Atomic Spectra in Astrophysics

Lida Oskinova, Helge Todt

Astrophysik Institut für Physik und Astronomie Universität Potsdam

WiSe 2016/2017

The Hydrogen Atom

- importance of hydrogen, origin
- the hydrogen spectrum
- (brief) history of atom models
- quantum mechanics and solution of the central-force problem

- discovered 1766 by Cavendish (metal + acid), and found as constituent of water by de Lavoisir (1787) \rightarrow hydrogen = generator of water
- simplest atom: proton & electron

- isotopes: deuterium (1 neutron) and tritium (2 neutrons)
- origin: Big Bang; deuterium from primordial nucleosynthesis (1 min after BB at 60 MK \triangleq 80 keV); recombination at 378 000 yr (z = 1100) \rightarrow transparent universe
- fuel for stars (fusion) via proton-proton chain reaction or CNO cycle

The hydrogen spectrum I

• Spectrum of a Balmer lamp:

 \rightarrow low pressure gas-discharge tube (H. Geißler 1857) filled with hydrogen

• Ångström (1862): spectral lines of hydrogen in spectrum of sun

The hydrogen spectrum II

• Balmer (1885): spectral lines of hydrogen given by

$$\lambda = \frac{hm^2}{m^2 - n^2} \qquad (n = 2, m = 3, 4, 5, \ldots)$$
(1)

with $h = 3645.6 \times 10^{-10}$ m and 10^{-10} m = 1 Å, typical size of an atom predicted lines for m > were found in A stars

• Rydberg (1888): generalization to other series

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad , R_{\rm H} = 1.096775854 \times 10^7 \, {\rm m}^{-1} \quad (2)$$

generalization to H-like ions (e.g. He II, Li III):

$$\frac{1}{\lambda} = Z^2 R_X \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
(3)

• Parmenides (500 v. Chr.): atoms (*indivisible*) as building blocks of the world

• J. Dalton (1803): chemical elements consist of atoms of different mass

• J.J. Thomson (1900): atoms contain negatively charged electrons in a positively charged continuum (cathode rays experiments)

Atom models III

• Rutherford (1910): positively charged nucleus is smaller (10^{-15} m) than atom (scattering of helium nuclei on gold foil)

Problems of Rutherford model

Why do electrons not fall into nucleus? \rightarrow circular orbit Why don't they emit like electric dipole, what about spectral lines? \rightarrow Bohr model

Bohr model I

Bohr's postulates (1913) to explain observations:

Motion of electrons in atoms obeys quantum rules

- Electrons orbit in atoms the nucleus on so-called *stationary orbits* with discrete energies E_n . (The angular momentum is restricted to integer multiples of a fixed unit $L = n\hbar$ (n = 1, 2, 3, ...).)
- 2 Atoms can only gain or lose energy by the transition of an electron from one stationary orbit to another stationary orbit, this energy is discrete and given by $\Delta E = E_n E_{n+1} = h\nu$ for the involved photon of frequency ν .

Postulate (1) can be also written as phase space integral

$$\frac{1}{2\pi}\oint pdq = n\hbar \ (n = 1, 2, 3, \ldots)$$
 (4)

Bohr model II

Application to the hydrogen atom:

Electron orbits in a Coulomb potential (polar coordinates) with

$$F = -\frac{Ze^2}{4\pi\varepsilon_0 r_n^2} \tag{5}$$

with stationary radius r_n , balanced by centrifugal force

$$F_z = m_r \frac{v_n^2}{r_n} = m_r r_n \omega_n^2$$
(6)

with reduced mass m_r so that 0 is in nucleus with mass m_c

$$m_{\rm r} = \frac{m_2}{1 + \frac{m_2}{m_1}} = \frac{m_e}{1 + \frac{m_e}{m_c}}$$
 (7)

Force balance yields

$$\frac{Ze^2}{4\pi\varepsilon_0 r_n^2} = m_{\rm r} r_n \omega_n^2 \tag{8}$$

Bohr model III

As $v_n = r_n \omega_n$ the momentum and position are

$$p_n = m_r v_n = m_r r_n \omega_n, \quad q_n = r_n \phi_n \tag{9}$$

$$\frac{1}{2\pi} \oint p_n dq_n = \frac{1}{2\pi} m_r r_n^2 \omega_n \int_0^{2\pi} d\phi = m_r r_n^2 \omega_n = n\hbar \qquad (10)$$
$$\rightarrow \omega_n = \frac{n\hbar}{m_r r_n^2} \quad (n = 1, 2, 3, ...) \qquad (11)$$

Inserting force balance to elimnate ω_n :

$$r_n = \frac{4\pi n^2 \hbar^2 \varepsilon_0}{Zm_r e^2} \quad (n = 1, 2, 3, \dots)$$
(12)

$$\omega_n = \frac{Z^2 m_r e^4}{16\pi^2 n^3 \hbar^3 \varepsilon_0^2} \tag{13}$$

This can be used to obtain the kinetic energy of the electron

$$E_{\rm kin} = \frac{m_{\rm r}}{2} v_n^2 = \frac{m_{\rm r}}{2} r_n^2 \omega_n^2 = \frac{Z^2 m_{\rm r} e^4}{32\pi^2 n^2 \hbar^2 \varepsilon_0^2}$$
(14)

Its potential energy is given by $qV(r) = -\int F dr$:

$$E_{\text{pot}} = -\frac{Ze^2}{4\pi\varepsilon_0 r_n} = -\frac{Z^2 m_r e^4}{16\pi^2 n^2 \hbar^2 \varepsilon_0^2}$$
(15)

both forces are conservative forces, \rightarrow conservation of energy and the energy levels are therefore

$$E_{n} = E_{kin} + E_{pot} = -\frac{Z^{2}m_{r}e^{4}}{32\pi^{2}n^{2}\hbar^{2}\varepsilon_{0}^{2}}$$
(16)
$$= -\frac{Z^{2}m_{e}e^{4}}{32\pi^{2}n^{2}\hbar^{2}\varepsilon_{0}^{2}\left(1 + \frac{m_{e}}{m_{c}}\right)} (n = 1, 2, 3, ...)$$
(17)

from 2nd Bohr's postulate ($\Delta E = h
u$) and by $u = c/\lambda$:

$$\frac{1}{\lambda} = \frac{Z^2 m_e e^4}{32\pi^2 c \varepsilon_0^2 \left(1 + \frac{m_e}{m_c}\right)} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \tag{18}$$

Bohr model VI

15 / 142

comparison to Rydberg's formula $1/\lambda = Z^2 R_X (1/n_1^2 - 1/n_2^2)$ for hydrogen-like atoms suggests:

$$R_X = \frac{R_{\infty}}{1 + \frac{m_e}{m_c}}$$
(19)

$$R_{\infty} = \frac{m_e e^4}{32\pi^2 c \varepsilon_0^2} = 1.097373177 \times 10^7 \text{m}^{-1}$$
(20)

Application: Pickering lines of He II \rightarrow blackboard note: R_{∞} sometimes used for atomic energies

Problems and limits of Bohr model

Experiments:

H-like spectra of alkali metals need more than one quantum number for discription (e.g. Na D line \approx 5890 Å transition 3s - 3p)

no explanation of other spectra

Theory:

Heisenberg's uncertainty principle contradicts electron orbits → blackboard

Street light using sodium lamp. Orange light from Na D line

The Schrödinger equation I

wave equation, used for explanation of hydrogen spectrum

Schrödinger (1926)

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \tag{21}$$

e.g.
$$i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t) = \left(-\frac{\hbar^2}{2m}\Delta + V(\vec{r},t)\right)\psi(\vec{r},t)$$
 (22)

- derived from *de Broglie* and dispersion relation: $p = \hbar k$ and $E = \hbar \omega$
- \bullet describes unperturbed evolution in time of non-relativistic quantum systems, linear PDE of 2nd order with complex solutions ψ
- linearity: superposition principle of solutions
- probability of presence (find particle at position x): $|\psi(\vec{r},t)|^2$

The Schrödinger equation II

Stationary Schrödinger Eq. ($\partial/\partial t = 0$), separation: $\psi(\vec{r}, t) = \varphi(\vec{r}) f(t) \rightarrow \text{blackboard}$

$$\hat{H}\varphi(\vec{r}) = E\varphi(\vec{r})$$

$$\psi(x,t) = \varphi(x) e^{-i\frac{E}{\hbar}t}$$
(23)
(24)

with eigenvalues E (energy) of Hamilton operator:

- the probability density $|\psi(x, t)|^2 = |\psi(x)|^2$ (Why?) does not depend on t, same holds for expectation values of dynamic variables
- as $H(x,p) = \frac{p^2}{2m} + V(x)$ is classical Hamiltonian \equiv total energy $\rightarrow \langle H \rangle = E$ (Why?)
- general solution is a *linear* combination of separable solutions:

$$\psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$$
(25)

3D: Potential is of form $V(\vec{r}) = V(|\vec{r}|)$ The Laplace operator in 3D for spherical coordinates:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$
(26)

Use separation: $\varphi(r, \theta, \phi) = R(r) \cdot Y(\theta, \phi)$, thus

$$-\frac{\hbar^2}{2m}\frac{Y}{r^2}\left(\frac{\partial}{\partial r}r^2\frac{\partial R}{\partial r}\right) - \frac{\hbar^2}{2m}R\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial Y}{\partial\theta} - \frac{\hbar^2}{2m}\frac{R}{r^2\sin^2\theta}\frac{\partial^2 Y}{\partial\phi^2} + V(r)RY = ERY$$
(27)

with eigenvalue E

The Angular Equation I

Multiply $\cdot r^2$, and $\frac{1}{RY}$, again: obtain another separation constant

$$-\frac{\hbar^{2}}{2m}\frac{1}{R}\left(\frac{\partial}{\partial r}r^{2}\frac{\partial R}{\partial r}\right) + r^{2}V(r) - Er^{2} = \frac{\hbar^{2}}{2m}\frac{1}{Y\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial Y}{\partial\theta}$$
(28)
$$+\frac{\hbar^{2}}{2m}\frac{1}{Y\sin^{2}\theta}\frac{\partial^{2}Y}{\partial\phi^{2}}$$
$$= \frac{\hbar^{2}}{2m}[-\ell(\ell+1)]$$
(29)

Next separation: $Y(\theta, \phi) = \Theta(\theta) \cdot \Phi(\phi)$

$$\frac{\Phi}{\Theta\Phi\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial\Theta}{\partial\theta} + \frac{\Theta}{\Theta\Phi\sin^2\theta}\frac{\partial^2\Phi}{\partial\phi^2} = -\ell(\ell+1)$$
(30)

The Angular Equation II

term Φ/Φ and Θ/Θ cancels out, multiply $\sin^2\theta$

$$\frac{1}{\Theta}\sin\theta\frac{\partial}{\partial\theta}\sin\theta\frac{\partial\Theta}{\partial\theta} + \ell(\ell+1)\sin^2\theta = -\frac{1}{\Phi}\frac{\partial^2\Phi}{\partial\phi^2} = m^2$$
(31)

with new separation constant *m*:

$$\frac{\partial^2 \Phi}{\partial \phi^2} + m^2 \Phi = 0 \quad \Rightarrow \quad \text{solution:} \quad \Phi(\phi) = e^{\pm \imath m \phi} \tag{32}$$

as rotation around $\phi=2\pi$ in space means same as original state:

$$\Phi(\phi + 2\pi) \stackrel{!}{=} \Phi(\phi) \quad \Rightarrow \quad m = 0, \pm 1, \pm 2, \dots$$
(33)

The Angular Equation III

The other equation is for Θ

$$\sin\theta \frac{\partial}{\partial\theta} \sin\theta \frac{\partial\Theta}{\partial\theta} + \left[\ell(\ell+1)\sin^2\theta - m^2\right]\Theta = 0 \tag{34}$$

can be solved by so-called associated Legendre polynoms:

$$\Theta(\theta) = P_{\ell}^{m}(\cos\theta) \tag{35}$$

$$= (-1)^{m} (1 - \cos^{2} \theta)^{\frac{|m|}{2}} \frac{d^{|m|}}{d(\cos \theta)^{|m|}} P_{\ell}(\cos \theta)$$
(36)

$$P_{\ell}(\cos\theta) = \frac{1}{2^{\ell}\ell!} \frac{d^{\ell}}{d(\cos\theta)^{\ell}} (\cos^2\theta - 1)^{\ell}$$
(37)

Eq. (37) implies integer $\ell > 0$. Eq. (36) says $P_{\ell}^m = 0$ for $|m| > \ell$ and for ℓ are $(2\ell + 1)$ values of m. Other solutions unphysical (e.g. not normalizable) \rightarrow blackboard

L. Oskinova, H. Todt (UP)

WiSe 2016/2017

From normalization condition $\int_0^{2\pi}\int_0^\pi |Y|^2\sin\theta d\theta d\phi$ follows Spherical harmonics

$$Y_{\ell}^{m}(\theta,\phi) = \epsilon \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} e^{\imath m\phi} P_{\ell}^{m}(\cos\theta)$$
(38)
where $\epsilon = \begin{cases} (-1)^{m} & \text{for } m \ge 0\\ 1 & \text{for } m \le 0 \end{cases}$ (39)

E.g.:
$$P_0 = 1$$
, $P_0^0 = 1$ and $P_1^0 = \cos \theta$, and therefore
 $Y_0^0 = \left(\frac{1}{4\pi}\right)^{1/2}$ and $Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta$ or $Y_1^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{\pm i\phi}$

Hydrogen atom - The Radial Equation I

The radial equation

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{2m_r r^2}{\hbar^2}[V(r) - E]R = \ell(\ell+1)R \tag{40}$$

Substitution $u(r) \equiv rR(r) \rightarrow R = \frac{u}{r}$, $\frac{dR}{dr} = \frac{r\frac{du}{dr} - u}{r^2}$, $\frac{d}{dr}r^2\frac{dR}{dr} = r\frac{d^2u}{dr^2}$ and so

$$-\frac{\hbar^2}{2m_{\rm r}}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar^2}{2m_{\rm r}}\frac{\ell(\ell+1)}{r^2}\right]u = Eu$$
(41)

 \rightarrow like 1D Schrödinger equation but with *effective potential* (with centrifugal term)

$$V_{\rm eff} = V + \frac{\hbar^2}{2m_{\rm r}} \frac{\ell(\ell+1)}{r^2}$$
(42)

Hydrogen atom - The Radial Equation II

Now for specific potential V (Coulomb potential)

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r} \tag{43}$$

so the radial equation becomes

$$-\frac{\hbar^2}{2m_{\rm r}}\frac{d^2u}{dr^2} + \left[-\frac{e^2}{4\pi\epsilon_0}\frac{1}{r} + \frac{\hbar^2}{2m_{\rm r}}\frac{\ell(\ell+1)}{r^2}\right]u = Eu$$
(44)

Define $\kappa = \frac{\sqrt{-2m_{\rm r}E}}{\hbar}$ and consider only bound states, where E < 0. Divide Eq. (44) by E

$$\frac{1}{\kappa^2}\frac{d^2u}{dr^2} = \left[1 - \frac{m_r e^2}{2\pi\epsilon_0 \hbar^2 \kappa}\frac{1}{\kappa r} + \frac{\ell(\ell+1)}{(\kappa r)^2}\right] u \tag{45}$$

Hydrogen atom - The Radial Equation III

Substitute $\rho \equiv \kappa r$ and $\rho_0 \equiv \frac{m_r e^2}{2\pi\epsilon_0 \hbar^2 \kappa}$:

$$\frac{d^2u}{d\rho^2} = \left[1 - \frac{\rho_0}{\rho} + \frac{\ell(\ell+1)}{\rho^2}\right] u \tag{46}$$

for $ho
ightarrow \infty$ we obtain $rac{d^2 u}{d
ho^2} = u$ and therefore

$$u(\rho) = Ae^{-\rho} + Be^{\rho} \tag{47}$$

For $\rho \to \infty$ we get $e^{\rho} \to \infty$, so we need B = 0 and hence $u(\rho) \sim Ae^{-\rho}$ For $\rho \to 0$ (and $\ell \neq 0$):

$$\frac{d^2u}{d\rho^2} = \frac{\ell(\ell+1)}{\rho^2}u$$
(48)

Hydrogen atom - The Radial Equation IV

Can be solved with

$$u(\rho) = C\rho^{\ell+1} + D\rho^{-\ell}$$
(49)

Again: For $\rho \to 0$ the term $\rho^{-\ell} \to \infty$, thus $D \stackrel{!}{=} 0$ and $u(\rho) \sim C \rho^{\ell+1}$ Let's introduce $v(\rho)$:

$$u(\rho) = \rho^{\ell+1} e^{-\rho} v(\rho)$$
 (50)

Radial equation then reads

$$\rho \frac{d^2 v}{d\rho^2} + 2(\ell + 1 - \rho) \frac{dv}{d\rho} + [\rho_0 - 2(\ell + 1)]v = 0$$
(51)

Assuming that $v(\rho)$ can be written as a power series in ρ :

$$v(\rho) = \sum_{j=0}^{\infty} a_j \rho^j$$

$$\rightarrow \frac{dv}{d\rho} = \sum_{j=0}^{\infty} j a_j \rho^{j-1} \stackrel{j \to j+1}{=:} \sum_{j=0}^{\infty} (j+1) a_{j+1} \rho^j$$

$$\rightarrow \frac{d^2 v}{d\rho^2} = \sum_{j=0}^{\infty} j(j+1) a_{j+1} \rho^{j-1}$$
(54)

Hydrogen atom - The Radial Equation VI

So that radial equation now reads

$$\sum_{j=0}^{\infty} j(j+1)a_{j+1}\rho^{j} + 2(\ell+1)\sum_{j=0}^{\infty} (j+1)a_{j+1}\rho^{j}$$

$$-2\sum_{j=0}^{\infty} ja_{j}\rho^{j} + [\rho_{0} - 2(\ell+1)]\sum_{j=0}^{\infty} a_{j}\rho^{j} = 0$$
(56)

The coefficients for any j must yield

$$j(j+1)a_{j+1} + 2(\ell+1)(j+1)a_{j+1} - 2ja_j + [\rho_0 - 2(\ell+1)]a_j = 0$$
 (57)

or
$$a_{j+1} = \frac{2(j+\ell+1)-\rho_0}{(j+1)(j+2\ell+2)}a_j$$
 (58)

Hydrogen atom - The Radial Equation VII

Starting with $a_0 = A$ (A yet to be fixed) and check for large j:

$$a_{j+1} \simeq rac{2j}{j(j+1)}a_j = rac{2}{j+1}a_j \quad \Rightarrow \quad a_j \simeq rac{2^j}{j!}A$$
 (59)

But if this were the exact solution:

$$v(\rho) = A \sum_{j=0}^{\infty} \frac{2^j}{j!} \rho^j = A e^{2\rho} \quad \Rightarrow \quad u(\rho) = A \rho^{\ell+1} e^{\rho} \tag{60}$$

where $e^{
ho} \to \infty$ for $ho \to \infty$. So, series (60) must have maximum j_{\max} , such that

$$a_{j_{\max}+1} = 0 \quad \Rightarrow \quad 2(j_{\max}+\ell+1) - \rho_0 = 0 \quad \text{ in Eq. (58)}$$
 (61)

L. Oskinova, H. Todt (UP)

Hydrogen atom - The Radial Equation VIII

Defining $n \equiv j_{\max} + \ell + 1 \rightarrow \rho_0 = 2n$, recalling that

$$\rho_0 = \frac{m_r e^2}{2\pi\epsilon_0 \hbar^2 \kappa} \quad \text{and} \quad \kappa = \frac{\sqrt{-2m_r E}}{\hbar}$$

$$\to E = -\frac{\hbar^2 \kappa^2}{2m_r} = -\frac{m r e^4}{8\pi^2 \epsilon_0^2 \hbar^2 \rho_0^2}$$
(62)

Bohr formula

$$E_n = -\left[\frac{m}{2\hbar^2}\left(\frac{e^2}{4\pi\epsilon_0}\right)\right]\frac{1}{n^2} = \frac{E_1}{n^2} \quad n = 1, 2, 3, \dots$$
 (64)

 \rightarrow allowed energies of the Hydrogen atom

Hydrogen atom - The Radial Equation IX

Eq. (62) and $\rho = 2n$ also yield *Bohr radius*:

$$\kappa = \left(\frac{m_{\rm r}e^2}{4\pi\epsilon_0\hbar^2}\right)\frac{1}{n} = \frac{1}{an} \tag{65}$$

where
$$a = \frac{4\pi\epsilon_0\hbar^2}{m_r e^2} = 0.529 \times 10^{-10} \,\mathrm{m}$$
 (66)
and $\rho = \frac{r}{an}$ (67)

Now, for normalization we remember that for the radial equation

$$u(r) \equiv rR(r)$$
 and our approach: (68)
 $u(a) = e^{\ell+1}e^{-\rho}u(a)$ (69)

$$u(\rho) = \rho^{c+1} e^{-\rho} v(\rho) \tag{69}$$

$$\rightarrow R_{n\ell} = \frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho) \tag{70}$$

where $v(\rho) = \sum_{j=0}^{j_{\max}=n-\ell-1} a_j \rho^j$

Hydrogen atom - The Radial Equation X

Consider ground state, i.e. n = 1

Binding energy of hydrogen atom

$$E_1 = -\left[\frac{m_{\rm r}}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] = -13.6\,{\rm eV} \tag{71}$$

So, $1 = n = j_{max} + \ell + 1 \rightarrow \ell \stackrel{!}{=} 0$ and therefore also m = 0 (Why?)

$$\varphi_{100}(r,\theta,\phi) = R_{10} Y_0^0(\theta,\phi) \tag{72}$$

Our recursion formula $a_{j+1} = \frac{2(j+\ell+1)-\rho_0}{(j+1)(j+2\ell+2)}a_j$ with j = 0 yields $a_1 = 0$ (and hence also for $a_2, a_3, \ldots \rightarrow v(\rho) = a_0\rho^0 = \text{const.}$

$$R_{10}(r) = \frac{a_0}{a} e^{-r/a} \tag{73}$$

Hydrogen atom - The Radial Equation XI

Using Normalization condition $\int_0^\infty |R|^2 r^2 dr \stackrel{!}{=} 1$ to determine a_0 :

$$\int_{0}^{\infty} |R_{10}|^{2} r^{2} dr = \frac{|a_{0}|^{2}}{a^{2}} \int_{0}^{\infty} e^{-2r/a} r^{2} dr = |a_{0}|^{2} \frac{a}{4} \stackrel{!}{=} 1 \quad (74)$$

$$\rightarrow \quad a_{0} = \frac{2}{\sqrt{a}} \quad (75)$$

With $Y_0^0 = \frac{1}{\sqrt{4\pi}}$:

$$\varphi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a} \tag{76}$$

• independent of ϕ and heta
ightarrow spherical symmetric with $|arphi|^2 \sim e^{-2r/a}$

so-called s orbital

Hydrogen atom - The Radial Equation XII

For the first excited state $n=2 \rightarrow E_2=E_1/2^2=-3.4\,{
m eV}$ and

$$j_{\max} = \underbrace{n}_{=2} -\ell - 1 = \begin{cases} \ell = 0 \Rightarrow j_{\max} = 1\\ \ell = 1 \Rightarrow j_{\max} = 0 \end{cases}$$
(77)

 $\rightarrow m = 0, +1, -1.$ Note: 4 different $\varphi_{n\ell m}$ for one energy (= eigenvalue of \hat{H}) $\rightarrow degeneracy$

So for $\ell = 0 \rightarrow \text{Recursion}$ formula gives $a_1 = -a_0$ (j = 0)and $a_2 = 0$ $(j = 1) \rightarrow \text{our polynomial } v(\rho) = a_0(1 - \rho)$:

$$\ell = 0$$
 $R_{20}(r) = \frac{a_0}{2a} \left(1 - \frac{r}{2a} \right) e^{-r/2a}$ (78)

$$\ell = 1 \qquad R_{21}(r) = \frac{a_0}{4a^2} r e^{-r/2a} \tag{79}$$

where a_0 needs to be determined from normalization

L. Oskinova, H. Todt (UP)

Atomic Spectra in Astrophysics
Hydrogen atom - The Radial Equation XIII

The number of different φ for any *n*, because of $\ell = 0, 1, ..., n-1$ and for each ℓ exist $(2\ell + 1)$ values of *m*, is:

$$\sum_{\ell=0}^{n-1} (2\ell + 1) = n^2 \qquad (Proof!) \tag{80}$$

So, our polynomial $v(\rho)$ can be written as

$$v(\rho) = L_{n-\ell-1}^{2\ell+1}(2\rho)$$
 (81)

$$L_{q-p}^{p}(x) \equiv (-1)^{p} \left(\frac{d}{dx}\right)^{p} L_{q}(x)$$
(82)

with the *q*th Laguerre polynomial:

$$L_q(x) \equiv e^x \left(\frac{d}{dx}\right)^q (e^{-x} x^q) \tag{84}$$

(83)

Full solution I

Now, the full solution reads:

$$\varphi_{n\ell m}(r,\theta,\phi) = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} e^{-r/na} \left(\frac{2r}{na}\right)^\ell L_{n-l-1}^{2\ell+1} \left(\frac{2r}{na}\right) Y_\ell^m(\theta,\phi)$$

 $\varphi_{n\ell m}$ e.g. with n = 2, $\ell = 1$, m = 0:

$$\varphi_{210}(r,\theta,\phi) = \frac{1}{\sqrt{4\pi}} \left(\frac{1}{2a}\right)^{3/2} \frac{r}{a} e^{-r/(2a_0)} \cos\theta$$
 (85)

- $\bullet\,$ independent of $\phi \rightarrow {\rm rotationally}$ symmetric w.r.t. the z-axis
- so-called p orbital \rightarrow illustration of the probability of presence

Full solution II

Summary:

- found stationary solutions for Coulomb potential (eigenfunctions for eigenvalues $E \leftrightarrow \hat{H}$)
- \bullet analytic solutions (real) \to only certain functions for bound states due to normalization constraints, characterized by discrete quantum numbers
- quantum number $n \rightarrow$ from radial equation \rightarrow associated Laguerre polynomials
- quantum numbers $\ell, m \rightarrow \text{possible values depend on } n \text{ and } \ell \rightarrow \text{spherical harmonics} \rightarrow \text{associated Legendre polynomials}$
- eigenvalues E denpend only on $n \rightarrow$ degeneracy (only for pure Coulomb potential, central force)
- all solutions and quantum numbers verified by experiments
- but: one more quantum number, not deducible from *Schrödinger* equation (i.e. differential equation): *spin* quantum number

quantum number	value / symbol	formula
n	1, 2, 3,	$E_n = -R_\infty/n^2$
	K, L, M, \ldots (shells)	
ℓ	$0, 1, 2, 3, \ldots, n-1$	$ ec{\mathcal{L}} = \sqrt{\ell(\ell+1)}\hbar$
	s, p, d, f, \dots (orbitals)	• • •
m_ℓ	$0,\pm 1,\pm 2,\ldots,\pm \ell$	$L_z = m_\ell \hbar$
ms	$\pm \frac{1}{2}$	$S_z = m_s \hbar$

The angular momentum operator I

In classical mechanics angular momentum \vec{L} from cross product:

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} = \begin{pmatrix} yp_z - zp_y \\ zp_x - xp_z \\ xp_y - yp_x \end{pmatrix}$$
(86)
(87)

In quantum mechanics: $p_x \rightarrow \frac{\hbar}{\imath} \frac{\partial}{\partial x} \equiv \frac{\hbar}{\imath} \partial_x$, so that

$$\begin{pmatrix} L_{x} \\ L_{y} \\ L_{z} \end{pmatrix} = \frac{\hbar}{\imath} \begin{pmatrix} y\partial_{z} - z\partial_{y} \\ z\partial_{x} - x\partial_{z} \\ x\partial_{y} - y\partial_{x} \end{pmatrix}$$
(88)

Again, we are interested in the eigenvalues and eigenfunctions.

L. Oskinova, H. Todt (UP)

The angular momentum operator II

Unfortunately:

$$[L_x, L_y]f = \left(\frac{\hbar}{\imath}\right)^2 (y\partial_x - x\partial_y)f = \imath\hbar L_z f \qquad (\text{Proof!}) (89)$$

$$\Rightarrow \qquad [L_x, L_y] = \imath \hbar L_z \tag{90}$$

$$[L_y, L_z] = \imath \hbar L_x, \qquad [L_z, L_x] = \imath \hbar L_y \tag{92}$$

As L_x , L_y , L_z do not commutate, from generalized uncertainty principle:

$$\sigma_{L_x}^2 \sigma_{L_y}^2 \ge \frac{\hbar}{2} |\langle L_z \rangle| \tag{93}$$

 \rightarrow incompatible observables, no common eigenfunctions of L_x and L_z , etc.

The angular momentum operator III

Fortunately:

$$[L^2, L_x] \equiv [L_x^2 + L_y^2 + L_z^2, L_x] = 0 \qquad (Proof!) \tag{94}$$

 \rightarrow hopefully: eigenfunction f exists, so that

$$L^2 f = \lambda f \quad \text{and} \quad L_z f = \mu f \tag{95}$$

Let's introduce the *ladder operator*

$$L_{\pm} \equiv L_x \pm i L_y$$
 with: (96)

$$[L_z, L_{\pm}] = [L_z, L_x] \pm \imath [L_z, L_y] = \imath \hbar L_y \pm \imath (-\imath \hbar L_x)$$
(97)

$$= \pm \hbar (L_x \pm \imath L_y) = \pm \hbar L_{\pm}$$
(98)

and $[L^2, L_{\pm}] = 0$ (99)

So, with $[L_z, L_{\pm}] = \pm \hbar L_{\pm}$:

$$L^{2}(L_{\pm}f) = L_{\pm}(L^{2}f) = L_{\pm}(\lambda f) = \lambda(L_{\pm}f)$$
(100)

$$L_{z}(L_{\pm}f) = (L_{z}L_{\pm} - L_{\pm}L_{z})f + L_{\pm}L_{z}f$$
(101)

$$= \pm \hbar L_{\pm} f + L_{\pm} (\mu f) = (\mu \pm \hbar) (L_{\pm} f)$$
(102)

 \rightarrow ($L_{\pm}f$) is an eigenfunction of L^2 as well as f, with same eigenvalue $\lambda \rightarrow (L_{\pm}f)$ is also an eigenfunction of L_z , with *new* eigenvalue $\mu \pm \hbar$

Therefore: L_+ raising operator \rightarrow increases eigenvalue of L_z L_- lowering operator \rightarrow lowers eigenvalue by \hbar

 \rightarrow Consecutive application of L_+ until reaching f_t with $L_z^2 = L^2$, such that $L_+ f_t = 0$ with eigenvalue of f_t , let's call $\hbar \ell$, i.e. $L_z f_t = \hbar \ell f_t$ and $L^2 f_t = \lambda f_t$

With help of the following relation

$$L_{\pm}L_{\mp} = (L_{x} \pm iL_{y})(L_{x} \mp iL_{y}) = L_{x}^{2} + L_{y}^{2} \mp i(L_{x}L_{y} - L_{y}L_{x})$$
(103)
$$= L^{2} - L_{z}^{2} \mp \hbar L_{z}$$
(104)
$$\rightarrow L^{2} = L_{\pm}L_{\mp} + L_{z}^{2} \mp \hbar L_{z}$$
(105)

we find a relation for the eigenvalue λ of L^2 in terms of the maxium eigenvalue of L_z :

$$L^{2}f_{t} = (L_{-}L_{+} + L_{z}^{2} + \hbar L_{z})f_{t}$$
(106)

$$= (0 + \hbar^2 \ell^2 + \hbar \ell) f_t = \hbar^2 \ell (\ell + 1) f_t$$
(107)

$$\rightarrow \lambda = \hbar^2 \ell(\ell+1) \tag{108}$$

The angular momentum operator VI

Analogously, there is a minimum eigenvalue of L_z with eigenfunction f_b :

$$L_{-}f_{b} = 0$$
 with $L_{z}f_{b} = \hbar\ell_{b}f_{b}$ and $L^{2}f_{b} = \lambda f_{b}$ (109)

$$\to L^2 f_b = (L_+ L_- + L_z^2 - \hbar L_z) f_b$$
(110)

$$= (0 + \hbar^2 \ell_b^2 - \hbar \ell) f_b = \hbar^2 \ell_b (\ell_b - 1) f_b$$
(111)

$$\rightarrow \lambda = \hbar^2 \ell_b (\ell_b - 1) \tag{112}$$

Hence by combining both results for λ (e.v. of L^2), we get

$$\ell(\ell+1) = \ell_b(\ell_b - 1) \quad \to \quad \ell_b = -\ell \tag{113}$$

 \rightarrow eigenvalues of L_z are $m\hbar$ with $m = -\ell, \dots, 0, \dots, \ell$ in N integer steps, i.e. $\ell = -\ell + N \Rightarrow \ell = N/2 \rightarrow \ell$ is integer or *half-integer*

Eigenfunctions of L_z , L^2 characterized by ℓ and m:

$$L^{2}f_{\ell}^{m} = \hbar^{2}\ell(\ell+1)f_{\ell}^{m} \qquad L_{z}f_{\ell}^{m} = \hbar m f_{\ell}^{m}$$
(114)

where
$$\ell = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$$
 $m = -\ell, \dots, 0, \dots, \ell$ (115)

Note: by pure algebra we found the eigenvalues of L_z and L^2 ℓ is also called the azimuthal quantum number and *m* the magnetic quantum number

 \rightarrow now find eigenfunctions f

The angular momentum operator VIII

Remember that $\vec{L} = \frac{\hbar}{i}\vec{r} \times \nabla$ and with the unit vectors \hat{r} etc.

$$\nabla = \hat{r}\partial_r + \hat{\theta}\frac{1}{r}\partial_\theta + \hat{\phi}\frac{1}{r\sin\theta}\partial_\phi$$
(116)

$$\Rightarrow \vec{L} = \frac{\hbar}{i} \left[r(\hat{r} \times \hat{r})\partial_r + (\hat{r} \times \hat{\theta})\partial_\theta + (\hat{r} \times \hat{\phi}) \frac{1}{\sin \theta} \partial_\phi \right]$$
(117)

As $(\hat{r} imes \hat{r}) = 0$, $(\hat{r} imes \hat{ heta}) = \hat{\phi}$, and $(\hat{r} imes \hat{\phi}) = -\hat{ heta}$

$$\vec{\mathcal{L}} = \frac{\hbar}{\imath} \left(\hat{\phi} \partial_{\theta} - \hat{\theta} \frac{1}{\sin \theta} \partial_{\phi} \right)$$
(118)

Unit vectors $\hat{\theta},\,\hat{\phi}$ in Cartesian coordinates:

$$\hat{\theta} = (\cos \theta \cos \phi)\hat{x} + (\cos \theta \sin \phi)\hat{y} + -(\sin \theta)\hat{z}$$
(119)
$$\hat{\phi} = -(\sin \phi)\hat{x} + (\cos \phi)\hat{y}$$
(120)

ı

$$\vec{L} = \frac{\hbar}{\imath} \left[(-\sin\phi\hat{x} + \cos\phi\hat{y})\partial_{\theta} - (121) \right]$$

$$\left(\cos\theta\cos\phi\hat{x} + \cos\theta\sin\phi\hat{y} - \sin\theta\hat{z}\right)\frac{1}{\sin\theta}\partial_{\phi}\bigg]$$
(122)

$$\Rightarrow L_x = \frac{\hbar}{i} \left(-\sin\phi \partial_\theta - \cos\phi \cot\theta \partial_\phi \right)$$
(123)

$$L_y = \frac{h}{i} \left(+\cos\phi\partial_\theta - \sin\phi\cot\theta\partial_\phi \right)$$
(124)

$$L_z = \frac{\hbar}{i} \partial_{\phi} \tag{125}$$

$$L_{\pm} = L_{x} + iL_{y} = \frac{\hbar}{i} [(-\sin\phi \pm i\cos\phi)\partial_{\theta} - (126)]$$

$$(\cos\phi \pm \imath \sin\phi) \cot\theta \partial_{\phi}] \tag{127}$$

$$= \pm \hbar e^{\pm i\phi} (\partial_{\theta} \pm i \cot \theta \partial_{\phi}) \qquad \text{as:} \ \cos \phi \pm i \sin \phi = e^{\pm i\phi} (128)$$

The angular momentum operator X

Now we can find eigenfunction $f_{\ell}^{m}(\theta, \phi)$ of L_{z} :

$$L_{z}f_{\ell}^{m}(\theta,\phi) = \frac{\hbar}{\imath}\partial_{\phi}f_{\ell}^{m}(\theta,\phi) = \hbar m f_{\ell}^{m}(\theta,\phi) \quad \Rightarrow \quad f_{\ell}^{m}(\theta,\phi) = g(\theta)e^{\imath m\phi} (129)$$

Analogously, $f_{\ell}^{m}(\theta, \phi)$ is an eigenfunction of L^{2} with e.v. $\hbar \ell (\ell + 1)$:

$$L^{2}f_{\ell}^{m}(\theta,\phi) = (L_{+}L_{-} + L_{z}^{2} - \hbar L_{z})f_{\ell}^{m}(\theta,\phi) = \hbar^{2}\ell(\ell+1)f_{\ell}^{m}(\theta,\phi) \quad (130)$$

As $\partial_{\theta}f = e^{\imath m\phi} \frac{\partial g}{\partial \theta}$ and $\partial_{\phi}f = \imath m e^{\imath m\phi}g$ with our expression for L_{\pm} and L_z we obtain (Proof!)

$$\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{dg}{d\theta} \right) + \left[\ell(\ell+1) \sin^2\theta - m^2 \right] g = 0$$
(131)

 \rightarrow this is $\Theta(\theta)$ of the spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$ and – of course – $f(\phi) = e^{\imath m \phi}$ is $\Phi(\phi)!$

L. Oskinova, H. Todt (UP)

The angular momentum operator XI

 \Rightarrow The spherical harmonics are the eigenfunctions of L^2 and L_7 :

Note

Note

Classical mechanics:

 $\vec{L} = \vec{r} \times \vec{p}$ (motion of center of mass) and spin $\vec{S} = \mathbf{I}\vec{\omega}$ (motion about center of mass)

Quantum mechanics of hydrogen atom:

 $\vec{L} \rightarrow$ orbital angular momentum of electron orbiting nucleus and \vec{S} spin \rightarrow angular momentum of electron itself \rightarrow not a function of position variables r, θ , ϕ

Spin as *intrinsic* angular momentum cannot be decomposed into orbital angular momenta of constituent parts (e.g. electron is point-like)

However, analogously to algebraic theory of angular momentum we postulate:

$$[S_x, S_y] = \imath \hbar S_z, \qquad [S_y, S_z] = \imath \hbar S_x, \qquad [S_z, S_x] = \imath \hbar S_y \qquad (133)$$

And with ket notation (as eigenstates of spin are not functions):

$$S^{2} |sm\rangle = \hbar^{2} s(s+1) |sm\rangle; \qquad S_{z} |sm\rangle = \hbar m |sm\rangle$$
 (134)

$$S_{\pm}|sm\rangle = \hbar\sqrt{s(s+1) - m(m\pm 1)} |s(m\pm 1)\rangle$$
(135)

These relations do not exclude *half-integer* values of s, m. Interestingly, every elementary particle has specific, fixed value of s, e.g. 1/2 for electrons

Theory of spin 1/2

simplest nontrival quantum system \rightarrow only two possible eigenstates:

$$|\frac{1}{2}\frac{1}{2}\rangle \rightarrow \text{spin up}$$

 $|\frac{1}{2}(-\frac{1}{2})\rangle \rightarrow \text{spin down}$
Thus, general state can be written as 2 element column matrix (gniner):

Thus, general state can be written as 2-element column matrix (spinor):

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-$$
 where (136)

$$\chi_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 spin up $\chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ spin down (137)

The spin operator IV

The spin operators S_z , S^2 , etc. are 2 × 2 matrices. From their eigenvalues (s = 1/2):

$$S^{2}\chi_{+} = \frac{3}{4}\hbar^{2}\chi_{+}; \quad S^{2}\chi_{-} = \frac{3}{4}\hbar^{2}\chi_{-}; \quad S_{z}\chi_{+} = \frac{1}{2}\hbar^{2}\chi_{+}; \quad S_{z}\chi_{-} = -\frac{1}{2}\hbar^{2}\chi_{-}(138)$$
$$S_{+}\chi_{-} = \hbar\chi_{+}; \quad S_{-}\chi_{+} = \hbar\chi_{-}; \quad S_{+}\chi_{+} = S_{-}\chi_{-} = 0(139)$$

together with $S_{\pm}\equiv S_{x}\pm\imath S_{y}$, so that

$$S_x = \frac{1}{2}(S_+ + S_-)$$
 $S_y = \frac{1}{2i}(S_+ - S_-)$ (140)

and therefore

$$S_{x}\chi_{+} = \frac{\hbar}{2}\chi_{-};$$
 $S_{x}\chi_{-} = \frac{\hbar}{2}\chi_{+};$ $S_{y}\chi_{+} = -\frac{\hbar}{2i}\chi_{-};$ $S_{y}\chi_{-} = \frac{\hbar}{2i}\chi_{+};$ (141)

The spin operator V

we find the algebraic representation of the spin operators

$$S^{2} = \frac{3}{4}\hbar^{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad (142)$$
$$S_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad S_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \quad S_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (143)$$

One defines the Pauli spin matrices by $\sigma_x = S_x / \frac{\hbar}{2}$ etc. Note: S_x , S_y , S_z , S^2 are Hermitian (i.e. self-adjoint: $S_x = S_x^{\dagger} = \overline{S_x}^{\mathsf{T}} = \overline{S_x}^{\mathsf{T}}) \rightarrow \text{observables}$, while S_+ , S_- are not Hermitian \rightarrow not observable We already know the eigenspinors (eigenstates) and eigenvalues of S_z :

$$\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 eigenvalue: $+\frac{\hbar}{2}$; $\chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ eigenvalue: $-\frac{\hbar}{2}$ 144)

The spin operator VI

For a particle in the general state

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_{+} + b\chi_{-}$$
(145)

the probability to get for S_z the value $+\frac{\hbar}{2}$ is of course $|a|^2$ and to get the value $-\frac{\hbar}{2}$ is $|b|^2$, so

$$|a|^2 + |b|^2 = 1$$
 (i.e. normalized spinor) (146)

Accurate language

The probability $|a|^2$ to $get +\hbar/2$ for a measurement of S_z doesn't mean that the particle *is* in the state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. In fact, the particle *is* in the state χ .

The parity operator

The action of the parity operator *P* is just $\vec{r} \rightarrow -\vec{r}$:

$$P\psi(x, y, z) = \psi(-x, -y, -z)$$
(147)

Obviously $P^2 = PP = \mathbf{1} \rightarrow \text{only two eigenvalues:}$

+1 \rightarrow eigenstate of positive parity (even parity): $\psi(\vec{r}) = \psi(-\vec{r})$ -1 \rightarrow eigenstate of negative parity (odd parity): $\psi(\vec{r}) = -\psi(-\vec{r})$ For a potential V(x, y, z) = V(-x, -y, -z), e.g. Coulomb potential \rightarrow parity is good quantum number (i.e. conserved quantity)

Parity of eigenfunctions of hydrogen atom $\psi(r, \theta, \phi) = R(r)P_{\ell}^{m}(\cos \theta)e^{im\phi}$

Parity transformation $\theta \rightarrow \pi - \theta$, $\phi \rightarrow \phi + \pi$, $r \rightarrow r$

 \Rightarrow parity depends only on transformation of associated Legendre polynoms even $\ell \rightarrow$ even parity and odd $\ell \rightarrow$ odd parity (Proof!)

Application: Electron in magnetic field I

spin + charged particle \rightarrow magnetic dipole:

$$\vec{\mu} = \gamma \vec{S}$$
 where $\gamma :=$ gyromagnetic ratio (148)

Note: in classical electrodynamics: $\gamma = \frac{q}{2m}$ in QM: $\gamma = g_J \frac{q}{2m} = g_S \frac{q}{2m} \approx 2.002 \frac{q}{2m}$ magnetic dipole in magnetic field \vec{B} experiences torque \vec{M} :

$$\vec{M} = \vec{\mu} \times \vec{B} \tag{149}$$

 \rightarrow torque tries to line $\vec{\mu}$ up parallel to field ("compass needle") Energy (and therefore Hamiltonian):

$$H = -\vec{\mu} \cdot \vec{B} = -\gamma \vec{B} \cdot \vec{S} \tag{150}$$

Larmor precession

Spin- $\frac{1}{2}$ particle in a homogeneous magnetic field along *z*-direction $\vec{B} = B_0 \vec{e}_z$ Hamiltonian (matrix!):

$$H = -\gamma B_0 S_z = -\frac{\gamma B_0 \hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
(151)

Hamiltonian H and Spin operator S_z share same eigenstates:

$$\chi_{+}, \text{ energy } E_{+} = -\frac{\gamma B_{0}\hbar}{2}$$
(152)
$$\chi_{-}, \text{ energy } E_{-} = +\frac{\gamma B_{0}\hbar}{2}$$
(153)

where energy is lowest for dipole moment parallel to magnetic field (otherwise: \rightarrow torque tries to align)

Application: Electron in magnetic field III

 \rightarrow time-dependent solution of $i\hbar\partial_t\chi = H\chi$ expressed with stationary states:

$$\chi(t) = a\chi_{+}e^{-\imath E_{+}t/\hbar} + b\chi_{-}e^{-\imath E_{-}t/\hbar} = \begin{pmatrix} ae^{+\imath\gamma B_{0}t/\hbar} \\ be^{-\imath\gamma B_{0}t/\hbar} \end{pmatrix}$$
(154)

fix coefficients by initial conditions, e.g.

$$\chi(t=0) = \begin{pmatrix} a \\ b \end{pmatrix}$$
, where $|a|^2 + |b|^2 = 1$ (155)

Then (for real *a*, *b*) we can write $a = \cos(\alpha/2)$ and $b = \sin(\alpha/2)$, with constant α , so

$$\chi(t) = \begin{pmatrix} \cos(\alpha/2)e^{+i\gamma B_0 t/2} \\ \sin(\alpha/2)e^{-i\gamma B_0 t/2} \end{pmatrix}$$
(156)

Application: Electron in magnetic field IV

therefore the expectation value of the spin as a function of time:

$$\begin{aligned} \langle S_{\mathbf{x}} \rangle &= \chi(t)^{\dagger} S_{\mathbf{x}} \chi \\ &= \left(\cos(\alpha/2) e^{-i\gamma B_{\mathbf{0}} t/2} \quad \sin(\alpha/2) e^{+i\gamma B_{\mathbf{0}} t/2} \right) \frac{\hbar}{2} \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \cos(\alpha/2) e^{+i\gamma B_{\mathbf{0}} t/2} \\ \sin(\alpha/2) e^{-i\gamma B_{\mathbf{0}} t/2} \end{array} \right) \\ &= + \frac{\hbar}{2} \sin \alpha \cos(\gamma B_{\mathbf{0}} t) \\ \langle S_{\mathbf{y}} \rangle &= - \frac{\hbar}{2} \sin \alpha \sin(\gamma B_{\mathbf{0}} t) \\ \langle S_{\mathbf{z}} \rangle &= + \frac{\hbar}{2} \cos \alpha \end{aligned}$$

 $\rightarrow \langle \vec{S} \rangle$ tilted at constant angle α to z-axis, precesses about the field at

Larmor frequency of a spinning electron

$$\omega = \gamma B_0 = 1.7606 \times 10^{11} \, \text{rad} \, \text{s}^{-1} \, \text{T}^{-1} \cdot B_0 \ \rightarrow \ f = 28 \, \text{GHz} \, \text{T}^{-1} \cdot B_0$$

Now, two spin- $\frac{1}{2}$ particles (e.g. electron and proton in ground state of hydrogen, so $\ell = 0$), composite system is in a *linear combination* of

$$\uparrow\uparrow, \uparrow\downarrow, \downarrow\uparrow, \downarrow\downarrow \qquad (157)$$

What is the *total* angular momentum of the atom? We define

$$\vec{S} \equiv \vec{S}^{(1)} + \vec{S}^{(2)}$$
 (158)

The z-component: simply adds, each composite state is eigenstate of S_z

$$S_{z}\chi_{1}\chi_{2} = (S_{z}^{(1)} + S_{z}^{(2)})\chi_{1}\chi_{2} = (S_{z}^{(1)}\chi_{1})\chi_{2} + \chi_{1}(S_{z}^{(2)}\chi_{2})$$
(159)
= $(\hbar m_{1}\chi_{1})\chi_{2} + \chi_{1}(\hbar m_{2}\chi_{2}) = \hbar(m_{1} + m_{2})\chi_{1}\chi_{2}$ (160)

Thus, $m = m_1 + m_2$:

$$\uparrow\uparrow \qquad m=1 \tag{161}$$

$$\uparrow \downarrow \qquad m = 0 \tag{162}$$

$$\downarrow \uparrow \quad m = 0$$
 (163)

$$\downarrow \quad m = -1$$
 (164)

problem: two states with $m = 0 \rightarrow$ apply lowering operator $S_{-} = S_{-}^{(1)} + S_{-}^{(2)}$ to state $\uparrow\uparrow$ to obtain the correct state:

$$S_{-}(\uparrow\uparrow) = (S_{-}^{(1)}\uparrow)\uparrow + \uparrow (S_{-}^{(2)}\uparrow)$$
(165)

$$= (\hbar \downarrow) \uparrow + \uparrow (\hbar \downarrow) = \hbar(\downarrow\uparrow + \uparrow\downarrow)$$
(166)

Therefore, the states with s = 1 in $|s m\rangle$ notation

$$\begin{array}{ll} |11\rangle & = & \uparrow\uparrow\\ |10\rangle & = & \frac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow)\\ |1-1\rangle & = & \downarrow\downarrow \end{array} \end{array} \right\} \rightarrow {\rm triplet:} \ s = 1$$
(167)

And orthogonal state $|s\,m
angle=|0\,0
angle$

$$|00\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow - \downarrow\uparrow) \} \rightarrow \text{singlet: } s = 0$$
 (168)

 \rightarrow system of two spin- $\frac{1}{2}$ particles has total spin 1 or 0. Let us *proof:* triplet states are eigenvectors of S^2 with eigenvalues $2\hbar^2$ and singlet state is eigenvector with eigenvalue 0:

$$S^{2} = (\vec{S}^{(1)} + \vec{S}^{(2)}) \cdot (\vec{S}^{(1)} + \vec{S}^{(2)}) = (S^{(1)})^{2} + (S^{(2)})^{2} + 2\vec{S}^{(1)} \cdot \vec{S}^{(2)}$$
(169)
Remember: $S_{x}\chi_{+} = \frac{\hbar}{2}\chi_{-}, S_{y}\chi_{+} = -\frac{\hbar}{2\imath}\chi_{-}, S_{z}\chi_{+} = \frac{\hbar}{2}\chi_{+}, S^{2}\chi_{+} = \frac{3}{4}\hbar^{2}\chi_{+}$ etc.

$$\vec{S}^{(1)} \cdot \vec{S}^{(2)}(\uparrow\downarrow) = (S_x^{(1)} \uparrow)(S_x^{(2)} \downarrow) + (S_y^{(1)} \uparrow)(S_y^{(2)} \downarrow) + (S_z^{(1)} \uparrow)(S_z^{(2)} \downarrow)$$

$$= \left(\frac{\hbar}{2} \downarrow\right) \left(\frac{\hbar}{2} \uparrow\right) + \left(\frac{\imath\hbar}{2} \downarrow\right) \left(-\frac{\imath\hbar}{2} \uparrow\right) + \left(\frac{\hbar}{2} \uparrow\right) \left(-\frac{\hbar}{2} \downarrow\right)$$

$$= \frac{\hbar^2}{4} (2 \downarrow\uparrow - \uparrow\downarrow)$$
and
(171)

and

$$\vec{S}^{(1)} \cdot \vec{S}^{(2)}(\downarrow\uparrow) = \frac{\hbar^2}{4} (2\uparrow\downarrow-\downarrow\uparrow)$$
(172)

Addition of angular momenta V

So we get

$$\vec{S}^{(1)} \cdot \vec{S}^{(2)} |10\rangle = \frac{\hbar}{4} \frac{1}{\sqrt{2}} (2\downarrow\uparrow -\uparrow\downarrow +2\uparrow\downarrow -\downarrow\uparrow) = -\frac{\hbar^2}{4} |10\rangle$$
(173)
$$\vec{S}^{(1)} \cdot \vec{S}^{(2)} |00\rangle = \frac{\hbar}{4} \frac{1}{\sqrt{2}} (2\downarrow\uparrow -\uparrow\downarrow -2\uparrow\downarrow +\downarrow\uparrow) = -\frac{3\hbar^2}{4} |00\rangle$$
(174)

and therefore

$$S^{2}|10\rangle = \left(\frac{3\hbar^{2}}{4} + \frac{3\hbar^{2}}{4} + 2\frac{\hbar^{2}}{4}\right)|10\rangle = 2\hbar^{2}|10\rangle$$
(175)

$$S^{2}|00\rangle = \left(\frac{3\hbar^{2}}{4} + \frac{3\hbar^{2}}{4} - 2\frac{\hbar^{2}}{4}\right)|00\rangle = 0$$
 (176)

and of course $S^2|1\,-1\rangle=2\hbar^2|1\,-1\rangle$ and $S^2|11\rangle=2\hbar^2|11\rangle$

Addition of angular momenta VI

Thus, answer to the general problem of combining any s_1 , s_2 or angular momenta:

$$s = (s_1 + s_2), (s_1 + s_2 - 1), \dots, |s_1 - s_2|$$
 (177)

and also, e.g. for hydrogen atom, net angular momentum of electron (spin + orbital) \boldsymbol{j}

$$j = \ell + \frac{1}{2}$$
 or $j = \ell - \frac{1}{2}$ (178)

and with proton, total angular momentum of hydrogen atom:

$$J = \ell + 1$$
 or $J = \ell - 1$ (179)

Addition of angular momenta VII

Therefore, state $|s m\rangle$ with total spin s and z-component $m \rightarrow$ linear combination of composite states $|s_1 m_1\rangle |s_2 m_2\rangle$:

$$|s m\rangle = \sum_{m_1 + m_2 = m} C^{s_1 s_2 s}_{m_1 m_2 m} |s_1 m_1\rangle |s_2 m_2\rangle$$
(180)

with Clebsch-Gordan coefficients $C_{m_1 m_2 m}^{s_1 s_2 s}$ E.g.

$$|21\rangle = \frac{1}{\sqrt{3}}|22\rangle|1-1\rangle + \frac{1}{\sqrt{6}}|21\rangle|10\rangle - \frac{1}{\sqrt{2}}|20\rangle|11\rangle$$
(181)

Note that the z-components have to add to m = 1 \rightarrow For two particles of spin 2 and spin 1 with total spin 2 and total z-component 1: measure $S_z^{(1)}$ and get $2\hbar$ (probability $\frac{1}{3}$), \hbar (probability $\frac{1}{6}$), or 0 (probability $\frac{1}{2}$)

The helium atom I

Hamiltonian of helium (Z = 2), neglecting spin

$$H = \left[-\frac{\hbar^2}{2m} \nabla_1^2 - \frac{1}{4\pi\epsilon_0} \frac{2e^2}{r_1} \right] + \left[-\frac{\hbar^2}{2m} \nabla_2^2 - \frac{1}{4\pi\epsilon_0} \frac{2e^2}{r_2} \right] + \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\vec{r_1} - \vec{r_2}|}$$

 \rightarrow without repulsion term :

$$\psi(\vec{r}_1, \vec{r}_2) = \psi_{n\ell m}(\vec{r}_1)\psi_{n'\ell'm'}(\vec{r}_2)$$
(182)

with $a = \frac{a_{\rm H}}{2}$ and $E = 4E_{\rm H}$,

$$E = 4(E_n + E_{n'}) \rightarrow E_0 = 8 \cdot (-13.6 \,\text{eV}) = -109 \,\text{eV}$$
 (183)

(But measured: -79 eV = -24.6 eV - 54.4 eV, because we neglected e^-e^- -interaction)

with
$$\psi_0(\vec{r}_1, \vec{r}_2) = \psi_{100}(\vec{r}_1)\psi_{100}(\vec{r}_2) = \frac{8}{\pi a^3} e^{-2(r_1 + r_2)/a}$$
 (184)

The helium atom II

Electrons are *identical particles*, therefore

$$\psi(\vec{r}_{1},\vec{r}_{2}) \neq \psi_{a}(\vec{r}_{1})\psi_{b}(\vec{r}_{2}) \quad \text{but}$$

$$\psi_{-}(\vec{r}_{1},\vec{r}_{2}) = A[\psi_{a}(\vec{r}_{1})\psi_{b}(\vec{r}_{2}) - \psi_{b}(\vec{r}_{1})\psi_{a}(\vec{r}_{2})] \quad (\text{fermions})$$
(186)

- two electrons cannot occupy same state → Pauli exclusion principle (Proof!)
- ψ for fermions *must be* antisymmetric under exchange:

$$\psi(\vec{r}_1, \vec{r}_2) = -\psi(\vec{r}_2, \vec{r}_1)$$
(187)

with $\psi \rightarrow \psi(\vec{r}_1, \vec{r}_2) \chi(\vec{r}_1, \vec{r}_2)$

 as the ground state ψ₀ ~ e^{r₁+r₂} of helium is symmetric → spin state must be antisymmetric → singlet, electrons oppositely aligned

$$\frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow) \tag{188}$$

The helium atom III

Excited helium atom:

- combination $\psi_{n\ell m}\psi_{100}$ (What about $\psi_{n\ell m}\psi_{n'\ell'm'}$?)
- symmetric $\psi_{n\ell m}\psi_{100}$ \rightarrow antisymmetric spin configuration (singlet) or antisymmetric $\psi_{n\ell m}\psi_{100}$ \rightarrow symmetric spin configuration (triplet)
- thus, two different kinds of excited states: singlet and triplet
- singlet states have sligthly higher *E* than corresponding triplets (because of symmetric ψ \rightarrow closer e⁻e⁻ \rightarrow larger *E*_{repuls})

72 / 142
Intercombination

Note that

• total wavefunction must be antisymmetric by

$$\psi(\vec{r}_1, \vec{r}_2) = \begin{cases} \psi_{\mathsf{a}}(\vec{r}_1, \vec{r}_2) \chi_{\mathsf{s}}(\vec{r}_1, \vec{r}_2) \\ \psi_{\mathsf{s}}(\vec{r}_1, \vec{r}_2) \chi_{\mathsf{a}}(\vec{r}_1, \vec{r}_2) \end{cases}$$
(189)

- the interchange operator can be written as $P_{12}=P_{12}^\psi\,P_{12}^\chi$
- Hamiltonian does not depend on spin $ightarrow [H, P_{12}^{\psi}] = 0$
- time evolution operator $U(t) = e^{-\frac{i}{\hbar}Ht} \rightarrow [U, P_{12}] = 0$
- if for any t_0 : $P_{12}|\psi(t_0)
 angle=-|\psi(t_0)|$, then for all times:

$$P_{12}|\psi(t)\rangle = P_{12}U(t)|\psi(t_0)\rangle = U(t)P_{12}|\psi(t_0)\rangle$$
(190)
= $-U(t)|\psi(t_0)\rangle = -|\psi(t)\rangle$ (191)

The helium atom V

 \rightarrow symmetry of $\psi(\vec{r_1}, \vec{r_2})$ does not change with time \rightarrow symmetry of $\chi(\vec{r_1}, \vec{r_2})$ does not change with time

Selection rule for multiplicity

Transitions between different multiplicities are forbidden:

$$s = 0 \tag{192}$$

(exact Hamiltonian depends on spin $\rightarrow\,{\rm small}$ modification of selection rule)

Parity

 ψ composed of $\psi_{n\ell m}\psi_{100} = R_{n\ell}Y_{\ell}^m R_{10}Y_0^0$

 \rightarrow parity good quantum number, odd for odd $\ell,$ even for even ℓ

odd parity indicated by small letter o right from captial letter for net orbital angular momentum \to e.g. $^1{\rm P^o}$

Multi-electron atoms I

Analogously, ground-state electron configurations of other atoms described by

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r_i} \right] + \sum_{i \neq j} \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\vec{r_i} - \vec{r_j}|}$$
(193)

- neglect repulsion term \rightarrow each electron occupies a one-particle hydrogenic state $(n, \ell, m) \rightarrow orbital$
- due to Pauli exclusion principle \rightarrow only two e^- per orbital:
- n^2 wavefunction for each shell *n*, e.g. $n = 1 \rightarrow$ two electrons, $n = 2 \rightarrow$ eight electrons, etc.
- \bullet Periodic system: horizontal rows \leftrightarrow filling out each shell
- How to fill n = 2 (l = 0 or l = 1) with single e⁻? → screening by inner electrons, favor lowest l, e.g.
 E^{l=0}_{n=2} < E^{l=1}_{n=4}, E^{l=0}_{n=4} < E^{l=2}_{n=3}
 (larger l → larger ⟨r⟩ → stronger screening of nucleus → less binding energy)

Total angular momentum

- state of electron represented by pair $n\ell$, where ℓ is a letter, e.g. s for $\ell = 0 m$ not listed, but exponent for number of electrons in ℓ , e.g. He $\rightarrow 1s^2$ (i.e. two electrons in $n = 1, \ell = 0$)
- total *orbital* angular momentum indicated by capital *L* (letter), total spin by captial *S* (multiplicity, number), and total angular momentum by capital *J* (number)
- total configuration of atom listed as

$$^{2S+1}L_J$$
 (194)

ullet e.g. groundstate of hydrogen S = 1/2, L = S, J = 1/2 \rightarrow {}^2S_{1/2}

LS-coupling of multi-electrons

If spin-orbit interaction negligible: $\vec{L} = \sum \vec{\ell_i}$, $\vec{S} = \sum \vec{s_i}$ and $\vec{J} = \vec{L} + \vec{S}$

Multi-electron atoms III

Spectroscopic nomenclature for atomic states

Table : Angular momenta of electrons							
l	0	1	2	3			
letter	5	р	d	f			
name	sharp	principal	diffuse	fundamental	?		

	Ζ	El.	Configura	ation
	1	Н	1 <i>s</i>	${}^{2}S_{1/2}$
Ground-state	2	He	$1s^{2}$	${}^{1}S_{0}^{-}$
electron	3	Li	(He)2 <i>s</i>	${}^{2}S_{1/2}$
configurations of	4	Be	(He)2 <i>s</i> ²	${}^{1}S_{0}$
first elements	5	В	(He)2 <i>s</i> ² 2 <i>p</i>	${}^{2}P_{1/2}^{o}$
	 21	Sc	(Ar)4 <i>s</i> ² 3 <i>d</i>	${}^{2}D_{3/2}$

L. Oskinova, H. Todt (UP)

Multi-electron atoms IV

Note: Screening effect becomes larger for larger $\ell \to \text{overlap}$ of shells

1 <i>s</i>	2 <i>s</i>	3 <i>s</i>	4 <i>s</i>	5 <i>s</i>	6 <i>s</i>	7 <i>s</i>	8 <i>s</i>	9 <i>s</i>	10 <i>s</i>
	2p	3р	4 <i>p</i>	5 <i>p</i>	6 <i>p</i>	7 <i>p</i>	8 <i>p</i>	9p	10 <i>p</i>
		3 <i>d</i>	4 <i>d</i>	5 <i>d</i>	6 <i>d</i>	7 <i>d</i>	8 <i>d</i>	9 <i>d</i>	10 <i>d</i>
			4 <i>f</i>	5 <i>f</i>	6 <i>f</i>	7 <i>f</i>	8 <i>f</i>	9 <i>f</i>	10 <i>f</i>
				5g	6g	7g	8g	9g	10g
					6 <i>h</i>	7 <i>h</i>	8h	9h	10 <i>h</i>
						7i	8i	9i	10 <i>i</i>
							8 <i>k</i>	9 <i>k</i>	10 <i>k</i>
								9/	10/
									10 <i>m</i>

 \rightarrow for determining the energy order of terms of a one-electron system, just go along the diagonals, e.g. 1s 2s 2p 3s 3p 4s 3d 4p 5s.

L. Oskinova, H. Todt (UP)

78 / 142

How to distribute electrons to shells?

 \rightarrow find configuration of minium energy

\rightarrow Hund's rules (minimum energy principle)

- The total angular momentum J of completely filled shells (n) or subshells (ℓ) is 0. E.g. He: 1s², Be: (He)2s², Ne: (He)2s²2p⁶
- Spins of electrons are pereferably parallel, i.e. electron are distributed on subshells with m_ℓ, such that multiplicity 2S + 1 is maximal. E.g. N → (He) 2s² 2p³: in 2p shell: ↑↑↑ → ⁴S. (sometimes referred to as the 1st rule or S rule)
- So For states of same S, electrons are distributed such that largest angular momentum L is achieved (larger ℓ → larger ⟨r⟩ → larger Δx_{e⁻e⁻} → less repulsion), e.g. E(¹D₂) < E(¹S₀).
 (comparison referred to as the 2nd rule or L rule)

(sometimes referred to as the 2nd rule or L rule)

Multi-electron atoms VI

If outermost subshell half-filled or less: configuration with lowest total angular momentum J = |L - S| (i.e. with smallest J) is preferred. If outermost subshell more than half-filled: configuration with highest J = L + S is preferred.

 \rightarrow reason: electron-electron interaction \rightarrow only valid for LS coupling (no spin-orbit interaction \rightarrow light atoms, Z<10)

Example: groundstate of carbon
$$1s^2 2s^2 2p^2$$

two e⁻ in $2p^2 \rightarrow {}^1S$, 1D , or 3P ? $\square \uparrow \downarrow \square$, $\square \uparrow \downarrow$, $\square \uparrow \uparrow$
Using S rule \rightarrow largest multiplicity S preferred, i.e. 3P
 $J = L + S \rightarrow L = 1$ and $S = -1, 0, +1 \rightarrow {}^3P_0$, 3P_1 , or 3P_2
Using J rule \rightarrow smallest J, i.e. $J = 0$
 $\Rightarrow {}^3P_0$

When solved Schrödinger equation for hydrogen, used simple Hamiltonian

$$H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$
(195)

But: electron orbiting around nucleus \rightarrow from electrons point of view: proton orbits electron

 \rightarrow setting up magnetic field \vec{B} , exerting a torque on spining electron to align its magnetic moment $\vec{\mu}_{e}$ along \vec{B}

$$H^{\rm so} = -\vec{\mu}_{\rm e} \cdot \vec{B} = -\left(-\frac{e}{m}\vec{S}\right)\vec{B}$$
(196)

Spin-orbit interaction II

From Biot-Savart law (\rightarrow blackboard):

$$B = \frac{\mu_0 I}{2r} \tag{197}$$

where current I = e/T with $L = rmv = 2\pi mr^2/T$ and $\vec{B}||\vec{L}$, so

$$\vec{B} = \frac{1}{4\pi\epsilon_0} \frac{e}{mc^2 r^3} \vec{L}$$
(198)

used $c = 1/\sqrt{\epsilon_0\mu_0}$ to eliminate μ_0 . So the *Spin-Orbit Interaction* is described by

$$H^{\rm so} = \frac{1}{2} \left(\frac{e^2}{4\pi\epsilon_0} \right) \frac{1}{m^2 c^2 r^3} \vec{S} \cdot \vec{L}$$
(199)

where factor 1/2 is from *Thomas precession*: back transformation into rest frame of proton (electron: not an inertial system, accelerated)

L. Oskinova, H. Todt (UP)

Atomic Spectra in Astrophysics

WiSe 2016/2017

82 / 142

Spin-orbit interaction III

Now: $[H, \vec{L}] \neq 0$ and $[H, \vec{S}] \neq 0 \rightarrow$ not longer separatly conserved quantities, instead:

$$\vec{J} \equiv \vec{L} + \vec{S}$$
 (200)

commutes with H, as well as L^2 , S^2 , J_z and

$$J^{2} = (\vec{L} + \vec{S}) \cdot (\vec{L} + \vec{S}) = L^{2} + S^{2} + 2\vec{L} \cdot \vec{S}$$
(201)

$$\rightarrow \vec{L} \cdot \vec{S} = \frac{1}{2} (J^{2} - L^{2} - S^{2})$$
(202)

with eigenvalues (where $s = \frac{1}{2}$ in our case):

$$\frac{\hbar^2}{2}[j(j+1) - \ell(\ell+1) - s(s+1)]$$
(203)

Spin-orbit interaction IV

For H^{so} we also need $\left\langle \frac{1}{r^3} \right\rangle$:

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{1}{\ell(\ell + \frac{1}{2})(\ell + 1)n^3 a^3}$$
 (204)

Thus the energy of SO interaction is

$$E^{\rm so} = \langle H^{\rm so} \rangle = \frac{e^2}{8\pi\epsilon_0} \frac{1}{m^2 c^2} \frac{(\hbar^2/2[j(j+1) - \ell(\ell+1) - \frac{3}{4}]}{\ell(\ell+\frac{1}{2})(\ell+1)n^3 a^3}$$
(205)
$$= \frac{E_n^2}{mc^2} \frac{n[j(j+1) - \ell(\ell+1) - \frac{3}{4}]}{\ell(\ell+\frac{1}{2})(\ell+1)} \sim \frac{E_n^2}{mc^2}$$
(206)

Spin-orbit interaction V

However, only half of the truth, need correction for relativistic motion of electron, at least for larger Z, which is

$$E^{\rm r} = -\frac{E_n^2}{2mc^2} \left[\frac{4n}{\ell + \frac{1}{2}} - 3 \right]$$
(207)

So in total we have $E_n + E^{so} + E^r$:

Fine-structure energy levels of hydrogen

$$E_{nj} = -\frac{13.6 \text{ eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right) \right]$$
(208)

 \rightarrow breaks degeneracy in ℓ (different eigenvalues of H for same n) $\rightarrow m_{\ell}$ and m_s are not longer "good" quantum numbers (stationary states now linear combinations of states with different m_{ℓ}, m_s)

Spin-orbit interaction VI

 $\rightarrow n, \ell, s, j, m_j$ "good" quantum numbers (write $|j m_j\rangle$ as linear combination of $|\ell m_\ell\rangle|s m_s\rangle$ with help of Clebsch-Gordan coefficients)

For light elements Z < 10, total angular momentum $\vec{J} = \vec{L} + \vec{S}$, where $\vec{L} = \sum \vec{\ell}$ and $\vec{S} = \sum \vec{s}$ of single electrons

Example: LS-coupling of np^4 electrons

- equivalent p electrons: must differ in either m_{ℓ} or $m_s \rightarrow$ for 2p: 3 m_{ℓ} states \times 2 m_s states = 6 different states, each electron in one of these states (Paul exclusion principle)
- 4 electrons in 6 states: $\begin{pmatrix} 6\\4 \end{pmatrix}$ combinations = $\frac{6!}{(6-4)!4!} = 15$ configurations (see below)
- However: degeneracy, only L and S are "good" quantum numbers
- Spins can couple to either S = 0 (e.g. $\uparrow \downarrow, \uparrow, \downarrow$) or S = 1 (e.g. $\uparrow \downarrow, \uparrow, \uparrow$)
- Four electrons with $\ell = 1 \rightarrow$ angular momenta can couple to L = 0, 1, 2 (at maximum two electrons in $m_{\ell} = +1$)

LS coupling III

	$m_\ell = -1$	$m_\ell = 0$	$m_\ell = +1$	M_L	M_S	Total/Term
	$\uparrow\downarrow$		$\uparrow\downarrow$	0	0	${}^{1}S_{0}$
		\downarrow	\downarrow	-1	-1	
	$\uparrow\downarrow$	\uparrow	\downarrow	-1	0	
	$\uparrow\downarrow$	\uparrow	\uparrow	-1	1	
1.6	\downarrow	↑↓	\downarrow	0	-1	
LS	\uparrow	↑↓	\downarrow	0	0	${}^{3}P_{0,1,2}$
coupling	↑ ↓	$\uparrow\downarrow$	1	0	1	- , ,
for <i>np</i> ⁴		\downarrow	$\uparrow\downarrow$	1	-1	
electrons	1	\downarrow	↑↓	1	0	
	\uparrow	1	$\uparrow\downarrow$	1	1	
		↑↓		-2	0	
	t↓	\downarrow	\uparrow	-1	0	
	\downarrow	↑↓	1	0	0	${}^{1}D_{2}$
	\downarrow	↑	↑↓	1	0	
	,	$\uparrow\downarrow$	$\uparrow\downarrow$	2	0	

L. Oskinova, H. Todt (UP)

For heavy atoms (Z > 10, e.g. Pb Z = 82)

 $\rightarrow {\sf spin-orbit}$ interactions $\approx {\sf spin-spin}$ interactions

 \rightarrow for each electron individual combination of $\vec{\ell}$ and \vec{s} to individual \vec{j} :

$$\vec{J} = \sum \vec{j} = \sum (\vec{\ell} + \vec{s}) \tag{209}$$

 \rightarrow resulting angular momentum (S,P,...) of electrons not longer useful But: pure *jj* coupling only in heaviest atoms

Zeeman effect

Hydrogen

• Bohr formula from Schrödinger Eq. \rightarrow degeneracy of solutions $\phi_{n\ell m_{\ell}}$, i.e. same eigenvalue *E* for different ℓ and m_{ℓ}

$$E_n = -\frac{13.6 \,\mathrm{eV}}{n^2} \tag{210}$$

• take spin-orbit interaction (and relativistic corrections) into account: interaction of internal magnetic field caused by electron orbit with electron spin \rightarrow fine structure splitting, breaks *E* degeneracy

$$E_{nj} = -\frac{13.6 \,\mathrm{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right) \right]$$
(211)

Summary: Spin and orbit II

L. Oskinova, H. Todt (UP)

Atomic Spectra in Astrophysics

WiSe 2016/2017

93 / 142

An atom in an external magnetic field \vec{B}_{ex} adds interaction term to hamiltonian, i.e. energy shift:

$$H_{Z} = -(\vec{\mu}_{\ell} + \vec{\mu}_{s}) \cdot \vec{B}_{ext}$$
(212)
$$= -\left(-\frac{e}{2m}\vec{L} - \frac{e}{m}\vec{S}\right) \cdot \vec{B}_{ext} = \frac{e}{2m}(\vec{L} + 2\vec{S}) \cdot \vec{B}_{ext}$$
(213)

For $B_{\rm ext} \ll B_{\rm SO}$: fine structure dominates $\rightarrow H_{\rm Z}$ treated as small perturbation

For $B_{\text{ext}} \gg B_{\text{SO}}$: H_{Z} dominates $\rightarrow H_{\text{SO}}$ treated as small perturbation For $B_{\text{ext}} \approx B_{\text{SO}}$: degenerate perturbation theory

Zeeman effect in QM II

Estimation of internal magnetic field B_{SO} :

$$\vec{B} = \frac{1}{4\pi\epsilon_0} \frac{e}{mc^2 r^3} \vec{L}$$
(214)

e.g. for
$$L = \hbar$$
, $r = a$ (215)

$$B = \frac{1.60 \times 10^{-19} \,\mathrm{C} \cdot 1.05 \times 10^{-34} \,\mathrm{Js}}{4\pi \,8.9 \times 10^{-12} \,\mathrm{C}^2 / \mathrm{N} \,\mathrm{m}^2 \,9.1 \times 10^{-31} \,\mathrm{kg} \,(3.0 \times 10^8 \,\mathrm{m/s})^2 \,(0.53 \times 10^{-10} \,\mathrm{m})^3}$$
(216)
= 12.3 \,\mathrm{Js} \,\mathrm{C}^{-1} \,\mathrm{m}^2 = 12.3 \,\mathrm{T}(217)

→ magnetic field $B_{\text{ext}} \gg 10 \text{ T}$ is "strong" Zeeman field → magnetic field $B_{\text{ext}} \ll 10 \text{ T}$ is "weak" Zeeman field

e.g. magnetic field of the Earth $\approx 1\,\text{G} = 10^{-4}\,\text{T}$ is "weak" Zeeman field

Zeeman effect in QM III

Weak-field Zeeman effect

- for $B_{\text{ext}} \ll B_{\text{int}} \rightarrow$ fine structure dominates
- good quantum numbers: n, ℓ , j, m_j (but not m_ℓ and m_s as \vec{L} and \vec{S} are not separately conserved in spin-orbit coupling)
- from 1st order perturbation theory:

$$E_{\mathsf{Z}} = \langle n\ell jm_j | H_{\mathsf{Z}} | n\ell jm_j \rangle = \frac{e}{2m} \vec{B}_{\mathsf{ext}} \cdot \langle \vec{L} + 2\vec{S} \rangle$$
(218)

• as
$$\vec{J}=\vec{L}+\vec{S}
ightarrow \vec{L}+2\vec{S}=\vec{J}+\vec{S},$$
 with constant $\vec{J}=\vec{L}+\vec{S}$

so *time average* of \vec{S} is its projection along \vec{J} :

$$ar{S} = rac{(ec{S} \cdot ec{J})}{J^2}ec{J}$$
 (219)

Zeeman effect in QM IV

and
$$ec{L}=ec{J}-ec{S}
ightarrow L^2=J^2+S^2-2ec{J}\cdotec{S}$$
 and therefore

$$ec{S} \cdot ec{J} = rac{1}{2}(J^2 + S^2 - L^2) = rac{\hbar^2}{2}[j(j+1) + s(s+1) - \ell(\ell+1)]$$
 (220)

which implies

$$\langle \vec{L} + 2\vec{S} \rangle = \left\langle \left(1 + \frac{\vec{S} \cdot \vec{J}}{J^2} \right) \vec{J} \right\rangle$$

$$= \left[1 + \frac{j(j+1) - \ell(\ell+1) + \frac{3}{4}}{2j(j+1)} \right] \langle \vec{J} \rangle = g_J \langle \vec{J} \rangle$$
(221)
(222)

with the Landé g-factor g_J. Note: For single-electron system, if only "orbit magnetism" $(S = 0) \rightarrow g_J = 1$, if only "spin magnetism" $(\ell = 0) \rightarrow g_J \approx 2$

Zeeman effect in QM V

With *z*-axis aligned with \vec{B}_{ext} :

$$E_{\rm Z} = \mu_{\rm B} g_J B_{\rm ext} m_j \tag{223}$$

and the Bohr magneton

$$\mu_{\rm B} = \frac{e\hbar}{2m} = 5.788 \times 10^{-5} \,\mathrm{eV}\,\mathrm{T}^{-1} \tag{224}$$

 \rightarrow total energy is $E_{nj} + E_Z$, e.g. ground state of hydrogen (n = 1, $\ell = 0$, $j = \frac{1}{2} \rightarrow g_J = 2$) splits into 2 levels:

$$E = -13.6 \,\mathrm{eV}\left(1 + \frac{\alpha^2}{4}\right) \pm \mu_{\mathrm{B}} B_{\mathrm{ext}} \tag{225}$$

Zeeman effect in QM VI

Weak-field splitting of the hydrogen ground state, slope $dE/d(\mu_{\rm B}B_{\rm ext})=\pm 1$

Zeeman effect in QM VII

Strong-field Zeeman effect (Paschen-Back effect)

- $\bullet~\mbox{for}~B_{\rm ext} \gg B_{\rm int} \rightarrow \mbox{Zeeman effect dominates}$
- let $\vec{B}_{ext} = \vec{e}_z B_{ext}$
- good quantum numbers: n, ℓ , m_{ℓ} , m_s but not j, m_j , as total angular momentum \vec{J} not conserved for external torque (but L_z and S_z are conserved)
- Zeeman Hamiltonian:

$$H_{\rm Z} = \frac{e}{2m} B_{\rm ext} (L_z + 2S_z) \tag{226}$$

• so "unperturbed" energies:

$$E_{nm_{\ell}m_{s}} = -\frac{13.6\,\mathrm{eV}}{n^{2}} + \mu_{B}B_{\mathrm{ext}}(m_{\ell} + 2m_{s}) \tag{227}$$

Zeeman effect in QM VIII

• from 1st order perturbation theory: fine-structure correction

$$E_{\rm fs} = \langle n\ell m_\ell m_s | (H_{\rm rel.} + H_{\rm SO}) | n\ell m_\ell m_s \rangle \tag{228}$$

where $E_{\text{rel.}}$ is same as before, i.e. $E_{\text{rel.}} = -\frac{E_n^2}{2mc^2} \left[\frac{4n}{\ell+1/2} - 3 \right]$ for SO-interaction we need

$$\langle \vec{S} \cdot \vec{L} \rangle = \langle S_x \rangle \langle L_x \rangle + \langle S_y \rangle \langle L_y \rangle + \langle S_z \rangle \langle L_z \rangle = \hbar^2 m_\ell m_s$$
(229)

(because $\langle S_x \rangle = \langle S_y \rangle = \langle L_x \rangle = \langle L_y \rangle = 0$ for eigenstates of S_z and L_z) therefore

$$E_{\rm fs} = \frac{13.6\,{\rm eV}}{n^3} \alpha^2 \left(\frac{3}{4n} - \left[\frac{\ell(\ell+1) - m_\ell m_s}{\ell(\ell+1/2)(\ell+1)}\right]\right)$$
(230)

and total energy is $E_{\rm fs} + E_{nm_\ell m_s}$ Note: square bracketed term in Eq. 230 indeterminate for $\ell = 0$,

L. Oskinova, H. Todt (UP)

Zeeman effect in QM IX

but then j = s, $m_j = m_s$, so

$$E_{\rm Z} = \frac{e}{2m} \vec{B}_{\rm ext} \cdot \langle \vec{L} + 2\vec{S} \rangle = \frac{e}{2m} B_{\rm ext} 2m_s \hbar = 2m_s \mu_{\rm B} B_{\rm ext}$$
(231)

and fine-structure energies (includingn relativistic correction)

$$E_{nj} = -\frac{13.6 \,\mathrm{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(n - \frac{3}{4} \right) \right]$$
(232)

as j = 1/2, so total energy

$$E = -\frac{13.6 \,\mathrm{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(n - \frac{3}{4} \right) \right] + 2m_s \mu_{\mathrm{B}} B_{\mathrm{ext}} \tag{233}$$

and fine-structure is α^2 term:

$$E_{\rm fs} = -\frac{13.6\,{\rm eV}}{n^4} \alpha^2 \left(n - \frac{3}{4}\right) = \frac{13.6\,{\rm eV}}{n^3} \alpha^2 \left(\frac{3}{4n} - 1\right)$$
(234)

 \rightarrow square bracketed term is 1 for $\ell=0$

Intermediate-field Zeeman effect

- as neither H_Z nor H_{fs} dominates, both are equal perturbations to Bohr Hamiltonian $H' = H_{fs} + H_Z$
- consider case $n = 2 \rightarrow \ell = 0, 1$, express basis $|jm_j\rangle$ (makes matrix elements of H_{fs} easier) by linear combination of $|\ell m_\ell\rangle|sm_s\rangle$

Zeeman effect in QM XI

• ... eigenvalues are with $\gamma \equiv 13.6 \,\mathrm{eV}(\alpha/8)^2$ and $\beta \equiv \mu_{\mathrm{B}} B_{\mathrm{ext}}$ for n = 2:

E 4

$$\begin{aligned} \epsilon_{1} &= E_{2} - 5\gamma + \beta \\ \epsilon_{2} &= E_{2} - 5\gamma - \beta \\ \epsilon_{3} &= E_{2} - \gamma + 2\beta \\ \epsilon_{4} &= E_{2} - \gamma - 2\beta \\ \epsilon_{5} &= E_{2} - 3\gamma + \beta/2 + \sqrt{4\gamma^{2} + (2/3)\gamma\beta + \beta^{2}/4} \\ \epsilon_{6} &= E_{2} - 3\gamma + \beta/2 - \sqrt{4\gamma^{2} + (2/3)\gamma\beta + \beta^{2}/4} \\ \epsilon_{7} &= E_{2} - 3\gamma - \beta/2 + \sqrt{4\gamma^{2} + (2/3)\gamma\beta + \beta^{2}/4} \\ \epsilon_{8} &= E_{2} - 3\gamma - \beta/2 - \sqrt{4\gamma^{2} + (2/3)\gamma\beta + \beta^{2}/4} \end{aligned}$$

for $\beta = 0$ (zero-field limit) \rightarrow fine-structure energies for $\beta \ll \gamma$ (weak-field) \rightarrow as in weak-field treatment for $\beta \gg \gamma$ (strong-field) \rightarrow as in strong-field case HBB Bert

Classical description of Zeeman effect I

Normal Zeeman effect

• classical description (w/o QM) by Lorentz:

emission by bound electron (circular orbit) \rightarrow projection into one direction \rightarrow linear oscillator, split into 1 and 2 + 3 no force on 1 $\rightarrow \delta \omega = 0$, linearly polarized light

Classical description of Zeeman effect II

• consider only *orbital* angular momentum of electron $\vec{\ell} \rightarrow$ magnetic moment $\vec{\mu} = \frac{e}{2m}\vec{\ell} = \gamma\vec{\ell}$:

$$E_{\rm Z} = -(\vec{\mu} \cdot \vec{B}_{\rm ext}) = -\mu_z B_{\rm ext} = -\gamma \ell_z B_{\rm ext}$$
(235)

 \rightarrow "Larmor precession" (but with g = 1, because of orbit instead of spin) around z-axis with constant ℓ_z and frequency

$$\omega_{\rm L} = \gamma B = \frac{e}{2m}B \tag{236}$$

 \rightarrow perturbation of electron orbit (with Bohr frequency ω_0), especially component perpendicular to \vec{B} without external magnetic field \rightarrow frequency ω_0 for 2, 3

$$m\omega_0^2 \vec{r} = \frac{Ze^2}{4\pi\epsilon_0 r^3} \vec{r}$$
(237)

Classical description of Zeeman effect III

now with additional external field \rightarrow Lorentz force, e.g. in cartesian coordinates

$$m\ddot{x} + m\omega_0^2 x - e\dot{y}\vec{B}_0 = 0$$
 (238)

$$m\ddot{y} + m\omega_0^2 y - e\dot{x}\vec{B}_0 = 0$$
 (239)

$$m\ddot{x} + m\omega_0^2 z = 0 \tag{240}$$

 \rightarrow equations of motion for electron with u = x + iy and v = x - iy:

$$u = u_0 \exp[i(\omega_0 - \frac{e}{2m}B)t]$$
(241)
$$v = v_0 \exp[i(\omega_0 + \frac{e}{2m}B)t]$$
(242)

→ left- and right-circular oscillation with $\omega_0 \pm \frac{e}{2m}B$ → emission / absorption of circular polarized light of frequency $\omega_0 \pm \frac{e}{2m}B$ (Lorentz, Nobel prize 1902)

L. Oskinova, H. Todt (UP)

Classical description of Zeeman effect IV

- frequency shift $\delta \omega = \frac{e}{2m} B$ of spectral lines does not depend on frequency ω_0
- circular polarization along \vec{B} , linear polarization perpendicular to $\vec{B} \rightarrow \sigma^+$ (right-handed circularly pol.*, $+\delta\omega$) and σ^- (left-handed circularly pol.*, $-\delta\omega$) radiation *relative to \vec{B}
- no emission of unshifted line π along \vec{B}
- \rightarrow only triple splitting of lines explained

Astrophysics

- consider only weak fields where g_J is good quantum number
- interaction energy (we already know), aligned with z-axis:

$$V = \vec{\mu} \cdot \vec{B} \quad \rightarrow \quad V = -\mu_z B = m_J g_J \mu_B B$$
(243)
$$m_J = -J, -J + 1, \dots, J \quad \text{and} \quad \mu_B = \frac{e\hbar}{2m_e}$$
(244)

• compare two Zeeman components with $\Delta m_J = \pm 1$ and λ_1 , λ_2 :

$$\Delta E = g_J \mu_B B \quad \rightarrow \quad B = \frac{4\pi mc}{eg_J} (\lambda_2^{-1} - \lambda_1^{-1})$$
(245)
$$\rightarrow B \approx \frac{4\pi mc}{eg_J} \frac{\Delta \lambda}{\lambda_1^2}$$
(246)

• e.g. for *single* electron above filled shell (e.g. H, Li, ...), $s = 1/2 \rightarrow g_s = g_s = 2$ and $j = \ell \pm s$:

$$g_J = g_j = 1 \pm \frac{g_S - 1}{2\ell + 1}$$
 (247)

111 / 142

Application of Zeeman effect III

Magnetic field of a sunspot

Spectrum of a sun spot: right-hand circularly polarized (σ^+ , blue) and left-hand circularly polarized (σ^- , red) light of a Fe I line ($g_J = 5/2$)

$$B \approx 0.02141 \cdot \frac{\Delta \lambda}{g_J \lambda_0^2} \,\mathsf{T}\,\mathsf{\AA} \approx 0.2 \,\mathsf{T} \tag{248}$$

Application of Zeeman effect IV

Weak stellar magnetic fields

• line splitting (π and σ components) approximately:

$$\Delta \lambda_B = g_J \frac{eB\lambda^2}{4\pi mc^2} \tag{249}$$

assume that Zeeman line splitting $\Delta \lambda_B \ll \Delta \lambda_{\text{Doppler, Stark}}$ \rightarrow individual line shifts in subpixel regime

• measure so-called stokes parameter I, V:

$$I = P_{0^{\circ}} + P_{90^{\circ}} = \langle E_x^2 + E_y^2 \rangle \rightarrow \text{unpolarized}$$
 (250)

$$V = P_{\rm rc} - P_{\rm lc} \tag{251}$$

$$\frac{V}{I} = \frac{1}{2} \left[\left(\frac{f^{\circ} - f^{e}}{f^{\circ} + f^{e}} \right)_{\alpha = -45^{\circ}} - \left(\frac{f^{\circ} - f^{e}}{f^{\circ} + f^{e}} \right)_{\alpha = +45^{\circ}} \right]$$
(252)

where f is flux measured from ordinary and extraordinary beam, α is angle of polarisator

L. Oskinova, H. Todt (UP)

Application of Zeeman effect V

• in weak field regime (Landstreet 1982), ensemble of spectral lines:

$$\frac{V}{I} = -\frac{g_{\rm eff}e\lambda^2}{4\pi mc^2} \frac{1}{I} \frac{dI}{d\lambda} \langle B_z \rangle$$
(253)

 $\bullet\,$ e.g. FORS2 of NGC 1514 \rightarrow slope gives magnetic field of $-250\,\text{G}$

Selection rules for radiative line transitions

115 / 142

From helium atom we already learnt a selection rule:

- considering time evolution of the position-space wave function, then
- transitions between different multiplicities are forbidden:

$$\Delta S = 0$$

 \rightarrow radiative line transitions only within singlet or triplet states

• small modification of the this rule are possible (why?)

(254

Fermi's Golden Rule

So far, only stationary states ("pure" Hamiltonian H_0). How to consider transitions?

 \rightarrow perturbation theory ($H = H_0 + H'$), especially:

 \rightarrow Fermi's Golden Rule:

• gives transition rate $T_{i \to f}$ from one energy eigenstate $|i\rangle$ into another energy eigenstate $|f\rangle$, due to a perturbation H' (perturbing Hamiltonian)

Fermi's Golden Rule

$$T_{i \to f} = \frac{2\pi}{\hbar} |\langle f | H' | i \rangle|^2 \varrho(E_f)$$
(255)

where $\rho(E_f)$ is the space density of the final states

• $\langle f|H'|i\rangle$ is called matrix element (in bra-ket notation) of the perturbation H'

117 / 142

Interaction of a two-level atom with coherent light I

Let us consider the time-dependent Schrödinger equation

$$\left(-\frac{\hbar^2}{2m}\Delta + V + V_{\rm S}\right)\psi(\vec{r},t) = i\hbar\frac{d\psi(\vec{r},t)}{dt}$$
(256)

with potential of the nucleus, V; V_S corresponds to potential of "light field" with electric field (plane wave)

$$\vec{F} = \vec{F}_0 \cos(kx - \omega t) \tag{257}$$

Atom is placed at $\vec{r} = 0$, consider only light with $2\pi/k = \lambda \gg d_{\text{atom}}$, so x = 0 in Eq. (257), i.e. spatially constant light field

$$\vec{F} = \vec{F_0} \cos(\omega t) \tag{258}$$

with polarization in z-direction: $\vec{F}_0 = (0, 0, F_0)$

Then, force of electric field \vec{F} on electron: $-e\vec{F}$, therefore (why?)

$$V_{\rm S} = eF_0 z \cos \omega t \tag{259}$$

Assumption: already solved unperturbed Schrödinger eq. ($V_S = 0$), found φ_i, φ_j with energies E_i, E_j . Now: wave function ψ of perturbed system as superposition of φ_i, φ_j Hence matrix element for coherent light:

$$H_{ij}^{\rm S} = \int \varphi_i^*(\vec{r}) \, eF_0 z \, \varphi_j(\vec{r}) dV \cos \omega t \tag{260}$$

Hamiltonian of EM field I

Hamiltonian for electromagnetic field with generalized momentum

$$H = \frac{(\vec{p} - e\vec{A})^2}{2m} + e\Phi(\vec{r}) \qquad \approx \frac{\vec{p}^2}{2m} - \frac{e}{m}\vec{A}\cdot\vec{p} + e\Phi(\vec{r}) \qquad (261)$$

with not too strong vector potential \vec{A} and electrostatic potential Φ , i.e. time-dependent perturbation $\frac{e}{m}\vec{A}(\vec{r},t)\cdot\vec{p}$

 \bullet irradiated light as plane wave with polarization vector $\vec{\epsilon:}$

$$\vec{A}(\vec{r},t) \sim \vec{\epsilon} \cos(\vec{k}\cdot\vec{r}-\omega t) \sim \vec{\epsilon} e^{\imath \vec{k}\cdot\vec{r}}$$
 (262)

hence the perturbation term

$$e\vec{p}\cdot\vec{A}\sim e\vec{p}\cdot\vec{\epsilon}e^{i\vec{k}\cdot\vec{r}}$$
 (263)

and the matrix element

$$e \int \varphi_n^*(\vec{r}) \vec{p} \cdot \vec{\epsilon} e^{i \vec{k} \cdot \vec{r}} \varphi_m(\vec{r}) dV$$
(264)

Hamiltonian of EM field II

• approximation for large λ , i.e. $\vec{k} \cdot \vec{r} = 2\pi r/\lambda \ll 1$ compared to extent r of φ , series expansion of e:

$$e^{i\vec{k}\cdot\vec{r}} \approx 1 + i\vec{k}\cdot\vec{r} + \ldots \approx 1$$
 (265)

• matrix element, lowest order

$$\int \varphi_n^*(\vec{r}) e\vec{p} \cdot \vec{\epsilon} \varphi_m(\vec{r}) dV$$
(266)

• because of $\frac{\hbar}{i}\frac{\vec{p}}{m} = [H, \vec{r}]$, matrix element (266) is (proof!)

$$-\vec{\epsilon} \imath m \frac{E_n - E_m}{\hbar} \int \varphi_n^*(\vec{r}) e\vec{r} \varphi_m(\vec{r}) dV \qquad (267)$$

 \rightarrow contains term $e\vec{r} \rightarrow$ electric dipole moment

Matrix elements by symmetry considerations I

because symmetry of wavefunction $\psi(-x) = \pm \psi(x)$, $\rightarrow \psi^* \psi$ invariant under *P* transformation, so without detailed calculation:

$$\Rightarrow \quad l = -l \quad \Rightarrow l = 0 \tag{268}$$

Selection rule for the magnetic quantum number I

Electric dipole matrix element between two *different* hydrogen wave functions

$$I_{z} = \int \psi_{n',\ell',m'}^{*}(\vec{r}) \, z \, \psi_{n,\ell,m}(\vec{r}) dV \qquad (269)$$
$$= \int dV \psi_{n',\ell',m'}^{*}(r,\theta,\phi) \, r \cos\theta \, \psi_{n,\ell,m}(r,\theta,\phi) \qquad (270)$$

because of $\psi(r, \phi) = e^{im\phi}\psi(r, 0)$ (with integer *m*), for rotations ϕ_0 around *z*-axis:

$$I_z = e^{-i(m-m')\phi_0} I_z$$
 (271)

Therefore: either $I_z = 0$, or, if $I_z \neq 0 \rightarrow m = m'$

Selection rule for the magnetic quantum number II

Now for *x*- and *y*-component:

$$I_{x} = \int dV \psi^{*}_{n',\ell',m'}(r,\theta,\phi) \times \psi_{n,\ell,m}(r,\theta,\phi)$$
(272)

$$I_{\mathbf{y}} = \int dV \psi^*_{\mathbf{n}',\ell',\mathbf{m}'}(\mathbf{r},\theta,\phi) \, \mathbf{y} \, \psi_{\mathbf{n},\ell,\mathbf{m}}(\mathbf{r},\theta,\phi)$$
(273)

multiply I_y with $i \to x + iy = r \sin \theta \cos \phi + r \sin \theta i \sin \phi$

$$I_{x} + iI_{y} = \int dV \psi_{n,\ell,m}^{*}(r,\theta,\phi) r \sin \theta e^{i\phi} \psi_{n',\ell',m'}(r,\theta,\phi)$$
(274)

again, rotation around z-axis by angle $\phi_{\rm 0}$

$$I_{x} + iI_{y} = e^{-i(m-1-m')\phi_{0}}(I_{x} + iI_{y})$$
(275)

Selection rule for the magnetic quantum number III

Therefore:

$$I_x + \imath I_y = 0 \quad \text{if} \quad m \neq m' + 1 \tag{276}$$

$$I_x - i I_y = 0$$
 if $m \neq m' - 1$ (277)

Or summarized: if $m \neq m'+1$ and $m \neq m'-1$ then

$$I_x = 0, \quad I_y = 0$$
 (278)

Selection rules for magnetic quantum number of one-electron systems

For light polarized in *z*-direction:

$$\Delta m = 0 \tag{279}$$

For light polarized in x- or y-direction:

$$\Delta m = \pm 1 \tag{280}$$

 $\rightarrow \, {\rm corresponds}$ to π (linearly pol.) and σ (circularly pol.) transitions

L. Oskinova, H. Todt (UP)

General selection rules I

In general, use *spherical components* of dipole moment (for one e⁻)

$$r^{(\pm)} = \frac{1}{\sqrt{2}} (x \pm iy), \quad r^{(0)} = z$$
 (281)

hence the product of \vec{r} and polarization vector $\vec{\epsilon}$

$$\vec{r} \cdot \vec{\epsilon} = r^{(+)} \epsilon^{(-)} + r^{(-)} \epsilon^{(+)} + r^{(0)} \epsilon^{(0)} = \sum_{\nu=-1}^{1} r^{\nu} \epsilon^{(-\nu)}$$
(282)

trick \rightarrow write spherical components of \vec{r} with help of spherical harmonics and $r = \sqrt{x^2 + y^2 + z^2}$ (why?):

$$r^{(\pm)} = \sqrt{\frac{4\pi}{3}} r Y_{1,\pm 1}(\theta,\phi), \quad r^{(0)} = \sqrt{\frac{4\pi}{3}} r Y_{1,0}(\theta) \quad \text{with}$$
(283)
$$Y_{1,\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}, \quad Y_{1,0} = \sqrt{\frac{3}{4\pi}} \cos \theta$$
(284)

L. Oskinova, H. Todt (UP)

General selection rules II

For one-electron wave function (w/o spin)

$$\psi_i(\vec{r}) = \frac{\varphi_\ell}{r} Y_{\ell,m}(\theta,\phi), \quad \psi_f(\vec{r}) = \frac{\varphi_{\ell'}}{r} Y_{\ell',m'}(\theta,\phi)$$
(285)

matrix elements of spherical components $r_{fi}^{(\nu)}$ can be written as integral over three spherical harmonics, which be reduced to an integral over radial wavefunctions with help of Wigner-Eckart theorem:

$$r_{fi}^{(\nu)} = \int_0^\infty \varphi_{\ell'}^* \, r \, \varphi_{\ell}(r) dr \, \sqrt{\frac{4\pi}{3}} \int d\Omega Y_{\ell',m'}^* Y_{1,\nu} Y_{\ell,m} \qquad (286)$$
$$= \int_0^\infty \varphi_{\ell'}^* \, r \, \varphi_{\ell}(r) dr \, F(\ell',\ell) \langle \ell',m'|1,\nu,\ell,m\rangle \qquad (287)$$

with Clebsch-Gordan coefficient (CG) $\langle \ell', m'| 1, \nu, \ell, m \rangle$ for coupling of initial angular momentum ℓ, m with angular momentum $1, \nu$ of spherical component of \vec{r} to the final state ℓ', m'

General selection rules III

quantum numbers ℓ' , 1, ℓ must satisfy triangular condition for CG coefficients (selection rule for CG coefficients):

$$|\ell - 1| \le \ell' \le \ell + 1 \tag{288}$$

 \rightarrow implies $\Delta \ell \leq$ 1, moreover from parity of spherical harmonics

$$PY_{\ell,m}(\theta,\phi) = (-1)^{\ell} Y_{\ell,m}(\theta,\phi)$$
(289)

follows that $\ell + 1 + \ell'$ must be even, otherwise *parity* of integrand $Y^*_{\ell',m'}Y_{1,\nu}Y_{\ell,m}$ would be negative \rightarrow integral $\int d\Omega$ would vanish another selection rule for CG coefficients states that

$$m + \nu = m' \tag{290}$$

Selection rules for angular momentum of one-electron systems

$$\Delta \ell = \ell_f - \ell_i = \pm 1, \quad \Delta m = m_f - m_i = 0, \pm 1$$
 (291)

transitions $\psi_i \rightarrow \psi_i$ which do not satisfy (291) are *forbidden* (in dipole approximation)

Addition: factor $F(\ell', \ell)$ is in this case

$$F(\ell',\ell) = \begin{cases} \sqrt{\ell'/(2\ell'+1)} & \text{if } \ell' = \ell+1, \\ -\sqrt{\ell/(2\ell'+1)} & \text{if } \ell' = \ell-1 \end{cases}$$
(292)

One-electron wave functions with spin:

$$r_{fi}^{(\nu)} = \langle \Phi_f | r^{(\nu)} | \Phi_i \rangle = \langle j' | | \vec{r} | | j \rangle \langle j', m' | 1, \nu, j, m \rangle$$
(293)

where m corresponds to eigenvalues of z-component of total angular momentum $\vec{J}=\vec{L}+\vec{S}$

again: used Wigner-Eckart theorem (WE) to get reduced matrix element $\langle j' || \vec{r} || j \rangle$ (independent of *m* and ν) \rightarrow in general, WE theorem states that for matrix elements of operators in eigenstates of angular momentum operator *m* and ν dependence is only via CG coefficients of coupling between initial state and component of operator to final state

 \rightarrow from selection rules for CG coefficients:

Selection rules for total angular momentum of one-electron systems

$$\Delta j = j_f - j_i = 0, \pm 1, \quad \Delta m_j = m_j^f - m_j^i = 0, \pm 1$$
(294)

$$j = 0 \nleftrightarrow 0, \quad m_j = 0 \nleftrightarrow 0 \text{ if } \Delta j = 0$$
 (295)

 \rightarrow Interpretation: EM field (photon) carries angular momentum (spin $\pm 1)$ \rightarrow angular momentum conservation

Selection rules of multi-electron systems I

Multi-electron wave functions with spin: by applying WE theorem:

Selections rules for total angular momentum of multi-electron systems

For quantum numbers J, M_J of total angular momentum $\vec{J} = \vec{L} + \vec{S}$

$$\Delta J = J_f - J_i = 0, \pm 1, \quad \Delta M_J = M_J^f - M_J^i = 0, \pm 1$$

$$J = 0 \nleftrightarrow 0, \quad M_J = 0 \nleftrightarrow 0 \text{ if } \Delta J = 0$$
(296)
(297)

for *LS* coupling: total orbital angular momentum $\vec{L} = \sum \vec{\ell}$ and total spin $\vec{S} = \sum \vec{s}$ are "good" quantum numbers, selections rules for *L*, *M*_L

$$\Delta L = L_f - L_i = 0, \pm 1, \quad \Delta M_L = M_L^f - M_L^i = 0, \pm 1$$
(298)
$$L = 0 \nleftrightarrow 0, \quad M_L = 0 \nleftrightarrow 0 \text{ if } \Delta L = 0$$
(299)

Selection rules of multi-electron systems II

Selection rules for spin, as the dipole operator $e\vec{r}$ doesn't act on spins:

Selections rules for total spin of multi-electron systems

$$\Delta S = 0, \quad \Delta M_S = 0 \tag{300}$$

holds exact only for weak spin-orbit interaction \rightarrow LS-coupling of light atoms

 \rightarrow already derived for helium: no transition between singlet and triplet system

However, for heavy atoms, e.g. with $jj\mbox{-}coupling \rightarrow \mbox{intercombination}$ possible

Intercombination transition for strong spin-orbit interaction

$$\Delta S = \pm 1$$
, $\Delta L = 0, \pm 1, \pm 2$

L. Oskinova, H. Todt (UP)

(301)

132 / 142

Selection rule for parity \rightarrow remember example in one dimension,

Selection rules of multi-electron systems IV

Selection rule for parity of electric dipole transitions

$$P_i P_f = -1 \quad
ightarrow ext{ change of parity}$$

L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017

(305)

Selection rules of multi-electron systems V

However, transitions which are forbidden for electric dipole operator (E1) may be allowed by electric 2^k pole operator (e.g. E2 electric quadrupole) or Mk magnetic 2^k pole operator (e.g. M1 magnetic dipole, M3 magnetic octupole)

Selection rule for E2, E4, ... and M1, M3, ... radiation

 $P_i P_f = 1 \quad
ightarrow$ same parity of intial and final state

(306)

(307)

for even electric and odd magnetic multipole

Selection rule for E1, E3, ... and M2, M4, ... radiation

 $P_i P_f = -1 \quad
ightarrow ext{ change of parity}$

for odd electric and even magnetic multipole

L. Oskinova, H. Todt (UP)

Atomic Spectra in Astrophysics

Collisions

Collisional transitions not restricted by selection rules

States for which the radiative transition to any lower state is forbidden are called *meta stable*.

- e.g. 1st excited state of HeI: triplet (configuration?)
- transition to ground state (singlet) forbidden (by which rule?)
- but: level is depopulated by collisions

If collisional deexcitation negligible (low density) \rightarrow forbidden lines can be observed, e.g. in planetary nebulae, solar corona

136 / 142

Oscillator strengths

Characterization of electric dipole transitions between Ψ_i and Ψ_f by dimensionless quantity from Fermi's Golden Rule

$$f_{\rm fi}^{(\chi)} = \frac{2m}{\hbar^2} \hbar \omega |\langle \Psi_{\rm f}| \sum_{j=1}^{N} x_j |\Psi_{\rm i}\rangle|^2$$
(308)

in cartesian coordinates for *N*-electron atom, where $\omega = E_f - E_i$, by summing up over all three components

$$f_{\rm fi} = f_{\rm fi}^{(x)} + f_{\rm fi}^{(y)} + f_{\rm fi}^{(z)} = \frac{2m}{\hbar} \omega |\langle \Psi_{\rm f} | \vec{r} | \Psi_{\rm i} \rangle|^2$$
(309)

 \rightarrow f is called oscillator strength of the corresponding electric dipole line transition

Example: Cross section of line transition

Absorption $\sigma(E)$ of x-polarized photons $(\vec{\epsilon} = \vec{e}_x)$ by $\Psi_i \rightarrow \Psi_f$ line transition (of energy E)

$$\sigma = 4\pi^2 \frac{e^2}{\hbar c} \frac{\hbar^2}{2m} f_{\rm fi}^{(x)} \delta(E_f - E_i - E)$$
(310)

Oscillator strengths III

From commutator relation of position and momentum follows sum rule for oscillator strengths over all final states n:

$$\sum_{n} f_{ni}^{(x)} = N \tag{311}$$

By summing up over x, y, $z \rightarrow$

Thomas-Reiche-Kuhn sum rule

$$\sum_{n} f_{ni} = \sum_{n} \left(f_{ni}^{(x)} + f_{ni}^{(y)} + f_{ni}^{(z)} \right) = 3N$$
(312)

 \rightarrow typical values of allowed transitions 0.1 < f < 1 \rightarrow f values of multi-electron systems may be larger than 1 \rightarrow f values of E2, M1, etc. usually \ll 1

f-values of Lyman lines

Analytic expression (Menzel & Pekeris 1935):

$$g_1 f_{n'1} = \frac{2^9 n'^5 (n'-1)^{2n'-4}}{3(n'+1)^{2n'+4}}$$
(313)

What is value of g_1 ? For Ly α (1 \rightarrow 2): f = 0.4162What is the detailed transition of Ly α (angular momentum)?

- D. Griffiths: Introduction to Quantum Mechanics
- H. Hänsel, W. Neumann: Atome · Atomkerne · Elementarteilchen
- H. Haken, H. C. Wolf: Atom- und Quantenphysik
- H. Friedrich: Theoretische Atomphysik
- J. D. Landstreet, 1982, ApJ, 258, 639