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The Hydrogen Atom
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@ importance of hydrogen, origin
@ the hydrogen spectrum
@ (brief) history of atom models

@ quantum mechanics and solution of the central-force problem
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Hydrogen

e discovered 1766 by Cavendish (metal + acid), and found as
constituent of water by de Lavoisir (1787) — hydrogen = generator of
water

@ simplest atom: proton & electron

mass 1.6738 x 107" kg
Eion ~ 13.6eV

e isotopes: deuterium (1 neutron) and tritium (2 neutrons)

e origin: Big Bang; deuterium from primordial nucleosynthesis (1 min
after BB at 60 MK = 80keV);
recombination at 378000yr (z = 1100) — transparent universe

o fuel for stars (fusion) via proton-proton chain reaction or CNO cycle
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The hydrogen spectrum |

@ Spectrum of a Balmer lamp:

— low pressure gas-discharge tube (H. GeiRler 1857) filled with
hydrogen

o Angstrom (1862): spectral lines of hydrogen in spectrum of sun
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The hydrogen spectrum ||

@ Balmer (1885): spectral lines of hydrogen given by

2
A= M o m=3,45..) (1)

m2 — n2

with h = 3645.6 x 107 m and 107%m = 1A, typical size of an atom
predicted lines for m > were found in A stars

e Rydberg (1888): generalization to other series

1 11 _
T = RHQ#_#J , Ry = 1.006775854 x 10" m~%  (2)
1 2

generalization to H-like ions (e.g. Hell, LiIII):
1 1 1
- = 2R |5 - 5 3
) ©)
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Atom models |

e Parmenides (500 v. Chr.): atoms (indivisible) as building blocks of the
world

o J. Dalton (1803): chemical elements consist of atoms of different
mass
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Atom models Il

e J.J. Thomson (1900): atoms contain negatively charged electrons in a
positively charged continuum (cathode rays experiments)
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Atom models Il

e Rutherford (1910): positively charged nucleus is smaller (1071° m)
than atom (scattering of helium nuclei on gold foil)

Problems of Rutherford model
Why do electrons not fall into nucleus? — circular orbit
Why don't they emit like electric dipole, what about spectral lines?

— Bohr model

WiSe 2016/2017
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Bohr model |

Bohr's postulates (1913) to explain observations:

Motion of electrons in atoms obeys quantum rules

@ Electrons orbit in atoms the nucleus on so-called stationary orbits with
discrete energies E,. (The angular momentum is restricted to integer
multiples of a fixed unit L = nh (n=1,2,3,...).)

@ Atoms can only gain or lose energy by the transition of an electron
from one stationary orbit to another stationary orbit, this energy is
discrete and given by AE = E, — E,+1 = hv for the involved photon
of frequency v.

n=2 Postulate (1) can be also written as
phase space integral

+Ze ].
§ 2ﬂ%pdqznh(nzl,2,3,...) (4)
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Bohr model 1l

Application to the hydrogen atom:
Electron orbits in a Coulomb potential (polar coordinates) with

762
F= = (5)
dmegry

with stationary radius r,, balanced by centrifugal force

N

F, = mrv—":m,rnw% (6)
I'n

with reduced mass m, so that 0 is in nucleus with mass m,

moy me
m, = = 7
' 1+ 14 7e 7)
Force balance yields
Ze? 5
dneor? myrpws, (8)
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Bohr model Il

As v, = rpw, the momentum and position are

Pn=MVy = MilaWn, Gqn = ra®Pn (9)
1 1 ) 27 )
oy pndgn = 5 Mean A dop = myrjwn = nh (10)
nh
= =123 ... 11
% wn mrr’% (n ) b b ) ( )

Inserting force balance to elimnate wp,:

47rn27”l260

rhn = T(é (n:1,2,3,...) (12)
Z°m,e*

= ——— 13

“n T 1672mh3e] (13)
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Bohr model 1V

This can be used to obtain the kinetic energy of the electron

2, 4
My, My 5, 5, Z7mee
Bin = 30 =3 = B e (1)
Its potential energy is given by qV/(r) = — [ Fdr:
7 2 Z2 4
Epot = - c = - e 2 (15)
Amegry, 1672n?h2ed
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Bohr model V

both forces are conservative forces, — conservation of energy and the

energy levels are therefore

Z2m,e*
En = En+ Epot = —m (16)
ZZ R 4
Mee (n=1,2,3,...) (17)

32n2n2h2e3 (1+ 2¢)

from 2nd Bohr's postulate (AE = hv) and by v = ¢/ X:

1 Z°mge* 1 1
L Mee (2 - 2) (18)
A 327m2ce} (1 + %) ny n
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Bohr model VI

Lyman series

Balmer series

Paschen series

A=0911.8A (ni% - %)71
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Bohr model VII

comparison to Rydberg's formula 1/A = Z?Rx (1/n? — 1/n3) for
hydrogen-like atoms suggests:

Reo
Rx = 19
x 1+ e (19)
mee 7..-1
Reo e —1.007373177 x 10'm™ (20)
32m2ced

Application: Pickering lines of He Il — blackboard
note: R, sometimes used for atomic energies
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Bohr model VIII

Problems and limits of Bohr model

Experiments:

H-like spectra of alkali metals need
more than one quantum number for
discription (e.g. Na D line ~ 5890 A
transition 3s — 3p)

no explanation of other spectra

Theory: o i
Heisenberg's uncertainty principle -

contradicts electron orbits Street light using
— blackboard sodium lamp. Orange

light from Na D line
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The Schrodinger equation |

wave equation, used for explanation of hydrogen spectrum

Schrédinger (1926)

B () = Ao (1)
2
eg. zh%@[)(?,t) - <—§—mA+ V(F,t)) W(F, t) (22)

@ derived from de Broglie and dispersion relation:
p=hk and E = hw

o describes unperturbed evolution in time of non-relativistic quantum
systems, linear PDE of 2nd order with complex solutions 1

@ linearity: superposition principle of solutions

o probability of presence (find particle at position x): [(7, t)|?
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The Schrodinger equation |l

Stationary Schrddinger Eq. (0/0t =0 ),
separation: (7, t) = ¢(F) f(t) — blackboard

Ho(F) = Ep(7) (23)
Dixt) = p(x)e it (24)

with eigenvalues E (energy) of Hamilton operator:

e the probability density |/(x, t)|? = |¢(x)|?> (Why?) does not depend
on t, same holds for expectation values of dynamic variables

e as H(x,p) = £ ® V/(x) is classical Hamiltonian = total energy
— (H) = E (Why?)
@ general solution is a linear combination of separable solutions:

o0

Yixt) = Y cotn(x)e Bt/ (25)

n=1
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The Central-force problem |

3D: Potential is of form V/(7) = V/(|r])
The Laplace operator in 3D for spherical coordinates:

10 (,0 1 0 5, 1 92
A = 952 2
2 ar < ar> F a0 a0t zanzgae (0

Use separation: ¢(r,0,¢) = R(r)- Y (0, ), thus

Y [0 20R no 19 L0y R Y
“ome2 \or" or 2m’ r2sin6 00 sin 90  2m r2sin?6 092
+ V()RY=ERY (27)

with eigenvalue E
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The Angular Equation |

Multiply -r?, and %, again: obtain another separation constant

1[0 ,0R\ , o1 9 . dy
_2mR(8rr 8r>+r Vi -Er = o vsngas =" a5 %)
o1 ey
2m Ysin?20 0¢?
h2
= o[+ D) (29)
Next separation: Y(0,¢) = ©(0) - (o)
2
® 0ng?2 L O OO iy (30)

Odsin6 96 90 " Odsin?0 0¢?
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The Angular Equation Il

term ®/® and ©/0 cancels out, multiply sin 6

10°0
ésinGaaesinﬁgi +0(0+1)sin?0 = _d)(;& = m? (31)
with new separation constant m:
82(1) 2 . +im¢
952 +m°®=0 = solution: ®(¢) =¢e (32)

as rotation around ¢ = 27 in space means same as original state:

O(p+2m) = D(¢) = m=0+1,42,... (33)
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The Angular Equation Il

The other equation is for ©

sin 6% sin 9@ + [£(£+1)sin0 — m?]© =0 (34)

can be solved by so-called associated Legendre polynoms:

O(f) = P (cosh) (35)
im Il
= (=1)™(1 — cos 9) 2 d(cTe)'mlPZ(Cose) (36)
1 d
Py(cosf) = Z(COS 0 — ) (37)

2001 d(cos )

Eq. (37) implies integer £ > 0. Eq. (36) says P;” = 0 for |m| > ¢ and for ¢
are (2¢ + 1) values of m.
Other solutions unphysical (e.g. not normalizable) — blackboard
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The Angular Equation IV

From normalization condition f027r Jo 1Y|?sin0d6d¢ follows Spherical
harmonics

Y/(0,6) = e\/ (%4:; D) Eﬁ;:::;:ezm‘j’ﬂf’(cose) (38)

(=1)™ form>0
1 form<0

where € = {

Eg: Po=1, Pg =1 and P? = cos @, and therefore

YO = (&)Y and Y2 = (2)Y?cosbor Vit = 5 (&) sing e
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Hydrogen atom - The Radial Equation |

The radial equation

CC//(QOCIIR) 2M ()~ EJR = (1 + DR (40)

du
- — _u dR _rg—Y d,2dR _ ,d%u
Substitution u(r) = rR(r) = R = 1§, G = ~4&—, £r°% =5z and so

2 2 2
12 du [v LG . (1)

- 2m, dr? 2m,  r?
— like 1D Schrédinger equation but with effective potential (with
centrifugal term)

2 UL+ 1)

Ve = V + >

42
2m, r ( )
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Hydrogen atom - The Radial Equation |l

Now for specific potential V' (Coulomb potential)

ez 1
V(r) = — - 4
(r) 4req r (43)

so the radial equation becomes

h? d?u e2 1 R 4l+1)
L R T = E 44
2m, dr? [ Areg r * 2m,  r? ] e (44)
Define k = 7V_25mrE and consider only bound states, where E < 0. Divide
Eq. (44) by E

1¥u_[ mee? 1 €@+U]u (45)

K2dr2 |7 2meghlkkr | (kr)?
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Hydrogen atom - The Radial Equation IlI

mee? .
2meghPk

Substitute p = kr and pg =

d?u po  H(l+1)
Ak o)
for p — oo we obtain ‘Z,ip‘z’ = u and therefore
u(p) = Ae™” + Be? (47)

For p — oo we get e’ — oo, so we need B = 0 and hence u(p) ~ Ae™*
For p — 0 (and ¢ # 0):

d2u o0 +1)
Tp2 = p2 u (48)
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Hydrogen atom - The Radial Equation IV

Can be solved with

u(p) = Cp"*t + Dp~* (49)

Again: For p — 0 the term p=¢ — oo, thus D < 0 and u(p) ~ Cpt*t
Let's introduce v(p):

u(p) = p*t e " v(p) (50)
Radial equation then reads
ﬂ+2(€+1— )ﬂﬂ —2(t+1)v=0 (51)
pdpz p d,O PO V=
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Hydrogen atom - The Radial Equation V

Assuming that v(p) can be written as a power series in p:

o0

v(p) = Zajpj (52)
j=0
dv Iy Ay j
- = S oV I S Daap (53)
P =0 j=0
d?v S ji—
=gz = 2 AUt Daap ' (54)
j=0
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Hydrogen atom - The Radial Equation VI

So that radial equation now reads

> G+ Vajap +200+1)> (i + Dajap/ (55)
j=0 j=0
—2 jaip +lpo —2(t+1)] D> a0/ =0 (56)
j=0 Jj=0

The coefficients for any j must yield

JU+Daje +2(0+1)( 4+ 1)ajy1 — 2ja; + [po — 2(£ + 1)]a; =0 (57)

gy = 20D = po
TG 20+ 2)Y

or
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Hydrogen atom - The Radial Equation VII

Starting with ag = A (A yet to be fixed) and check for large j:

2j 2 2

i1 ™~ — a; = - a = a~-—A 59
j+1 J(J+1)J J_|_1J 'j jl ( )
But if this were the exact solution:
o) =AY 7 = A = u(p) = Aftter (60)
j=0""

where e — oo for p — 0. So, series (60) must have maximum jmax,
such that

B4l =0 = 20jmax+¢+1)—po=0 in Eq. (58) (61)
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Hydrogen atom - The Radial Equation VIII

Defining n = jmax + ¢+ 1 — po = 2n, recalling that

Bohr formula

m e? 1 E
E=—| 2 ()| === n=123,... 4
[2?’12 <47T60):| - e " 3 (64)

— allowed energies of the Hydrogen atom
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Hydrogen atom - The Radial Equation IX

Eq. (62) and p = 2n also yield Bohr radius:

m,e2 1 1

" (47T60h2>n_an (65)

4 2
where a = MOZ =0.529 x 107 %m (66)

mye

r

d = — 67
and p P (67)

Now, for normalization we remember that for the radial equation

u(r) = rR(r) and our approach: (68)
u(p) = pTre P v(p) (69)
5 Ru = e () (70)

where v(p) = Sip ™" " aypf
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Hydrogen atom - The Radial Equation X

Consider ground state, i.e. n=1

Binding energy of hydrogen atom

me [ e\’
Ei =— = —13.6eV 1
! [2h2 (47T60> 3.6¢ (71)

So,1=n=jmax +0+1 =4 < 0 and therefore also m = 0 (Why?)

§0100(r7 07 ¢) = RlO Y(g)(ev ¢) (72)
Our recursion formula ajq = %aj with j = 0 yields a; = 0 (and
hence also for as,a3,... — v(p) = app® = const.

Rio(r) = e/ (73)
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Hydrogen atom - The Radial Equation XI

Using Normalization condition [ |R|?>r?dr = 1 to determine ag:

> 2.2 _ a0l [ —2rfa 2y .29 !

|Rip|“redr = > e redr =laglc— =1 (74)
0 a Jo 4
2
— a = % (75)
. 0_ 1 .
¢100(r, 0, 9) = 3e_r/a (76)
ma

e independent of ¢ and # — spherical symmetric with |p|? ~ e=2//2

@ so-called s orbital
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Hydrogen atom - The Radial Equation XII

For the first excited state n =2 — E, = £;/2%2 = —3.4¢V and

. =0 = jnax=1
Jmax—vj'z ¢ 1_{ =1 = jmax:O (77)
S m=0,41, 1.
Note: 4 different ¢y for one energy ( = eigenvalue of H)
— degeneracy
So for £ = 0 — Recursion formula gives a; = —ap (j = 0)
and a; =0 (j = 1) — our polynomial v(p) = ag(1 — p):
ao r _r/2
- Roo(r) = 22 (1 — 7) r/2a
=0 20(/’) 23 23 € (78)
_ _ A0 /2
(=1 Ra(r)= ;e r/2a (79)

where ag needs to be determined from normalization
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Hydrogen atom - The Radial Equation XII|

The number of different ¢ for any n, because of £ =0,1,...,n—1 and for
each /¢ exist (2¢ + 1) values of m, is:

n—1
2(26 +1)=n° (Proof!) (80)
=0

So, our polynomial v(p) can be written as

vip) = L21,(20) (81)
2,00 = 1 () Lo (#2)
with the gth Laguerre polynomial: (83)

q
Ly(x) = & (i) (e~*x9) (84)
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Full solution |

Now, the full solution reads:

ortm(r,0,6) = \/ (%)3%e/ <%)£Lie_+,1_1 (%) vre.0

Onem €8 withn=2 (=1 m=0:

1 1 3/2 r _r/(2a )
p210(r,0,0) = N <2a> Se °) cos 6 (85)

@ independent of ¢ — rotationally symmetric w.r.t. the z-axis

@ so-called p orbital — illustration of the probability of presence

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 38 / 142



Full solution 1l

Summary:

e found stationary solutions for Coulomb potential (eigenfunctions for
eigenvalues E < H)

@ analytic solutions (real) — only certain functions for bound states due
to normalization constraints, characterized by discrete quantum
numbers

@ quantum number n — from radial equation — associated Laguerre
polynomials

@ quantum numbers £, m — possible values depend on n and ¢
— spherical harmonics — associated Legendre polynomials

e eigenvalues E denpend only on n — degeneracy (only for pure
Coulomb potential, central force)

@ all solutions and quantum numbers verified by experiments

@ but: one more quantum number, not deducible from Schrédinger
equation (i.e. differential equation): spin quantum number
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Full solution Il

quantum number value / symbol formula

n 1,2,3,... E, = —Rs/n?
K,L,M,... (shells)
¢ 0,1,2,3,...,n—1 |L|=/({+1)n
s,p,d,f,... (orbitals)
my 0,+1,42,..., ¢ L, = mh

ms :l:% S, = msh
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The angular momentum operator |

In classical mechanics angular momentum L from cross product:

L = Fxp (86)
Ly YPz — ZPy
Ly = Zpx — XPz (87)
L, YPx
. h o
In quantum mechanics: py — ——=— = —0x, so that
8x 1
Ly A y0, — 20,
L, = — | z0,— x0, (88)
L, ! x0y, — yOx

Again, we are interested in the eigenvalues and eigenfunctions.
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The angular momentum operator |l

Unfortunately:

A\ 2
(z> (yOx — x0y) f =ahl,f (Proof!) (89

[Lx; Ly]F (89)

= [Lol)] = L, (90)
and (91)

(L, Ls] = whle,  [Ls L] =1L, (92)

As Ly, Ly, L, do not commutate, from generalized uncertainty principle:

h
S1{L2)]| (93)

2 2
ULXULy Z

— incompatible observables, no common eigenfunctions of L, and L, etc.

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 42 / 142



The angular momentum operator ||

Fortunately:

2 12 2 2
[P L)=[2+12+12,L]=0  (Proof!) (94)

— hopefully: eigenfunction f exists, so that

[°f =\ and L,f =puf (95)

Let's introduce the ladder operator

Ly = Lc+al, with: (96)

L, L+] = [L, L] £ [L;, Ly] =2hL, £+ o(—2hLy) (97)

= Lh(Ly+al,) = +hly (98)

and [L%,L4] = 0 (99)
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The angular momentum operator 1V

So, with [Lz, Li] = +hly:

LP(Lef) = La(L?F) = La(M ) = M(Lsf) (100)
L(Lef) = (Lole — Lal,)f + Lyl f (101)
= 4hlyf + La(uf) = (u =+ h)(Lsf) (102)

— (L+f) is an eigenfunction of L2 as well as f, with same eigenvalue A
— (L+f) is also an eigenfunction of L,, with new eigenvalue 11+ h

Therefore: Ly raising operator — increases eigenvalue of L,
L_ lowering operator — lowers eigenvalue by 7

— Consecutive application of L until reaching f; with L2 = L2, such that
L, f; = 0 with eigenvalue of £, let's call il, i.e. L,f; = hif; and L2f; = M\,
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The angular momentum operator V

With help of the following relation

Lily = (LeEoly)(LeFoly) = L5+ L Fo(Lyly, — LyLy) (103)
= [2-1%2 71, (104)
— 2 = Lyls+ 1250l (105)

we find a relation for the eigenvalue A of L? in terms of the maxium
eigenvalue of L;:

L2f, = (L_Ly + L2+ hL)f (106)
= (0 + F20? + hO)fy = R2(0 + 1)F; (107)
- A = hA(+1) (108)
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The angular momentum operator VI

Analogously, there is a minimum eigenvalue of L, with eigenfunction fy:

L f, =0 with L, f, = hlpf, and szb =M (109)
— [%f, = (LyL_+ 12— hL,)f (110)
= (04 K202 — hO)fy = B2Lp(Ly — 1)fy (111)
= A = h2€b(€b_ 1) (112)
Hence by combining both results for A (e.v. of L?), we get
f(@ + 1) = fb(fb - 1) — by = —/4 (113)
— eigenvalues of L, are mh with m= —¢,...,0,...,¢ in N integer steps,

ie. {=—0+ N={¢=N/2 —(is integer or half-integer
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The angular momentum operator VII

Eigenfunctions of L,, L? characterized by ¢ and m:

L267 = R20(0+ 1)f™ L = hmf" (114)
where 620,5,1,2,... m=—{,...,0,...,¢ (115)

Note: by pure algebra we found the eigenvalues of L, and L2

¢ is also called the azimuthal quantum number and m the magnetic
quantum number

— now find eigenfunctions f
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The angular momentum operator VIII

Remember that [ = ﬁ x V and with the unit vectors 7 etc.

~1 ~ 1
— 9,1t : 11
v o +9r89+¢rsm98¢ (116)

~[ = ; [r(? X P)0, + (7 x 0)9p + (P x gg)siliQ(%] (117)

As (Fx#) =0, (?x )= ¢, and (? x ¢) = —

[=~— <¢ag — 9|93¢> (118)

Unit vectors 0, & in Cartesian coordinates:

(119)

= (cosfcosp)x + (cosB@sinp)y + —(sin6)z
(120)

—(sin @)X + (cos @)y

S >
I
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The angular momentum operator X

[ = ? [(— sin X + cos ¢)dy — (121)
(cos 6 cos px + cos @ sin gy — sin 92)Sii€8¢] (122)
= Ly = h (—sin @0y — cos ¢ cot 00,) (123)
?
L, = h (4 cos p0y — sin ¢ cot 00,) (124)
(3
L = ;% (125)
h :
Ly = Li+l, = ;[(—smqﬁizcosqﬁ)@g — (126)
(cos ¢ £ 1sin ¢) cot 00| (127)

= +he™?(0p £ 1cot00y) as: cos ¢ = usin ¢ = e='{128)
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The angular momentum operator X

Now we can find eigenfunction f,7(6, ¢) of L;:

h
LoA(0,0) = —06 £7(0,0) = hm £7(0,6) = £7(0,¢) = g(0)e"™(129)

Analogously, £7(6, ¢) is an eigenfunction of L2 with e.v. hf(¢ + 1):

L2f7(0,¢) = (Ly L+ L — hL;) £7(0,¢) = R2(£+ 1) £"(0,¢) (130)

As Oyf = e“"‘z’% and 0yf = 1me*™?g with our expression for L4 and L,
we obtain (Proof!)

- d . dg -2 21, _
sin 9% <sm «90,9> + [({+1)sin“0 —m7]g =0 (131)

— this is ©(#) of the spherical harmonics Y;"(6, ¢) and — of course —

F(6) = em is o(9)!

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 50 / 142



The angular momentum operator X|

= The spherical harmonics are the eigenfunctions of L? and L, :

Hip=Ey 12 =h{L+1) Ly =hmy (132)

Note 1: Found from analytical
solution of the central-force problem
that £ and m — integer

but from algebraic solution for
angular momentum operator — £ and
m also half-integer

Note 2: Absolute value of L is
discrete, but also its component L,
— vector cone (see right figure), as
Jx, Jy unknown
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The spin operator |

Classical mechanics:

[ = 7 x B (motion of center of mass) and spin S = I& (motion about
center of mass)

Quantum mechanics of hydrogen atom:

[ orbital angular momentum of electron orbiting nucleus

and S spin — angular momentum of electron itself — not a function of
position variables r, 6, ¢

Spin as intrinsic angular momentum cannot be decomposed into orbital
angular momenta of constituent parts (e.g. electron is point-like)
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The spin operator |l

However, analogously to algebraic theory of angular momentum we
postulate:

[Sx,S,] =hS,,  [S,.S] =1hSy,  [S., S =1hS,  (133)

And with ket notation (as eigenstates of spin are not functions):

S2|sm) = h?s(s 4 1) |sm); S, |sm) = hm|sm) (134)
Si|sm) = hy/s(s +1) — m(m £ 1) |s(m £ 1)) (135)

These relations do not exclude half-integer values of s, m. Interestingly,
every elementary particle has specific, fixed value of s, e.g. 1/2 for electrons
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The spin operator |lI

Theory of spin 1/2

simplest nontrival quantum system — only two possible eigenstates:
11 .

5%) — Spin up

|2(—1)) — spin down

Thus, general state can be written as 2-element column matrix (spinor):

X = < Z > = axs + bx_ where (136)

X4 = < é > spin up X_ = < (1) ) spin down (137)
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The spin operator |V

The spin operators S,, S2, etc. are 2 x 2 matrices. From their eigenvalues

(s=1/2):

3 3 1 1
Soxr =M S =M Sexs =SP4 Sexo = —5h?x-(138)

Six- =hxy; Sox+ =hx—; Sixs =S-x- =0(139)

together with 51 = S, £15,, so that

1

=5, (5+ = 5-) (140)

1
Sc=5(5:+5) S,

and therefore

h I h h
SxX+ = S X Six— = 5 X+ Syx+ = — o, X Syx— = 27”'(141)
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The spin operator V

we find the algebraic representation of the spin operators

2 3.1 0\, (0 1) (00
= (o 1) Si=hlg o) S=h{; o) (42
0

h(0 1 h(f0 — h (1

One defines the Pauli spin matrices by o, = Sx/g etc.
Note: Sy, S,, S, S2 are Hermitian (i.e. self-adjoint:
Sy = Si = ?XT = ?J) — observables,

while S, S_ are not Hermitian — not observable

We already know the eigenspinors (eigenstates) and eigenvalues of S;:

i = ( é > eigenvalue: + g; X_ = ( (1) ) eigenvalue: — 2144)
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The spin operator VI

For a particle in the general state

x=<z>=a><++bx- (145)

the probability to get for S, the value —i—g is of course |a|? and to get the
value —2 is [b|2, so

|a|2 + ]b|2 =1 (i.e. normalized spinor) (146)

Accurate language
The probability |a|? to get +h/2 for a measurement of S, doesn't mean

1 .
). In fact, the particle is in the state .

that the particle is in the state < 0
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The parity operator

The action of the parity operator P is just ¥ — —F:

P¢(Xay7z):¢(—xa —y,—Z) (147)

Obviously P? = PP = 1 — only two eigenvalues:
+1 — eigenstate of positive parity (even parity): (F) = ¢(—7)
—1 — eigenstate of negative parity (odd parity): () = —(—7)
For a potential V(x,y,z) = V(—x,—y, —z), e.g. Coulomb potential
— parity is good quantum number (i.e. conserved quantity)

Parity of eigenfunctions of hydrogen atom (r, 6, ¢) = R(r)PJ"(cos §)e*™®

Parity transformation 0 — 7 —6, ¢ — o+ 7, r — r
= parity depends only on transformation of associated Legendre polynoms
even { — even parity and odd ¢ — odd parity (Proof!)

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 58 / 142



Application: Electron in magnetic field |

spin + charged particle — magnetic dipole:

g=~S where 7 := gyromagnetic ratio (148)
. . . g
Note: in classical electrodynamics: v = 5L

in QM: v = g 5= = g5 5= ~ 2.002 5
magnetic dipole in magnetic field B experiences torque M:

— torque tries to line fi up parallel to field (“compass needle”)
Energy (and therefore Hamiltonian):

=

H=—fi-B=—B-

Wy

(150)

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 59 / 142



Application: Electron in magnetic field Il

Larmor precession

Spin—f particle in a homogeneous magnetic field along z-direction
é = Boez
Hamiltonian (matrix!):

. B _’yBoﬁ 1 0
H=—vByS; = — <0 _1> (151)

Hamiltonian H and Spin operator S, share same eigenstates:

X+, energy £, = 258 (152)
X_, energy E. = —i—vBofZ (153)

where energy is lowest for dipole moment parallel to magnetic field
(otherwise: — torque tries to align)
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Application: Electron in magnetic field Il

— time-dependent solution of 170 x = Hy expressed with stationary states:

+1yBot/h
K0 = axee B by e (2T s
fix coefficients by initial conditions, e.g.
x(t=0) = < Z ) , where [a|®> + |b|* = 1 (155)

Then (for real a, b) we can write a = cos(«/2) and b = sin(«/2), with
constant «, so

x(t) = ( cos(a/2)et 17 ) (156)

sin(/2)e"1Bot/2
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Application: Electron in magnetic field IV

therefore the expectation value of the spin as a function of time:

(S = x(t)'Sxx
- (COS(O‘/2)67”B°”2 sin(a/2)e+”B°t/2) g( (1) (13 ) ( cos(a/2)et 7 E0t/2 )

sin(a/2)e v Bot/2

+§ sin a cos(yBot)
h. .
(Sy) = fismozsm('yBot)

(Sz) = —&—g cosa

—

— (S) tilted at constant angle a to z-axis, precesses about the field at

Larmor frequency of a spinning electron

w="yBy=1.7606 x 10 rads ' T~1. By — f=28GHzT !By
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Addition of angular momenta |

Now, two spin—% particles (e.g. electron and proton in ground state of
hydrogen, so ¢ = 0), composite system is in a linear combination of

M 1 W (157)

What is the total angular momentum of the atom?
We define

§=50 450 (158)

The z-component: simply adds, each composite state is eigenstate of S,

S:xix2 = (5§1) + 5§2))X1X2 = (5§1)X1)X2 + X1(5§2)X2) (159)

= (hmix1)x2 + x1(hmax2) = A(m1 + m2)x1x2  (160)
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Addition of angular momenta ||

Thus, m = my + my:

M om=1 (161)
) m=0 (162)
1t m=0 (163)
0 m=-1 (164)
problem: two states with m = 0 — apply lowering operator
S = 5(_1) + 5(_2) to state 11 to obtain the correct state:
S-() = (S Nr+1P (165)
= (AT +1(rd)=n{1+1) (166)
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Addition of angular momenta IlI

Therefore, the states with s = 1 in |s m) notation

11 = 1t
10) = (Tt +11) § — triplet: s=1 (167)
1-1 = |

And orthogonal state |s m) = |00)

1
V2
— system of two spin—% particles has total spin 1 or 0. Let us proof: triplet

states are eigenvectors of S? with eigenvalues 272 and singlet state is
eigenvector with eigenvalue 0:

00) = — (1) — m} — singlet: s =0 (168)
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Addition of angular momenta IV

$2 = (8W 4+ 5@) . (SO 4 5@y = (sMW2 1 (5())2 1 25M) . 5) (169)

)
Remember: Sexi = 5x—, Syx4 = —2x—, Sexq =5
emMemDEer: SxX+ = 5X—1 IyX+ = —3,X—1 2zX+ = 3

X+, S2x4 = 3Wx+
etc.

S50 = (S 1S D+ (7 NS 1)+ (S NS )

) 2 e

h2
= 2u-1

(170)
and (171)

S S K2

S sB) = 211 - 1) (172)
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Addition of angular momenta V

So we get

2

0. g@) = L a2
SW-SOI0) = 7552~ th 21— ) = 1) (173)
1) 2@ggy = P L _ﬁ
SO SDI00) = 54t =t -2+ 41) = =T 00)  (174)
and therefore
2 2 2
S2|110) = (?’h+3h 2h>\10>:2h2|10> (175)
2 2 2
S2|00) = <3Z+3Z—2h>\oo>= (176)

and of course S2|1 — 1) = 2A2|1 — 1) and S?|11) = 2K2|11)
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Addition of angular momenta VI

Thus, answer to the general problem of combining any s;, s, or angular
momenta:

s=(s1+s),(s1+s2—1),...,|s1 — 5] (177)

and also, e.g. for hydrogen atom, net angular momentum of electron (spin
+ orbital) j

j=0+= or j=4{—= (178)

and with proton, total angular momentum of hydrogen atom:

J=(+1 or J=¢-1 (179)
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Addition of angular momenta VII

Therefore, state |s m) with total spin s and z-component m — linear
combination of composite states |s; my) |sp mo):

|sm) = Z o e mls1 m1) [s2 ma) (180)

mi+ma=m

with Clebsch-Gordan coefficients C$:%2°  E.g.

my ma m:*

1 1 1
21) = =221 -1) + —=21)[10) - =

V3 V6 V2

Note that the z-components have to add to m =1
— For two particles of spin 2 and spin 1 with total spin 2 and total

20)[11)  (181)

z-component 1: measure Sﬁl) and get 2A (probability %) R (probability %)
or 0 (probability 3)
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The helium atom |

Hamiltonian of helium (Z = 2), neglecting spin

h2
H=|-—V3?
[ 2mvl

1 2e2}+[ P_, 1 2e2} 1 e

4eg N 2m 2 Amey n ey | — 13

— without repulsion term :

1}[)(?1’ F2) = ¢n€m(?1)wn/ﬁ/m’(F2) (182)

with a = % and E = 4Fy,

E=4E,+Ey) — FEy=8-(—13.6eV)=-100¢V  (183)

(But measured: —79eV = —24.6eV — 54.4 €V, because we neglected e~ e -interaction)

with  o(F1, P2) = ¥100(71)¥100(72) = 7672(“”2)/3 (184)
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The helium atom I

Electrons are identical particles, therefore

Y(r, ) # Ya(f)Ys(2)  but (185)
Y (11, 2) = AlYa(R)vp(r2) — ¥u(7)a(72)]  (fermions) (186)

@ two electrons cannot occupy same state — Pauli exclusion principle
(Proof!)

@ 1 for fermions must be antisymmetric under exchange:
¢(F17 72) - _77/)(?27 Fl) (187)

Wlth '¢ — ¢(F1> F2)X(Fla F2)
@ as the ground state 109 ~ e "2 of helium is symmetric — spin state
must be antisymmetric — singlet, electrons oppositely aligned

1
(-1 (188)
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The helium atom Il!

Excited helium atom:

@ combination ¥,ym¥100 5 o ip s 9pe 9p
(What about ¢n€m¢n’f’m’?) = = = (2= %= 8=
@ symmetric ¥ nrmt100 — A

— antisymmetric spin
configuration (singlet) or
antisymmetric ¥ ,sm1100 singlet
— symmetric spin configuration
(triplet)
@ thus, two different kinds of
excited states: singlet and triplet

w triplet

@ singlet states have sligthly higher +—
E than corresponding triplets 0 1 2 0 1 2
(because of symmetric v L L
— closer e"e™ — larger Erepuis)
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The helium atom IV

Intercombination
Note that

@ total wavefunction must be antisymmetric by

= = wa(Flafé)XS(F17F2)
n,r)= el 53 189
@ZJ( 1 2) { U}s(rla r2)xa(r1’ r2) ( )
@ the interchange operator can be written as P> = P}Z’Z PY

e Hamiltonian does not depend on spin — [H, Pipz] =0

e time evolution operator U(t) = e 7"t —[U, P1] =0

e if for any to: Pi2|Y(to)) = —|¥(to), then for all times:
Pra|ip(t)) = PraU(t)[¢(t0)) = U(t)Pr2[¢(t0)) (190)
= —U(t)[1(t0)) = — (1)) (191)
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The helium atom V

— symmetry of ¢)(r1, 72) does not change with time — symmetry of
x(r1, 72) does not change with time

Selection rule for multiplicity

Transitions between different multiplicities are forbidden:

As =0 (192)

(exact Hamiltonian depends on spin — small modification of selection rule)

Parity
¢ composed of Ypmib100 = Rne Y™ Rio YO
— parity good quantum number, odd for odd ¢, even for even ¢

odd parity indicated by small letter o right from captial letter for net orbital
angular momentum —e.g. 1P°
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Multi-electron atoms |

Analogously, ground-state electron configurations of other atoms described

N
hz 1 262 1 e2
Z [ 2mv’ dmeg 1 ] + Z 4reg |7 — 7| (193)

@ neglect repulsion term — each electron occupies a one-particle
hydrogenic state (n, ¢, m) — orbital

@ due to Pauli exclusion principle — only two e~ per orbital:

e n? wavefunction for each shell n, e.g. n =1 — two electrons, n = 2

— eight electrons, etc.

@ Periodic system: horizontal rows < filling out each shell

@ How to fill n=2 (£ =0 or £ = 1) with single e=?7 — screening by
inner electrons, favor lowest /, e.g.
En=S < Ei=b, En=f < EL55

(larger £ — larger (r) — stronger screening of nucleus — less binding energy)
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Multi-electron atoms |

Total angular momentum

@ state of electron represented by pair nf, where £ is a letter, e.g. s for
¢ =0 — m not listed, but exponent for number of electrons in /, e.g.
He — 152 (i.e. two electrons in n =1,/ = 0)

o total orbital angular momentum indicated by capital L (letter), total
spin by captial S (multiplicity, number), and total angular momentum
by capital J (number)

@ total configuration of atom listed as
25+1 LJ (194)

@ e.g. groundstate of hydrogen S =1/2, L =S, J=1/2 —>251/2

LS-coupling of multi-electrons

If spin-orbit interaction negligible: L =37;, S =35 and J=L+ S
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Multi-electron atoms IlI

Spectroscopic nomenclature for atomic states

Table : Angular momenta of electrons

l 0 1 2 3
letter s p d f )
name sharp principal diffuse fundamental 7

Z EL Configuration

1 H 1s 251/
Ground-state 2 He 1s2 1s,
electron 3 Li  (He)2s 251
configurations of 4  Be (He)2s? 1S
first elements 5 B (He)2s?2p 2P°

21 Sc  (Ar)as>3d 2Dj),
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Multi-electron atoms IV

Note: Screening effect becomes larger for larger £ — overlap of shells

s 2s 3s 4s 5s 6s 7s 8s 9s 10s
2p 3p 4p 5p 6p Tp 8p 9p 10p
3d 4d 5d 6d 7d 8d 9d 10d

Af 5f 6f T7f 8f 9f 10f

5¢ 6g 7g 8g 9g 10g

6h 7h 8h 9h 10h

7i 8 9i 10/

8k 9k 10k

9/ 10/

10m

— for determining the energy order of terms of a one-electron system, just
go along the diagonals, e.g. 1s 2s 2p 3s 3p 4s 3d 4p 5s.
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Multi-electron atoms V

How to distribute electrons to shells?
— find configuration of minium energy

— Hund's rules (minimum energy principle)

@ The total angular momentum J of completely filled shells (n) or
subshells (¢) is 0. E.g. He: 152, Be: (He)2s?, Ne: (He)2s%2p°

@ Spins of electrons are pereferably parallel, i.e. electron are distributed
on subshells with my, such that multiplicity 25 + 1 is maximal. E.g. N
— (He) 252 2p3: in 2p shell: 11 —*S.
(sometimes referred to as the 1st rule or S rule)

© For states of same S, electrons are distributed such that largest
angular momentum L is achieved (larger ¢ — larger (r) — larger Ax_— -
— less repulsion), e.g. E(1D2) < E(1Sp).

(sometimes referred to as the 2nd rule or L rule)

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 79 / 142



Multi-electron atoms VI

@ |If outermost subshell half-filled or less: configuration with lowest total
angular momentum J = |L — S| (i.e. with smallest J) is preferred.
If outermost subshell more than half-filled: configuration with highest
J =L+ S is preferred.

—s reason: electron-electron interaction
— only valid for LS coupling (no spin-orbit interaction — light atoms,
Z < 10)

Example: groundstate of carbon 1s°2s“2p

two e” in 2p —15, 1D, or3P7D.D DD. D..

Using S rule — largest mulitplicity S preferred, i.e.
J=L+S—L=1and S=-1,0,41 =3Py, 3P;, or 3P,
Using J rule —smallest J, i.e. J=0

= 3P0

N
N
N
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Spin-orbit interaction |

When solved Schrédinger equation for hydrogen, used simple Hamiltonian

e? 1
H=—-—V?- -
2m dreg r

(195)

But: electron orbiting around nucleus — from electrons point of view:
proton orbits electron

— setting up magnetic field B, exerting a torque on spining electron to
align its magnetic moment /i, along B

;oL

H® = —fio-B=— (—%:?) (196)
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Spin-orbit interaction |l

From Biot-Savart law (— blackboard):

I
B = “2% (197)

where current | = e/ T with L = rmv = 2rmr2/T and B||L, so

- 1 e -
B=—"———1L 198
41eg mc2r3 (198)
used ¢ = 1/,/éoip to eliminate po. So the Spin-Orbit Interaction is
described by

1/ € 1 oz
2 \4dmeg /] m2cér
where factor 1/2 is from Thomas precession: back transformation into rest
frame of proton (electron: not an inertial system, accelerated)
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Spin-orbit interaction Il

Now: [H,L] # 0 and [H,S] # 0 — not longer separatly conserved
quantities, instead:

—

J=I[+5 (200)

commutes with H, as well as L2, S2,J, and

P=(L+S)-(L+S8)=12+52+2[-S (201)
L [-§5= %(J2—L2—52) (202)

with eigenvalues (where s = 1 in our case):

7;2“0 +1) =Ll +1) —s(s+ 1)] (203)
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Spin-orbit interaction IV

For H® we also need <%3>

1 1
<r3> - e+ e+ 1)mad (204)

Thus the energy of SO interaction is

E° = (H®) = e2 1 (h2/2[[(j+1)—€(€+1)_%
bra (0 DT e
B2 afiG+1)-(e+1)-3]  E2

= ~ 0 206
mc? o+ 3 +1) mc? (206)

(205)
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Spin-orbit interaction V

However, only half of the truth, need correction for relativistic motion of
electron, at least for larger Z, which is

E

Er——
2mc2

(+3

an 3] (207)

So in total we have E, + E*° + E":

a? n 3
1+ —= | —— - 2
o o) I

— breaks degeneracy in ¢ (different eigenvalues of H for same n)
— my and m;s are not longer “good” quantum numbers (stationary states
now linear combinations of states with different my, ms)
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Spin-orbit interaction VI

—n, £, s, j, m; “good” quantum numbers (write |j m;) as linear
combination of |£ my)|s ms) with help of Clebsch-Gordan coefficents)

Li=T02
n=4 K j=5r2
n=3

Fine

.

N ERT] structure
_ splitting of
g=& — g = 3 P &

------ j=1e hydrogen

=0 =1 =2 =3
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LS coupling |

-

For light elements Z < 10, total angular momentum J = [ + S, where
L=> ¢and S =) 5 of single electrons

Example: LS-coupling of np* electrons
@ equivalent p electrons: must differ in either my or mq
— for 2p: 3 my states x 2 ms states = 6 different states, each
electron in one of these states (Paul exclusion principle)

@ 4 electrons in 6 states: 2 combinations = (=1

configurations (see below)

6— 4)!4! =15
@ However: degeneracy, only L and S are “good” quantum numbers
@ Spins can couple to either S =0 (e.g. T, 1.1) or S =1 (e.g. TL,1.1)

o Four electrons with £ = 1 — angular momenta can couple to
L =0,1,2 (at maximum two electrons in my = +1)
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LS coupling Il

o therefore:
— possible states 25+1[:
15, 1P, 1D, 35, 3P, 3D
However, some states forbidden, because of Pauli exclusion principle
(complicated to find out, which one),
so rule for equivalent electrons (same n and ¢):

L 4+ S must be even
—only 1S, 3P, 1D allowed (see below)
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LS coupling IlI

m=-1 m=0 my=+41 M, Ms Total/Term

N T 0 0 'So
™ S S -1 -1
N T \ -1 0
1N T T -1 1
3 ™ 3 0 -1

B 1 tl ! 0 0 Py
coupling 1 1 0 0 1
for np* | | 1 1
electrons 4 1 1 1 0
T T ™ 1 1
13 1N 2 0
™ 1 T -1 0

3 ™ T 0 0 'D,
1 T N 1 0
N 1N 2 0
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Jj-coupling |

For heavy atoms (Z > 10, e.g. Pb Z = 82)
— spin-orbit interactions & spin-spin interactions
— for each electron individual combination of ¢ and § to individual j:

J=>7=>(l+9 (209)

— resulting angular momentum (S,P,...) of electrons not longer useful

But: pure jj coupling only in heaviest atoms
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/eeman effect
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Summary: Spin and orbit |

Hydrogen
@ Bohr formula from Schrodinger Eq. — degeneracy of solutions ¢ppm,,
i.e. same eigenvalue E for different £ and my

13.6eV
En=——"r (210)
e take spin-orbit interaction (and relativistic corrections) into account:
interaction of internal magnetic field caused by electron orbit with
electron spin — fine structure splitting, breaks E degeneracy

13.6eV a? n 3
E,=— 1+ = ———- 211
] 2 [ + n2 (j—ké 4>] (211)
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Summary: Spin and orbit I

n my J

A
5
4
42
+1
—_— [ 52
-1 —_— 32
2 —_— 12
>
o>
2
© "
- ¥ El -_————
12
-_—r [
12
Bohr: solution of fine structure
Schrédinger Eq. spin-orbit interaction
w/0 spin + relativistic correction
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Zeeman effect in QM |

An atom in an external magnetic field éex adds interaction term to
hamiltonian, i.e. energy shift:

HZ = - (ﬁl + ﬁs) : éext (212)
e - e - = e - — —

For Beyt < Bsg: fine structure dominates — Hz treated as small
perturbation

For Bext > Bso: Hz dominates — Hsq treated as small perturbation
For Beyt & Bso: degenerate perturbation theory
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Zeeman effect in QM 11

Estimation of internal magnetic field Bso:

1 e -

B = mmL (214)
eg.forL=h,r=a (215)
5 1.60 x 10719 C-1.05 x 10734 Js
478.9 x 10712C?/Nm? 9.1 x 1031 kg (3.0 x 108 m/s)2 (0.53 x 10~10m)3
(216)
=123JsC'm?=123T (217)

— magnetic field Be > 10T is “strong” Zeeman field
— magnetic field B < 10T is “weak” Zeeman field

e.g. magnetic field of the Earth ~ 1G = 107* T is “weak” Zeeman field
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Zeeman effect in QM 111
Weak-field Zeeman effect

o for Beyt < Bint — fine structure dominates

@ good quantum numbers: n, ¢, j, m; (but not my and ms as Land S
are not separately conserved in spin-orbit coupling)

@ from 1st order perturbation theory:

Ez = (ntjmj|Hz|ntjm;) = %éext (L + 28) (218)
0 as = Z+§—>Z+2§:j—l—§, with constant J =L+ S

—
\
\<"\ s so time average of S is its projection along
\1\ J:
I". oL
A c_(5-J)

J (219)
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Zeeman effect in QM IV

and L=J—S = [2= 2452 _2).5 and therefore

S rSs?-1?)= zzu(j+ 1) +s(s+1)—£¢+1)] (220)

which implies

(L+2S) = <<1+ §J2j> j> (221)

jU+1)—f(€+1)+§ . B
:[1+ 2j(j + 1) (D) =a() (222

with the Landé g-factor g;. Note: For single-electron system, if only
“orbit magnetism” (S = 0) — gy = 1, if only “spin magnetism” (¢ = 0)
— 8= 2
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Zeeman effect in QM V

With z-axis aligned with éext:

Ez = upgyBextm; (223)
and the Bohr magneton
_ 5788 % 10 5ev T (224)
B =om =

—> total energy is Epj + Ez, e.g. ground state of hydrogen (n =1,
=0,/ = % — gy = 2) splits into 2 levels:

2
E=_13.6eV (1 n OZ) + 115 Bext (225)
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Zeeman effect in QM VI

-13.6eV(1 +a?/4)

L. Oskinova, H. Todt (UP)

ueBexl
m=1/2
m=-1/2

Atomic Spectra in Astrophysics

Weak-field splitting of
the hydrogen ground
state, slope

dE /d(ugBext) = +1
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Zeeman effect in QM VII

Strong-field Zeeman effect (Paschen-Back effect)

o for Bey > Bint — Zeeman effect dominates
o let By = & Bext
@ good quantum numbers: n, £, my, ms — but not j, mj, as total angular

momentum J not conserved for external torque (but L, and S, are
conserved)

@ Zeeman Hamiltonian:

e
HZ == %Bext(Lz + 252) (226)
@ so “unperturbed” energies:
13.6eV
Enmgms = - 2 =+ :uBBeXt(me + 2m5) (227)
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Zeeman effect in QM VIII

o from 1st order perturbation theory: fine-structure correction

Ets = <n£m€m5|(Hre|. + HSO)|n£m£ms> (228)
where E, is same as before, i.e. E = —% {gfl”p — 3}

for SO-interaction we need

(5 L) = (S){Lx) + (S)){Ly) + (Sz){Lz) = W2 mym, (229)

(because (Sy) = (S,) = (Lx) = (L,) = 0 for eigenstates of S, and L)
therefore

By = e’ <43n - {f((f: 11/)2;(27 ini)]) (230)

and total energy is Egs + Epm,m,
Note: square bracketed term in Eq. 230 indeterminate for £ = 0,
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Zeeman effect in QM X

but then j ='s, mj = ms, so
e = - - e
E; = %Bext . <L + 25> = %Bextzmsh = 2ms,UBBext (231)

and fine-structure energies (includingn relativistic correction)

13.6eV a? 3
£y =B8NV 1 (,-3)] o)

as j = 1/2, so total energy

13.6eV a? 3
E— - [1 +— <n - 4)] + 2mg i Bext (233)

and fine-structure is o term:

Ers = — 13‘,?46\/@2 (n - 3) = 13.6eVa2 (3 - 1) (234)

4 n3 4n

— square bracketed term is 1 for £ =0
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Zeeman effect in QM X

Intermediate-field Zeeman effect

@ as neither Hz nor Hi, dominates, both are equal perturbations to Bohr
Hamiltonian H' = Hg + Hz

@ consider case n =2 — ¢ =0, 1, express basis |jm;) (makes matrix
elements of Hg easier) by linear combination of |¢my)|smy)
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Zeeman effect in QM XI

@ ...eigenvalues are with v = 13.6eV(/8)? and B = g Bext for n = 2:

E
I i
Weak Elmermedia'a

Strong

e=E-5+p
e2=E6£-5y-p
e3=E—v+2p8
@=E-7-28

-
-
-
-

€5 = B2 =37+ 5/24+ /49> + (2/3)18 + /4
6= E2—37+8/2— /02 1 @3B+ B4
€7 =B =3y /24 /49 + (2/3)18 + /4
€= B2 =37 3/2— /4> + (2/3)16 + 5 /4

FeBaxt
for 8 = 0 (zero-field limit) — fine-structure energies
for B < v (weak-field) — as in weak-field treatment
for B > « (strong-field) — as in strong-field case
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Classical description of Zeeman effect |

Normal Zeeman effect

@ classical description (w/o QM) by Lorentz:

/ N LN

N
|
A 4

.

emission by bound electron (circular orbit) — projection into one

direction — linear oscillator, split into and +

no force on — 0w = 0, linearly polarized light
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Classical description of Zeeman effect |l

@ consider only orbital angular momentum of electron I
— magnetic moment /i = 5~ f = vﬁ

Ez = _(/j : éext) = —pzBext = =€z Bext (235)

— “Larmor precession” (but with g = 1, because of orbit instead of
spin) around z-axis with constant ¢, and frequency

e

wL=9B = (236)

2m

— perturbation of electron orbit (with Bohr frequency wy), especially
component perpendicular to B
without external magnetic field — frequency wqg for ,

£ 7 (237)
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Classical description of Zeeman effect |l

now with additional external field — Lorentz force, e.g. in cartesian
coordinates

mx + mwix — eyBy = 0 (238)
my + mwly — exBy = 0 (239)
mix + mwiz =0 (240)

— equations of motion for electron
with u = x 4+ 1y and v = x —y:

u = ug exp[e(wo — %B)t] (241)
v = vo exp[t(wo + %B)t] (242)

—+ left- and right-circular oscillation with wo + 5B
— emission / absorption of circular polarized light of frequency
wo+t 5= B (Lorentz, Nobel prize 1902)
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Classical description of Zeeman effect IV

o frequency shift dw = 5~ B of spectral lines does not depend on
frequency wp

@ circular polarization along B, linear polarization perpendicular to B
— o (right-handed circularly pol.*, +dw) and o~ (left-handed
circularly pol.*, —dw) radiation
*relative to B

@ no emission of unshifted line 7 along B

— only triple splitting of lines explained
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Zeeman Effect
p
ZEEMAN EFFECT B2
—_— /2
-1/2
—> .32
[ — - +/2
Zn 4&.80 In a magnetic field 172
the original line splits
into three
No Magnetic Field Magnetic Field present
Gl a2
mi=1 S 1
-2 m =0 1/2

| l i p —_—12
i
i

Spectrum without Spectrum with magnetic Tl
magnetic field field present
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Application of Zeeman effect |

Astrophysics
@ consider only weak fields where g, is good quantum number

@ interaction energy (we already know), aligned with z-axis:

V=fi-B — V=—u,B=mgusB (243)
eh
2me

my=—-J,—J+1,...,J and pug= (244)

@ compare two Zeeman components with Am; = £1 and A1, Ao:

dtmc, _

AE =gugB — B= AP =Arh (245)
€8y

N 4drmec A\

— B >
egy Af

(246)
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Application of Zeeman effect |l

e e.g. for single electron above filled shell (e.g. H, Li, ...),
s=1/2— gs=gs=2andj=(+s:

gs—1
20+1

gr=g=1=+ (247)
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Application of Zeeman effect Il

Magnetic field of a sunspot

Spectrum of a sun
spot: right-hand
circularly polarized
(¢, blue) and
left-hand circularly
polarized (o,
L= red) light of a Fel
rA line (g, =5/2)

Normalized flux

A
B ~0.02141 - —)‘2 TA=02T (248)
8JAg
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Application of Zeeman effect IV

Weak stellar magnetic fields

e line splitting (7 and o components) approximately:

eB)?
Alg = 249
B gJ47TmC2 ( )
assume that Zeeman line splitting AAg < AXpoppler, Stark
— individual line shifts in subpixel regime
@ measure so-called stokes parameter /, V:
| = Pgo + Pogo = (E2 + E3> —  unpolarized (250)
V =Pc— P (251)
V. 1[/f°—f* fo—fe
AANE — (252)
/ 2 fo + fe a=—45° fo + fe a=+45°

where f is flux measured from ordinary and extraordinary beam, « is
angle of polarisator
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Application of Zeeman effect V

@ in weak field regime (Landstreet 1982), ensemble of spectral lines:

Z . geffe>\2 1dl

I~ 4xmc2 | d\
@ e.g. FORS2 of NGC 1514 — slope gives magnetic field of —250G

(Bz) (253)

0.005 — . =
.

0.000

VII (%)

-0.005 - . : -

|
-1.00E-06 0.0 1.00E-06
4.67 10 A2 1/I dI/dA [10° G™']
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Selection rules for radiative
line transitions
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Selection rule for multiplicity

From helium atom we already learnt a selection rule:
@ considering time evolution of the position-space wave function, then

@ transitions between different multiplicities are forbidden:

AS =0 (254)J

— radiative line transitions only within singlet or triplet states

e small modification of the this rule are possible (why?)
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Fermi's Golden Rule

So far, only stationary states (“pure” Hamiltonian Hp). How to consider
transitions?

— perturbation theory (H = Hy + H’), especially:

— Fermi's Golden Rule:

@ gives transition rate T;_, s from one energy eigenstate |/} into another
energy eigenstate |f), due to a perturbation H' (perturbing
Hamiltonian)

Fermi's Golden Rule

2 .
Tior = T UFIH i) PelEr) (255)

where o( Ef) is the space density of the final states

o (f|H'|i) is called matrix element (in bra—ket notation) of the
perturbation H’
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Interaction of a two-level atom with coherent light |

Let us consider the time-dependent Schrédinger equation

h? . di(r,
(~gmd+ v Ve ) u(r ) = L0 (256)

with potential of the nucleus, V; V5 corresponds to potential of “light
field” with electric field (plane wave)

F = Focos(kx — wt) (257)

Atom is placed at ¥ = 0, consider only light with 27 /k = X\ > datom, so
x =0 in Eq. (257), i.e. spatially constant light field

F = Fy cos(wt) (258)

with polarization in z-direction: Fy = (0,0, Fo)
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Interaction of a two-level atom with coherent light I

Then, force of electric field F on electron: —eF, therefore (why?)

Vs = efpz coswt (259)

Assumption: already solved unperturbed Schrodinger eq. (Vs = 0), found
@i, pj with energies E;, E;.

Now: wave function ¢ of perturbed system as superposition of ¢;, ¢;
Hence matrix element for coherent light:

HS = / 21 (7) eFoz ;(7)dV coswt (260)
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Hamiltonian of EM field |

Hamiltonian for electromagnetic field with generalized momentum

(B eA)? . P e .
H= 5 + ed(7) Sy mA P+ ed(7) (261)

with not too strong vector potential A and electrostatic potential ®, i.e.
time-dependent perturbation ZA(7,t) - p
o irradiated light as plane wave with polarization vector €

A7, t) ~ Ecos(k - F — wt) ~ ee'k7 (262)
@ hence the perturbation term
ef- A~ ep- cetk (263)

and the matrix element

; / (B - e om(P)dV (264)
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Hamiltonian of EM field I

@ approximation for large A, i.e. k-7F= 27r/A < 1 compared to extent

r of ¢, series expansion of e:
ek T 140k -P+.. . ~1

@ matrix element, lowest order

[ inep - cenrrav
@ because of %% = [H, 7], matrix element (266) is (proof!)
= [ enerem(Bav

— contains term er — electric dipole moment

L. Oskinova, H. Todt (UP)
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Matrix elements by symmetry considerations |

In one dimension, e.g. for € || x-axis matrix element | = (|x|))
Iy (x)I?

+o0

=/ P (x)xp(x)dx  |x = —x

= [T ) (xu(d(—x)
+oo — X
400 - 7

= [T (0ud00

because symmetry of wavefunction ¢(—x) = =¢(x), — ¥*1) invariant
under P transformation, so without detailed calculation:

= I=-1 =1=0 (268)
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Selection rule for the magnetic quantum number |

Electric dipole matrix element between two different hydrogen wave
functions

Iz = //lp:/’e/’m/(f_))z/lpm@’m(?)dv (269)
= /dV@b:,7z,7m,(r,9, ®) rcosO i om(r,0,0) (270)

because of ¥(r, ¢) = e"™1)(r,0) (with integer m), for rotations ¢q around
z-axis:

I, = e~"m=m)doy, (271)

Therefore: either [, =0, or, if , #0 > m=m’
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Selection rule for the magnetic quantum number |l

Now for x- and y-component:

b= [ AV (1.0.0)x U sn(.0.0) (272)
Iy == /de:/l/7m/(r,9, qb)y@[)n,g’m(r,@,(;ﬁ) (273)

multiply /, with 2 — x + 1y = rsinf cos ¢ + rsinfusin ¢

b+l = / AV g (20, 0) rSin 06 oy p mi(r,0,0)  (274)

again, rotation around z-axis by angle ¢g

I+, = eﬂ(mflfm’)%(/x + ) (275)
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Selection rule for the magnetic quantum number |l

Therefore:

I+, =0 if m#m +1 (276)
ly—uy,=0 if m#m —1 (277)

Or summarized: if m# m' +1 and m # m' — 1 then

=0, I,=0 (278)

Selection rules for magnetic quantum number of one-electron systems

For light polarized in z-direction:
Am=0 (279)
For light polarized in x- or y-direction:

Am = £1 (280)

v

— corresponds to 7 (linearly pol.) and o (circularly pol.) transitions
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General selection rules |

In general, use spherical components of dipole moment (for one e™)

r) = é(x tuy), =z (281)
hence the product of ¥ and polarization vector €
F- g: r(+)€(_) _|_ r( ) (+) + r(O) Z rl/ ( l/ (282)

v=-—1

trick — write spherical components of ¥ with help of spherical harmonics

and r = \/x2 + y? + z2 (why?):
r&) = \/?ryl,ﬂ(e, o), rO= ,/%”rvl,o(e) with (283)
Y141 ::H/isinHeiw Yio = \/icosﬁ (284)
’ 8w ’ ’ A
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General selection rules Il

For one-electron wave function (w/o spin)
GilF) = EYom(0,6), r(F) = T Ve m(0.0) (285

(v)

matrix elements of spherical components r;”’ can be written as integral
over three spherical harmonics, which be reduced to an integral over radial
wavefunctions with help of Wigner-Eckart theorem:

v > 4
rf(’_ ) :/ Sﬁgl rgpg( ) \/7/dQY£/ /Yl yyém (286)
0

:/ oy roe(r)dr FE 0, m'|1,v,0,m) (287)
0

with Clebsch-Gordan coefficient (CG) (¢', m'|1,v, £, m) for coupling of
initial angular momentum ¢, m with angular momentum 1, v of spherical
component of 7 to the final state ¢/, m’
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General selection rules Il

quantum numbers ¢/, 1, ¢ must satisfy triangular condition for CG
coefficients (selection rule for CG coefficients):

-1 <0 <i+1 (288)

— implies A¢ < 1, moreover from parity of spherical harmonics

PYé,m(ea ¢) = (_1)6 Yf,m(97 ¢) (289)

follows that £ + 1 + ¢’ must be even, otherwise parity of integrand
Y v Y10 Ye,m would be negative — integral f d) would vanish

another selection rule for CG coefficients states that

m+v=m (290)
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General selection rules IV

Selection rules for angular momentum of one-electron systems

A=V —¥;=x1, Am=ms—m; =0,=%1 (291)

transitions ¢; — 1; which do not satisfy (291) are forbidden (in dipole
approximation)

Addition: factor F(¢',£) is in this case

con [N +T) i =041,
F(E’g)_{—\/m if0=0—1 (292)

One-electron wave functions with spin:

&) = (@6 r)0s) = (|71, w1, v,y m) (293)
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General selection rules V

where m corresponds to eigenvalues of z-component of total angular
momentum J = Z—I— S

again: used Wigner-Eckart theorem (WE) to get reduced matrix element
{'|7]lj) (independent of m and ) — in general, WE theorem states that
for matrix elements of operators in eigenstates of angular momentum
operator m and v dependence is only via CG coefficients of coupling
between initial state and component of operator to final state

— from selection rules for CG coefficients:

Selection rules for total angular momentum of one-electron systems

Dj=jr—ji=0.41, Amj=ml—m/ =0+l  (294)

j=0&0, m=0~0ifAj=0 (295)

— Interpretation: EM field (photon) carries angular momentum (spin £1)
— angular momentum conservation
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Selection rules of multi-electron systems |

Multi-electron wave functions with spin: by applying WE theorem:

Selections rules for total angular momentum of multi-electron systems

For quantum numbers J, M, of total angular momentum J=L+5

AJ=Jr—J;=0,+%1, AM;=M}—- M;=0,+1 (296)
J=0«0, M;=0«0ifAJ=0 (297)

for LS coupling: total orbital angular momentum [= Z[and total spin
S =) "5 are “good” quantum numbers, selections rules for L, M,

AL=1Lf—L;=0,41, AM, =M - M =0,+1 (298)
L=0«»0, M =0«0ifAL=0 (299)
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Selection rules of multi-electron systems ||

Selection rules for spin, as the dipole operator er doesn’t act on spins:

Selections rules for total spin of multi-electron systems

AS=0, AMs=0 (300)

holds exact only for weak spin-orbit interaction — LS-coupling of light
atoms

— already derived for helium: no transition between singlet and triplet
system

However, for heavy atoms, e.g. with jj-coupling — intercombination
possible

Intercombination transition for strong spin-orbit interaction

AS=+1, AL=0,+1,+2 (301)
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Selection rules of multi-electron systems Il|

Selection rule for parity — remember example in one dimension,

. (el
I = 3 P (x)xP(x)dx  |x = —x
(302)
_ +_oo¢*(—x)(—x)1/}(—x)d(—x) (03) .
+oo /’/
= [T a0d @) o

we used symmetry of wavefunction ¥ (—x) = %1(x), especially equal parity
of ¥* and 1 to show that ¢)*1) invariant under P transformation and
therefore = [=—-1 =1=0
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Selection rules of multi-electron systems |V

Selection rule for parity of electric dipole transitions

P; Pr =—1 — change of parity (305)
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Selection rules of multi-electron systems V

However, transitions which are forbidden for electric dipole operator (E1)
may be allowed by electric 2% pole operator (e.g. E2 electric quadrupole) or
Mk magnetic 2 pole operator (e.g. M1 magnetic dipole, M3 magnetic

octupole)

Selection rule for E2, E4, ...and M1, M3, ... radiation

P; P =1 — same parity of intial and final state (306)

for even electric and odd magnetic multipole

Selection rule for E1, E3, ...and M2, M4, .. .radiation

P;iPr = —1 — change of parity (307)

for odd electric and even magnetic multipole
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Collisions

Collisional transitions not restricted by selection rules J

States for which the radiative transition to any lower state is forbidden are
called meta stable.

‘S 1P0 1D :‘)S 3P0 3D
EE R Pl
@ e.g. Ist excited state of Hel: . —
triplet (configuration?)
@ transition to ground state singlet wo triplet
(singlet) forbidden (by which
rule?)
@ but: level is depopulated by _
collisions o1 2 0 1 2
—_—— — L

If collisional deexcitation negligible (low density) — forbidden lines can be
observed, e.g. in planetary nebulae, solar corona
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Oscillator strengths
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Oscillator strengths |

Characterization of electric dipole transitions between W; and W¢ by
dimensionless quantity from Fermi’s Golden Rule

N
x 2m
) = Sl (Ul Y i) 2 (308)
j=1

in cartesian coordinates for N-electron atom, where w = Ef — E;, by
summing up over all three components

X z 2 -
o= R0 B 4 £ = STl v P (309)

— f is called oscillator strength of the corresponding electric dipole line
transition
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Oscillator strengths Il

Example: Cross section of line transition

Absorption o(E) of x-polarized photons (€= &) by W; — Wy line
transition (of energy E)
,e? h?

o =4 h—cﬁfffx)cS(Ef — E —E) (310)
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Oscillator strengths |

From commutator relation of position and momentum follows sum rule for
oscillator strengths over all final states n:

S = (311)

By summing up over x, y, z —

Thomas-Reiche-Kuhn sum rule

S fi=> (£ + D +£9) =3n (312)

— typical values of allowed transitions 0.1 < f < 1
— f values of multi-electron systems may be larger than 1
— f values of E2, M1, etc. usually < 1
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Oscillator strengths IV

f-values of Lyman lines

Analytic expression (Menzel & Pekeris 1935):

29n/5(n/ _ 1)2n’—4

glfnll = 3(n/ n 1)2n’+4 (313)

What is value of g1?
For Lya (1 —2): f = 0.4162
What is the detailed transition of Ly« (angular momentum)?
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D. Griffiths: Introduction to Quantum Mechanics

H. Hansel, W. Neumann: Atome - Atomkerne - Elementarteilchen
H. Haken, H. C. Wolf: Atom- und Quantenphysik

H. Friedrich: Theoretische Atomphysik

o J. D. Landstreet, 1982, ApJ, 258, 639
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