{M}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.04 & 1 \end{pmatrix}$$
(57)
$$\rightarrow \boldsymbol{M}_{2}\boldsymbol{P}_{2}\boldsymbol{M}_{1}\boldsymbol{A} = \begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix} = \boldsymbol{U}, \quad \boldsymbol{M}_{2}\boldsymbol{P}_{2}\boldsymbol{M}_{1}\boldsymbol{b} = \begin{pmatrix} 7 \\ 2.5 \\ 6.2 \end{pmatrix} = \boldsymbol{c}$$
(58)

Hence $\boldsymbol{U}\boldsymbol{x} = \boldsymbol{c}$, with upper triangular matrix \boldsymbol{U} .

The matrices P_k , k = 1, ..., n-1 are the permutations matrices, inferred from the identity matrix I by interchanging rows in same way as for A in the *k*th step, and M_k is multiplication matrix, inferred from identy matrix by inserting multipliers used in *k*th step below diagonal in *k*th column $\rightarrow M_k$ are lower triangular matrices

$$\boldsymbol{M} := \boldsymbol{M}_{n-1} \boldsymbol{P}_{n-1} \dots \boldsymbol{M}_1 \boldsymbol{P}_1$$
(59)
$$\boldsymbol{U} = \boldsymbol{M} \boldsymbol{A} \quad (\text{``triangular decomposition'' of } \boldsymbol{A})$$
(60)

LU decomposition I

More general approach: decompose nonsingular matrix A into two triangular matrices

$$\boldsymbol{A} = \boldsymbol{L} \boldsymbol{U} \tag{61}$$

with lower (left) triangular matrix L and upper (right) triangular matrix U (or R), hence

$$Ax = LUx = b \tag{62}$$

$$\rightarrow$$
 first, solve 1. $Ly = b \rightarrow y$ (63)

then 2.
$$\boldsymbol{U}\boldsymbol{x} = \boldsymbol{y} \to \boldsymbol{x}$$
 (64)

i.e. once $\mathbf{A} = \mathbf{L} \mathbf{U}$ obtained \rightarrow easy to solve for *any* b. More general case: re-order matrix \mathbf{A} by, e.g., row-permutations (partial pivoting):

$$PA = LU$$
, then (65)

$$LUx = Pb \tag{66}$$

1.
$$Ly = Pb \rightarrow y$$
 (67)

$$2. \ \boldsymbol{U}\boldsymbol{x} = \boldsymbol{y} \to \boldsymbol{x} \tag{68}$$

e.g. $\rightarrow \underline{Crout's method}$

start with $L_{i1} = A_{i1}$ and $U_{1j} = A_{1j}/A_{11}$, then recursively:

$$L_{ij} = A_{ij} - \sum_{k=1}^{j-1} L_{ik} U_{kj}$$
(69)
$$U_{ij} = \frac{1}{L_{ii}} \left(A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj} \right)$$
(70)

Usually no need to implement by yourself, instead use libraries, e.g., LINPACK:

- DGEFA performs LU decomposition by Gaussian elimination
- DGESL uses that decomposition to solve the given system of linear equations
- DGEDI uses decomposition to compute inverse of a matrix

Application: Interpolating data I

Remember following measurement of a cross section

Interpolation problem

We want to determine $\sigma(E)$ for values of E which lie between measured values of E

By

- numerical interpolation (assumption of data representation by polynomial in E): \rightarrow see previous lectures
 - \rightarrow ignores errors in measurement (noise)
- fitting parameters of an underlying model, e.g., Breit-Wigner with f_r , E_r , Γ , (taking errors into account), i.e., minimizing χ^2
- Fourier analysis (next semester lecture)

Already seen for linear regression: We have N_D data points

$$(x_i, y_i \pm \sigma_i) \quad i = 1, \dots, N_D \tag{72}$$

and a function y = g(x) (=model) with parameters $\{a_m\}$; fit function to data, such that $\chi^2 = min$:

$$\chi^{2} := \sum_{i=1}^{N_{D}} \left(\frac{y_{i} - g(x_{i}; \{a_{m}\})}{\sigma_{i}} \right)^{2}$$
(73)

i.e. for M_P parameters $\{a_m, m = 1 \dots M_P\}$

$$\frac{\partial \chi^2}{\partial a_m} \stackrel{!}{=} 0 \Rightarrow \sum_{i=1}^{N_D} \frac{[y_i - g(x_i)]}{\sigma_i^2} \frac{\partial g(x_i)}{\partial a_m} = 0 \quad (m = 1, \dots, M_P)$$
(74)

 \rightarrow solve M_P equations, usually nonlinear in a_m

H. Todt (UP)

goodness of fit, assumptions

- deviations to model only due to random errors
- Gaussion distribution of errors
- ightarrow then, fit is good when $\chi^2 pprox \textit{N}_D \textit{M}_P$ (degrees of freedom)
 - if $\chi^2 \ll N_D M_P \rightarrow$ probably too many parameters or errors σ_i to large (fitting random scatter)
- if $\chi^2 \gg N_D M_P \rightarrow$ model not good or underestimated errors or non-random errors \rightarrow for linear fit see above

Non-linear fit

remember Breit-Wigner resonance formula Eq. (71)

$$f(E) = \frac{f_{\rm r}}{(E - E_{\rm r})^2 + \Gamma^2/4}$$
(75)

 \rightarrow determine f_r, E_r, Γ

 \rightarrow nonlinear equations in the parameters

$$a_{1} = f_{r} \qquad a_{2} = E_{r} \qquad a_{3} = \Gamma^{2}/4$$

$$\Rightarrow g(x) = \frac{a_{1}}{(x - a_{2})^{2} + a_{3}}$$

$$\frac{\partial g}{\partial a_{1}} = \frac{1}{(x - a_{2})^{2} + a_{3}}, \qquad \frac{\partial g}{\partial a_{2}} = \frac{-2a_{1}(x - a_{2})}{[(x - a_{2})^{2} + a_{3}]^{2}}, \qquad \frac{\partial g}{\partial a_{3}} = \frac{-a_{1}}{[(x - a_{2})^{2} + a_{3}]^{2}}$$
(76)
(77)
(77)
(78)

Insert into Eq. (74):

$$\sum_{i=1}^{9} \frac{y_i - g(x_i, a)}{(x_i - a_2)^2 + a_3} = 0 \qquad \sum_{i=1}^{9} \frac{[y_i - g(x_i, a)](x_i - a_2)}{[(x_i - a_2)^2 + a_3]^2} = 0$$

$$\sum_{i=1}^{9} \frac{y_i - g(x_i, a)}{[(x_i - a_2)^2 + a_3]^2} = 0 \tag{79}$$

 \rightarrow three nonlinear equations for unknown a_1, a_2, a_3 , i.e. cannot be solved by linear algebra but can be solved with help of Newton-Raphson method, i.e. find the roots for the equations above

$$f_i(a_1,...,a_M) = 0$$
 $i = 1,...,M$ (80)

So

$$f_{1}(a_{1}, a_{2}, a_{3}) = \sum_{i=1}^{9} \frac{y_{i} - g(x_{i}, a)}{(x_{i} - a_{2})^{2} + a_{3}} = 0$$

$$f_{2}(a_{1}, a_{2}, a_{3}) = \sum_{i=1}^{9} \frac{[y_{i} - g(x_{i}, a)](x_{i} - a_{2})}{[(x_{i} - a_{2})^{2} + a_{3}]^{2}} = 0$$

$$f_{3}(a_{1}, a_{2}, a_{3}) = \sum_{i=1}^{9} \frac{y_{i} - g(x_{i}, a)}{[(x_{i} - a_{2})^{2} + a_{3}]^{2}} = 0$$

$$(81)$$

$$(81)$$

$$(82)$$

with intial guesses for a_1, a_2, a_3 .

Least square fitting VI

Newton-Raphson method for a system of nonlinear equations Remember for 1dim Newton-Raphson method, correction for Δx :

$$f(x_0) + f'(x_0) \cdot \Delta x \stackrel{!}{=} 0$$

$$\Delta x = -\frac{f(x_0)}{f'(x_0)}$$
(84)
(85)

For our system of equations $f_i(a_1, \ldots, a_M) = 0$, we assume that for our approximation (intial guess) $\{a_i\}$ corrections $\{\Delta x_i\}$ exist so that

$$f_i(a_1 + \Delta a_1, a_2 + \Delta a_2, a_3 + \Delta a_3) = 0$$
 $i = 1, 2, 3$ (86)

 \rightarrow linear approximation (two terms of Taylor series):

$$f_i(a_1 + \Delta a_1, \ldots) \simeq f_i(a_1, a_2, a_3) + \sum_{j=1}^3 \frac{\partial f_i}{\partial a_j} \Delta a_j = 0 \qquad i = 1, 2, 3$$
 (87)

 $\rightarrow\, set$ of 3 linear equations in 3 unknowns

H. Todt (UP)

Least square fitting VII

as explicit equations:

$$f_1 + \partial f_1 / \partial a_1 \Delta a_1 + \partial f_1 / \partial a_2 \Delta a_2 + \partial f_1 / \partial a_3 \Delta a_3 = 0$$
(88)

$$f_2 + \partial f_2 / \partial a_1 \Delta a_1 + \partial f_2 / \partial a_2 \Delta a_2 + \partial f_2 / \partial a_3 \Delta a_3 = 0$$
(89)

$$f_3 + \partial f_3 / \partial a_1 \Delta a_1 + \partial f_3 / \partial a_2 \Delta a_2 + \partial f_3 / \partial a_3 \Delta a_3 = 0$$
(90)

Or as single matrix equation:

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} + \begin{pmatrix} \partial f_1 / \partial a_1 & \partial f_1 / \partial a_2 & \partial f_1 / \partial a_3 \\ \partial f_2 / \partial a_1 & \partial f_2 / \partial a_2 & \partial f_2 / \partial a_3 \\ \partial f_3 / \partial a_1 & \partial f_3 / \partial a_2 & \partial f_3 / \partial a_3 \end{pmatrix} \begin{pmatrix} \Delta a_1 \\ \Delta a_2 \\ \Delta a_3 \end{pmatrix} = 0$$
(91)

Or in matrix notation

$$f + F' \Delta a = 0 \Rightarrow F' \Delta a = -f$$
(92)

Where we want to solve for Δa (the corrections) Matrix F' sometimes written as J is called the *Jacobian* matrix (with entries $f'_{ij} = \partial f_i / \partial a_j$). Equation $F' \Delta a = -f$ corresponds to standard form Ax = b for systems of linear equations. Formally solution obtained by multiplying with inverse of F'

$$\Delta \boldsymbol{a} = -\boldsymbol{F'}^{-1}\boldsymbol{f} \tag{93}$$

 \rightarrow inverse must exist for unique solution

 \rightarrow same form as for 1d Newton-Raphson: $\Delta x = -(1/f')f$

ightarrow iterate as for 1d Newton-Raphson till $m{f} pprox 0$

compute derivatives for the system numerically

$$f'_{ij} = \frac{\partial f_i}{\partial a_j} \simeq \frac{f_i(a_j + \Delta a_j) - f_i(a_j)}{\Delta a_j}$$
(94)

with Δa_j sufficiently small, e.g., 1% of a

Nonlinear fit with Newton-Raphson

In our nonlinear fit problem the Newton step

$$\mathsf{F}'\,\mathbf{\Delta}\boldsymbol{a} = -\boldsymbol{f} \tag{95}$$

can be solved for Δa with help of DGEFA and DGESL (see p. 27): CALL DGEFA(FPRIME, NDIM, NDIM, IPVT, INFO) IF (INFO .NE. 0) STOP 'JACOBIAN MATRIX WITH 0 ON DIAGONAL' CALL DGESL(FPRIME, NDIM, NDIM, IPVT, F) where the solution Δa is written to vector F