Computational Astrophysics I: Introduction and basic concepts

Helge Todt

Astrophysics
Institute of Physics and Astronomy
University of Potsdam

SoSe 2025, 30.4.2025

Wwers,,
SO 2,

-]
2. D
. ‘PQ'
. am

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 1/98

C/C++ Programming

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 2/98

Programming languages |

One can, e.g., distinguish:

scripting languages
@ bash, csh — Unix shell
@ Perl, Python
e IRAF, IDL, Midas — especially for data reduction in astrophysics

compiler-level languages
e C/C+4++ — very common, therefore our favorite language

@ Fortran — very common in astrophysics, especially in radiative transfer

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 3/98

Programming languages |l

scripting language compiler-level language

examples shell (bash, tcsh), Perl, C/C++, Fortran, Pascal,
Mathematica, MATLAB, ...

source code directly executable translated to
machine code, e.g.,
0x90 — no operation (NOP)

runtime interpreter runs as a pro- error handling difficult

behavior gram — full control over — task of the program-
execution — error messages, mer, often only crash
argument testing

speed usually slow very fast by optimization
— analysis tools — simulations, number crunching

— moreover, also bytecode compiler (JAVA) for virtual machine,
Just-in-time (JIT) compiler (JavaScript, Perl)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 4/98

C/C++ |

e Cis a procedural (imperative) language
e C++ is an object oriented extension of C with the same syntax

o C++ is because of its additional structures (template, class) > C

Basic structure of a C++ program

#include <iostream>

using namespace std ;

int main () {
instructions of the program ;
// comment
return O ;

every instruction must be finished with a [] (semicolon) !

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 5/98

C/C++ I

Compiling a C++ program:

source file
.cpp, .C J

4

compiler + linker
.0, .80, .a

U

executable program
a.out, program J

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 6/98

C/C++ I

Command for compiling + linking:

g++ -0 program program.cpp J

(GNU compiler for C++)
@ only compiling, do not link:
g++ -c program.cpp
creates program.o (object file, not executable)

@ option -o name defines a name for a file that contains the executable program, otherwise
program file is called: a.out

the name of the executable program can be arbitrarily chosen

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 7/98

C/C++ IV

Task 2.1 Compiling

Use a text editor to create a file |nothing.cpp |, which contains only the empty function

‘ int main(){}| compile it and execute the resulting program.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 8/98

Simple program for output on screen |

Example: C4++ output via streams

#include <iostream>
using namespace ::std ;
int main () {
cout << endl << "Hello world!" << endl ;

return O ; // all correct

.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 9/98

Simple program for output on screen |l

@ <iostream> ... is a C++ library (input/output)
e main() ... program (function)
@ return O ... returns the return value 0 to main (all ok)

@ source code can be freely formatted, i.e., it can contain an arbitrary number of spaces and
empty lines (white space) — useful for visual structuring

@ comments are started with // - everything after it (in the same line) is ignored,
C has only /* comment */ for comment blocks

@ cout ... output on screen/terminal (C++)
@ << ... output/concatenate operator (C++)
@ string "Hello world!" must be set in quotation marks
@ endl ... manipulator: new line and stream flush (C++)

@ a block several instructions which are hold together by curly braces

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 10/98

Simple program for output on screen |ll

Task 2.2 Hello world!

Use a text editor to create a file |hello.cpp |, which prints out "Hello World!" in the terminal,

compile it and execute the resulting program.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 11 /98

Functions |

C/C++ is a procedural language
The procedures of C/C++ are functions. J

@ Main program: function with specific name main() {3}

@ every function has a type (for return), e.g.: int main (){}

@ functions can get arguments by call, e.g.:
int main (int argc, char *argv[]){}

e functions must be declared before they can be called in the main program,
e.g., void swap(int &a, int &b) ;
or included via a header file:
#include <cmath>

@ within the curly braces { }, the so-called function body, is the definition of the function
(what shall be done how), e.g.:
int main () { return 0 ; }

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 12 /98

Functions Il

#include <iostream>
using namespace std ;

float cube(float x) ;

int main() {

float x = 4. ;
cout << "The cube of x is: " << cube(x) << endl ;
return O ;

float cube(float x) {
return x * X * X ;

.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 13 /98

Functions IlI

Task 2.3 Calling a function

Use a text editor to create a file ‘ cubemain.cpp ‘ which contains the source code from the
previous slide (copy & paste).

@ Compile it and execute the resulting program.

@ Modify the source code so that the program reads in a number from the user with the help

of cin:
float x ;
cout << "type in a number: " ;

cin >> x ;

.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 14 /98

Functions |V

inline functions

@ usually for compiled program: functions as code sections with own address; calling a
function = jump to this address, pass arguments — overhead for argument passing,
address for jumping back from function (return) must be stored:

nm cubemain | grep " T "
00000000004008b7 T main
00000000004007de T _start
000000000040090d T _Z4cubef

— calling many small functions is expensive

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 15/98

@ solution: use keyword inline — compiler replaces function call by function code, each
time the function is called — increases size of compiled code

inline float cube(float x) {
return x * x * x ;

— definition must be in the same source text file where function is called
— not all functions can be inlined by the compiler

@ methods defined in class headers are automatically inline

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 16 /98

The cmath-library |

In C/C++ only basic mathematical operations +,-,*,/,% available.
By including the cmath-library in the beginning:
#include <cmath>

many mathematical functions become available:

cos(); sin(); tan();

asin(); atan(); acos();

cosh(); sinh(); tanh();

exp(); fabs(); abs();

log(); ... natural logarithm (base e)
logl0(); ... decadic logarithm (base 10)
pow(x,y); ... x¥f

sqrt) ; N

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 17 /98

The cmath-library I

Moreover, there are also predefined mathematical constants:

M_E ... €
M_PI T
MPI2 ... 7/
MPI_ 4 ... 7/4
M2 PI ... 2=
M_SQRT2 ... +V2

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 18 /98

@ A variable is a piece of memory.

e in C/C++ data types are explicit and static

We distinguish regarding visibility (“scope”):

@ global variables — declared outside of any function, before main

@ local variables — declared in a function or in a block { } , only there visible
... regarding data types — intrinsic data types:

@ int —integer, e.g., int n = 3 ;

e float — floats (floating point numbers),
e.g., float x = 3.14, y = 1.2E-4 ;

@ char — characters, e.g., char a_character ;

@ bool — logical (boolean) variables, e.g., bool btest = true ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 19 /98

Integer data types |

Integer numbers are represented exactly in the memory with help of the binary number system
(base 2), e.g.

13=1-224+1-224+0-2'4+1-2°=[1]1]0]1]' (binary)

In the assignment
a=3

3 is an integer literal (literal constant). Its bit pattern (3 =120+ 1.2 =[1]1]) is inserted
at the corresponding positions by the compiler.

Ldoesn’t correspond necessarily to the sequential order used by the computer — “Little Endian”: store least

significant bit first, so actually: 1011

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 20/98

Integer data types |l

on 64-bit systems

int

unsigned int

long

unsigned long

compiler reserves 32 bit (= 4 byte) of memory
“1bit for sign” (see below) and

231 = 2147483648 values (incl. 0): — range:
int = —2147483648... + 2147483647

32bit, no bit for sign — 232 values (incl. 0)
unsigned int =0...4294967 295

on 64 bit systems: 64 bit (= 8 byte),
“1bit for sign” —9.2 x 1018 ... 9.2 x 10 (quintillions)

64 bit without sign: 0 ... 1.8 x 101°

and also: char (1 byte), smallest addressable (!); short (2 byte) ; long long (8 bytes)

H. Todt (UP)

Computational Astrophysics SoSe 2025, 30.4.2025 21/98

Integer data types IlI

Two's complement

Table: Representation: unsigned value (0s), value
and sign (sig), two's complement (2'S) for a nibble

(/2 byte)
binary | unsigned | signed | 2'S
0000 0 0 0
0001 1 1 1
0111 7 7 7
1000 8 -0 -8
1001 9 -1 -7
1111 15 | -7 |-

Disadvantages of representation as value and
sign:

3 0 and -0; Which bit is sign? (— const
number of digits, fill up with 0s);

Advantage of 2'S:

negative numbers’ always with highest bit=1

—cf. +1 4+ —1 bitwise for value & sign vs. 2'S

Binary arithmetic: 1 +1=2

0001
+ 0001
= 0010

THow to write negative numbers in 2'S? — start with corresponding positive number, invert all bits, and add 1

ignoring any overflow

H. Todt (UP)

Computational Astrophysics

SoSe 2025, 30.4.2025 22 /98

Floating point data types |

Floating point numbers are an approximate representation of real numbers.
Floating point numbers can be declared via, e.g.,:

float radius, pi, euler, x, y ;

double radius, z ; J
Valid assignments are, e.g.,:
x = 3.0 ;
y = 1.1E-3 ;
z=x/79;
H. Todt (UP)

Computational Astrophysics SoSe 2025, 30.4.2025 23 /98

Floating point data types Il

@ representation (normalization) of floating point numbers are described by standard IEEE

754 :
x=s-m-b® (1)
with base b = 2 (IBM Power6: also b = 10), sign s, and normalized significand (mantissa)
m, bias
e So for 32 Bit (Little Endiant), 8 bit exponent, 23 bit mantissa:
bits
31
EIE|IEEIEE
exponent mantissa
sign

(" least significant bit at start address, read each part: —)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 24 /98

Floating point data types Il

@ mantissa is normalized to the form (e.g.)
1.0100100 x 2%
i.e. with a 1 before the decimal point. This 1 is not stored, so m = 1.f

Moreover, a bias (127 for 32 bit, 1023 for 64 bit) is added to the exponent (results in
non-negative integer)

Example: Conversion of a decimal number to IEEE-32-Bit

172.625 base 10
10101100.101 x 2° base 2 (0.625 =1-1/2+0-1/4+1-1/8)
1.0101100101 x 2" base 2 normalized
add bias of 127 to exponent = 134 =127+ ... +1-224+1.21 +0-20
0 10000110 010110010100000000000000

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 25 /98

Floating point data types IV

@ single precision (32bit) float: exponent 8bit, significand 23 bit
—126 < e < 127 (basis 2)
—~107% ... 10%8

digits: 7-8 (= log223t! = 24l0g2)

e for 64 bit (double precision) — double: exponent 11 bit, significand 52 bit
—1022 < e <1023 (basis 2)
—~ 107324 10308

digits: 15-16 (= log 252+1)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 26 /98

Floating point data types V

some real numbers cannot be presented exactly in the binary numeral system, e.g.:
0.1 ~ 1.10011001100110011001101 x 2* (2)

— cf. 1/3 in decimal: all fractions with denominator not product of prime factors (2,5) of the
base 10, e.g., 1/3, 1/6, ...
In binary numeral system only one prime factor: 2

Do not compare two floating point numbers blindly for equality (e.g., 0.362 * 100.0 ==
36.2), but rather use an accuracy limit:

abs(x - y) <= eps, better: relative error

abs(1-y/x) <= eps

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 27 /98

Floating point data types VI

Floating point arithmetic

Subtraction of floating point numbers

consider 1.000 x 2% — 1.001 x 2! (only 3 bit mantissa)
— bitwise subtraction, requires same exponent

1.0000000 x2°
— 0.0001001 x25

0.1110111 x25 infinite precision
1.110111 x2% shifted left to normalize
1.111 x2* rounded up, as last digits > 1/2 ULP!

Tunit in the last place = spacing between subsequent floating point numbers

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 28 /98

Floating point data types VII

Properties of floating point arithmetic (limited precision):

@ loss of significance / catastrophic cancellation: occurs for subtraction of almost equal
numbers

Example for loss of significance

m — 3.141 = 3.14159265 . .. — 3.141 with 4-digit mantissa;
maybe expected: = 0.00059265 ...~ 5.927 x 10~*;
in fact: 1.0000 x 1073, because 7 is already rounded to 3.142

@ absorption (numbers of different order of magnitude): addition of subtraction of a very
small number does not change the larger number

Example for absorption

for 4-digit mantissa: 100 + 0.001 = 100:
1.000 x 102 4 1.000 x 103 = 1.000 x 102 + 0.00001 x 10% = 1.000 x 102 + 0.000 x 10% =
1.000 x 102, same for subtraction

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 29 /98

Floating point data types VIII

o distributive and associative law usually not fulfilled, i.e. in general

(x+y)+tz#x+(y+2) (3)
(x-y)-z#x-(y-2) (4)
x-(y+2z)#(x-y)+(x-2) (5)
(x+y) z#(x 2)+(y 2) (6)

e solution of equations, e.g., (1 + x) = 1 for 4-bit mantissa solved by any x < 10™* (see
absorption) — smallest float number e with 1 + € > 1 called machine precision

Multiplication and division of floating point numbers:
mantissas multiplied/divided, exponents added/subtracted
— no cancellation or absorption problem

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 30/98

Floating point data types IX

Guard bit, round bit, sticky bit (GRS)
@ in floating point arithmetic: if mantissa shifted right — loss of digits

@ therefore: during calculation 3 extra bits (GRS)
Guard bit: 1st bit, just extended precision
Round bit: 2nd (Guard) bit, just extended precision (same as G)
Sticky bit: 3rd bit, set to 1, if any bit beyond the Guard bits non-zero, stays then 1(!)

— sticky

@ example
GRS
Before 1st shift: 1.11000000000000000000100 0 O O
After 1 shift: 0.11100000000000000000010 0 0 O
After 2 shifts: 0.01110000000000000000001 0 0 O
After 3 shifts: 0.00111000000000000000000 1 0 O
After 4 shifts: 0.00011100000000000000000 0 1 O
After 5 shifts: 0.00001110000000000000000 0 O 1
After 6 shifts: 0.00000111000000000000000 0 O 1
After 7 shifts: 0.00000011100000000000000 0 O 1
After 8 shifts: 0.00000001110000000000000 0 O 1

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 31/98

Floating point data types X

GRS bits — possible values and stored values

extended sum stored value why

1.0100000 1.0100 truncated because of GR bits
1.0100001 1.0100 truncated because of GR bits
1.0100010 1.0100 rounded down because of GR bits
1.0100011 1.0100 rounded down because of GR bits
1.0100100 1.0100 rounded down because of S bit
1.0100101 1.0101 rounded up because of S bit
1.0100110 1.0101 rounded up because of GR bits
1.0100111 1.0101 rounded up because of GR bits

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 32/98

Floating point data types Xl

IEEE representation of 32 bit floats:

Number name sign, exp., f value

normal 0<e<255 (—1)5 x 267127 x 1.f
subnormal e=0,f#0 (—1)* x 27126 x 0.f
signed zero (£0) e=0,f =0 (-1)°* x 0.0

400 s=0,e=255f=0 +INF

—00 s=1,e=255f=0 -INF

Not a number e=255,f#0 NaN

o if float > 2128 — overflow, result may be NaN or unpredictable
o if float < 27128 — underflow, result is set to 0
If not default by compiler: enable floating-point exception handling (e.g., -fpe-all0 for ifort)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 33 /98

Automatic type conversion

In C/C++ many data type conversions are already predefined, which will be invoked
automatically:

int main () {
int a = 3 ;
double b ;
b=a; // implicit conversion of a to double
b=1. /3 ; // implicit conversion of 3 to double
return 0.2 ; // implicit conversion of 0.2 to integer O

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 34 /98

Explicit type conversions (casts) |

Moreover, a type conversion/casting can be done explicitly:

int main () {
int a = 3 ;

double b ;
b = (double) a ; // type cast
return O ;
} .

@ obviously possible: integer <> floating point
@ but also : pointer (see below) <+ data types

@ Caution: For such C casts there is no type checking during runtime!

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 35/98

Explicit type conversions (casts) Il

The better way: use the functions of the same name for type conversion

int i, k = 3 ;
float x = 1.5, y ;
i = int(x) + k ;
y = float(i) + x ;

Task 2.4 Integer conversion
What is the result for i and y in this example above?

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 36 /98

Logical variables

bool b ; }

intrinsic data type, has effectively only two different values:

bool btest, bdo ;

bdot = false ; // =0

btest = true ; // =1

but also:

btest = 0. ; // = false

btest = -1.3E-5 ; // = true J

Output via cout yields 0 or 1 respectively. By using cout << boolalpha << b ; is also
possible to obtain £ and t for output.

Note: minimum addressable piece of memory is 1 byte — bool needs more memory than necessary

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 37/98

Character variables |

char character ; J

are encoded as integer numbers:

char character = 'A' ;
char character 65 ; J

mean the same character (ASCII code)
Assignments of character literals to character variables require single quotation marks ':

char yes = 'Y'; J

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 38/98

Character variables Il
Character input

char character ;
int number ;

cout << "Character input: " ;
cin >> character ;
cout << "character is: " << character
<< " corresponds to " << int(character) << endl;
cout << "Number input: " ;

cin >> number ;
cout << "Number " << number
<< " corresponds to " << char(number) << endl;

Task 2.5 Characters

Complete this code example to a C++ program, compile and execute it. Which (decimal)
ASCII code have }, Y and 17 Which character has the code 977

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 39/98

Execution control - for-loops |

Executable control constructs modify the program execution by selecting a block for repetition
(loops, e.g., for) or branching to another statement (conditional, e.g., if/ unconditional, e.g.,
goto).

Repeated execution of an instruction/block:

for loop

for (int k=0 ; k<6 ; ++tk) sum = sum + 7 ;

// also possible: non-integer loop variable -> not recommended
for (float x = 0.7 ; x < 17.2 ; x =x + 0.3) {

y=ax*xx+b;

cout << x << " " << y << endl;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 40 /98

Execution control - for-loops I

Structure of the loop control (header) of the for loop:

There are (up to) three arguments, separated by semicolons:

o

2]

initialization of the loop variable (loop counter), if necessary with declaration, e.g.:
int k = 0 ;Jf
— is executed before the first iteration
condition for termination of the loop, usually via arithmetic comparison of the loop
variable, e.g.,
k < 10 ;
is tested before each iteration
expression: incrementing/decrementing of the loop variable, e.g.,
++k or --kork += 3
is executed after each iteration

Tinterestingly also: int k = 0, j = 1;, i.e. multiple loop variables of same type

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 41 /98

Increment operators

sum += a
sum + a

— sum

++X
— x = x + 1 (increment operator)

— x = x - 1 (decrement operator)

Note that there is also a post increment/decrement operator: x++, x--, i.e. incrementing/decrementing is done

after any assignment, e.g., y = x++.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 42 /98

Logical operators | - Comparisons/inequalities

— return either(!) true or false:

a > b greater than

a >= b greater than or equal
a == equal

a !'= b not equal

a <= b less than or equal

a < b lessthan

The exact equality == should not be used for float-type variables because of the limited
precision in the representation.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 43 /98

Logical operators Il - Logical operations

'(a < b) not (2)
(a < b) & (c != a) and (14)
(a<b) |l (c !=a) or (15)

It is recommend to use parentheses () for combination of operations for unambiguousness. J

Otherwise: Operator Precedence (incomplete list)

Precedence Operator

5 %/ %

6 + —

9 < <= > >=
10 == 1=

14 &&

15 ||

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 44 /98

Moreover, there exist also:

while loops

while (x < 0.) x = x + 2.

s

dox=x+2.; // do loop is executed
while (x < 0.) ; // at least once!

Instructions for loop control

break ; // stop loop execution / exit current loop
continue ; // jump to next iteration

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 45 /98

Loops |l

In C/C++: no real “for loops”

— loop variable (counter, limits) can be changed in loop body
slow, harder to optimize for compiler/processor
Recommendation: local loop variables

— declaration in loop header
— scope limited to loop body

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 46 /98

Loops IlI

Our example with the float loop variable

for (float x = 0.7 ; x < 17.2 ; x =x + 0.3) { // = 55 iterations
y=ax*xx+b ;
cout << x << " " << y << endl;

}

can be rewritten with integer loop variables (number of iterations clear)

float x = 0.7 , x_inc = 0.3, x_max = 17.2 ;
int it_max = ((x_max - x) / x_inc) + 0.5 ; // +0.5 for correct rounding
for (int i = 0 ; i < it_max ; ++i) { // it_max = 54

y=ax*xx+b ;

cout << x << " " << y << endl;

X+= x_inc ;

} v

— note that when converting float — int, digits after decimal point just cut off — add +0.5
before conversion for correct rounding

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 47 /98

Execution control — conditional statements |

Conditional execution via if:

if (z '=1.0) k =k +1 ;)
Conditional /branching
if (a == 0) cout << "result" ; // one-liner

if (a == 0) a = x2 ; // branching
else if (a > 1) {
a = x1 ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 48 /98

switch (...) casel

If the variable used for branching has only discrete values (e.g., int, char, but not floats!), it is
possible to formulate conditional statements via switch/case:

Branching |1

switch (epxression) {
case valuel : instruction ; break ;
case value2 : instructionl ;
instruction2 ; break ;

default : instruction ;
} .
Heads up!
Every case instruction section should be finished with a break, otherwise the next case
instruction section will be executed automatically.)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 49 /98

switch (...) casell

Example: switch

int k ;

cout << "Please enter number, O or 1: " ;

cin >> k ;

switch (k) {
case 0 : cout << "pessimist" << endl ; break ;
case 1 : cout << "optimist" << endl ; break ;
default : cout << "neutral" << endl ;

}

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 50 /98

Arrays in C/C++

Static array declaration for a one-dimensional array of type double:

double a[5] ; one-dimensional array with 5 elements of type double
(e.g., vectors)

Access to individual elements:

total = a[0] + a[1] + a[2] + a[3] + a[4] ;

Heads up!

In C/C++ the index for arrays starts always at 0 and runs in this example until 4, so the last
element is a[4].

A common source of errors in C/C++ !l

Note: While the size of the array can be set during runtime, the size cannot be changed after
declaration (static declaration).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 51/98

Two-dimensional arrays |

an m x n matrix (rows x columns) :

n columns —

m all aio . dln
rows ani
1
ami amn
int a[m] [n] ... static allocation of two-dimensional array, e.g., for matrices (m, n

must be constants)
access via, e.g., al[i] [j]

i is the index for the rows,
j for the columns.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 52 /98

Two-dimensional arrays |l

e . _ 123
€@ = 145 6

Note that in C/C++ the second (last) index runs first, i.e. the entries of a[2] [3] are in this
order in the memory :

a[0][0] af[0][1] afo][2] a[1]1[0] a[1][1] al[1][2]
1 2 3 4 5 6

(row-major order — stored row by row)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 53 /98

Two-dimensional arrays IlI

Task 2.6 Internal order of arrays

The cache, which is the memory closest to the CPU and usually on the same chip, is limited
(~ MB). Therefore it is important to design programs in a way that for a specific task data
that must be read into the cache are in a subsequent order.

Let's assume for a cosmological simulation with 10° particles, for each particle the coordinates
and velocities (3D) should be saved in an array particle[][]. A function loops over all
particles and needs to access for each particle all X, v-data.

How should this array be dimensioned in C/C++: particle[6] [1000000] or
particle[1000000] [6] ?

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 54 /98

Initialization of arrays

An array can be initialized by curly braces:

int array([5] = {0, 1, 2, 3, 4} ;

short field[] = {0, 1} ; // array field is automatically
// dimensioned

float x[77] = {0} ; // set all values to O

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 55 /98

There are no string variables in C. Therefore strings are written to one-dimensional character
arrays:

char text[6] = "Hello" ;

The string literal constant "Hello" consists of 5 printable characters and is terminated
automatically by the compiler with the null character \0, i.e. the array must have a length of 6

characters! Note the double quotation marks!)

char text[80] ;

cout << endl << "Please enter a string:" ;

cin >> text ;

cout << "You have entered " << text << " ." << endl ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 56 /98

Strings I

@ What is the difference between 'Y' and "Y"?
@ Which of these two literals is correct: 'Yes' oder "Yes"?
© What's wrong here: char text[2] = "No" ;7

String comparison

C-Strings (character arrays) cannot be compared directly with ==, in this case the operator
would compare the start addresses of the arrays.

Instead: Use strcomp(stringl,string2) from library string.h, this will return 0 if strings
are equal (arrays can have different lengths).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 57 /98

Declaration and visibility of variables |

Declarations of variables should be at the beginning of a block, exception: loop variables

float x, y ; // declaration of x and y
int n = 3 ; // declaration and initialization of n J

Local variables / variables in general

@ are only visible within the block (e.g., in int main() { }), where they have been
declared — scope

@ are local regarding this block, can only be accessed within this block
@ are unknown outside of this block, i.e., they don't exist there

@ are automatically deallocated when leaving the scope,
except those with modifier static

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 58 /98

Declaration and visibility of variables I

Global variables
@ must be declared outside of any function, e.g., before main()
@ are visible/known to all following functions within the same program

@ have file wide visibility (i.e., if you split your source code into different files, you have to
put the declaration into every file)

@ are only removed from memory when execution of the program is ended

A locally declared variable will hide a global variable of the same name. The global variable can be still accessed
with help of the scope operator ::, e.g., cout << ::m ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 59 /98

Declaration and visibility of variables Il

Global and local variables

int m = 0 ; // global variable

void calc() {

int k = 0; // local variable

m=1; // ok, global variable

++j // error, as j only known in main
}
int main() {

int j =3 3

++j ; // ok

for (int i =1 ; i < 10 ; ++i) {
j=m+1i; // ok, all visible

}
m=j-1; // error: i not visible outside loop
return j ;
¥ 4

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 60 /98

Defining constants

Values (e.g., numbers) that do not change during the program execution, should be defined as
constants:

const float e = 2.71828 ;
const int prime[] = {2,3,5,7} ;

Constants must be initialized during declaration.
After initialization their value cannot be changed.
Use const whenever possible!

(The compiler will replace any occurrence of the constant name by the value before
“translation” — no memory addressing necessary as for variables.)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 61 /98

Pointer |

Pointer variables — or pointer for short — allow a direct access (i.e. not via the name) to a
variable.

Declaration of pointers

int xpa ; // pointer to int
float *px ; // pointer to float

int *xppb ; // pointer to pointer to int
int *x*pppb ; // pointer to pointer to pointer to int

.

C++ standard : at least 255 (static) ; in C: at least 12 (static)
but: infinite dynamic (linked lists)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 62 /98

Pointer |l

A pointer is a variable that contains an address, i.e. it points to a specific part of the memory.
As every variable in C/C++ a pointer variable must have a data type.
The value at address (memory) to which the pointer points, must be of the declared data type.

address value variable
1000 0.5 X
1004 42 n
1008 | 3.141... | d
1012 | ...5926
1016 | HE Y ! | salutation
1020 1000 px
1024 1008 pd
1028 1004 pn
1032 1016 psalutation
1036 1028 pp

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 63 /98

Pointer 1]

Pointers must be always initialized before usage!

Initialization of pointers

int *pa ; // pointer to int
int b ; // int
pa = & ; // assigning the address of b to a

The character & is called the address operator (“address of")
(not to be confused with the reference int &i = b ;).

Declaration and initialization

int b ;
int *pa = &b ;

— content of pa = address of b

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 64 /98

With help of the dereference operator * it is possible to get access to the value of the variable
b, one says, pointer pa is dereferenced:

Dereferencing a pointer
int b, *pa = &b ;
*pa = 5 ;

Here, * ... is the dereference operator and means “value at address of ...".

The part of the memory to which pa points, contains the value 5, that is now also the value of
the variable b.

cout << b << endl ; // yields 5

cout << pa << endl ; // e.g., Ox7fffbfbff75c

// and with pointer to int-pointer:

int *xppa ; ppa = &pa ; cout << **ppa << endl ; // yields also 5

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 65 /98

Once again:
Pointer declaration:

float *pz, a = 2.1 ; J

Pointer initialization:

pz = &a ; J

Result — output:

cout << "address of variable a (content of pz): "
<< pz << endl ;

cout << '"content of variable a:
<< *pz << endl ;

*pz = 5.2 ; // change value of a

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 66 /98

References

int &n = m ;
m2 =n +m ; J

@ A reference is a new name, an alias for a variable. So, it is possible to address the same
part of the memory (variable) by different names within the program. Every modification
of the reference is a modification of the variable itself - and vice versa.

o References are declared via the & character (reference operator) and must be initialized
instantaneously:

int a ;
int &b = a ; J

@ This initialization cannot be changed any more within the program!

(At this stage a reference seems to be rather useless.)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 67 /98

Passing variables to functions |

Structure of functions — definition

type name (arg?, ...) { ... }
example: int main (int argc, char *argv[]) { }

@ in parentheses (): arguments of the function / formal parameters

@ when function is called: copy arguments (values of the given variables) to function context
— call by value | pass by value

setzero (float x) { x = 0. ; }

int main () {
float y = 3.
setzero (y) ;

cout <<y ; // prints 3. }

b

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 68 /98

Passing variables to functions |l

Call by value

Pros:

@ the value of a passed variable cannot be changed unintentionally within the function
Cons:

@ the value of a passed variable can also not be changed on purpose

@ for every function call all value must be copied
— extra overhead (time)
(exception: if parameter is an array, only start address is passed — pointer)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 69 /98

Passing variables to functions |l

Call by reference (C++)

void swap(int &a, int &b) ; J

Passing arguments as references:

The variables passed to the function swap are changed in the function and keep these values
after returning from swap.

void swap (int &a, int &b) {
intt=a; a=b;b=t;} J

— and called via: swap (n, m) ;
Thereby we can pass an arbitrary number of values back from a function.

Hint: The keyword const prevents that a passed argument can be changed within the function:
sum (int const &a, int const &b) ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 70 /98

Passing variables to functions

Call by pointer

A function for swapping two int variables can also be written by using pointers:

void swap(int *a, int *b) { // pointers as formal parameters
int t = *a ; *a = *b ; *b = t ; // remember: *a -> value at address of a

by

Call in main():

swap (&x, &y) ; // Passing addresses(!) of x and y J

Passing arrays to functions

In contrast to (scalar) variables, arrays are automatically passed by address (pointer) to
functions (see below), e.g.,
myfunc (float x[])

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 71/98

Pointers and references

Pointer variables
@ store addresses
@ must be dereferenced (to use the value of the spotted variable)

@ can be assigned as often as desired to different variables (of the same, correct type) within
the program

References
@ are alias names for variables,
@ can be used by directly using their names (without dereferencing)
@ the (necessary!) initialization at declaration cannot be changed later

o (actually only useful as function arguments or result)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 72 /98

Passing arrays to functions in C++ |

Declaration of a 1d-array:

int m[6] ; // statically dimensioned! J

Declaration of a function with an array type argument:

int sumsort (int m[], int n) ; // n = length of m J

Calling a function with an array type argument:

sum = sumsort (m, 6) ;)

— passing the array is implicitly done by a pointer, i.e. only the start address of the array will
be passed to the function

tan array can also be declared dynamically, so with size fixed at runtime, but only locally and arrays with more

than 1 dimension must have fixed sizes at compile time if they are passed to functions (see below)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 73/98

Passing arrays to functions in C4++ I

Correspondence of pointers and arrays
—> see exercise

@ the assignment

alil = 1 ; J
is equivalent to
*(a + 1) =1 ;)

@ when passing 1d-arrays to functions the start address and the data type (size of the
entries) is sufficient

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 74 /98

Passing arrays to functions in C++ Il

Problem:

When using multi-dimensional arrays, passing of the start address alone is not sufficient.
Every dimensioning after the first one must be explicitly (integer constant!) written.

Therefore:

float absv (float vector[], int n) ; // ld-array
float trace (float matrix[][10]) ; // 2d-array
float maxel (float tensor[][13][13]) ; // 3d-array

— more flexibility by using pointers as arguments, e.g., for an array a[3] [4]:
float *al[3] ; ... ; ali]l = new float[4] ; float function (float **a, ...)

— special matrix-classes simplify the passing to functions
— in Fortran, passing arrays to functions is much easier (i.e. only start address is passed)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 75 /98

Structs and classes — defining new data types |

Besides the intrinsic (/basic) data types there are many other data types, which can be defined
by the programmer

struct complex {
float re ;
float im ;

e

“Note the necessary semicolon after the } for structs

v

In this example the data type complex is defined, it contains the member variables for real and
imaginary part.

The constructs struct and class are identical in C++ with the exception that access to
struct is public by default and for class it is private. They can be defined outside or inside a
function (e.g., main).

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 76 /98

Structs and classes — defining new data types |l

Structs can be imagined as collections of variables.

struct star {
char full_name[30] ;
unsigned short binarity ;
float luminosity_lsun ;

s

These (self defined) data types can be used in the same way as intrinsic data types:

Declaration of struct objects

complex z, c ;
star sun ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 77 /98

Structs and classes — defining new data types

Concrete structs which are declared in this way are called instances or objects
(— object-oriented programming) of a class (struct).

Declaration and initialization

complex z = {1.1 , 2.2} ;
star sun = {"Sun", 1, 1.0 } ;

The access to member variables is done by the
member selection operator . (dot):

Access to members

real_part = z.re ;
sun.luminosity_lsun = 1.0 ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 78 /98

Structs and classes — defining new data types IV

It is also possible to define functions (so-called methods) within structs:

Member functions

struct complex {

float absolute () {
return (sqrt(re*xre + im*im)) ;

I
complex ¢ = {2., 4.} ;

cout << c.absolute() << endl ;

The call of the member function is also done with the ., the function (method) is associated
with the object.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 79 /98

Structs and classes — defining new data types V

And even operators:

Operator overloading

complex operator+ (const complex & c) {

complex z ;

// calling object is referenced with this->
z.re = this->re + c.re ;

Z.im = this->im + c.im ;

return z ;

complex w, z, C ;
w=2z+c ;

// object on left side (z) of operator calls +
// object on the right side (c) is "argument" for call

V.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 80 /98

Structs and classes — defining new data types VI

In our example for the absolute of a complex number, the call is c.absolute() instead of the

common absolute(c)
The latter call can be achieved with help of a static member function, that is shared by all

objects and exists independently of them

Static member functions

static double abs (const complex & c)
return (sqrt(c.re * c.re + c.im * c.im)) ;

complex::abs(c) ;

Static functions must be called with the class name (here: complex) and the scope operator ::
Static functions have no this-> pointer

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 81/98

Classes — Example: writing/reading files |
Output to a file by using library fstream:

@ #include <fstream>

@ create an object of the class ofstream:
ofstream fileout ;

© method open of the class ofstream:
fileout.open("graphic.ps") ;

Q writing data: e.g.
fileout << x ;

@ close file via method close:

fileout.close() ;

.

Simple alternative (Unix): Use cout and redirection operator > or >> of the shell:
./program > output.txt

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 82 /98

Classes — Example: writing/reading files I

By including the <fstream> library, one can also read from a file

Input from a file
char 1line[132] ;
ifstream filein ; // create ifstream object
filein.open("data.txt") ; // open the file
while (filein.good()) {
filein.getline(line,132) ; // read in line;
// use buffer size (132)
x[i] = atof(line) ; // read into float array

} v

The method good () checks, whether the end of file (EOF) is reached or an error occurred.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 83 /98

Private and public

@ class : by default all members are private — accessible elements must be declared as
public

class complex {

float real, imag ; // implicitly private
public : getreal () { return this->real ; }
s

@ member variables usually set private, access to them via public methods (e.g., get.. .,
set...)

@ keywords public and private (with :) valid until next of those occurs

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 84 /98

Constructors

@ each class has a default constructor with empty argument list if no constructor is
explicitly defined:

struct complex {

};

complex z ; // default constructor
z={x , 1.} ; // initialization (only if constructor is public)

@ one may define more constructors, e.g.:

struct complex {
public : complex (double x, double y) {real = x ; imag = y ;}

};

complex z (x, y) ; // constructor initializes real and imaginary part

V.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 85 /98

Templates |

Templates allow to create universal definitions of certain structures. The final realization for a
specific data type is done by the compiler.

Function templates

template <class T> // instead of keyword ’class’ also ’typename’ allowed
T sqr (const T &x) {
return x * x ;)

The keyword template and the angle brackets < > signalize the compiler that T is a template
parameter. The compiler will process this function if a specific data type is invoked by a
function call, e.g.,

double w = 3.34 ; int k = 2 ;
cout << sqr(w) << " " << sqr(k) ; J

— for full convenience, templates must be already defined before the call, e.g., already in the
header file (i.e. the compiler needs to know which concrete versions must be created)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 86 /98

Templates |l

Moreover, templates can be used to create structs/classes. For example, the class complex of
the standard C++ library (#include <complex>) is realized as template class:

Class templates
template <class T>
class std::complex {

T re, im ;
public:

T real() const return re ;

}

.

Therefore, the member variables re and im can be arbitrary (numerical) data types.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 87 /98

Templates Il

We can also have function templates of different types

Function template for multiple types

template <class T, class U>
auto max (const T &x, const U &y) {
return (x > y) ? x : y ; // return maximum of both arguments

}

cout max(2, 1) << " " << max(3.3, 4.4) << " " << max(1l, 2.) << endl ;

—max(,) can now be called with mixed arguments, e.g., int and double: max(1, 2.)
— keyword auto instructs compiler to select return type automatically, e.g., double if
arguments are double and int
In C++20 the function header above can be shorter written as

auto max (const auto &x, const auto &y)

7 is the ternary conditional operator, meaning condition 7 result _if true : result if false

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 88 /98

Typ definitions via typedef

By using typedef datatype alias name one can declare new names for data types:

typedef unsigned long large ;
typedef char* pchar ;
typedef std::complex<double> complex_d ;

These new type names can then be used for variable declarations:

large mmm ;
pchar Bpoint ;
complex_d 2z = complex_d (1.2, 3.4) ;

In the last example, the constructor for the class template complex gets the same name as the
variable through the typedef command.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 89 /98

Exception handling — exceptions |

A major strength of C++ is the ability to handle runtime errors, so called exceptions:

Throwing exceptions: try — throw — catch

try {
cin >> x ;
if (x < 0.) throw string("Negative value!")

y =g ;

}

catch (string info) { // catch exception from try block
cout << "Program stops, because of: " << info << endl ;
exit (1) ;

}

double g (double x) {
if (x > 1000.) throw string("x too large!") ; ... }

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 90 /98

Exception handling — exceptions

try { ...}

e within a try block an arbitrary exception can be thrown
throw e ;

@ throw an exception e

o the data type of e is used to identify to the corresponding catch block to which the
program will jump

@ exceptions can be intrinsic or self defined data types

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 91 /98

Exception handling — exceptions IlI

catch (type e) { ...}

after a try one or more catch blocks can be defined
from the data type of e the first matching catch block will be selected
any exception can be caught by catch (...)

if after a try no matching catch block is found, the search is continued in the next higher
call level

if no matching block at all is found, the terminate function is called; its default is to call
abort

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 92 /98

Exception handling — exceptions |V

Data types for exception throwing
In contrast to the simple example above, it is recommended to use specific (not built-in) data
types e for throw, e.g., from class exception.

.

#include <exception>

try {

cin >> x ;
if (x < 0.) throw runtime_error("Negative Number!");
y =g ;
}
catch (const runtime_error& ex) { // catch exception from try block
cout << "Program stops, because of: " << ex.what() << endl ;
exit (1) ;
} v

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 93 /98

Reading arguments from program call

Sometimes it is more convenient to pass the parameters the program needs directly at the call
of the program, e.g,

./rstarcalc 3.5 35.3
this can be realized with help of the library stdlib.h

Read an integer number from command line call
#include "stdlib.h"
int main (int narg, char xargs[]) {

int k ;

// convert char array to integer

if (narg > 1) k = atoi(args[1]) ;

o if the string cannot be converted to int, the returned value is 0

@ there exist also atol and atof for conversion to long and float

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 94 /98

Common mistakes in C/C++:

o forgotten semicolon ;

e wrong dimensioning/access of arrays
int m[4] ; imax = m[4] ; — imax = m[3] ;

e wrong data type in instructions / function calls
float x ; ... switch (x) —int i ; ... switch (i)
void swap (int *i, int *j) ; ... int m, n ; ... swap(n, m) ;
— swap (&n, &m) ;

@ confusing assignment operator = with the equality operator ==
if(i = §) —if(d == j)

@ forgotten function parenthesis for functions without parameters
clear ; —clear();

@ ambiguous expressions
if (4 == 0 && ++j == 1)
no increment of j, if i1 # 0

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 95 /98

Some recommendations |

@ use always(!) the . for floating point literals: x = 1. /3. instead of x = 1/3
@ white space is for free — use it extensively for structuring your source code (indentation,
blank lines)
e comment so that you(!) understand your source code in a year
@ use self-explaining variable names, e.g., Teff instead of T (think about searching for this
variable in the editor)
@ use integer loop variables:
for (int i = 1; i < n ; ++i) {
x=x+0.1; ...}
instead of
for (float x = 0.; x < 100. ; x =x + 0.1) {... }

o take special care of user input, usually: tinput < teale, SO exception catching for input is
never wasted computing time

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 96 /98

Some recommendations ||

Tips for High Performance Computing / Number Crunching

The more flexible your program is, the harder it is for the compiler to optimize it.
Hence:

Use const whenever possible (values, arguments).
Avoid pointers (except for argument passing).
(Avoid dynamic allocations.)

Use keyword inline (see Sect. 1) for small functions (vs. code size see below).
Avoid many (nested) function calls.

Keep loops simple, avoid too many branchings and jumps. Use matrix classes/functions
instead of looping over elements.

Execution speed vs. flexibility:

— flexibility increases —

Assembler Fortran C C++ Python

<+ speed increases <+

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 97 /98

Some recommendations ||

Table: Latencies of memory operations in relation to each other, see github

operation real time scaled time (x10°)
Level 1 cache access 0.5ns 0.5s (~ heart beat)
Level 2 cache access 7 ns 7s
Multiply two floats 10 ns 10 s (estimated)
Devide two floats 40 ns 40 s (estimated)
RAM access 100 ns 1.5 min
Send 2kB over Gigabit network 20000 ns 55h
Read 1MB from RAM 250000 ns 29d
Read 1MB from SSD 1000000 ns 11.6d
Read 1MB from HDD 20000000 ns 7.8 months
Send packet DE— US— DE 150000000 ns 4.8 years

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.4.2025 98 /98

https://gist.github.com/hellerbarde/2843375

	Introduction and tools
	C++ – Review
	Programming languages
	C/C++ program structure
	Functions
	Inline functions

	Mathematical functions
	Intrinsic data types
	Integers
	Floating point data types
	Type conversion
	Bool variables
	Character variables

	Execution control
	for-Loops
	while/do-Loops
	if–else if–else
	switch (…) case

	Arrays
	Two-dimensional arrays
	C-Strings

	Variables
	Visibility: global/local
	Constants

	Pointer
	References
	Function arguments
	Call by value
	Call by reference (C++)
	Call by pointer

	Arrays and pointers
	Structs and classes
	Class fstream
	Accessibilty
	Constructors

	Templates
	Type definitions via typedef
	Exception handling
	Arguments of program/main function
	Style – some comments

