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Differential equations
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Types of differential equations I

One can classify differential equations regarding their

order, so the degree of the highest derivative. General form of a first-order differential
equation:

dy

dt
= f (y , t) (1)

for any arbitrary function f , e.g., dy
dt = 2ty8 − t5 + sin(y). A second-order differential

equation has the form:

d2y

dt2
+ λ

dy

dt
= f (t,

dy

dt
, y) (2)

and so on.
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Types of differential equations II

Reduction
By introducing auxillary variables/functions, every higher order differential equation can be
reduced to a set of first-order differential equations

y (m)(x) = f (x , y(x), y (1)(x), . . . , y (m−1)(x)) (3)
introduce functions z

→ z1(x) := y(x) (4)

z2(x) := y (1)(x) (5)
... (6)

zm(x) := y (m−1)(x) (7)

→ z ′ =

 z ′1
...
z ′m

 =

 z2
...

f (x , z1, z2, . . . , zm)

 (8)
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Types of differential equations III

One can distinguish

ordinary diffential equations (ODE), where only one independent variable is explicitly
involved (typically time or location), e.g., hydrostatic equation for P(r):

dP

dr
= −ρ(r) g(r) (9)

partial differential equations (PDE), where derivatives with respect to at least two
variables occur, e.g., Poisson equation:

∆ρ =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ρ(x , y , z) = f (x , y , z) (10)

→The theory and (numerical) solution of PDEs is more complicated than for ODE.

H. Todt (UP) Computational Astrophysics SoSe 2024, 5.6.2024 5 / 24



Types of differential equations IV

Moreover, there are the classes of

linear differential equations: only the first power of y or dny/dtn occurs, e.g. wave
equation: (

1
c2

∂

∂t
−∆

)
u = 0 (11)

→ special property: law of linear superposition, linear combinations of solutions are also
solutions:

u2(x , y , z , t) = au0(x , y , z , t) + bu1(x , y , z , t) (12)

→ unperturbed superposition of waves
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Types of differential equations V

nonlinear differential equations: contain higher powers or other functions of y or dny/dtn,
e.g.:

dθ2

dt2
=

l

g
sin θ (13)

→ clear: linear combinations of solutions are not automatically solutions too, e.g.

dy

dt
= λy(t)− λ2y2(t) (14)

y(t) =
a

1 + be−λt
one solution (15)

y1(t) =
a

1 + be−λt
+

c

1− de−λt
not a solution (16)

→ nonlinear differential equations in general became feasible with the rise of computers
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Boundary values I

As general solution of (ordinary) differential equation contains arbitrary constant per order,
problems involving differential equations can be characterized by the type of conditions:

1 initial values/conditions must be given: constant for 1st order differential equation (usually
time-dependent) fixed by giving y(t) for some time t0, so giving y0 = y(t0); for 2nd order
by giving additionaly y ′(t0) and so on (Note, that we solve usually for t > t0, but this is
not a requirement), e.g., Kepler problem

~v(t) = ~̇r(t) & ~a(t) = ~̇v(t) = ~FG(r)/m (17)
x(t0) = x0, y(t0) = 0; vx(t0) = 0, vy (t0) = vy ,0 (18)

For the initial value problem (Cauchy problem), the theorem by Picard-Lindelöf guarantees
a unique solution:
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Boundary values II

Existence and uniqueness of the solution for the initial value problem

y ′ = f (y , x), y(x0) = y0 (19)

If f is continuous on the stripe S := {(x , y)|a ≤ x ≤ b, y ∈ Rn} with finite a, b and a constant
L, such that

||f (x , y1)− f (x , y2)|| ≤ L||y1 − y2|| (20)

for all x ∈ [a, b] and for all y1, y2 ∈ Rn (Lipschitz continuous), then exists for all x0 ∈ [a, b] and
for all y0 ∈ Rn a unique function y(x) for x ∈ [a, b] with

1 y(x) is continuous and continuously differentiable for x ∈ [a, b] ;

2 y ′(x) = f (x , y(x)) for x ∈ [a, b] ;

3 y(x0) = y0
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Boundary values III

Note that the Lipschitz condition (bounded slope) of f (y , x) is required for uniqueness,
e.g., y ′(x) =

√
|x | with y(0) = 0 is fulfilled by y1(x) ≡ 0 and also by y2(x) = x2

4 , that is
because f ′(y , x) = 1√

|x |
and hence limx→ 0 f

′ =∞.

Without Lipschitz condition the Peano existence theorem guarantees at least the existence
of a solution.

Proof concept
Integrating Eq. (19) gives a fixed point equation:

y(x)− y(x0) =

∫ x

x0

f (s, y(s))ds (21)

with Picard-Lindelöf iteration

φ0(x) = y0 and φk+1 = y0 +

∫ x

x0

f (s, φk(s))ds (22)
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Boundary values IV

Example: Picard iteration
For the Cauchy problem

y ′(x) = 1 + y(x)2, y(x0) = y(0) = 0 (23)
φ0(x) = 0 (24)

φ1(x) = 0 +

∫ x

0
(1 + 02)ds = x (25)

φ2(x) = 0 +

∫ x

0
(1 + s2)ds = x +

1
3
x3 (26)

→Taylor series expansion of y(x) = tan(x)

so following Banach fixed point theorem φk converges uniquely to the solution y(x). The
existence of y(x) (Peano) is proven by constructing a piecewise continuous function with
help of the Euler method (polygonal curve) that converges uniformly for ∆x → 0.
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Boundary values V

2 boundary values/conditions can be given, (additionally to initial conditions) to restrict
further the solutions, i.e., constrain it to fixed values at the boundaries of the solution
space, usually for 2nd order differential equation

u′′(x) = f (u, u′, x) (27)

where u or u′ is given at boundaries, by transformation, e.g.,

x ′ = (x − x1)/(x2 − x1) (28)

at x = 0 and x = 1. Then → 4 possible types of boundary conditions
1 u(0) = u0 and u(1) = u1
2 u(0) = u0 and u′(1) = v1
3 u′(0) = v0 and u(1) = u1
4 u′(0) = v0 and u′(1) = v1
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Boundary values VI

Usually: reduce to set of 1st order differential equations and start integration with given
u(0) and u′(0). But for boundary-value problem: only u(0) or u′(0) given, → not
sufficient for any initial-value algorithm

Example: Boundary values
First two equations of stellar structure (e.g., for white dwarf)

∂r

∂m
=

1
4πr2ρ

mass continuity (29)

∂P

∂m
= −G M

4πr4 hydrostatic equilibrium (30)

+ equation of state P(ρ) (e.g., ideal gas P = RTρ/µ), and boundary values

center m = 0 : r = 0 (31)
surface m = M : ρ = 0 → P = 0 (32)

→ solve for r(m), specifically for R∗ = r(m = M∗)
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Boundary values VII

3 eigenvalue problems: solution for selected parameters (λ) in the equations; usually even
more complicated and solution not always exist, sometimes trial-and-error search necessary.
E.g.,

u′′ = f (u, u′, x , λ) (33)

for eigenvalue λ plus a set of boundary conditions. Eigenvalue λ can only have some
selected values for valid solution.
E.g., Schrödinger equation for particle confined in a potential:
eigenfunctions →wavefunction φk ;
eigenvalues → discrete energies Ek → Ĥφk = Ekφk
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Boundary values VIII

Eigenvalue problem: Stationary elastic waves
Displacement u(x) by

u′′ = −k2u (34)

Allowed values of wavevector k = ω/c → eigenvalues of the problem
both ends fixed: u(0) = u(1) = 0 or one end fixed, other end free: u(0) = 0 and u′(1) = 0.
Fortunately, analytical solutions:

un(x) =
√
2 sin(kn x) & kn = nπ n = ±1,±2, . . . (35)

Moreover, complete solution of longitudinal waves along elastic rod: linear combination of all
eigenfunctions with their initial solutions (fixing cn)

u(x , t) =
∞∑

n=−∞
cnun(x)e inπct (36)
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The shooting method I

Simple method for boundary-value and eigenvalue problems: shooting method (origin from
artillery), cf. Pang (1997)
e.g., for boundary-value problem u′′ = f (u, u′, x) with y1 ≡ u and y2 ≡ u′

dy1

dx
= y2 (37)

dy2

dx
= f (y1, y2, x) (38)

plus boundary conditions, e.g., u(0) = y1(0) = u0 and u(1) = y1(1) = u1.
Idea: introduce adjustable parameter δ, so that we have an initial value problem. E.g.,
u′(0) = δ → together with given u(0) = u0; integrate for given intial values up to x = 1 with
result u(1) = uδ(1), so that

F (δ) = uδ(1)− u1
!

= 0 (39)

→ use root search algorithm to determine (approximative) δ
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The shooting method II

Shooting method for boundary value problem (Stoer & Bulirsch 2005)

u′′(x) =
3
2
u2, u(0) = 4, u(1) = 1 (40)

set y1 ≡ u and y2 ≡ u′ y1(0) = 4, y2(0) = δ = −1, . . .− 70 (41)
→ y1,k+1 = y1,k + ∆x · y2,k (42)

y2,k+1 = y2,k + ∆x · 3./2. ∗ y2
1,k (43)

plot F (δ) = y1,n − u(1), roots give
missing initial values u′(0)
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The shooting method III

Similarly, for given

u′(0) = v0 and u(1) = u1 → u(0) = δ, find root of F (δ) = uδ(1)− u1

u′(0) = v0 and u′(1) = v1 →F (δ) = u′δ(1)− v1

Moreover, for eigenvalue problem:

if u(0) = u0 and u(1) = u1 given, start integration with u′(0) = δ with small δ

search root F (λ) = uλ(1)− u1 → approximated eigenvalue λ and eigenvector from
normalized solution uλ(x) → δ automatically modified to be correct u′(0) through
normalization of eigenfunctions
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Direct solution of 2nd order ODE I

Although, always possible → reduce 2nd order ODE to set of coupled 1st order ODEs, however,
sometimes direct solution has advantages

Example: Radiative Transfer Equation
For the 1d case:

dI±

dτ
= ±(S − I±), dτ = κdz (44)

with inward (−) and outward (+) intensities I = dE/dΩ dA dt dν, optical depth τ and source
function S = η/κ.
Introducing Feautrier variables (Schuster 1905; Feautrier 1964):

u =
1
2

(I+ + I−) (intensity-like) (45)

v =
1
2

(I+ − I−) (flux-like) (46)
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Direct solution of 2nd order ODE II

we get system of two coupled 1st order ODE:

du

dτ
= v and

dv

dτ
= u − S (47)

or, combining them:

d2u

dτ2 = u − S (48)

discretization on a τ grid (τi ) with numerical derivatives (see below):

d2u

dτ2

∣∣∣∣
τi

≈
du
dτ

∣∣
τi+1/2

− du
dτ

∣∣
τi−1/2

τi+1/2 − τi−1/2
≈

ui+1−ui
τi+1−τi −

ui−ui−1
τi−τi−1

1
2(τi+1 − τi )− 1

2(τi − τi−1)
(49)
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Direct solution of 2nd order ODE III

→ set of linear equations for ui for i = 2, . . . , imax − 1:

−Aiui−1 + Biui − Ciui+1 = Si (50)

with the coefficients

Ai =

(
1
2

(τi+1 − τi−1)(τi − τi−1)

)−1

(51)

Ci =

(
1
2

(τi+1 − τi−1)(τi+1 − τi )
)−1

(52)

Bi = 1 + Ai + Ci (53)
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Direct solution of 2nd order ODE IV

→ tridiagonal matrix, efficiently solvable by standard linear algebra solvers (e.g., Gauß-Seidel
elimination)



B1 −C1
−A2 B2 −C2
...

−Ai Bi −Ci

...
Bimax −Cimax

 ◦


u1
u2
...
ui
...

uimax

 =



W1
W2
...
Wi

...
Wimax

 (54)

Note: Wi = Si exept for i = 1 and imax → boundary conditions
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Direct solution of 2nd order ODE V

Advantage of Feautrier scheme

direct solution of 2nd order ODE saves memory

at large optical depths I+ ≈ I− → radiative flux ∼ I+ − I− inaccurate because of roundoff
error, Feautrier scheme uses instead averaged quantities u, v for higher accuracy
(→ stability in an iterative scheme for S(I ), τ(I ))
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