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Applications:
The Lane-Emden equation

H. Todt (UP) Computational Astrophysics SoSe 2023, 12.6.2023 2 / 18



The Lane-Emden Equation I

We remember: Stellar structure equations

Example: Boundary values
First two equations of stellar structure (e.g., for white dwarf), with mass coordinate m
(Lagrangian description)

∂r

∂m
=

1
4πr2ρ

mass continuity, cf. shell dm = 4πr2ρdr (1)

∂P

∂m
= − GM

4πr4 hydrostatic equilibrium (2)

+ equation of state P(ρ) (e.g., ideal gas P(ρ,T ) = RTρ/µ), and boundary values

center m = 0 : r = 0 (3)
surface m = M : ρ = 0 → P = 0 (4)

→ solve for r(m), specifically for R∗ = r(m = M∗), i.e. for given M∗
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The Lane-Emden Equation II

Derivation of the Lane-Emden equation
(see also Hansen & Kawaler 1994)
→ if equation of state (EOS) for pressure is only function of density, e.g., completely
degenerate, nonrelativistic, electron gas (e.g., white dwarf)

Pe = 1.004× 1013
(
ρ[g cm−3]

µe

)5/3

dyn cm−2 (5)

so, P ∝ (ρ/µe)5/3 power law ...
(µe = [

∑
Zi Xi yi/Ai ]

−1 mean molecular weight per electron, e.g., µe ≈ ( 1·0.7·1
1 + 2·0.3·1

4 ) ≈ 1.2 for fully ionized
H-He plasma)

Polytropes are pseudo-stellar models where a power law for P(ρ) is assumed a priori without
reference to heat transfer/thermal balance

→ only hydrostatic and mass continuity equation taken into account
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The Lane-Emden Equation III

define a polytrope as

P(r) = Kρ1+ 1
n (r) (6)

with some constant K and the polytropic index n.
→ polytrope must be in hydrostatic equlibrium, so hydrostatic equation (function of r only)

dP

dr
= −GMr

r2 ρ | · r
2

ρ
| d/dr (7)

with the continuity equation dMr
dr = 4πr2ρ and the mass variable Mr =

∫ r
0 dm(r), i.e., Mr = 0

→ center (r = 0, ρ = ρc) and Mr = M∗ → surface (r = R∗, ρ = 0)

d

dr

(
r2

ρ

dP

dr

)
dP

dr
= −G dMr

dr
= −4πGr2ρ (8)

so finally:

H. Todt (UP) Computational Astrophysics SoSe 2023, 12.6.2023 5 / 18



The Lane-Emden Equation IV

1
r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (9)

→Poisson’s equation of gravitation with g(r) = dΦ/dr = GMr/r
2, and dP

dr = −GMr
r2
ρ

hence → ∇2Φ = 4πGρ in spherical coordinates

find transformations to make Eq. (9) dimensionless. Define dimensionless variable θ by

ρ(r) = ρcθ
n(r) (10)

→ then, power law for pressure from our definition of the polytrope Eq. (6)

P(r) = Kρ1+1/n(r) = Kρ
1+1/n
c θn+1(r) = Pcθ

1+n(r) (11)

and → Pc = Kρ
1+1/n
c (12)

inserting Eqs. (10)& (12) into Eq. (9)
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The Lane-Emden Equation V

(n + 1)Pc

4πGρ2
c

1
r2

d

dr

(
r2 dθ

dr

)
= −θn (13)

together with dimensionless radial coordinate ξ

r = rn ξ with (const.) scale length r2
n =

(n + 1)Pc

4πGρ2
c

(14)

our Poisson’s equation (9) becomes

→ so called
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The Lane-Emden Equation VI

Lane-Emden equation (Lane 1870; Emden 1907)

1
ξ2

d

dξ

(
ξ2

dθ

dξ

)
= −θn (15)

with solutions “polytropes of index n” θn(ξ)

Applications:
describe i.g. self-gravitating spheres (of plasma)
Bonnor-Ebert sphere (n→ ∞, so u, e−u instead of θ, θn): stable, finite-sized, finite-mass
isothermal cloud with P 6= 0 at outer boundary →Bonnor-Ebert mass (Ebert 1955;
Bonnor 1956)
characterize (full) stellar structure models, e.g., Bestenlehner (2020) (n = 3, removing
explicit M∗-dependance of Ṁ-CAK desription)
composite polytropic models for modeling of massive interstellar clouds with a hot ionized
core, stellar systems with compact, massive object (BH) at centre
generalized-piecewise polytropic EOS for NS binaries (P. Biswas 2021)
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The Lane-Emden Equation VII

Remarks:
if EOS is ideal gas P = ρNAkT/µ, one can get

P(r) = K ′T n+1(r), T (r) = Tcθ(r) (16)

with K ′ =

(
NAk

µ

)n+1

K−n, Tc = Kρ
1/n
c

(
NAk

µ

)−1

(17)

→ polytrope with EOS of ideal gas and mean molecular weight µ gives temperature profile,
radial scale factor is

r2
n =

(
NAk

µ

)2 (n + 1)T 2
c

4πGPc
=

(n + 1)Kρ
1/n−1
c

4πG
(18)
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The Lane-Emden Equation VIII

Requirements for physical solutions:
central density ρc → θ(ξ = 0) = 1
spherical symmetry at center (dP/dr |r=0) → θ′ ≡ dθ/dξ = 0 at ξ = 0 → suppresses divergent
solutions of the 2nd order system → regular solutions (E-solutions)
surface P = ρ = 0 → θn = 0 (first occurrence of that!) at ξ1

Boundary conditions for polytropic model
θ(0) = 1, θ′(0) = 0 at ξ = 0 (center)
θ(ξ1) = 0 at ξ = ξ1 (surface)

So stellar radius

R = rnξ1 =

√
(n + 1)Pc

4πGρ2
c

ξ1 (19)

for given K ,n, and either ρc or Pc (Pc = Kρ
1+1/n
c )
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The Lane-Emden Equation IX

Analytic E-solutions
→ analytic regular solutions exist for n = 0, 1, 5

n = 0 constant density sphere, ρ(r) = ρc, and

θ0(ξ) = 1− ξ2

6
→ ξ1 =

√
6 (20)

so P(ξ) = Pcθ(ξ) = Pc
[
1− (ξ/ξ1)2]. For Pc we need M,R from Eq. (19):

Pc = (3/8π)(GM2/R4)

n = 1 solution θ1 is sinc function

θ1 =
sin ξ

ξ
with ξ1 = π (21)

→ ρ = ρcθ and P = Pcθ
2
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The Lane-Emden Equation X
n = 5 finite central density ρc but infinite radius ξ1 → ∞ :

θ5(ξ) =
1√

1 + ξ2

3

(22)

contains finite mass (there is also a solution with with oscillatory behavior for ξ → 0, see
Srivastava 1962)

n = 0

n = 1

n = 5

0.0

0.5

1.0

0 2 4 6 8 10

ξ

θ
(ξ

)

→ solutions with n > 5 have also infinite radius, but also infinite mass
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Numerical solution I

For the interesting cases 0 ≤ n ≤ 5 → numerical solution

1
ξ2

d

dξ

(
ξ2

dθ

dξ

)
=

2
ξ

dθ

dξ
+

d

dξ

dθ

dξ
= −θn (23)

Reduction: set x = ξ, y = θ, z = (dθ/dξ) = (dy/dx)

y ′ =
dy

dx
= z , (24)

z ′ =
dz

dx
= −yn − 2

x
z (25)

Assume that we have values yi , zi at a point xi , so that we can get with some step size h: yi+1
& zi+1 at xi+1 = xi + h
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Numerical solution II

Then with RK4:

k1 = h · y ′(xi , yi , zi ) = h · (zi ) (26)

`1 = h · z ′(xi , yi , zi ) = h · (−yni −
2
xi
zi ) (27)

k2 = h · y ′(xi + h/2, yi + k1/2, zi + `1/2) = h · (zi + `1/2) (28)
`2 = h · z ′(xi + h/2, yi + k1/2, zi + `1/2) (29)

= h ·
(
−(yi + k1/2)n − 2

xi + h/2
(zi + `1/2)

)
(30)

k3 = h · y ′(xi + h/2, yi + k2/2, zi + `2/2) (31)
`3 = h · z ′(xi + h/2, yi + k2/2, zi + `2/2) (32)

k4 = h · y ′(xi + h, yi + k3, zi + `3) (33)
`4 = h · z ′(xi + h, yi + k3, zi + `3) (34)

→ yi+1 = yi + . . . and zi+1 = zi + . . .
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Numerical solution III

Although z ′ = −yn − 2
x z (Eq. (25)) is indeterminate for ξ = 0, integration can in principle be

started for ξ = 0 for regular solutions (Cox & Giuli 1968; Hansen & Kawaler 1994) with help of
power series expansion around ξ = 0:

θn(ξ) = 1− ξ2

6
+

n

120
ξ4 − n(8n − 5)

15120
ξ6 + . . . (35)

→ θ′n(ξ) = −1
3
ξ +

n

30
ξ3 − n(8n − 5)

2520
ξ5 + . . . (36)

So for ξ → 0 then y ′ → −1/3ξ = 0.
However, better: choose 0 < ξ � 1 and compute with help of Eq. (35) y , y ′(= z), z ′ (should
also work for irregular solutions)
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Applying the Lane-Emden equation to stars I

construct polytropes for n < 5 and given M, R
→ possible as long as K not fixed
because of definition of θ from ρ(r) = ρcθ

n(r) (Eq. (10)) and r = rn ξ (Eq. (14))→ dr = rndξ

m(r) =

∫ r

0
4πρr2dr = 4πρc

∫ r

0
θnr2dr = 4πρc

r3

ξ3

∫ ξ

0
θnξ2dξ (37)

note that r3/ξ3 = r3
n is constant. From Lane-Emden equation (15)

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θn → θnξ2 = − d

dξ

(
ξ2 dθ

dξ

)
follows direct integration, so

m(r) = 4πρc
r3

ξ3

∫ ξ

0
− d

dξ

(
ξ2

dθ

dξ

)
dξ = 4πρcr

3
(
−1
ξ

dθ

dξ

)
(38)

→Eq. (38) contains ξ and r , related by Eq. (14): r/ξ = rn = R/ξ1, so for the surface:

M = 4πρcR
3
(
−1
ξ

dθ

dξ

)
ξ=ξ1

(39)
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Applying the Lane-Emden equation to stars II

With help of the mean density ρ := M/(4
3πR

3) this can be written as

ρ

ρc
=

(
−3
ξ

dθ

dξ

)
ξ=ξ1

(40)

Note the right hand side depends only on n, can be computed. E.g., for n = 0
→ (−3

ξ
dθ
dξ )ξ=ξ1 = 1, and for n = 1 → ρ

ρc
= 3

π2

the larger n → the smaller ρ
ρc
→ the higher the density concentration
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