Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy
University of Potsdam

SoSe 2023, 12.6.2023

Applications:
 The Lane-Emden equation

The Lane-Emden Equation I

We remember: Stellar structure equations

Example: Boundary values

First two equations of stellar structure (e.g., for white dwarf), with mass coordinate m (Lagrangian description)

$$
\begin{array}{ll}
\frac{\partial r}{\partial m}=\frac{1}{4 \pi r^{2} \rho} & \text { mass continuity, cf. shell } d m=4 \pi r^{2} \rho d r \\
\frac{\partial P}{\partial m}=-\frac{G M}{4 \pi r^{4}} & \text { hydrostatic equilibrium } \tag{2}
\end{array}
$$

+ equation of state $P(\rho)$ (e.g., ideal gas $P(\rho, T)=R T \rho / \mu)$, and boundary values

$$
\begin{align*}
\text { center } & m=0: r=0 \tag{3}\\
\text { surface } & m=M: \rho=0 \rightarrow P=0 \tag{4}
\end{align*}
$$

\rightarrow solve for $r(m)$, specifically for $R_{*}=r\left(m=M_{*}\right)$, i.e. for given M_{*}

Derivation of the Lane-Emden equation

(see also Hansen \& Kawaler 1994)
\rightarrow if equation of state (EOS) for pressure is only function of density, e.g., completely degenerate, nonrelativistic, electron gas (e.g., white dwarf)

$$
\begin{equation*}
P_{\mathrm{e}}=1.004 \times 10^{13}\left(\frac{\rho\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]}{\mu_{\mathrm{e}}}\right)^{5 / 3} \mathrm{dyn} \mathrm{~cm}^{-2} \tag{5}
\end{equation*}
$$

so, $P \propto\left(\rho / \mu_{\mathrm{e}}\right)^{5 / 3}$ power law ...
$\left(\mu_{\mathrm{e}}=\left[\sum Z_{i} X_{i} y_{i} / A_{i}\right]^{-1}\right.$ mean molecular weight per electron, e.g., $\mu_{\mathrm{e}} \approx\left(\frac{1 \cdot 0.7 \cdot 1}{1}+\frac{2 \cdot 0.3 \cdot 1}{4}\right) \approx 1.2$ for fully ionized H-He plasma)

Polytropes are pseudo-stellar models where a power law for $P(\rho)$ is assumed a priori without reference to heat transfer/thermal balance
\rightarrow only hydrostatic and mass continuity equation taken into account

The Lane-Emden Equation III

define a polytrope as

$$
\begin{equation*}
P(r)=K \rho^{1+\frac{1}{n}}(r) \tag{6}
\end{equation*}
$$

with some constant K and the polytropic index n.
\rightarrow polytrope must be in hydrostatic equlibrium, so hydrostatic equation (function of r only)

$$
\begin{equation*}
\frac{d P}{d r}=-\frac{G M_{r}}{r^{2}} \rho \quad\left|\cdot \frac{r^{2}}{\rho}\right| d / d r \tag{7}
\end{equation*}
$$

with the continuity equation $\frac{d M_{r}}{d r}=4 \pi r^{2} \rho$ and the mass variable $M_{r}=\int_{0}^{r} d m(r)$, i.e., $M_{r}=0$
\rightarrow center $\left(r=0, \rho=\rho_{\mathrm{c}}\right)$ and $M_{r}=M_{*} \rightarrow$ surface $\left(r=R_{*}, \rho=0\right)$

$$
\begin{equation*}
\frac{d}{d r}\left(\frac{r^{2}}{\rho} \frac{d P}{d r}\right) \frac{d P}{d r}=-G \frac{d M_{r}}{d r}=-4 \pi G r^{2} \rho \tag{8}
\end{equation*}
$$

so finally:

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r^{2}}{\rho} \frac{d P}{d r}\right)=-4 \pi G \rho \tag{9}
\end{equation*}
$$

\rightarrow Poisson's equation of gravitation with $g(r)=d \Phi / d r=G M_{r} / r^{2}$, and $\frac{d P}{d r}=-\frac{G M_{r}}{r^{2}} \rho$ hence $\rightarrow \nabla^{2} \Phi=4 \pi G \rho$ in spherical coordinates
find transformations to make Eq. (9) dimensionless. Define dimensionless variable θ by

$$
\begin{equation*}
\rho(r)=\rho_{\mathrm{c}} \theta^{n}(r) \tag{10}
\end{equation*}
$$

\rightarrow then, power law for pressure from our definition of the polytrope Eq. (6)

$$
\begin{align*}
P(r) & =K \rho^{1+1 / n}(r)=K \rho_{\mathrm{c}}^{1+1 / n} \theta^{n+1}(r)=P_{\mathrm{c}} \theta^{1+n}(r) \tag{11}\\
\text { and } \rightarrow P_{\mathrm{c}} & =K \rho_{\mathrm{c}}^{1+1 / n} \tag{12}
\end{align*}
$$

inserting Eqs. (10) \& (12) into Eq. (9)

$$
\begin{equation*}
\frac{(n+1) P_{\mathrm{c}}}{4 \pi G \rho_{\mathrm{c}}^{2}} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \theta}{d r}\right)=-\theta^{n} \tag{13}
\end{equation*}
$$

together with dimensionless radial coordinate ξ

$$
\begin{equation*}
r=r_{n} \xi \quad \text { with (const.) scale length } r_{n}^{2}=\frac{(n+1) P_{\mathrm{c}}}{4 \pi G \rho_{\mathrm{c}}^{2}} \tag{14}
\end{equation*}
$$

our Poisson's equation (9) becomes
\rightarrow so called

Lane-Emden equation (Lane 1870; Emden 1907)

$$
\begin{equation*}
\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right)=-\theta^{n} \tag{15}
\end{equation*}
$$

with solutions "polytropes of index $n " \theta_{n}(\xi)$
Applications:

- describe i.g. self-gravitating spheres (of plasma)
- Bonnor-Ebert sphere ($n \rightarrow \infty$, so u, e^{-u} instead of θ, θ^{n}): stable, finite-sized, finite-mass isothermal cloud with $P \neq 0$ at outer boundary \rightarrow Bonnor-Ebert mass (Ebert 1955; Bonnor 1956)
- characterize (full) stellar structure models, e.g., Bestenlehner (2020) ($n=3$, removing explicit M_{*}-dependance of M-CAK desription)
- composite polytropic models for modeling of massive interstellar clouds with a hot ionized core, stellar systems with compact, massive object (BH) at centre
- generalized-piecewise polytropic EOS for NS binaries (P. Biswas 2021)

Remarks:

if EOS is ideal gas $P=\rho N_{\mathrm{A}} k T / \mu$, one can get

$$
\begin{align*}
P(r) & =K^{\prime} T^{n+1}(r), \quad T(r)=T_{\mathrm{c}} \theta(r) \tag{16}\\
\text { with } K^{\prime} & =\left(\frac{N_{\mathrm{A}} k}{\mu}\right)^{n+1} K^{-n}, \quad T_{\mathrm{c}}=K \rho_{\mathrm{c}}^{1 / n}\left(\frac{N_{\mathrm{A}} k}{\mu}\right)^{-1} \tag{17}
\end{align*}
$$

\rightarrow polytrope with EOS of ideal gas and mean molecular weight μ gives temperature profile, radial scale factor is

$$
\begin{equation*}
r_{n}^{2}=\left(\frac{N_{\mathrm{A}} k}{\mu}\right)^{2} \frac{(n+1) T_{\mathrm{c}}^{2}}{4 \pi G P_{\mathrm{c}}}=\frac{(n+1) K \rho_{\mathrm{c}}^{1 / n-1}}{4 \pi G} \tag{18}
\end{equation*}
$$

Requirements for physical solutions:
central density $\rho_{\mathrm{c}} \rightarrow \theta(\xi=0)=1$
spherical symmetry at center $\left(d P /\left.d r\right|_{r=0}\right) \rightarrow \theta^{\prime} \equiv d \theta / d \xi=0$ at $\xi=0 \rightarrow$ suppresses divergent solutions of the 2 nd order system \rightarrow regular solutions (E-solutions)
surface $P=\rho=0 \rightarrow \theta_{n}=0$ (first occurrence of that!) at ξ_{1}
Boundary conditions for polytropic model
$\theta(0)=1, \theta^{\prime}(0)=0$ at $\xi=0$ (center)
$\theta\left(\xi_{1}\right)=0$ at $\xi=\xi_{1}$ (surface)
So stellar radius

$$
\begin{equation*}
R=r_{n} \xi_{1}=\sqrt{\frac{(n+1) P_{c}}{4 \pi G \rho_{c}^{2}}} \xi_{1} \tag{19}
\end{equation*}
$$

for given K, n, and either ρ_{c} or $P_{\mathrm{c}}\left(P_{\mathrm{c}}=K \rho_{\mathrm{c}}^{1+1 / n}\right)$

Analytic E-solutions

\rightarrow analytic regular solutions exist for $n=0,1,5$
$n=0$ constant density sphere, $\rho(r)=\rho_{\mathrm{c}}$, and

$$
\begin{equation*}
\theta_{0}(\xi)=1-\frac{\xi^{2}}{6} \quad \rightarrow \xi_{1}=\sqrt{6} \tag{20}
\end{equation*}
$$

so $P(\xi)=P_{\mathrm{c}} \theta(\xi)=P_{\mathrm{c}}\left[1-\left(\xi / \xi_{1}\right)^{2}\right]$. For P_{c} we need M, R from Eq. (19):
$P_{\mathrm{c}}=(3 / 8 \pi)\left(G M^{2} / R^{4}\right)$
$n=1$ solution θ_{1} is sinc function

$$
\begin{equation*}
\theta_{1}=\frac{\sin \xi}{\xi} \quad \text { with } \xi_{1}=\pi \tag{21}
\end{equation*}
$$

$\rightarrow \rho=\rho_{\mathrm{c}} \theta$ and $P=P_{\mathrm{c}} \theta^{2}$

The Lane-Emden Equation X

$n=5$ finite central density ρ_{c} but infinite radius $\xi_{1} \rightarrow \infty$:

$$
\begin{equation*}
\theta_{5}(\xi)=\frac{1}{\sqrt{1+\frac{\xi^{2}}{3}}} \tag{22}
\end{equation*}
$$

contains finite mass (there is also a solution with with oscillatory behavior for $\xi \rightarrow 0$, see Srivastava 1962)

\rightarrow solutions with $n>5$ have also infinite radius, but also infinite mass

For the interesting cases $0 \leq n \leq 5 \rightarrow$ numerical solution

$$
\begin{equation*}
\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right)=\frac{2}{\xi} \frac{d \theta}{d \xi}+\frac{d}{d \xi} \frac{d \theta}{d \xi}=-\theta^{n} \tag{23}
\end{equation*}
$$

Reduction: set $x=\xi, y=\theta, z=(d \theta / d \xi)=(d y / d x)$

$$
\begin{align*}
& y^{\prime}=\frac{d y}{d x}=z \tag{24}\\
& z^{\prime}=\frac{d z}{d x}=-y^{n}-\frac{2}{x} z \tag{25}
\end{align*}
$$

Assume that we have values y_{i}, z_{i} at a point x_{i}, so that we can get with some step size h : y_{i+1} $\& z_{i+1}$ at $x_{i+1}=x_{i}+h$

Then with RK4:

$$
\begin{align*}
k_{1} & =h \cdot y^{\prime}\left(x_{i}, y_{i}, z_{i}\right)=h \cdot\left(z_{i}\right) \tag{26}\\
\ell_{1} & =h \cdot z^{\prime}\left(x_{i}, y_{i}, z_{i}\right)=h \cdot\left(-y_{i}^{n}-\frac{2}{x_{i}} z_{i}\right) \tag{27}\\
k_{2} & =h \cdot y^{\prime}\left(x_{i}+h / 2, y_{i}+k_{1} / 2, z_{i}+\ell_{1} / 2\right)=h \cdot\left(z_{i}+\ell_{1} / 2\right) \tag{28}\\
\ell_{2} & =h \cdot z^{\prime}\left(x_{i}+h / 2, y_{i}+k_{1} / 2, z_{i}+\ell_{1} / 2\right) \tag{29}\\
& =h \cdot\left(-\left(y_{i}+k_{1} / 2\right)^{n}-\frac{2}{x_{i}+h / 2}\left(z_{i}+\ell_{1} / 2\right)\right) \tag{30}\\
k_{3} & =h \cdot y^{\prime}\left(x_{i}+h / 2, y_{i}+k_{2} / 2, z_{i}+\ell_{2} / 2\right) \tag{31}\\
\ell_{3} & =h \cdot z^{\prime}\left(x_{i}+h / 2, y_{i}+k_{2} / 2, z_{i}+\ell_{2} / 2\right) \tag{32}\\
k_{4} & =h \cdot y^{\prime}\left(x_{i}+h, y_{i}+k_{3}, z_{i}+\ell_{3}\right) \tag{33}\\
\ell_{4} & =h \cdot z^{\prime}\left(x_{i}+h, y_{i}+k_{3}, z_{i}+\ell_{3}\right) \tag{34}\\
\rightarrow y_{i+1} & =y_{i}+\ldots \quad \text { and } \quad z_{i+1}=z_{i}+\ldots
\end{align*}
$$

Although $z^{\prime}=-y^{n}-\frac{2}{x} z$ (Eq. (25)) is indeterminate for $\xi=0$, integration can in principle be started for $\xi=0$ for regular solutions (Cox \& Giuli 1968; Hansen \& Kawaler 1994) with help of power series expansion around $\xi=0$:

$$
\begin{align*}
\theta_{n}(\xi) & =1-\frac{\xi^{2}}{6}+\frac{n}{120} \xi^{4}-\frac{n(8 n-5)}{15120} \xi^{6}+\ldots \tag{35}\\
\rightarrow \theta_{n}^{\prime}(\xi) & =-\frac{1}{3} \xi+\frac{n}{30} \xi^{3}-\frac{n(8 n-5)}{2520} \xi^{5}+\ldots \tag{36}
\end{align*}
$$

So for $\xi \rightarrow 0$ then $y^{\prime} \rightarrow-1 / 3 \xi=0$.
However, better: choose $0<\xi \ll 1$ and compute with help of Eq. (35) $y, y^{\prime}(=z)$, z^{\prime} (should also work for irregular solutions)

Applying the Lane-Emden equation to stars I

construct polytropes for $n<5$ and given M, R
\rightarrow possible as long as K not fixed
because of definition of θ from $\rho(r)=\rho_{\mathrm{c}} \theta^{n}(r)$ (Eq. (10)) and $r=r_{n} \xi$ (Eq. (14)) $\rightarrow d r=r_{n} d \xi$

$$
\begin{equation*}
m(r)=\int_{0}^{r} 4 \pi \rho r^{2} d r=4 \pi \rho_{\mathrm{c}} \int_{0}^{r} \theta^{n} r^{2} d r=4 \pi \rho_{\mathrm{c}} \frac{r^{3}}{\xi^{3}} \int_{0}^{\xi} \theta^{n} \xi^{2} d \xi \tag{37}
\end{equation*}
$$

note that $r^{3} / \xi^{3}=r_{n}^{3}$ is constant. From Lane-Emden equation (15)
$\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right)=-\theta^{n} \rightarrow \theta^{n} \xi^{2}=-\frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right)$ follows direct integration, so

$$
\begin{equation*}
m(r)=4 \pi \rho_{\mathrm{c}} \frac{r^{3}}{\xi^{3}} \int_{0}^{\xi}-\frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right) d \xi=4 \pi \rho_{\mathrm{c}} r^{3}\left(-\frac{1}{\xi} \frac{d \theta}{d \xi}\right) \tag{38}
\end{equation*}
$$

\rightarrow Eq. (38) contains ξ and r, related by Eq. (14): $r / \xi=r_{n}=R / \xi_{1}$, so for the surface:

$$
\begin{equation*}
M=4 \pi \rho_{\mathrm{c}} R^{3}\left(-\frac{1}{\xi} \frac{d \theta}{d \xi}\right)_{\xi=\xi_{1}} \tag{39}
\end{equation*}
$$

With help of the mean density $\bar{\rho}:=M /\left(\frac{4}{3} \pi R^{3}\right)$ this can be written as

$$
\begin{equation*}
\frac{\bar{\rho}}{\rho_{\mathrm{c}}}=\left(-\frac{3}{\xi} \frac{d \theta}{d \xi}\right)_{\xi=\xi_{1}} \tag{40}
\end{equation*}
$$

Note the right hand side depends only on n, can be computed. E.g., for $n=0$ $\rightarrow\left(-\frac{3}{\xi} \frac{d \theta}{d \xi}\right)_{\xi=\xi_{1}}=1$, and for $n=1 \rightarrow \frac{\bar{\rho}}{\rho_{\mathrm{c}}}=\frac{3}{\pi^{2}}$
the larger $n \rightarrow$ the smaller $\frac{\bar{\rho}}{\rho_{\mathrm{c}}} \rightarrow$ the higher the density concentration

Bestenlehner, J. M. 2020, MNRAS, 493, 3938
Bonnor, W. B. 1956, MNRAS, 116, 351
Cox, J. P. \& Giuli, R. T. 1968, Principles of stellar structure
Ebert, R. 1955, ZAp, 37, 217
Emden, R. 1907, Gaskugeln (B. Teubner, Berlin)
Hansen, C. J. \& Kawaler, S. D. 1994, Stellar Interiors. Physical Principles, Structure, and Evolution. (Spinger), 84
Lane, H. J. 1870, American Journal of Science, 50, 57
Srivastava, S. 1962, ApJ, 136, 680

