Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics Institute of Physics and Astronomy University of Potsdam

SoSe 2024, 5.6.2024

Numerical Integration and Differentiation

(see also Landau et al. 2007)

Computing integrals

Often integrals have to be evaluated numerically. Examples:

• measured dN(t)/dt, the rate of some events, e.g., photons per unit time interval. Task: Determine the number of photons in the first second:

$$N(1) = \int_0^1 \frac{dN(t)}{dt} dt \tag{1}$$

• radiative rates in the statistical equations for non-LTE population numbers (stellar atmospheres, photoionized nebulae)

$$R_{\ell u} = \int \frac{4\pi}{h\nu} \sigma_{\ell u}(\nu) J_{\nu} d\nu \quad \text{where (in 1d):} \ J_{\nu} = \frac{1}{2} \int_{-1}^{1} J_{\nu} d(\cos \theta)$$
(2)

Also, *analytical* integration sometimes difficult or impossible (e.g., elliptic integrals), but numerically straightforward. So, Riemann definition

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} \left[h \sum_{i=1}^{(b-a)/h} f(x_i) \right]$$
(3)

summing up areas of boxes of height f(x) and width $h \rightarrow$ numerical quadrature

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} f(x_i) w_i$$
(4)

 \rightarrow problem: find appropriate sampling $f_i \equiv f(x_i)$, with weights w_i generally: result improves with N

some hints

- remove singularities before integration
- sometimes splitting of interval is helpful, e.g.,

$$\int_{-1}^{1} f(|x|) dx = \int_{-1}^{0} f(-x) dx + \int_{0}^{1} f(x) dx$$
(5)

• or transformation/substitution

$$\int_0^1 x^{1/3} dx = \int_{y(0)=0^{1/3}}^{y(1)=1^{1/3}} y \, 3y^2 dy \qquad \left(y(x) = x^{1/3} \to dx = 3x^{2/3} dy = 3y^2 dy\right) \tag{6}$$

The Trapezoid rule

- uses values f(x) at evenly spaced x_i (i = 1, ..., N) with step size h on integration region [a, b], including endpoints
- hence, N-1 intervals of length h:

$$h = {b - a \over N - 1}$$
 $x_i = a + (i - 1)h$ (7)

• so construct trapezoid on interval *i* of width $h \rightarrow f(x)$ approximated by straight line between $(a + i \cdot h, f_i)$ and $(a + (i + 1) \cdot h, f_{i+1})$

with average height $(f_i + f_{i+1})/2$:

$$\int_{x_i}^{x_i+h} f(x) dx \simeq rac{h(f_i+f_{i+1})}{2} = rac{1}{2} h f_i + rac{1}{2} h f_{i+1}$$

i.e. Eq. (4): $\int_a^b f(x) dx \approx \sum_{i=1}^N f(x_i) w_i$ for N = 2 and $w_i = \frac{1}{2}h$ • hence for full integration region [a, b]

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} f_{1} + h f_{2} + h f_{3} + \ldots + h f_{N-1} + \frac{h}{2} f_{N}$$

i.e. $w_i = \{h/2, h, \dots, h, h/2\}$

(8)

(9)

Simpson's rule

- similar to Trapezoid rule, but with \underline{odd} number of points N
- for each interval: *f*(*x*) approximated by parabola

$$f(x) = \alpha x^2 + \beta x + \gamma \qquad (10)$$

hence area for each interval:

$$\int_{x_i}^{x_i+h} (\alpha x^2 + \beta x + \gamma) dx \qquad (11)$$

 \rightarrow like integrating the corresponding Taylor series up to *quadratic* term

• need to determine α, β, γ for f(x), so consider interval [-1, 1]

$$\int_{-1}^{1} (\alpha x^{2} + \beta x + \gamma) dx = \frac{1}{3} \alpha x^{3} + \frac{1}{2} \beta x^{2} + \gamma x \Big|_{-1}^{+1} = \frac{2\alpha}{3} + 2\gamma$$
(12)

and $f(-1) = \alpha - \beta + \gamma$, $f(0) = \gamma$, $f(1) = \alpha + \beta + \gamma$, therefore:

$$\Rightarrow \alpha = \frac{f(1) + f(-1)}{2} - f(0), \quad \beta = \frac{f(1) - f(-1)}{2}, \quad \gamma = f(0)$$
(13)

so insert Eqn. (13) into Eq. (12)

$$\int_{-1}^{1} (\alpha x^{2} + \beta x + \gamma) dx = \frac{2\alpha}{3} + 2\gamma = \frac{f(-1)}{3} + \frac{4f(0)}{3} + \frac{f(1)}{3}$$
(14)

• or more general: use two neighboring intervals to evaluate f(x) at three points for the parabola fit

$$\int_{x_{i}-h}^{x_{i}+h} f(x)dx = \int_{x_{i}-h}^{x_{i}} f(x)dx + \int_{x_{i}}^{x_{i}+h} f(x)dx$$
(15)
$$\simeq \frac{h}{3}f_{i-1} + \frac{4h}{3}f_{i} + \frac{h}{3}f_{i+1}$$
(16)

 \rightarrow pairs of intervals (hence: odd N)

• so for total integration region [a, b]

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}f_{1} + \frac{4h}{3}f_{2} + \frac{2h}{3}f_{3} + \frac{4h}{3}f_{4} + \dots \frac{2h}{3}f_{N-2} + \frac{4h}{3}f_{N-1} + \frac{h}{3}f_{N} \qquad (17)$$

with $w_i = \{\frac{h}{3}, \frac{4h}{3}, \frac{2h}{3}, \frac{4h}{3}, \dots, \frac{4h}{3}, \frac{h}{3}\} \rightarrow \text{check: } \sum_{i=1}^{N} w_i \stackrel{!}{=} (N-1)h$

H. Todt (UP)

 \rightarrow numerical integration : use algorithm with least number of integration points for accurate answer

estimate error from Taylor expansion at midpoint of interval, e.g., for trapezoid rule $hf^{(2)}\frac{h^2}{12}$, \times number of subintervals N = [b - a]/h:

$$E_{\text{trap}} = \mathcal{O}\left(\frac{[b-a]^3}{12 N^2}\right) f^{(2)}, \qquad E_{\text{Simps}} = \mathcal{O}\left(\frac{[b-a]^5}{180 N^4}\right) f^{(4)}$$
(18)

$$\epsilon_{\text{trap, Simps}} \simeq \frac{E_{\text{trap, Simps}}}{f}$$
(19)

Note that for Simpson's rule 3rd derivate cancels and $E \propto 1/N^4$ \rightarrow Simpson's rule should converge faster check: find N for minimum total error (usually for $\epsilon_{ro} \approx \epsilon_{appr}$):

$$\epsilon_{\text{tot}} = \epsilon_{\text{ro}} + \epsilon_{\text{approx}} \approx \sqrt{N} \epsilon_{\text{m}} + \epsilon_{\text{trap, Simps}}$$
(20)
$$\rightarrow \epsilon_{\text{ro}} \stackrel{!}{=} \epsilon_{\text{trap, Simps}} = \frac{E_{\text{trap, Simps}}}{f}$$
(21)

Assuming some scale:

$$rac{f^{(n)}}{f} pprox 1 \qquad b-a=1 \qquad \Rightarrow \quad h=rac{1}{N}$$

(22)

Integration error III

For double precision ($\epsilon_{\rm m}\approx 10^{-15})$ and trapezoid rule:

$$\sqrt{N}\epsilon_{\rm m} \approx \frac{f^{(2)}(b-a)^3}{fN^2} = \frac{1}{N^2}$$

$$\Rightarrow N \approx \frac{1}{(\epsilon_{\rm m})^{2/5}} = \left(\frac{1}{10^{-15}}\right)^{2/5} = 10^6$$

$$\Rightarrow \epsilon_{\rm ro} \approx \sqrt{N}\epsilon_{\rm m} = 10^{-12}$$
(23)
(24)
(25)

For double precision ($\epsilon_m\approx 10^{-15})$ and Simpson's rule:

$$\sqrt{N}\epsilon_{\rm m} \approx \frac{f^{(4)}(b-a)^5}{fN^4} = \frac{1}{N^4}$$

$$\Rightarrow N \approx \frac{1}{(\epsilon_{\rm m})^{2/9}} = \left(\frac{1}{10^{-15}}\right)^{2/9} = 2154$$

$$\Rightarrow \epsilon_{\rm ro} \approx \sqrt{N}\epsilon_{\rm m} = 5 \times 10^{-14}$$
(26)
(27)
(28)

We conclude:

- Simpson's rule is better
- Simpson's rule gives errors close to ϵ_m (in general for higher order integration algorithms, e.g., RK4)
- best numerical approximation not for $N
 ightarrow \infty$, but small $N \le 1000$
- however, as $\epsilon_{\text{Simps}} \sim f^{(4)} \rightarrow \text{only for sufficiently smooth functions, i.e., for narrow peak-like functions trapezoidal rule might be more efficient$

Gaussian quadrature I

<u>So far</u>: improvement by smart choice of weights w_i , but still equally spaced points x_i (= const. h) for integral evaluation (cf. Eq. (4)),

<u>now</u>: additional freedom of choosing x_i so that *order is twice* that of previous integration formulae (so-called Newton-Cotes formulae, see \rightarrow interpolation) for *same number of nodes* $N \rightarrow \text{compute } N \times f(x_i)$.

 \rightarrow choose w_i and x_i such that integral is *exact* for

orthogonal polynomials \times specific weight function W(x)

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} W(x) f(x) dx \approx \int_{a}^{b} W(x) p_{n}(x) dx = \sum_{i=1}^{N} f(x_{i}) w_{i}$$
(29)

Note that the integration of the orthogonal polynomials is on [-1; +1], hence a transformation of the variables is usually necessary, e.g., for $W(x) \equiv 1$:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^{N} f\left(\frac{b-a}{2}x_{i} + \frac{a+b}{2}\right) w_{i}$$

$$(30)$$

Gaussian quadrature II

Example: Gauß-Chebyshev quadrature

The weight function is
$$W(x) = \frac{1}{\sqrt{1-x^2}}$$
, i.e, with $f(x) = g(x)\sqrt{1-x^2}$

$$\int_{-1}^{+1} g(x) dx = \int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \int_{a}^{b} \frac{T_n(x)}{\sqrt{1-x^2}} dx = \sum_{i=1}^{N} w_i f(x_i) = \sum_{i=1}^{N} w_i g(x_i) \sqrt{1-x_i^2}$$
(31)

with analytic(!) $w_i = \frac{\pi}{N}$, and $x_i = \cos\left(\frac{2i-1}{2N}\pi\right)$ are the zeros of the associated Chebyshev polynomials of 1st kind $T_n(x)$, with $T_{n+1}(x) = 2xT_n(x) - T_{n-1}$, $T_0(x) = 1$, $T_1(x) = x$ and

$$\int_{-1}^{+1} T_n(x) w(x) T_m(x) dx = \delta_{nm}$$
(32)

And for the Chebyshev polynomials of 2nd kind $U_n(x)$ analogously: $W(x) = \sqrt{1 - x^2}$, $w_i = \frac{\pi}{N+1} \sin^2 \left(\frac{i}{N+1} \pi \right)$, $x_i = \cos \left(\frac{i}{N+1} \pi \right)$

Gauß-Chebyshev quadrature in C++ for some f(x) on [a; b]

```
double gaussc (double const &a, double const &b, int const &N) {
   . . .
for (i = 0; i < N; ++i) {
  x[i] = \cos(((2. * (i+1) - 1.) * M_PI) / (double(N) *2.));
  w[i] = M_PI / double(N) * (b-a) / 2. ; // transform weights [-1;1]->[a;b]
}
sum = 0.;
for (i = 0; i < N; ++i) { // transform x in f(x), but not in sqrt()
  sum += f( x[i]*(b-a)/2. + (a+b)/2. ) * w[i] * sqrt(1.-x[i]*x[i]) ;
}
return sum :
}
```

 \rightarrow note that this is maybe not optimum for some function f(x), but should be rather used for functions of the form $f(x)/\sqrt{1-x^2}$

Most often: $W(x) \equiv 1 \rightarrow \underline{\text{Gaug-Legendre quadrature}}$ with Legendre Polynomials $P_n(x)$, which are the solutions to Legendre's differential equation (a special case of the Sturm-Liouville differential equation) \rightarrow Laplace equation in 3D for spherical coordinates \rightarrow QM

$$\frac{d}{dx}\left[(1-x^2)\frac{dP_n(x)}{dx}\right] + n(n+1)P_n(x) = 0$$
(33)

$$\rightarrow P_n(x) = \frac{1}{2^n n!}\frac{d^n}{dx^n} \left(x^2 - 1\right)^n$$
(Rodrigues' formula) (34)

so, $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, ... Then, the *n* weights (for the *n* points of the interval)

$$w_i = \frac{2}{(1 - x_i^2)[P'_n(x_i)]^2}$$
(35)

where x_i are the *n* zeros of $P_n(x)$

Gaussian quadrature V

Table: Exact values for Gauß-Legendre integration for n = 2, 3

$$\begin{array}{ccccc} n & P_n & P'_n & x_i & w_i \\ 2 & \frac{1}{2}(3x^2 - 1) & 3x & \pm \frac{1}{\sqrt{3}} & 1, 1 \\ 3 & \frac{1}{2}(5x^3 - 3x) & \frac{1}{2}(15x^2 - 3) & 0, \pm \sqrt{\frac{3}{5}} & \frac{8}{9}, \frac{5}{9}, \frac{5}{9} \end{array}$$

Alternatively, the *n* zeros of $P_n(x)$ can be computed, e.g., via Newton's method $(x_{k+1} = x_k - P(x_k)/P'(x_k))$, one may use the start approximation (i = 1, ..., n):

$$x_i \approx \cos\left(\frac{4i-1}{4n+2}\pi\right)$$
 (36)

Then the values of $P_n(x)$ and $P'_n(x)$ for Newton's method can be obtained via recursion:

$$nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)$$
(37)

$$\rightarrow P_n(x) = [(2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)]/n$$
(38)

$$(x^{2}-1)P_{n}'(x) = nxP_{n}(x) - nP_{n-1}(x)$$
(39)

$$\to P'_n(x) = (nxP_n(x) - nP_{n-1}(x))/(x^2 - 1)$$
(40)

Finally, the transformation from $t \in [-1; +1] \rightarrow x \in [a; b]$ can be done via the midpoint $\frac{a+b}{2}$

$$x_{i} = t_{i} \frac{b-a}{2} + \frac{a+b}{2}$$
(41)
$$w_{i,x} = w_{i,t} \frac{b-a}{2}$$
(42)

Alternatively, other mappings are possible, allowing for integration of improper integrals with the Gauß-Legendre quadrature

interval	midpoint	$x_i(t_i)$	W _{i,x}
$[0;\infty]$	а	$arac{1+t_i}{1-t_i}$	$\frac{2a}{(1-t_i)^2}w_{i,t}$
$[-\infty;+\infty]$	scale <i>a</i>	$arac{t_i}{1-t_i^2}$	$rac{a(1+t_i^2)}{(1-t_i)^2}w_{i,t}$
$[b;+\infty]$	a+2b	$\frac{a+2b+at_i}{1-t_i}$	$\frac{2(b+a)}{(1-t_i)^2}w_{i,t}$
[0; <i>b</i>]	ab/(b+a)	$\frac{ab(1+t_i)}{b+a-(b-a)t_i}$	$\frac{2ab^2}{(b+a-(b-a)t_i)^2}w_{i,t}$

Moreover, there exist other orthogonal polynomials useful for Gauß quadrature

interval	polynomials	W(x)
[-1;1]	Legendre	1
[-1; 1]	Chebyshev 1st kind	$\frac{1}{\sqrt{1-x^2}}$
[-1; 1]	Chebyshev 2nd kind	$\sqrt{1-x^2}$
(-1; 1)	Jacobi	$(1-t)^{lpha}(1+x)^{eta}, lpha, eta > -1$
[0; $+\infty$)	Laguerre	<i>e</i> ^{-x}
[0; $+\infty$)	Generalized Laguerre	$x^{lpha}e^{-x}, lpha > -1$
$(-\infty;+\infty)$	Hermite	e^{-x^2}

Gaussian quadrature IX

In general, the Gauß quadrature is constructed from orthogonal polynomials $p_n(x)$ with

$$\int_{a}^{b} p_{n}(x) W(x) p_{n'}(x) dx = \langle p_{n} | p_{n'} \rangle = \mathcal{N}_{n} \delta_{nn'}$$
(43)

where \mathcal{N}_n is a normalization constant. If we choose the roots x_i of $p_n(x) = 0$ and

$$w_{i} = \frac{-a_{n}\mathcal{N}_{n}}{p_{n}'(x_{i})\,p_{n+1}(x_{i})} \tag{44}$$

with $i = 1, \ldots, n$, then the error in the quadrature is

$$\int_{a}^{b} g(x) dx - \sum_{i=1}^{n} f(x_i) w_i = \frac{\mathcal{N}_n}{A_n^2(2n)!} f^{(2n)}(x_0)$$
(45)

where x_0 is some value in [a, b], A_n a coefficient of the x^n term in the polynomial $p_n(x)$, $a_n = A_{n+1}/A_n$, e.g., for the Legendre polynomials $a_n = (2n+1)/(n+1)$ and $\mathcal{N}_n = 2/(2n+1)$.

Gaussian quadrature X

Numerical integration of exp(-x) on [0, 1] with different methods and number of integration points. Note that for Simpson's rule N must be odd.

Gauß-Legendre quadrature with $W(x) \equiv 1$ is superior to simple methods with fixed integration step width. Gauß-Chebyshev is not optimal, as $W(x) = \frac{1}{\sqrt{1-x^2}}$

Romberg integration I

Ideally: choose required accuracy $\epsilon \to \text{know } n$ for Gaussian quadrature (e.g, from Eq. (45)). Unfortunately, usually impossible. Therefore: increase n until ϵ small enough, recalculate all $f(x_i)$ for new degree $n \to \text{disadvantage of Gaussian quadrature}$

Idea: trapezoid rule with subsequent calls with increasing n to refine until precision ϵ reached:

```
void trap (double const &a, double const &b, double &s, int const &n)
  . . .
if (n == 1) = 0.5 * (b-a) * (f(a)+f(b));
else {
 it = pow(2, (n-2));
 delx = (b-a) / double(it) ;
x = a + 0.5 * delx;
 sum = 0.;
for (int j=1 ; j <= it ; ++j) {
  sum += f(x); x += delx; }
 s = 0.5 * (s + (b-a) * sum / double(it));
}
```

For the trapezoid rule the approximation error (starting with $\frac{1}{n^2}$ has only even powers of $\frac{1}{n}$):

$$\int_{x_1}^{x_n} f(x) dx = h \left[\frac{1}{2} f_1 + f_2 \dots f_{n-1} + \frac{1}{2} f_n \right]$$

$$- \frac{B_2 h^2}{2!} (f'_n - f'_1) - \dots - \frac{B_{2k} h^{2k}}{(2k)!} (f_n^{(2k-1)} - f_1^{(2k-1)}) - \dots$$
(46)
(47)

If compute Eq. (47) (without the error terms) for n and get s_n and once more with 2n and get s_{2n} , then leading error term in 2nd call is 1/4 of error in 1st call, hence

$$s = \frac{4}{3}s_{2n} - \frac{1}{3}s_n \tag{48}$$

cancels leading error term, $1/n^4$ remains \rightarrow recovers Simpson's rule

Romberg integration III

Often better: trapezoid rule for different N (or $h = \frac{b-a}{N}$) + extrapolation for $h \rightarrow 0$ (cf. Richardson extrapolation) \rightarrow Romberg integration

calculate I(h_k) for series h_k
extrapolate (h²_k, I(h_k)) with polynomial in h²
e.g., ∫¹₀ e^{-x}dx

Note that polynomial $(a + bh^2)$ in h^2 is plotted, although *h* is used for the trapezoid rule \rightarrow extrapolate polynomial in h^2

 \rightarrow trapezoid rule ideal: expansion in even powers of h (each refinement $\rightarrow 2$ orders accuracy) and $I(h) = h(\frac{1}{2}f(a) + \sum_{j=1}^{N-1} f(x_j) + \frac{1}{2}f(b)) \rightarrow$ recycle already calculated nodes for h/2

Sometimes numerical derivative needed, e.g., for minimization algorithms, Newton method for root finding, so

$$f' = \frac{df(x)}{dx} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(49)

Problem: for $h \to 0 \to f(x+h) \approx f(x)$

 \rightarrow subtractive cancelation for numerator

& machine precision limit for denominator

often better (e.g., for large noise): analytic approximation of function (see, e.g., \rightarrow interpolation) and its derivative

Numerical differentiation II

<u>Forward difference</u> Taylor series with step size *h*

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \dots$$
(50)

 \rightarrow forward difference by solving Eq. (50) for f'

$$f'_{\rm fd}(x) := \frac{f(x+h) - f(x)}{h} \simeq f'(x) + \frac{h}{2}f''(x) + \dots$$
(51)

approximate function by straight line through two points, error $\sim h$, e.g, consider $f(x) = a + bx^2$

$$f'_{\rm fd}(x) pprox rac{f(x+h)-f(x)}{h} = 2bx+bh$$
 vs. exact $f'=2bx$ (52)

ightarrow only good for small $h \ll 2x$

Numerical differentiation III

<u>Central difference</u> modify Eq. (49) by stepping forward h/2 and backward h/2

$$f'_{cd} := \frac{f(x + \frac{h}{2}) - f(x - \frac{h}{2})}{h}$$
(53)

So, if we insert Taylor series for $f(x + \pm \frac{h}{2})$ in to Eq. (53)

$$f'_{cd} := \frac{\left[f(x) + \frac{h}{2}f'(x) + \frac{h^2}{8}f''(x) + \right] - \left[\dots\right]}{h} \simeq f'(x) + \frac{1}{24}h^2f^{(3)}(x) + \dots$$
(54)

 \rightarrow all terms with odd power of h cancel \rightarrow accuracy is of order h^2 if function well behaved, i.e., $f^{(3)}h^2/24 \ll f^{(2)}h/2 \rightarrow \text{error}$ for central difference method \ll forward difference method, e.g., for $f(x) = a + bx^2$

$$f'_{cd}(x) \approx \frac{f(x+\frac{h}{2}) - f(x-\frac{h}{2})}{h} = 2bx$$
 vs. exact $f' = 2bx$ (55)

Numerical differentiation IV

Numerical differentiation V

Extrapolated difference

try to make also h^2 vanish by algebraic exatrapolation

$$f'_{\mathsf{ed}}(x) \simeq \lim_{h \to 0} f'_{\mathsf{cd}} \tag{56}$$

 \rightarrow need additional information for extrapolation by central difference with step size h/2:

$$f'_{\rm cd}(x,h/2) = \frac{f(x+h/4) - f(x-h/4)}{h/2} \approx f'(x) + \frac{h^2 f^{(3)}(x)}{96} + \dots$$
(57)

We elminate linear and quadratic error term by forming

$$f'_{ed}(x) := \frac{4\frac{f(x+h/4) - f(x-h/4)}{h/2} - \frac{f(x+h/2) - f(x-h/2)}{h}}{3}$$
(58)

$$\approx f'(x) - \frac{h^4 f^{(5)}(x)}{4 \cdot 16 \cdot 120} + \dots$$
(59)

for h = 0.4 and $f^{(5)} \simeq 1 \rightarrow \text{approximation error close to } \epsilon_m$. To minimize subtractive cancelation write Eq. (58) as

$$f'_{\rm ed}(x) = \frac{1}{3h} \left(8 \left[f\left(x + \frac{h}{4}\right) - f\left(x - \frac{h}{4}\right) \right] - \left[f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) \right] \right)$$
(60)

Error analysis

 \rightarrow usually decreasing *h* reduces approximation error but increases roundoff error (e.g., more calculation steps needed), moreover: subtractive cancelation. Hence, difference

$$f' \approx \frac{f(x+h) - f(x)}{h} \approx \frac{\epsilon_{\rm m}}{h} \approx \epsilon_{\rm ro}$$
 (61)

and

$$\epsilon_{\text{approx}}^{\text{fd}} \approx \frac{f^{(2)}h}{2}, \qquad \epsilon_{\text{approx}}^{\text{cd}} \approx \frac{f^{(3)}h^2}{24}$$
 (62)

Therefore $\epsilon_{\rm ro} \approx \epsilon_{\rm approx}$ for

Numerical differentiation VIII

$$\frac{\epsilon_{\rm m}}{h} \approx \epsilon_{\rm approx}^{\rm fd} = \frac{f^{(2)}h}{2}, \qquad \frac{\epsilon_{\rm m}}{h} \approx \epsilon_{\rm approx}^{\rm cd} = \frac{f^{(3)}h}{24}$$
(63)
$$\Rightarrow h_{\rm fd}^2 = \frac{2\epsilon_{\rm m}}{f^{(2)}} \qquad \Rightarrow h_{\rm cd}^3 = \frac{24\epsilon_{\rm m}}{f^{(3)}}$$
(64)

for $f' \approx f^{(2)} \approx f^{(3)} \simeq 1$ (e.g., $\exp(x)$, $\cos(x)$) and double precision ($\epsilon_m \approx 10^{-15}$):

$$h_{\rm fd} \approx 4 \times 10^{-8}$$
 & $h_{\rm cd} \approx 3 \times 10^{-5}$ (65)

$$\Rightarrow \epsilon_{\rm fd} \simeq \frac{\epsilon_{\rm m}}{h_{\rm cd}} \simeq 3 \times 10^{-8}, \qquad \Rightarrow \epsilon_{\rm cd} \simeq \frac{\epsilon_{\rm m}}{h_{\rm cd}} \simeq 3 \times 10^{-11} \tag{66}$$

 \rightarrow can choose 1000× larger *h* for *central difference* \rightarrow error is 1000× smaller for *central difference*

Numerical differentiation IX

Second derivative

starting from first derivative with central difference method

$$f'(x) \simeq \frac{f(x+h/2) - f(x-h/2)}{h}$$
 (67)

the 2nd derivative $f^{(2)}(x)$ is central difference from 1st derivative

$$f^{(2)}(x) \simeq \frac{f'(x+h/2) - f'(x-h/2)}{h},$$

$$\simeq \frac{[f(x+h) - f(x)] - [f(x) - f(x-h)]}{h^2}$$

$$\simeq \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$
(68)
(69)
(70)

 \rightarrow Eq. (69) better in terms of subtractive cancelation

H. Todt (UP)

Landau, R. H., Páez, M. J., & Bordeianu, C. C., eds. 2007, Computational Physics (Wiley-VCH)