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A temperature correction method for expanding atmospheres
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Abstract. Model atmospheres form the basis for the interpretation of stellar spectra. A major problem in those model calcu-
lations is to establish the temperature stratification from the condition of radiative equilibrium. Dealing with non-LTE models
for spherically expanding atmospheres of Wolf-Rayet stars, we developed a new temperature correction method. Its basic idea
dates back to 1955 when it was proposed by Unsöld for grey, static and plane-parallel atmospheres in LTE. The equations were
later generalized to the non-grey case by Lucy. In the present paper we furthermore drop the Eddington approximation, proceed
to spherical geometry and allow for expansion of the atmosphere. Finally the concept of an “approximate lambda operator”
is employed to speed up the convergence. Tests for Wolf-Rayet type models demonstrate that the method works fine even in
situations of strong non-LTE.
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1. Introduction

Model atmospheres form the basis for the interpretation of stel-
lar spectra. Only by comparison with numerical simulations,
the parameters and surface abundances of stars can be derived
in quantitative spectral analyses. A major problem in those
model calculations is to establish the temperature stratification
of the stellar atmosphere in such a way that the law of en-
ergy conservation is fulfilled accurately. Although the concept
is simple, the numerical implementation is not straightforward.

We have been confronted with that problem once more
when developing improved non-LTE models for spherically ex-
panding atmospheres of hot stars, especially Wolf-Rayet stars.
After using different approaches in the past, we now developed
the temperature correction method described in the present pa-
per. The new method has been applied already for a large va-
riety of models and proved to be stable, accurate and efficient.
It is based on a method devised by Unsöld (1951, 1955) orig-
inally for grey, static and plane-parallel atmospheres in LTE.
The equations were generalized to the non-grey case by Lucy
(1964; see also Mihalas 1978). In the present paper we further-
more drop the Eddington approximation, proceed to spherical
geometry and allow for expansion of the atmosphere. Finally
the concept of an “approximate lambda operator” is employed
to speed up the convergence. This sufficiently compensates for
the systematic under-estimate of the temperature corrections
due to the LTE assumption which is inherent to the method.

After the stage is set for atmospheres in radiative equilib-
rium in the following section, we will in Sect. 3 stepwise gen-
eralize Unsöld’s method until it can be applied for spherically
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expanding non-LTE atmospheres. A few test results are shown
in the final section (Sect. 4).

2. Model atmospheres in Radiative Equilibrium

A stellar atmosphere is termed to be in radiative equilibrium
(RE), if radiation is the only mechanism of energy transfer. In
this case the absorbed and the emitted radiation energy must be
balanced in each volume element. Adopting Mihalas’ (1978)
definitions and notation we can write this as��������	�
 ���
���� ��� ����������������� (1)� ��!�"� �
 ���
���� �$# �&%!���������������

In moving media it is favorable to measure the frequencies
in the Co-Moving Frame (CMF) of reference, in which the con-
sidered volume element is at rest. In that frame the absorption
coefficient # � is isotropic; when assuming complete angle re-
distribution, the emissivity � � is isotropic as well, and so is the
source function ' � � � �)( # � . With the definition of the angle-
averaged intensity* �	� �
 ���� � %+�������,��� (2)

the equation of RE becomes�������� # �-� ' �/. * �0�������21	3 (3)

Let us assume that ' � is a known (monotonic) function of
the temperature. This obviously holds for local thermodynam-
ical equilibrium (LTE) where ' � �54 � ��67� ; the non-LTE case
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will be discussed below. Then, for a given radiation field
* �

and opacity # � the local temperature 6 can be obtained from
Eq. (3).

However, in a model calculation the radiation field
*

is not
known a priori, but follows from radiative transfer and depends
on the overall temperature field, not only at the considered spot.
Symbolically the equation of radiative transfer might be con-
sidered as a linear mapping 8:9<; , represented by a linear
operator = , i.e.; � = 8 ��>���3 (4)

Here we have already indicated the more general case of
non-LTE, where the source function ' � depends only indirectly
on the temperature, but can be expressed by the atomic level
population numbers > .

These population numbers, on the other hand, must at each
point fulfill the equations of statistical equilibrium. If we ar-
range the population numbers at the considered spatial point in
a row vector ? , this system of equations which is linear in ?
can be written as?A@CB � ; �D�2E (5)

where the right-hand side vector E is essentially zero except
for those elements which express number conservations. The
coefficient matrix B describes the transition probability be-
tween the different atomic levels, containing radiative pro-
cesses which depend on the radiation field, and collisional tran-
sitions depending on 6 .

The problem of non-LTE calculations is to solve consis-
tently both sets of equations, the radiative transfer Eq. (4) and
the statistical equations Eq. (5). The former couples in space,
and the latter in frequency, so that the whole set of variables is
coupled (cf. also Hamann 2003). Many recent non-LTE codes
simply solve both sets of equations in turn, using the method of
“approximate lambda operators” to achieve convergence (see
Sect.3.5).

The present paper now addresses the question, how to cal-
culate a consistent temperature stratification from the Radiative
Equilibrium condition when solving the non-LTE problem.
One possible strategy, which we applied in earlier versions of
our model code (Hamann & Wessolowski 1990), is to add RE
as an additional equation to the system of statistical equations
(Eq. (5)), introducing 6 as a further independent variable in ad-
dition to the population numbers > . This method did not work
stable with our recent, metal line blanketed version of our code.

An alternative and more successful approach is described
in the present paper. Being a temperature correction scheme,
the temperature is updated within the iteration cycle between
radiation transfer and statistical equations by means of a sepa-
rate calculation. Clearly one would not expect fast convergence
of such a method, because the RE equation is not solved to-
gether with the other constraint equations and consistence is
only obtained iteratively. But the advantage of such a temper-
ature correction method is its straightforward formulation and
implementation, which allows to trace the effect of each term
and assumption in a direct way.

An iterative method must achieve a sufficient rate of con-
vergence in order to be useful. Consider the most simple tem-
perature correction method, historically termed “lambda itera-
tion”. A given source function ' � and radiation field

* � may in
general not satisfy RE, i.e. the right-hand side of Eq. (3) is not
zero but� ������ # �-� ' �/. * �0�������GFIHJ3 (6)

Now we are searching for a correction of the source function,F ' � , such that� ������ # �-� ' �&K F ' �/. * �)�������L1 (7)

From comparing the last two equations, we obtain for this F ' ��������� # � F ' � �M�N�GFIHJ3 (8)

Let us assume for a moment that the opacity is “grey”, and
the source function is the Planck function (LTE). Then, FI45�FIH ( # where the (bolometric) Planck function can be ex-
panded for small temperature corrections as FI45OQPSRT 6VUWF-6 .
Thus the temperature correction is readily obtained asFX6Y� Z[0\ 6 U FIH# 3 (9)

This straightforward approach does not converge with a reason-
able rate, as soon as parts of the spectrum are optically thick.
The problem is due to the fact that the effect of a correction in
one point only propagates by one optical pathlength per itera-
tion.

3. Unsöld’s iteration method

3.1. The grey, plane-parallel, static case

In order to overcome the convergence difficulties just men-
tioned, Unsöld (1951, 1955) proposed a method which he
called Strom-Iteration. The present paper relies on the same
concept. Its basic idea is to combine the RE equation with the
equation of radiative transfer. For a plane-parallel and static
medium, the latter is written as.]� �^%!���_ � # �-� ' �/.`%!�)� (10)

where _ is the geometrical depth coordinate with _ �a1 at
the stellar surface. Integration over d � and �b��� gives the 0 ced
Moment Equation (0. MEQ). �^f ���_ � # �	� ' �/. * �g� (11)

and the 1 hic Moment Equation (1. MEQ)�^j����_ � # �VfN� (12)

with the moments of the intensity %k� being defined as* �	� �
 ���� � %+�������,��� fN�	� �
 ���� � %!�^�l�����m��� (13)
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Frequency integral of the 0. MEQ gives� �� �^f����_ ���p� ���� # �b� ' �/. * �0���M� (14)

where the right-hand side is zero in Radiative Equilibrium.
Therefore the frequency-integrated (bolometric) Eddington
Fluxfq� � �� f��&��� (15)

is constant and given by the stellar effective temperaturefA�l_r�tsLf � � \[ Z 6 Puwvyx (16)

the well-known equivalence of RE and flux conservation.
Introducing now Unsöld’s method first in its original form,

we consider a frequency-independent (grey) opacity and define
some further frequency-integrated quantities* � � �� * �&��� jz� � �� j��V��� ' � � �� ' �&�M��3 (17)

With these definitions, the two Moment Equations (Eqs. (11)
and (12)) can be integrated over frequency and yield�e1^3|{~}C�/� . �^f��_ � # � ' . * � (18)

and� � 3|{~}C�/� �^j�^_ � # f�3 (19)

The 1. MEQ can be integrated over the optical depth � , de-
fined as � � � # �^_ , givingj � � �D� �A��+� �"� fA� �^� ��� �^� K�����>��+_�3 (20)

While Unsöld assumed the Eddington (diffusion) approx-
imation � � � �U , we introduce “variable Eddington factors”� � � � and � � � � here. In the numerical calculations,
these Eddington factors are obtained from solving the angle-
dependent (ray-by-ray) radiation transport equation, and are
updated from time to time in the overall iteration scheme.
Fixing also the integration constant at the boundary value,

* � � �
is finally expressed as* � � ��� �� � � � � �� � �"� f�� � � ��� � K fA�l1��� �e10� 3 (21)

Now consider the integral of radiative equilibrium (cf.
Eq. (6)), in the grey case simply# � ' . * ���LFIH (22)

which does not vanish for any given ' and
*

. In this equation,*
can be expressed by means of Eq. (21):FIHp� � �# � � � � ' � � ��. �� � � � ���� � �"� fA� �^� ��� �^� . fA�e10�� �l10� (23)

for any given source function ' � � � which might not satisfy RE.
Now a correction F ' is added to the source function, such that
RE is retained (i.e. FIHp� � ��s�1 ), and flux is conserved (i.e.fA� � ��sLf � ) at all depths:1 � ' � � ��K F ' . �� � � � ����k� �"� fX��� �^� . f �� �e10� 3 (24)

The difference of the last two equations yields the required cor-
rection for the source function,F ' � � �D�J. FIHp� � �# � � � (25)K �� � � � ����k� ��� �lfI�&.`fA� � � �|��� � � K f � .`fA�l1��� �e10� 3
Assuming that F ' scales with temperature in the same way as
in LTE, the temperature correction finally becomesFX6-� � �D� Z[0\W� 6-� � ��� U F ' � � �D3 (26)

3.2. The non-grey generalization

The temperature correction method devised by Unsöld, as de-
scribed in the preceding subsection, was generalized to the non-
grey case by Lucy (1964; see also Mihalas 1978) to what be-
came known as the “Unsöld-Lucy method”. The basic idea is to
introduce suitably weighted means of the (now non-grey) opac-
ity, such that the integrals over products (like # � * � ) can still be
replaced by products of (now frequency-integrated) quantities,
similar to the grey case. The appropriate definitions are

#M� �Q� �� # � ' �&�M�' x (27)

# � ��� �� # � * �&���* x (28)

and

# � � � �� # � f � ���f 3 (29)

In order to keep the Eddington factors
�

and � variable, we
furthermore define intensity-weighted means of

� � and � � ,� � � � �� � � * �&���* (30)

and� � ��� �� � � * �&���* 3 (31)

The dependence of variables on the depth ( � or _ ) is only ex-
plicitely written when not being obvious. With the help of these
means, the frequency-integrated Moment Equations look simi-
lar to the grey case (cf. Eqs. (18) and (19)):�l1�3|{o}��7� . �^f�^_ � # � ' . # � * (32)

� � 3|{o}��7� ��� � � * ��^_ � # � fq3 (33)
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Proceeding in analogy to the grey case, the 1. MEQ is inte-
grated over depth,� � ��_r� * �l_r�D� ������ �"� # � ��_ � ��fA��_ � ���^_ � K�����>��+_�3 (34)

where the integration constant is again fixed by the boundary
value, thus yielding* ��_r��� �� � �l_r� �A�� � �"� # � �l_ � ��fA�l_ � ����_ � K f��l10�� � �e10� 3 (35)

Now this expression for
*

is inserted into the RE integral,# � ' . # � * �GFXH x (36)

resulting inFIHp�l_r�# � �l_r� � ' ��_r� (37). # � ��_r�#M� ��_r�y� �� � ��_r� � ���� �"� # � ��_ � �,fA��_ � ���^_ � K fA�l1��� � �l10���
for any given source function ' not yet satisfying the RE con-
dition. If now a suitable correction F ' is added, RE and flux
conservation are retained:1-� ' ��_r��K F ' ��_r� (38). # � ��_r�# � ��_r� � �� � ��_r� �A���� �"� # � ��_ � ��fI����_ � . f �� � �l1�� � 3
The difference of the last two equations yields for F 'F ' �l_r�y��. FXH���_r�#�� ��_r�K # � ��_r�# � ��_r� �� � �l_r� � �� � �"� # � �l_ � ���lfI�&.`fA�l_ � �|����_ (39)K # � ��_r�# � ��_r� f � .�f��l10�� � �l10� x
from which the temperature correction can be obtained finally
via Eq. (26).

3.3. The spherical case

Remember (or see Mihalas 1978) that in polar coordinates�l  x ��� with ���¢¡�£�¤�¥ the equation of radiation transfer be-
comes a partial differential equation,�&¦ %¦   K � .`� n  ¦ %¦ � � # �	� ' �/.�%!�0� (40)

because the angle between a specific ray and the radial direc-
tion changes along the ray. Integrating this equation over d �
and �b��� gives the 0 cld Moment Equation�m§f ���  � # �-� §' �/. §* �g� (41)

and the 1 hic Moment Equation���e¨	§j��g���  �J.&¨+� # �2§fN� (42)

where the tilde denotes the incorporation of an   n factor, §* � �  n * � etc., and ¨ is the integrating (“sphericality”) factor¨��� g���Y  � nm©�ª�« � ��¬�®­ � ��  � �W. �  � � ��  � � �^  � � 3 (43)

In order to proceed in analogy to the plane-parallel case, we
define two further weighted means,�l¨ � � � � � �� ¨+� � � * �V���* ¯g° � (44)

�l¨ # � � �®� �� ¨+� # �gfN�V���f 3 (45)

With their help, we can integrate the Moment Equations over
frequency and obtain�l1�3|{o}��7� �m§f��  � # � §' . # � §* (46)

� � 3|{o}��7� ��±��e¨ � � � §*�²��  �³.	�e¨ # � � §fz3 (47)

The latter equation can be integrated over radius   ,�l¨ � � � �� g� §* �� g�D� �A´¬ � � ¬ �l¨ # � � ��  � � §f��l  � ����  � KA����>��+_�3 (48)

where the integration constant is fixed by the boundary values
at  	�Yµ , giving for §*§* �� g��� ��l¨ � � � �� g� � ´¬ � � ¬ �l¨ # � � �l  � ��§fA��  � ����  � (49)

K �l¨ � � � �lµb��l¨ � � � �l �� §fA�eµb�� � �eµ¶� 3 (50)

Now this expression for §* is inserted into the   n -multiplied RE
integral,# � §' . # � §* �LF §H x (51)

and we obtainF·§Hp�� g�# � �� g� � §' �l g� (52)

. # � �l g�#�� �� g��¸ ��l¨ � � � �� g� �A´¬ � � ¬ �e¨ # � � �l  � ��§fA�l  � ����  �º¹. # � �l g�# � �� g��¸ �l¨ � � � �eµ¶��e¨ � � � �� g� §fA�lµb�� � �lµb� ¹
for any given “wrong” §' �l �� . Again we rewrite this equation
after adding a correction F2§' to the source function, such that
Radiative Equilibrium and flux conservation are retained,1 �»§' �l g��K FL§' �� g� (53). # � �l g�# � �� g��¸ ��l¨ � � � �� g� �A´¬ � � ¬ �e¨ # � � ��  � ��§f � ��  � ¹. # � �l g�#�� �� g��¸ �e¨ � � � �eµ¶��l¨ � � � �� g� §f �� � �lµb� ¹ 3
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¼V½
(projected)

Fig. 1. In an expanding atmosphere, any two volume elements are dif-
ferentially moving. Traveling photons appear Doppler-shifted, when
their frequency is measured in different frames of reference co-moving
with the matter. The frequency shift between two points is propor-
tional to their relative velocity, projected onto the photon ray.

The difference between the last two equations yields F¾§' ,FG§' �l g�o�³. F5§Hp�l ��#�� �l g� (54)

K # � �� g�# � �� g� ��l¨ � � � �� g� � ´¬ � � ¬ �e¨ # � � �l  � ���,§fI�&.¿§fA�l  � �|����  �K # � �� g�# � �� g� �l¨ � � � �lµb��l¨ � � � �l �� §f � .À§fA�eµ¶�� � �eµ¶�
from which the temperature correction can be obtained in LTE
analogy byFX6-�l ���� Z[0\~� 6-�l g�w� U   n FL§' �� g��3 (55)

3.4. Generalization to expanding atmospheres

The final step to be done is to generalize the method to the
case of expanding atmospheres. The matter moves radially out-
ward with a velocity Á �� g� , which is assumed to be monotoni-
cally growing. Therefore any two parcels of matter are reced-
ing from each other. The radiation transfer is formulated in the
Co-Moving Frame (CMF), i.e. frequencies and radiation-field
quantities are measured at each spatial point in the local rest
frame of the moving matter. Due to the differential motion,
a photon experiences a red-shift while traveling (cf. Fig. 1).
Consequently, the CMF equation of radiation transport along
a ray becomes a partial differential equation for the intensity% � :Â ¦ %ÄÃ�¦ÆÅ .`Ç � � ¦ %ÄÃ�¦ � � # �b� ' �/.�%!�0�t3 (56)

Here Å is the spatial coordinate along the considered ray, andÇ is the velocity gradient projected onto that ray,Ç³�È� nXÉ � Á��  . Á  �Ê K Á   �L� nDË K Á   (57)

with the abbreviation Ë �ÍÌ+ÎÌ ¬ .5Î¬ for the difference between
the radial and the transversal velocity gradient.

Integrating the “ray-by-ray” CMF transfer Eq. (56) over d �
and ����� gives the 0. Moment Equation¦ §f��¦   . Ë � � ¦ §j��¦�Ï . Á   � � ¦ §* �¦ � � # �	�^§' �/.�§* �g� (58)

and the 1. Moment Equation¦ �l¨+�X§j��g�.&¨ � ¦   K Ë � � ¦ §Ð �¦ � K Á   � � ¦ §fN�¦ � � # �A§f��	3 (59)

In addition to the moments of the radiation intensity defined
earlier (Eq. (13)), a further (third) moment §Ð occurs here,§Ð �b�L �n �
 ���� � %!��������� U ���~3 (60)

By applying the same weighted means as in the previous
subsections, we can integrate the 0. Moment Equations over
frequency and obtain�l1�3|{o}��7� �m§f��  K ��~Ñ Ë §jQK Á   §*ÆÒ � #M� §' . # � §* 3 (61)

This equation shows, that for an expanding atmosphere in ra-
diative equilibrium, i.e. when the right-hand side vanishes, the
CMF flux §f is not conserved. Instead, the photon field looses
inevitably energy by doing mechanical work. Integration of
Eq. (61) over radius yields§f � �� g�o� §f � � � � (62). �� � ¬¬ � � � � Ë �l  � �C§j��l  � ��K Á ��  � �  � §* ��  � � � ��  �
where we assumed that the flux at the inner boundary of the
atmosphere, i.e. at  	� � , is specified. Therefore, in contrast to
the static case we have to calculate §fX���� g� and use this radius-
dependent value for the further calculation.

This is in fact the only modification we make in order
to account for the expansion, compared to the static case de-
scribed in the preceding subsection. The frequency integral of
the 1. Moment Equation Eq. (59) also yields additional “expan-
sion terms” with frequency derivatives, in addition to the static
case Eq. (47). However, in the next step this equation will be
written twice, first for the “wrong” source function and a sec-
ond time for the corrected ' , and then the correction will be ob-
tained from subtracting both equations. If we neglect the (very
small) reaction of the expansion terms on the correction of the
source function, these terms cancel out. Note that this approxi-
mation only affects the temperature correction, but not the con-
verged solution of the method.

Thus, with the only modification of the radius-dependence
of the pre-specified flux §f � �l g� , the steps following Eq. (47)
remain the same for the expanding case. The source function
correction is obtained asFL§' �� g�D�J. F·§H��� g�# � �� g� (63)K # � �l g�#�� �� g� ��e¨ � � � �l g� � ´¬ � � ¬ �l¨ # � � ��  � ����§fI���l  � �W.À§fA�l  � �|���^  �K # � �l g�#�� �� g� �e¨ � � � �eµb��l¨ � � � �� g� §fI�0�eµb��. §f��eµb�� � �lµb�
from which the temperature correction can be obtained in LTE
analogy (Eq. (55)).
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3.5. Combination with the ALI method

The correction for the source function, as provided by Unsöld’s
method, is composed of three terms (cf. Eq. (64)): the last
(third) term evaluates the difference between the correct flux§f � �eµb� and the actual value §f��lµb� , both at the outer boundary o��µ , and communicates this correction immediately to the
inner points   of the atmosphere.

The second (middle) term is also driven by the “flux error”,
integrating this difference from the boundary to the considered
point   . Because the flux-weighted mean opacity appears under
this integral, significant contributions are collected from opti-
cally thick parts of the atmosphere only. This information is
immediately communicated to the point   .

The first term is just as obtained from direct application
of the Radiative Equilibrium condition alone (cf. Eq. (8)). This
term bears the whole burden to correct 6-�l g� in those outer parts
of the atmosphere which are optically thin in terms of the flux-
weighted mean opacity.

At first glance, this duty seems not to be a problem for the
first term, as the “lambda iteration” works fine in optically thin
situations where the feedback of the temperature on the local
radiation intensity is small. However, in a realistic stellar atmo-
sphere we encounter extremely optically-thick (e.g. resonance)
lines in layers which are optically thin in the continuum and,
therefore, in the flux-weighted mean opacity. Due to the high
opacity peaks, the radiative equilibrium integral (cf. Eq. (3))
is completely dominated by those few line frequencies. The
strong local feedback of a temperature correction to the local
radiation field is only slowly communicated to distant points
via the radiation transfer, i.e. the convergence problem of the
classical “lambda iteration” is still not overcome here.

The same iteration problem is generally encountered
in non-LTE modeling, when the radiative transfer equation
(Eq. (4)) and constraint equations (Eq. (5)) are solved in
turn. The powerful method developed in the 1980s to over-
come these difficulties is termed “iteration with Approximate
Lambda Operators” (ALO method, see, e.g., Hamann 1985,
1986, 2003). Let us repeat briefly its basic idea. When the ra-
diative transfer (Eq. (4)) is calculated from a given stratification
of population numbers and temperature, this is called a “formal
solution” yielding the radiation field ;�Óºh . In a simple lambda
iteration, this radiation field would enter the subsequent solu-
tion of the statistical equations (Eq. (5)). In the ALO method,
however, an approximate radiation intensity ;�Ô is used instead,
which formally accounts in advance for the corrected source
function which is just to be calculated from the constraint equa-
tions. The same idea can also be applied for the radiative equi-
librium equation (see also Hauschildt 1992).

The most simple formulation is obtained when the
“Approximate Lambda Operator” ÕVÔ� only accounts for the lo-
cal feedback of the source function, which is a not too bad as-
sumption in the optically thick case which is just the critical
one we have to defeat. At a given radius and frequency, ap-
plication of such a “diagonal” ALO just means multiplication
with a number, and the approximate mean intensity becomes* Ô� � * Óºh� K Õ Ô� F ' � 3 (64)

The application of this ALO scheme to the RE equation,
and thus to the first term of the Unsöld-Lucy temperature cor-
rection, is straightforward. First, the “error” in the RE integral
is calculated from the radiation field as obtained by the formal
solution of the radiation transfer, i.e.FIH³� � ��!�"� # �	� ' �/. * Óºh� �����p� # � ' . # � * Óºh 3 (65)

Next we re-write this equation with the source function cor-
rected by F ' such that RE is retained, but at the same instance
using

* Ô� instead of
* Óºh� in order to account for the feedback,1-� � # �-� ' �&K F ' �È. * Ô� ����� (66)�GFIH2K � # � F ' � ���¾. � # � Õ Ô� F ' � ���

where we have already inserted the definition of
* Ô� from

Eq. (64) in the second line. For resolving this equation for F '
we obviously need to define further opacity means, weighted
with the (still unknown) F ' � . Here we now introduce the plau-
sible approximation that weighting with ' � , i.e. with the source
function itself instead of its correction, will yield very similar
results. Thus we apply # � in the preceding equation, and define
additionally the weighted mean� # Õ � � � � # � Õ]Ô� ' �&���' 3 (67)

With its help, we obtain1-�LFIH2K #M� F ' .À� # Õ � � F ' x (68)

and thus the “amplified” correction (now denoted with a super-
script “A”) becomesF '�Ö �J. FXH#M� .È� # Õ � � 3 (69)

Compared to the correction without using the ALO,F ' �J. FIH#M� x (70)

an amplification by a factor× � #��# � .È� # Õ � � (71)

has been achieved, which amounts to about 10 P in outer parts
of a Wolf-Rayet atmosphere, typically.

The specific choice of the (diagonal) Approximate Lambda
Operator Õ]Ô� is not critical. Basically, it is sufficient to choose
0 for optically thin and 1 for optically thick frequencies. As a
more elaborated guess, we estimate the photon escape proba-
bility to be Ø � �rÙ from the optical depth � � to the nearest bound-
ary. We writeÕ Ô� � � . � . Ø � �rÙ!ÚrÛ� (kÜ (72)

with some adjustable Ü to allow for manual damping of the
corrections which can be chosen as unity in most cases.
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For a simple estimate of the optical depth � � �� g� we neglect
here the expansion and assume # � to scale with   � n in order to
obtain the local expression

� ���� g����ÝNÞ ° ¸ # ���� g� � ´¬   n  � n ��  � x # �^�� g� � ¬�   n  � n ��  � ¹ (73)� # � �� g��ÝNÞ ° Ñ  	� � .  µ � x  	�� ¶. � � Ò 3
A few more tricks were found to be useful in order to make

the method more robust in practical applications.

– In the optically thick part of the atmosphere, the ALO am-
plification interferes badly with the second and third “flux
correction” terms of the Unsöld-Lucy method which al-
ready do a good job there. Therefore we damp the ALO
amplification in regions of high mean (e.g., Rosseland) op-
tical depth �!ß�à h�h , by replacing the amplification factor

×
by

some
× � defined as× � � � K2� × . � � Ø � ��á�âwãäã 3 (74)

– One might consider to amplify the temperature corrections
as obtained in LTE analogy, the more the non-LTE source
function deviates from the Planck function, by arguing
that the former is less sensitive to the local temperature.
However, this does not work well in practical tests. On the
contrary, it turns out that smoother convergence is obtained
when the temperature corrections are damped with increas-
ing mean departure coefficient ' ( 4 . Therefore we replace× � by× � � � � K2� × � . � �ÄÝNÞ ° É '4 x 4 ' Ê 3 (75)

– It is favorable to calculate separate temperature correc-
tions FX6Æå , FX6�ålå and FX6Æå�å�å from each of the three terms
in Eq. (64). Then we can define individual damping factorsæ å , æ å�å and

æ å�å�å when composing the total temperature cor-
rection FX6 ,FX62� æ å�FX6Æå�K æ ålåwFX6Æå�å�K æ ålå�åwFX6Æå�å�å,3 (76)

In most cases the damping factors can be chosen as unity,
but in some problematic models the action of the three
terms must be balanced by hand.

– Different convergence speeds from the three terms of
Eq. (64) is in general the main problem of this method. As
in converged Wolf-Rayet model atmospheres the tempera-
ture is usually monotonically decreasing with radius, it is
often useful to restrict the corrections such that 6X�� g� re-
mains monotonic during the whole iteration process.

– For similar reasons it is often useful to smooth the temper-
ature corrections, e.g. by replacing the correction F-6�ç ob-
tained at radius index è by a mean including adjacent points,�P F-6Æç � � K �n F-6Æç-K �P FX6Æçºé � .

4. Example results

The temperature correction method described above has been
successfully employed for calculating extended grids of model

atmospheres for Wolf-Rayet stars. Our models (see Gräfener et
al. 2002 for more details) usually account for hydrogen, helium
and CNO with complex model atoms, the composition being
typical either for WN or for WC stars. Iron line blanketing is
treated in the superlevel approximation.

The model which will serve here for demonstrating the tem-
perature correction method has been calculated for the enig-
matic WN-type central star of the planetary nebula N 66 in the
Large Magellanic Cloud (Hamann et al. 2003). The model pa-
rameters are: effective temperature 6 Ô = 112.2 kK, luminosityê £0ëDì ( ì�í = 4.78, mass-loss rate

ê £0ëqîï ( � ï íXðÄñ � � � = -5.386
with clumping factor ò = 4, and terminal wind speed Á � =
2200 km s

� �
. The chemical composition is (by mass fraction)
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Fig. 2. A model which is not yet in Radiative Equilibrium (see text
for model parameters). The upper panel shows the co-moving frame
flux, expressed in terms of the radiation temperature, as function of
the radius index. The outer boundary is at index 1 (left). The intended
effective temperature of the model is given by the dashed horizontal
line. The flux which the model should have in Radiative Equilibrium
is somewhat lower in the outer parts (solid line). The actual flux of
the model in that stage (circles) still deviates from that by much. The
temperature corrections which our method applies in this situation are
shown in the lower panel. The contributions from the three terms in
Eq. (64) are shown separately: the local Radiative Equilibrium (thin
solid line), the term driven by the radius-integrated flux error (dashed
line), and the term from the flux error at the outer boundary (dash-
dotted line). The total temperature correction (thick solid line) is the
sum of the three contributions, all of them damped here with a factor
0.7 (Eq. (76)).
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Fig. 3. Same as Fig. 2, but many iterations later. As seen in the up-
per panel, the model flux (circles) now perfectly fulfills Radiative
Equilibrium (thick full line). The remaining temperature corrections
(lower panel) applied by our method are now only a few Kelvin (note
the expanded scale).

0.2 hydrogen, 0.003 nitrogen, 1 10
� P carbon, 2 10

� P iron group
elements, and the rest helium.

Figure 2 refers to an early stage of the iteration, when the
model is still far from Radiative Equilibrium. The upper panel
shows the co-moving frame flux, expressed in terms of the radi-
ation temperature, as function of the radius index. The intended
effective temperature of the model is given by the dashed hori-
zontal line. The flux which the model should have in Radiative
Equilibrium (solid line) is somewhat lower in the outer parts
of the atmosphere, because the photon field looses energy by
mechanical work (cf. Eq. (63)). The actual flux of the model
in that stage (circles) differs by much from the correct values.
The temperature corrections which our method applies in this
situation are shown in the lower panel.

Figure 3 shows the same model, but many iterations later.
As seen in the upper panel, the model flux now perfectly fulfills
Radiative Equilibrium (thick full line). The remaining temper-
ature corrections (lower panel) are very small.

In the outer part of the atmosphere, only the local energy
balance yields significant temperature corrections. Here the ac-
celeration of the iteration (ALO method, Sect. 3.5) is essen-
tial. The convergence is checked by the following test. Figure 4
shows the temperature stratification for the same model as in
the previous figures. The full line gives 6X�� g� of the converged
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Fig. 4. Temperature stratification for the same model as in the previous
figures, plotted versus radius ó in units of the stellar radius ô&õ . The
radius point indices are also indicated along the abscissa axis. The
full line gives the stratification of the converged model. For two con-
vergence tests, this stratification was artificially modified in the outer
part (dashed lines). After running further iterations, both of these ma-
nipulated models (squares and diamonds for the models (i) and (ii), re-
spectively) recover the original, converged temperature stratification.

model. Now this stratification is artificially modified in the
outer part, setting the temperature (i) to 80 kK and (ii) to 0.8
times the converged values, respectively (dashed lines). After
running further iterations, both of these models recover the con-
verged temperature stratification (squares and diamonds for the
models (i) and (ii), respectively), thus successfully demonstrat-
ing convergence.

In summary, we have presented and tested a temperature
correction method for computing Radiative Equilibrium mod-
els of spherically expanding stellar atmospheres in non-LTE.
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