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Chapter 1

Introduction

Hot, massive stars play an important role across cosmic times. From the very first, presumably
extremely massive stars in the early Universe till the present day, massive stars have decisive
influence on the evolution of galaxies. They ionize their environment by their strong UV
radiation, they enrich the interstellar medium (ISM) with metals due to the processed material
in their strong stellar winds, and they transfer momentum by their stellar wind on their
environment, shaping structures around them. Their energetic influence integrated over their
lifetime is comparable to the amount of energy released during their final supernova explosion,
thereby providing important constraints to other astrophysical fields.
One, if not the most striking feature of hot, massive stars are their winds. Although the

Wolf-Rayet phenomenon was known since the discoveries by Wolf & Rayet (1867) and already
speculated as a result of a strong continuous matter outflow due to radiation pressure by Beals
(1929), it was not until the beginning of the ultraviolet (UV) astronomy era (Morton, 1967a,b)
that mass-loss was identified as common attribute of all hot and massive stars. Since then
it is clear that stellar mass-loss is a fundamental ingredient in the life of hot stars and the
chemical evolution of galaxies.
For hot stars, Snow & Morton (1976) concluded from UV observations with the Copernicus

satellite that significant mass outflow is present in all hot stars above a certain luminosity
(logL/L� & 4.3). The idea of line driving, i.e. the momentum transfer due to absorption of
radiation in spectral lines, can be traced back to Saha (1919) who wrote down his ideas shortly
after the discovery of the quantum nature of light, trying to explain the tails of comets. After
Milne (1924a,b, 1925) and Johnson (1925) developed the basics for line-driven wind theory by
considering line absorption as an important way for atoms to overcome gravity, Milne (1926)
realized that outward moving atoms can be significantly accelerated by radiation pressure
due to the Doppler effect shifting the resonance frequency, thereby exposing the matter to
unattenuated radiation.
Only a few years later, Kosirev (1934) suggested that some supergiants, including Wolf-

Rayet stars, might have extended photospheres to explain the unusual color-temperatures
obtained for these objects. Kosirev (1934) also calculated a mass-loss rate of Ṁ ≈ 10−5 M�/yr,
assuming a wind velocity of 1000 km/s for Wolf-Rayet stars, thereby matching the parameter
range that is obtained today with the help of much more elaborated stellar atmosphere models.
Before the discoveries in the UV spectra, stellar wind theory mostly focused on the solar wind

(see, e.g., the review from Parker, 1965), but already shortly afterwards major progress was
made in the field of hot star winds. Lucy & Solomon (1970) showed that radiative absorption
in UV resonance lines of certain ions can be sufficient to overcome gravity, thereby causing a
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Chapter 1 Introduction

continuous mass outflow, i.e. a stellar wind. While Lucy & Solomon (1970) considered only a
handful of lines and explicitly evaluated the line acceleration integral numerically, analytical
approximations for the radiative force on many lines were performed (Castor, 1974) which
lead – in combination with oscillator strength calculations – to the seminal work of Castor,
Abbott, & Klein (1975), afterwards known as the CAK-theory. Empirical methods to obtain
mass-loss rates for OB stars from the radio (Wright & Barlow, 1975) or infrared (Barlow &
Cohen, 1977) regime yielded values comparable with the CAK predictions, thereby backing the
idea of radiation-driven winds, even though it later turned out that some of the underlying
assumptions in the CAK theory did not hold in the general case. Nevertheless, the basic
ideas and approaches from CAK for the radiative force remained as their description was
extended by various correction factors (see, e.g., Friend & Abbott, 1986; Pauldrach et al.,
1986; Kudritzki et al., 1989), but never completely replaced.
Already shortly after the formulation of the CAK theory, concepts for instabilities or den-

sity perturbations occurring in line-driven winds were developed (see, e.g., Nelson & Hearn,
1978; MacGregor et al., 1979; Martens, 1979; Abbott, 1980). Lucy & White (1980) invoked
that such instabilities might explain the discovery of X-rays in O stars (Harnden et al., 1979;
Seward et al., 1979). The Auger effect caused by X-rays in hot star winds had also been
proposed by Cassinelli & Olson (1979) to explain the superionization seen in the UV spectra
of some hot stars. Further indications for instabilities came from several discoveries point-
ing towards variations on shorter time scales, such as non-thermal radio emission (Abbott
et al., 1981), narrow shifted absorption features in the UV PCygni line profiles (Lamers et al.,
1982, nowadays referred to as “discrete absorption components”, DACs), and enhanced ther-
mal infrared emission correlated with Hα variations (Abbott et al., 1984). It became clear
that, even though the bulk of the spectral appearance seemed to be constant over longer time
scales, additional processes happen on shorter time scales. This deviates from the picture of a
smooth and spherical wind with a monotonic velocity law, which would otherwise be sufficient
(see, e.g., the discussion in Lucy, 1982). After various formal linear stability analyses (e.g.
MacGregor et al., 1979; Lucy, 1984; Owocki & Rybicki, 1984), also time-dependent numerical
calculations (e.g. Owocki et al., 1988; Feldmeier, 1995) were performed, eventually relaxing
more and more approximations (e.g. Owocki & Puls, 1996, 1999) and partially extending to
multi-dimensional approaches (e.g. Dessart & Owocki, 2003, 2005). Even though the sub-
stantial improvements were made in the models, one of the basic conclusions from Owocki
(1992) is still valid nowadays, namely that only tiny fractions of the material are accelerated
to very high velocities while the bulk of the matter is only affected by the result that insta-
bilities are causing the breaking up of a smooth wind into clumps. This means that, if wind
inhomogeneities are considered appropriately, the long-term spectral appearance of hot stars
can be understood by assuming a stationary wind. Meanwhile, the theoretical indications for
inhomogeneities, also referred to as “clumping”, have been backed up by a variety of evidences
from observations (see, e.g., Hillier, 1991; Eversberg et al., 1998; Bouret et al., 2003; Kramer
et al., 2003). A detailed overview about clumping in hot star winds and their consequences,
including several discussions, can be found in Hamann et al. (2008).
In order to estimate the stellar and wind parameters of massive stars from their observed

spectra, model atmospheres are necessary. Based on them, synthetic spectra needed to be
calculated then compared to the observations in order to deduce the stellar and wind parame-
ters. Modeling such atmospheres requires very complex calculations. The outer layers are not
even close to local thermodynamical equilibrium (LTE), thus the population numbers must be
calculated from the statistical equations. For a sufficient treatment, large model atoms with
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hundreds of levels in total have to be considered. Furthermore, the radiative transfer becomes
complicated in an expanding environment, requiring approximations. As a consequence, the
calculation is typically replaced by the analytical mCAK-description or performed via either a
Monte Carlo (MC) simulation, or a brute-force evaluation of the acceleration integral using a
comoving frame (CMF). On top of these two major tasks, i.e. solving the statistical equations
and the radiative transfer, several further challenges exist, such as iron-line blanketing or the
need for a consistent calculation of the temperature stratification in an expanding, non-LTE
environment.
Given the intricacy of the situation, modern model atmospheres rely on numerical calcu-

lations. Only in the last few decades computers have become so powerful, that they can
accurately simulate an expanding stellar atmosphere and provide synthetic spectra which suf-
ficiently reproduce observations. Although the calculation of helium spectra goes back to
Auer & Mihalas (1972), it was not until the end of the 1980s that the pioneering works on
the various aspects (e.g. Kurucz, 1979; Hamann, 1980, 1981, 1985; Hillier, 1987; Pauldrach,
1987; Hamann & Schmutz, 1987; Pauldrach & Herrero, 1988) were combined into so-called
unified model atmospheres (Gabler et al., 1989), where not only the statistical equations and
the radiative transfer were handled consistently, but also the separate treatment between the
sub- and supersonic layers was removed. From these early approaches, a handful of codes
have emerged which are able to model stars with expanding atmospheres, including phoenix
(Hauschildt, 1992; Baron et al., 2003), wmbasic (Pauldrach et al., 1994, 2001), fastwind
(Santolaya-Rey et al., 1997; Puls et al., 2005), cmfgen (Hillier, 1990; Hillier & Miller, 1998),
and the Potsdam Wolf-Rayet (PoWR, Gräfener et al., 2002; Hamann & Gräfener, 2003) stellar
atmosphere code which will be used in this work.
In addition to the atmosphere codes mentioned above, which use a CMF approach or mCAK

to obtain the line acceleration, there is also the way to calculate the line acceleration via MC
simulations for the radiative transfer. This concept goes back to Abbott & Lucy (1985) and
was later extended by de Koter et al. (1993, 1997) and Vink et al. (1999). The MC approach
allows an inclusion of multiple line scattering, which is not covered by CAK, while being
generally faster than the CMF calculations. The spectral reproduction with models using
MC radiative transfer significantly supported the idea that radiative driving is sufficient even
for objects like O stars with dense winds or Wolf-Rayet stars where mCAK fails (Abbott &
Lucy, 1985; de Koter et al., 1993, 1997). Using a grid of MC models, Vink et al. (2000, 2001)
have been able to obtain mass-loss rate predictions for OB stars and later also for WR stars
(Vink & de Koter, 2005). However, such models use a prescribed velocity law and thus obtain
hydrodynamical consistency only on a global scale.
Given the importance of mass loss and the problems of the mCAK theory to describe dense

winds, the need for stellar atmosphere models that include a locally consistent treatment of the
hydrodynamics is evident. Such models would allow it to obtain a detailed, hydrodynamically
consistent wind stratification, thereby yielding mass-loss rates and velocity fields that do
not depend on CAK-like approximations. For such an elaborated treatment, a code with a
CMF radiative transfer such as PoWR is the best choice, even though the calculations are
computationally expensive. Originally developed for Wolf-Rayet (WR) stars, the PoWR code
iteratively solves the radiative transfer in the comoving frame together with the statistical
equations and the conservation of energy, thereby implicitly accounting for aspects like line-
overlapping or multiple scattering. The code therefore provides an excellent basis for a variety
of studies, such as testing whether the much denser winds of Wolf-Rayet stars can also be
radiatively driven or if additional physics might have to be considered to understand these
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Chapter 1 Introduction

objects. So far, the PoWR code has mostly been used to reproduce observed spectra and
obtain the stellar and wind parameters of the corresponding stars. For this purpose it is
sufficient to prescribe the wind velocity field and the stellar mass-loss rates. In order to study
the driving of hot star winds, however, the wind stratification must be directly coupled to
the radiative transfer calculations. This means that the hydrodynamic equation must be
included consistently into an already extensive code. Pioneering work in this field with codes
using a CMF radiative transfer has been done by Pauldrach et al. (1986, 1994, 2001) for
wmbasic. For the PoWR code, a first attempt was made by Gräfener & Hamann (2005,
2008), obtaining models a WC star and hydrogen-rich WN stars. However, their approach
has certain limitations in term of applicability as will be discussed later in this work.
Since stellar winds are presumably line-driven, it is extremely important to include as much

contributing line transitions as possible. This implies that a stellar atmosphere model has to
account for a large number of atomic levels. Due to the non-LTE situation, the statistical
equations have to be solved for each of these levels, thereby introducing a certain conflict
between opacity completeness and numerical stability. Hence, code improvements had to be
made to overcome this and also some other problems that could otherwise harm the calculation
of accurate hydrodynamically consistent models. Upgrading the PoWR code from a spectral
analysis instrument to a multifunctional stellar atmosphere laboratory was therefore a vital
step towards the results presented in this work.
The basics of the PoWR code and some important performed extensions are described in

Chapter 2. The underlying concepts of including the hydrodynamics as well as the differ-
ences to the method of Gräfener & Hamann (2005) will be outlined in detail in Chapter 3.
Prototypical results for hydrodynamically consistent models of different spectral classes are
presented in Chapter 4, together with demonstrating the benefits and caveats of this new type
of atmosphere models. The more general implications and theoretical questions arising from
this work are discussed in Chapter 5 before drawing the conclusions in Chapter 6. Technical
concepts for the implementations are given in the appendix.
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Chapter 2

The PoWR expanding stellar
atmosphere code

2.1 The concept of model atmospheres

In the last three decades, complex stellar atmosphere models have become a standard tool to
analyze and understand hot stars. The idea behind this concept is to model the outer layers
of a star, where the emergent spectrum is formed. Basically, stellar atmosphere models should
provide the the population numbers, the temperature structure, and the radiation field. With
these being calculated consistently, the emergent spectrum of a model can be synthesized
and used for comparison with observations. The physics used in the models should be as
detailed as needed to obtain realistic spectra on the one hand, but also simple enough to allow
calculations in a reasonable time on the other hand.
In the outer layers of a hot star, the concept of a local thermodynamically equilibrium (LTE)

is not appropriate. The consequence is that complex calculations need to be performed, such
as the solution of a large number of statistical equations to obtain the population numbers.
This (and other calculations) can only be done numerically, and therefore the development
of model atmospheres is coupled to the progression of computers. In the past two decades
standard computers have become so powerful that they can run the current generation of
one-dimensional stellar atmosphere codes in a reasonable time. Still, the most complex codes,
such as the one described in this work, have to remain at a one-dimensional description as
more-dimensional approaches on this level of complexity are still beyond current computation
limits.
For hot stars with non-negligible winds, the atmospheric expansion needs to be taken into

account for the radiative transfer which is needed to obtain the radiation field and the radiative
acceleration. The numerical handling of this requires either a calculation in a comoving frame
(see Sect. 2.8) or a major simplification such as the Sobolev approach (see Sect. 3.6).
Furthermore, comparisons between model spectra and observations have shown that the ad-

ditional effects such as clumping (see, e.g. Hamann & Koesterke, 1998) and iron-line blanketing
need to be taken into account by the atmosphere models. In total, the following objectives
should be achieved by a code calculating a stellar atmosphere:

• Solution of the statistical equations in non-LTE

• Solution of the radiative transfer in the comoving frame
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Chapter 2 The PoWR expanding stellar atmosphere code

• Energy conservation (yields the temperature structure)

• A proper accounting for the influence of iron group elements

• Accounting for inhomogeneities (“clumping”) in the atmosphere

• Consistency between the wind stratifications and the radiation field

Apart from the last point, which is actually the main focus of this work, the current gener-
ation of stellar atmosphere codes is performing quite well in reaching these objectives. How-
ever, there are certain simplifications - apart from the restriction to 1D - that could need
an improvement. Several of them will be addressed in the following sections with performed
improvements described in detail. Nevertheless, the biggest task is actually concealed in the
last bullet point, namely a consistent description between the results of the radiative transfer
calculation and the wind stratification. This is addressed in detail in Chapter 3.

2.2 Basic assumptions

Apart from small scale variabilities happening on the order of the dynamic time scale, ob-
servations reveal that the spectra of most hot and massive stars do not change significantly
over time. The Potsdam Wolf-Rayet (PoWR) stellar atmosphere code therefore assumes a
stationary, homogeneous and spherically symmetric outflow. From these basic assumptions,
one obtains the equation of continuity

Ṁ :=
dM

dt
= 4π r2 ρ(r) v(r) = const. (2.1)

A major consequence of Eq. (2.1) is that for a given radius r, the density ρ(r) is directly
coupled to the wind velocity v(r). This has fundamental implications for the implementation
of the hydrodynamic equation but also introduces certain limitations. Both will be discussed
later on in this work.
In total, a PoWR model atmosphere is described by a set of fundamental physical parame-

ters. These are:

• Two out of the three values connected by Stefan-Boltzmann’s law, namely:

– the stellar radius R∗, defined at a specified Rosseland continuum optical depth τmax
(default: τmax = 20)

– the effective temperature T∗ related to R∗
– the luminosity L∗ = 4πR2

∗σsbT
4
∗

• the clump∗ density contrast D(r)

• the mass-loss rate Ṁ or implying value (see below)

• the terminal wind velocity v∞ and the wind velocity law
∗D(r) only refers to optically thin clumps (“microclumping”) with a void interclump medium. In the calcu-
lation of the formal integral, PoWR can also account for optically thick clumps in an approximative way,
see Oskinova et al. (2007) for details. A very rough approximation for optically thick clumps during the
main model iteration is discussed in Sect. 5.4.
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2.3 The prescribed wind velocity law

• the stellar mass M∗, either given directly as an input value (M∗ or log g) or calculated
from the luminosity L∗†

• the chemical composition Xi of all elements that should be considered, usually in form
of mass fractions

Instead of directly specifying the mass-loss rate Ṁ , one can also specify a line emission
measure in the form of either the transformed radius

Rt := R∗

[
v∞

2500 km/s

/
Ṁ
√
D

10−4 M�/yr

] 2
3

(2.2)

(Schmutz et al., 1989; Hamann & Koesterke, 1998, for the current form) or the wind strength
parameter

Q :=
Ṁ
√
D

(R∗v∞)3/2
(2.3)

(Puls et al., 1996, 2008, for the current form) which then imply a certain value of Ṁ as all
the other parameters in their definitions need to be specified anyhow. Using Rt or logQ can
be helpful when calculating model grids or searching for models with a similar emission line
strength in their normalized spectra.
In hydrodynamically consistent models, Ṁ and v(r) are adjusted in order to ensure that

hydrodynamic equation is fulfilled throughout the atmosphere. However, as they define the
density stratification, starting values are still required as an input for the calculations.
On top of these fundamental physical parameters, several numerical parameters can also be

customized by the user. Ideally, their particular value does not influence the physical results
obtained in a model calculation. However, certain physical parameter regimes can lead to
different numerical situations and thus some numerical treatments that might work well in
one regime might not be sufficient in others. Adjusting numerical parameters is therefore done
in order to adjust the numerics in such a way, that the intended stellar atmosphere models
can be sufficiently calculated.

2.3 The prescribed wind velocity law

In the standard branch of the PoWR code, the velocity field v(r) is not calculated self-
consistently, but instead prescribed. Based on the results of the CAK theory (Castor et al.,
1975, see also Sect. 3.6), v(r) in a stellar wind is typically described by a so-called beta law,
i.e.

v(r) = v∞

(
1− R∗

r

)β
. (2.4)

A slightly more advanced description of the velocity field is the so-called two-beta law which
is simply the sum of two weighted beta laws:

v(r) = v∞

[
(1− q)

(
1− R∗

r

)β1
+ q

(
1− R∗

r

)β2]
(2.5)

†Depending on the stellar type, the mass-luminosity-relations from Langer (1989) or Gräfener et al. (2011)
are used if the stellar mass is not given otherwise.
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Chapter 2 The PoWR expanding stellar atmosphere code

The values of β1 and β2 must be prescribed as well as the weight q. (For q = 0 the two-beta
law reduces to the beta law (2.4) with β = β1.)
Note that both laws imply v = 0 at r = R∗, which is a problem in the models as it would lead

to an infinitely high density due to the equation of continuity (2.1). To avoid this singularity,
the velocity law in the deeper, quasi-static layers is either approximated by a barometric law
or consistently obtained by integrating the hydrostatic equation. (This method is discussed in
more detail in Sect. 3.4.) In order to ensure a smooth connection, the beta law (2.4) is written
in a slightly modified way in the PoWR code, namely

v(r) = p1

(
1− R∗

r + p2

)β
. (2.6)

The two parameters p1 and p2 depend on v∞ and the inner boundary of the beta law regime
Rcon plus the velocity vcon = v(Rcon). The connection point is usually obtained from the
condition that v and dv

dr must be continuous. However, as other codes tend to use a distinct
transition point, such as a certain fraction of the sound speed (see, e.g. Table 1 in Sander
et al., 2015), it is alternatively possible to fix the connection point to such a fraction. The
formulae for calculating the p-parameters is given in Sect. A.2 of the appendix.

2.4 The PoWR scheme

The calculation of a model atmosphere comprises a large and complex set of routines, way too
many to list them all in particular in this work. The basic scheme, however, can be outlined
as follows:

1. Model Start: Setup of radius and frequency grid, first velocity stratification, start ap-
proximation for ni and Jν

2. Main iteration
a) Solution of the radiative transfer in the co-moving frame
b) Temperature corrections,
c) solution of the statistical equations,
d) (optional) velocity stratification update

3. Formal integration: Calculation of the emergent spectrum in the observer’s frame

A more technical outline of the scheme with references to individual programs can be found
in Sect. A.1. The concepts of the major tasks of the main iteration, namely the solution of
the statistical equation, the temperature corrections, the solution of the radiative transfer in
the co-moving frame and the (optional) update of the velocity stratification, will be outlined
in the following sections with a focus on updates that have been performed in the framework
of this thesis.

2.5 Solution of the statistical equations

2.5.1 General concept

One, if not the main task of the STEAL program is the calculation of the population numbers.
Due to the non-LTE situation, this has to be done by solving the system of statistical equations
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2.5 Solution of the statistical equations

with accelerated lambda iteration (ALI, see e.g. Hamann, 1985, 1986). The system for the
losses and gains of all N atomic levels considered in a stellar atmosphere model can be written
as

∀j = 1..N :

N∑
i 6=j

niPij =

N∑
i 6=j

njPji. (2.7)

The rate coefficient matrix P contains all the transitions rate coefficients, including radiative
and collisional transitions. The entry Pij describes the transition rate coefficient from level i
to level j. Thus the left-hand side of Eq. (2.7) summarizes the gains for level j from all other
levels while the right-hand side contains the sum of all losses for the same level. Adding the
number conservation

N∑
i=1

ni = 1 (2.8)

and the charge conservation
N∑
i=1

niZi = ne, (2.9)

with Zi describing the charge of the corresponding ion, to the system, one can write Eq. (2.7)
in the form

~n ·P−~b = ~0. (2.10)

The vector ~b contains mainly zeros apart from a few entries that account for the number
conservation. Due to the ALI procedure, the rate coefficient matrix itself depends on the
populations numbers, i.e. P = P (~n). The population numbers ni which fulfill Eq. (2.10) are
thus the zeros of a multidimensional system of equations. To find them, a Newton-Raphson
approach can be applied. This iterative approach finds the new populations numbers ~n(k+1)

for a given set ~n(k) by calculating

~n(k+1) = ~n(k) −
(
~n(k) ·P−~b

)
· M−1. (2.11)

The matrixM is the derivative of ~n ·P with respect to the population numbers, i.e.

Mij =
∂

∂ni

(
N∑
m=1

nmPmj

)
(2.12)

2.5.2 Matrix inversion splitting

The inversion of the matrixM is required for the Newton-Raphson approach (see Eq. 2.11),
but one of the most time-consuming steps. Furthermore, numerical errors tend to grow with
the rank of the matrix. As the statistical equations need to be solved consistently for all
elements and all their levels, the matrixM grows extensively when more and more elements
and levels are being used in a model atmosphere. However, the recent usage of PoWR models
for O and B stars and also the needs of this work, i.e. the importance to include all levels with
a relevant contribution to the radiative acceleration, require models with several hundreds of
levels.
In order to reduce both calculation time and error margin, one can make use of the special

inner structure of the matrixM. Due to transitions occurring only between levels of the same
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Chapter 2 The PoWR expanding stellar atmosphere code

element, the transition matrix P has – apart from the charge conservation line – a block-
diagonal form with the number of blocks NA being equal to the number of elements used in
a model. This propagates into the derivative matrix M. For a block-diagonal matrix, the
inverse of the whole matrix can be obtained by simply inversion the blocks, i.e.

M =


A1

A2

. . .
ANA

 ⇒ M−1 =


A−1

1

A−1
2

. . .
A−1
NA

 (2.13)

Although the inversion has to be done for each block now, this is much more convenient. The
rank of each block is much lower and thus numerical inversion is quicker and more precise.
In order to apply this “inversion splitting”, the charge conservation, which is needed to

calculate the proper electron densities, has to be solved separately afterwards now. This
equation would not stick to the block format and instead cover a complete row of the matrix,
thus spoiling the block structure. However, in various test calculations the readjustment of
the electron density after the solution of the statistical equations did not turn out to have any
noticeable effects, neither on the atmospheric stratification, nor on the obtained spectra.
In fact, very few non-diagonal elements appear in M due to the ALI procedure which

avoids the convergence problems of a normal lambda iteration in optically thick situations by
a prediction of the new population numbers. Technically this translates to a modification of
the radiation field used to calculate the rate matrix P. Apart from the charge conservation, P
still keeps a block-diagonal structure, but its derivative matrixM does not. These non-block
entries inM have to be neglected in the splitting-approach, introducing a small difference in
the result calculated for M−1 compared to the complete inversion without using the block
approach. An error in the derivative is not a problem for a Newton-Raphson approach as long
as the overall convergence is still reached. Several test calculations have been performed to
check this matter, comparing models calculated with and without splitting approach. Those
which run fine even without using the splitting approach, usually due to their lower number
of levels, did converge in a similar behavior than and did not show noticeable differences in
their emergent spectra or their stratifications. Instead models which had numerical problems
without the split run fine when using the split approach. While this provides the basis for
calculating models with much more elements and levels than before, there still seem to be
upper limits, but much higher ones than before.

2.6 The temperature stratification

The consistent determination of the electron temperature T (r) throughout an expanding non-
LTE stellar atmosphere has been a complicated task in the past. The temperature and its
corrections are depending on the radiation field and the population numbers, which are already
coupled themselves. Some stellar atmosphere models therefore either use a completely fixed
temperature stratification or simplified the task by additional assumptions, such as using LTE
and/or a gray atmosphere. It was not until 1990s that such restrictions have been removed in
the code that we now refer to as PoWR.
Nowadays these limitations are no longer necessary, but the precise determination of T (r)

is still an important task and can be crucial for the successful convergence of a particular
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2.6 The temperature stratification

atmosphere model. In the field of hot and massive stars, two major concepts are used in state-
of-the-art stellar atmosphere codes. The first one is referred to as the “radiative equilibrium”
method after it’s basic assumption, while the second one is called “thermal balance” and stems
from the energy balance of the electrons.

2.6.1 Temperature corrections via radiative equilibrium

Using the radiative equilibrium for developing a temperature correction goes back to the
suggestions of Unsöld (1951) (see also Böhm, 1954) and Lucy (1964). Its first application was
done by Auer & Mihalas (1968, 1969) and since then this method has become the “standard”
approach for obtaining the temperature stratification in a stellar atmosphere. The radiative
equilibrium is usually written in the following two forms which already implicitly include the
energy equation:

4π

∞∫
0

κν (Sν − Jν) dν = 0 (2.14)

4π

∞∫
0

Hνdν = σSBT
4
eff (2.15)

Usually the first form (2.14) is meant when the term “radiative equilibrium” is used while
the second one (2.15) is referred to as “flux conversation” as Hν is the so-called Eddington
flux and Teff is constant. In fact, both forms reflect the energy conservation. Frequency
integration of the zeroth moment of the transport equation leads to the second equation for
Hν when using the first one, so it is implicitly included anyhow. The first one is therefore
sometimes called the “differential form” while the second one is referred to as the “integral
form” of radiative equilibrium. Note that the Eqs. (2.14) and (2.15) refer to a static, plane-
parallel atmosphere and needs to be adjusted for the application in the PoWR code. This
generalization to spherically expanding non-gray atmospheres of method from Unsöld (1951,
1955) and Lucy (1964) is described in detail in Hamann & Gräfener (2003). It eventually
leads to the following expression for the temperature correction:

∆T (r) =
π

4σSB

1

T 3(r)r2κS(r)

{
−
∞∫

0

(ην − κνJν) dν

+
κJ(r)

(qf)J(r)

Rmax∫
r′=r

(qκ)H(r′)
[
H̃0(r′)− H̃(r′)

]
dr′

+ κJ(r)
(qf)J(Rmax)

(qf)J(r)

H̃0(Rmax)− H̃(Rmax)

hJ(Rmax)

}
(2.16)

The first line of Eq. (2.16) after the bracket reflects the radiative equilibrium Eq. (2.14) while
the second and the third stem from an integral over the generalized version of Eq. (2.15) with
the second line referring to the integral and the third one to a constant that can be fixed by
the boundary values at Rmax

‡.
‡All three terms can be multiplied with a weighting factor in the PoWR code in order to force specific
corrections being preferred or even switched off.
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Chapter 2 The PoWR expanding stellar atmosphere code

In a thin atmosphere the Eq. (2.14) can cause numerical problems. The situation is domi-
nated by resonance lines where κν is basically zero and Sν and Jν are large but should cancel
each other as they do not contribute the free electrons and therefore should not affect the
temperature. In fact, it can happen that small numerical errors are multiplied with a large
value and therefore do not cancel each other, but lead to unphysical corrections.

2.6.2 Temperature corrections via thermal balance

A nice way to avoid the previously mentioned problems is to consider the thermal balance of
the electrons, where bound-bound line transitions do not enter, instead of the radiative equi-
librium. Although this temperature correction method was not used for hot star atmospheres
until the 1990s, it goes back to the ideas of Hummer & Seaton (1963) and Hummer (1963)
who applied it for planetary nebulae. Before the implementation in PoWR, it was only used
for temperature corrections in the Munich codes fastwind and wmbasic while most other
hot star atmosphere codes, such as cmfgen, but also plane-parallel codes (e.g. tlusty) use
the radiative equilibrium method (Puls, 2008).
Since a proper temperature structure is crucial for a successful application of the hydrody-

namic routines described later in this work, the “thermal balance” method was included in
PoWR as a part of this thesis. While the method is described in detail by Kubát et al. (1999)
and Kubát (2001), their notation is considerably different in certain details. Therefore the
main equations will be given here in the notation that follows the particular implementation
in PoWR. When comparing these equations with Kubát et al. (1999), it should be noted that
PoWR does not use the so-called occupation probabilities wi, i.e. we set wi ≡ 1 in their
equations.
The thermal balance of electrons is written as the difference between heating (QH) and

cooling (QC) terms:

∆Q := QH −QC (2.17)

:= QH
ff +QH

bf +QH
c −QC

ff −QC
bf −QC

c (2.18)

Both, heating and cooling terms, consist of three contributions, namely free-free and bound-
free transitions as well as collisions. In an ideal situation with a perfect balance we should
have ∆Q = 0. In reality the situation will of course differ, but it is exactly this aim that is
used to obtain a correction term for the current temperature stratification.
The straight-forward way to obtain a temperature correction is to implement a Newton-

Raphson scheme, i.e. calculating the temperature derivative of ∆Q and calculate the new
temperature via

Tnew = Told −
∆Q(T )
∂
∂T (∆Q)

. (2.19)

An example of the corrections for the thermal balance method compared to those from radia-
tive equilibrium is shown in Fig. 2.1. For such a cool model, the correction from the thermal
balance method in the outer part is much smoother than those obtained by radiative equilib-
rium. In the innermost part, flux consistency is usually more reliable and the thermal balance
corrections are switched off.
In the following paragraphs the calculation of Qff, Qbf, and Qc as well as their temperature

derivatives are described. The choice of the Newton-Raphson method especially requires a
calculation of the derivatives. For the population numbers Nj and the radiation field Jν no
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Figure 2.1 – Electron temperature correction example for a non-converged B-star model with
T∗ = 26 kK: The corrections suggested by the thermal balance method (green curve) is compared
to the three correction components from Eq. 2.16 based on radiative equilibrium (RE, blue and
orange curves). The two orange curves together resemble the flux consistency terms.

analytical derivatives exist and no proper numerical derivative can be calculated within an
effort that would be legitimate for the purpose of providing a temperature correction in each
iteration. Therefore Nj and Jν are treated as if they would not depend on the temperature
in the following calculations. This approximation is probably not as bad as it sounds as
the “thermal balance” method focuses especially on the outer parts of the stellar atmosphere
where the temperature dependencies of both, Nj and Jν , should be weak. Furthermore, the
derivatives only determine the convergence radius in the Newton-Raphson method, not the
actual value of the solution.

Free-Free transitions

In free-free transitions all energy is transferred between the radiation field and the electrons.
The heating terms describe the electron energy gains, thus QH

ff consists of the energy gained
by absorption, i.e.

QH
ff = 4πne

∑
j

Nj

∞∫
0

αff,j(ν,T )Jνdν (2.20)

with ne being the electron density, and αff,j the free-free cross section. The radiation field Jν
is the radiation field on a coarse frequency grid, i.e. XJC in the PoWR code. For the cooling
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Chapter 2 The PoWR expanding stellar atmosphere code

term QC
ff we now have to sum up the emission processes, i.e.

QC
ff = 4πne

∑
j

Nj

∞∫
0

αff,j(ν,T )

(
Jν +

2hν3

c2

)
e−

hν
kT dν. (2.21)

Note that both, QH
ff and QC

ff , vanish for non-charged stages (Z = 0) due to the cross-section
αff being proportional to Z2:

αff,j(ν,T ) =
4e6

0Z
2

3ch

√
2π

3kme

gff(ν,T )

ν3
√
T

(2.22)

= 1.37 · 10−23cm5Z2

(
T

K

)− 1
2
(
λ

cm

)3

gff(ν,T ) (2.23)

Now the temperature derivative of both terms is needed. Neglecting the temperature de-
pendencies of the population number and radiation field, only the αff coefficient remains in
the heating term. Its derivative can be calculated straight forward:

∂

∂T
αff,j(ν,T ) = − 1

2T
αff,j(ν,T ) +

4e6
0Z

2

3ch

√
2π

3kme

∂gff(ν,T )

∂T

1

ν3
√
T

(2.24)

For the Gaunt factor gff there is no analytic formula, but only tables depending on frequency
ν and temperature T . However, this allows us to calculate gff(T ) as well as gff(T +δt) in order
to approximate the derivative of gff by a difference quotient. With all these terms given, the
derivatives for the free-free heating and cooling terms can be obtained:

∂

∂T
QH

ff = 4πne
∑
j

Nj

∞∫
0

∂αff,j
∂T

Jνdν (2.25)

∂

∂T
QC

ff = 4πne
∑
j

Nj

∞∫
0

(
∂αff,j
∂T

+
hν

kT 2
αff,j

)
·
(
Jν +

2hν3

c2

)
e−

hν
kT dν (2.26)

The longer expression for the derivative of the cooling term (2.26) follows from the exponential
factor in Eq. (2.21).

Bound-free transitions

The thermal balance of electrons is not affected by bound-bound transitions – in contrast to
the radiative equilibrium – but by bound-free (BF) transitions where an electron is released
or captured. Here ionizations lead to free electrons and therefore contribute excess kinetic
energy to the heating. The resulting gain is

QH
bf = 4π

∑
Kon=(l,u)

Nl

∞∫
νlu

σlu(ν)Jν

(
1− νlu

ν

)
dν, (2.27)

with l denoting the lower (bound) level,u the upper level and νlu the ionization edge frequency.
The term

(
1− νlu

ν

)
accounts for the subtraction of the energy fraction that is transferred to
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2.6 The temperature stratification

the atoms, ensuring that only the energy transferred into electrons is covered here. In a similar
way as for the free-free case, the corresponding term for cooling by recombination is

QC
bf = 4π

∑
Kon=(l,u)

Nu
N∗l
N∗u

∞∫
νlu

σlu(ν)

(
Jν +

2hν3

c2

)
e−

hν
kT

(
1− νlu

ν

)
dν. (2.28)

Population numbers marked with an asterisk, e.g. N∗l , refer to the LTE-population number
of the corresponding level. Neglecting the temperature dependence of the non-LTE popula-
tions numbers N and the radiation field Jν , the temperature derivative of the heating term
is zero. For the cooling term, there is an implicit Saha-Boltzmann factor in N∗l /N

∗
u and an

explicit exponential factor that has to be taken into account:

∂

∂T
QH

bf = 0 (2.29)

∂

∂T
QC

bf =−
(

3

2T
+
hνlu
kT 2

)
QC

bf (2.30)

+ 4π
h

kT 2

∑
Kon=(l,u)

Nu
N∗l
N∗u

∞∫
νlu

σlu(ν)

(
Jν +

2hν3

c2

)
e−

hν
kT

(
1− νlu

ν

)
ν dν

Collisions

Energy can also be transferred between atoms and electrons without involving the radiation
field, namely by collisions. The heating component here consists of collisional recombinations
and de-excitations

QH
c = ne

∑
l,u

Nu
N∗l
N∗u

Ωlu(T ) hνlu, (2.31)

while the cooling terms consists of ionization and excitation via collisions

QC
c = ne

∑
l,u

Nl Ωlu(T ) hνlu. (2.32)

Ωlu is the so-called collision strength, its product with the electron density gives the collisional
rates Clu = neΩlu which enter the rate coefficient matrix for the statistical equations. With
the help of the LTE populations numbers, one can use the relation N∗l Ωlu = N∗u Ωul. Note that
the ratio between the LTE population numbers can be expressed by the (Saha-)Boltzmann
equation and therefore introduces a temperature dependence. The temperature dependency
of Ωlu itself is not trivial as different formulae are used for each element.
In the PoWR code, the double sum over all upper and lower levels is replaced by more

convenient loops. As collisions come in two different flavors, namely from line transitions
(collisional excitation and deexcitation) and bound-free transitions (collisional ionization and
recombination), the collisional rates are calculated differently. For the line transitions, Ωlu

is calculated internally, while it is Ωul for the bound-free transitions, so this has to be taken
into account for the derivatives later on. This is the only part where line transitions affect the
thermal balance. Additional care has to be taken for iron superlevels as it can happen that
there are no radiative transitions between two levels which means that such transitions are
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Chapter 2 The PoWR expanding stellar atmosphere code

not covered in a standard loop using the radiative transition list (IND index). As there can
still be transitions via collisions, these contributions have to be added afterwards. However,
their derivatives are not different in type and hence all equations are the same as for the other
line transitions. We thus rewrite equations (2.31) and (2.32) for the line transitions in the
following way:

QH
c,ind = ne

∑
l,u

Nu
N∗l
N∗u

Ωlu(T ) hνlu (2.33)

= ne
∑
l,u

NuΩul(T ) hνlu (2.34)

=
∑
l,u

NuCul(T ) hνlu (2.35)

QC
c,ind =

∑
l,u

Nl
N∗u
N∗l

Cul(T ) hνlu (2.36)

This form reflects that for line transitions Cul is calculated as Cul = neΩul internally while
Clu is obtained by multiplication with the LTE population number ratio using the relation
Clu = ne

N∗l
N∗u

Ωul. The temperature derivatives of the Qc,ind-terms can then be obtained by
using an analytic derivative for the Boltzmann factor originating from the LTE population
number ratio while the derivative of Cul can be calculated numerically. Once again neglecting
any temperature dependency of the non-LTE population number, the temperature derivatives
are

∂

∂T
QH

c,ind =
∑
l,u

Nu
∂Cul
∂T

hνlu (2.37)

∂

∂T
QC

c,ind =
∑
l,u

Nl
N∗u
N∗l

(
∂Cul
∂T

+
hνlu
kT 2

Cul

)
hνlu. (2.38)

The collisional rates for the ionizations are calculated just the other way round. Here,
Clu = neΩlu is calculated directly via Eq. (6.39) in Jefferies (1968) while Cul is obtained via
scaling with the corresponding Saha-Boltzmann factor. Hence, the equations are now written

QH
c,kon =

∑
l,u

Nu
N∗l
N∗u

Clu(T ) hνlu (2.39)

QC
c,kon =

∑
l,u

Nl Clu(T ) hνlu (2.40)

The corresponding temperature derivatives are:

∂

∂T
QH

c,kon =
∑
l,u

Nu
N∗l
N∗u

[
∂Clu
∂T

−
(

3

2T
+
hνlu
kT 2

)
Clu

]
hνlu (2.41)

∂

∂T
QC

c,kon =
∑
l,u

Nl
∂Clu
∂T

hνlu (2.42)

Note that there is a Saha-Boltzmann factor for the bound-free transitions instead of the pure
Boltzmann factor as it was for the line transitions. Furthermore it might seem strange at first
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2.7 Conservation of optical depth

that ionizations enter in the heating term for bound-free transitions, while they appear in the
cooling term for collisions, but one has to keep in mind that the latter ionizations are caused
by another electron, so there is a net loss of electron energy in contrast to the bound-free
transitions, where the ionization energy is provided by the radiation field.

2.6.3 Connection between radiative equilibrium and thermal balance

The two equations, radiative equilibrium and thermal balance, are in fact mathematically
equivalent. The previously defined QH and QC reflect the energy gains and losses for the free
electrons. These values could also be obtained by the sum of the the radiative energy and the
product of the ionization energies and the changes in the population numbers. Hence we can
write

dQ

dt
= 4π

∞∫
0

κν (Sν − Jν) dν

︸ ︷︷ ︸
=0 in radiative equilibrium

+
∑
i

hνi
dNi

dt︸ ︷︷ ︸
=0 in statistical equilibrium

(2.43)

(see also Hillier & Miller, 1998). The second term on the right hand side vanishes in statistical
equilibrium, as the population numbers Ni do not change then. What remains is the first
term which exactly vanishes in radiative equilibrium. Therefore in a situation with statistical
and radiative equilibrium, the left hand side should be zero, but this is what we already have
described as thermal balance. This illustrates that in statistical equilibrium, both correction
methods should in theory lead to the same temperature structure. Numerically this is usually
not the case, as both methods have different strengths and weaknesses which were previously
mentioned. The proper method therefore has to be chosen depending on the specific model
situation. The effective temperature or the departure from LTE in a certain part of the
atmosphere can have a huge effect on how successful one or the other method exactly is.

2.7 Conservation of optical depth

An important scale for a stellar atmosphere is the optical depth τ , i.e. the inward integrated
opacity. In a non-gray stellar atmosphere, the opacity κ is frequency-dependent and so would
be the simple definition of the optical depth. In order to have a frequency-independent scale
one has to find a proper average over the frequency. The “flux-weighted mean” definition of
the so-called Rosseland (mean) opacity

κRoss(r) :=

∞∫
0

∂Bν
∂T

dν

∞∫
0

1

κ(ν,r)

∂Bν
∂T

dν

(2.44)

with the resulting Rosseland optical depth

τRoss(r) :=

r∫
Rmax

κRoss(r
′)dr′. (2.45)
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best describes flux conservation and is therefore the right choice here. Depending on which
opacities κRoss are used in the integral, the τRoss-scale can have different absolute values. In
order to be precise and known which values should be compared with what, there are two
definitions in PoWR, namely

• a Rosseland optical depth τRoss including all line and continuum opacities,

• a Rosseland optical depth τRoss,cont including all continuum opacities only.

To sufficiently cover the photosphere in a stellar atmosphere model, the optical depth at the
inner boundary has to be large enough. In PoWR we use τRoss,cont for this purpose and define
τmax = τRoss,cont(R∗). This value has to be specified at the start of a model and implicitly
defines an inner boundary value for the resulting velocity and density stratification. However,
at the start of a model the optical depth can only be approximated as the converged values
for population numbers and the radiative acceleration are not yet known. Therefore the final
value of τ at R∗ in the converged model can differ from the start approximation. As long as
τmax is much larger than the region where the spectrum is formed, this is not really a problem
for deducing the stellar parameters, but values such as T∗ and R∗ are not good reference
values when comparing models as they might not refer to the same radius in each model§.
Updating the inner velocity field, such that τmax is guaranteed at R∗ removes this problem.
Furthermore, at large optical depths, the electron temperature T is coupled to τ . Conserving
τ at the inner boundary therefore also avoids temperature corrections which would be caused
by a changing optical depth at the inner boundary.
The Rosseland continuum optical depth is now ensured by a new feature referred to as

the “τmax-iteration”. As soon as the current Rosseland continuum optical depth τRoss,cont(R∗)
differs from the specified τmax by more than ετ , the inner part of the velocity field is adjusted
to re-ensure that τRoss,cont(R∗) matches τmax. The detailed implementation of this concept in
the PoWR code is outlined in Sect. A.3 of the appendix.

2.8 Radiative transfer in the comoving frame

To properly account of the expanding atmosphere situation, the (spherical) radiative transfer
equation can be solved in a comoving frame (CMF). Using the CMF has the enormous ad-
vantage that the opacities κν , emissivities ην , and the profile functions φ(ν) remain isotropic.
Furthermore the calculation of the radiation field can be restricted to frequency ranges cov-
ering the local scattering zones, thus saving a lot of computing time. A limitation of this
method is its restriction to monotonic velocity fields, which will be a significant constraint
when obtaining velocity fields from the hydrodynamic equation.

2.8.1 The general concept

As the observed velocities are still significantly below the speed of the light, the non-relativistic
limit is sufficient and the CMF frequencies νcmf can be expressed by

νcmf = ν

(
1 + µ

v(r)

c

)
. (2.46)

§For observational purposes, values like T (τ = 2
3
) can be used, which can always be calculated from a

converged model. However, τ = 2
3
is often not located in the quasi-hydrostatic layers, which is a caveat

when comparing atmosphere models with structure models
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2.8 Radiative transfer in the comoving frame

Introducing a dimensionless frequency

x :=
vdop
c

ln

(
ν

νref

)
(2.47)

with a reference frequency νref and the Doppler velocity vdop describing the line broaden-
ing considered in the CMF radiative transfer calculation. With this definition the radiative
transfer equation can be written in the form

µ
∂Iν
∂r

+
1− µ2

r

∂Iν
∂µ
− P (r,µ)

∂Iν
∂x

= ην − κνIν (2.48)

with
P (r,µ) := µ2 1

vdop

dv

dr
+
(
1− µ2

) 1

vdop

v(r)

r
(2.49)

All line and continuum opacities and emissivities are added up to enter the transfer equation.
The actual calculation of the radiation field is performed in two main steps: In a first step,
angle-dependent intensities I+

ν and I−ν are calculated via the so-called “ray-by-ray“ integration
using short characteristics. This method is described in detail in Koesterke et al. (2002). It
includes the calculation of the moments

[Jν ;Hν ;Kν ;Nν ] :=
1

2

1∫
−1

Iν
[
1;µ;µ2;µ3

]
dµ (2.50)

using the calculated intensities, such that

[Jν,ray;Kν,ray] :=
1

2

1∫
0

(
I+
ν (µ) + I−ν (−µ)

) [
1;µ2

]
dµ (2.51)

[Hν,ray;Nν,ray] :=
1

2

1∫
0

(
I+
ν (µ)− I−ν (−µ)

) [
µ;µ3

]
dµ. (2.52)

Moments calculated via the “ray-by-ray“ method are only used to obtain the Eddington factors

fν =
Kν,ray

Jν,ray
and gν =

Nν,ray

Hν,ray + εJν,ray
. (2.53)

The moments (2.50) are then calculated again by solving the moment equations where all
higher moments Kν and Nν can be expressed by products of a lower one and an Eddington
factor. The solution of the zeroth moment equation is performed by a second-order Feautrier
method described in Mihalas (1978), where for each frequency point an equation system of
the form 

B1 C1

A2 B2 C2

A3 B3 C3

. . .
And-1 Bnd-1 Cnd-1

And Bnd


•



Jν,1
Jν,2
Jν,3
...

Jν,nd-1
Jν,nd


=



W1

W2

W3
...

Wnd-1
Wnd


(2.54)
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Chapter 2 The PoWR expanding stellar atmosphere code

is solved by numerically inversion of the tridiagonal matrix in Eq. (2.54), to obtain the angle-
integrated intensity Jν at all ND depth points. The coefficients Al, Bl, Cl andWl are complex
terms arising from the discretization of the zeroth moment equation

∂H̃ν

∂r
−
(

dV

dr
− V

r

)
∂

∂x
(fνJν)− V

r

∂J̃ν
∂x

= η̃trueν − κtrueν J̃ν (2.55)

with V (r) = v(r)/vdop. The quantities marked with a tilde are multiplied with r2, e.g.
J̃ν = r2Jν . Due to the frequency derivatives in Eq. (2.55), the equation system (2.54) is
coupled in both, space and frequency. Fortunately, the frequency coupling of the system can
be written in such a way that all required quantities only depend on the current and the
last frequency. (This is also the case in the “ray-by-ray“ method.) With this approach it
is possible to calculate the whole radiation field via a frequency loop running from the blue
to the red end where the upper calculation is performed at each frequency point (if needed).
Immediately after solving the system (2.54), Hν is calculated afterwards from the first moment
equation. The arrangement furthermore allows that also the total frequency integration can
be performed in the same overall frequency loop.
As the Eddington factors tend to stay constant as long as the overall changes are relatively

small, they do not need to be calculated during every iteration. Instead computing time
can be saved by storing the obtained Eddington factors and performing only the solution of
the moment equations, i.e. skipping the ray-by-ray solution. The PoWR implementation is
outlined in Sect. A.4 of the appendix.

2.8.2 Boundary conditions

For the inner and outer boundary, additional calculations need to be done. For the intensity
I+
ν (µ) at the inner boundary, the diffusion approximation is used, i.e.

I+
ν (µ) = Bν(Tnd) +

µ

κν,nd

∂Bν
∂r

∣∣∣∣
r=R∗

. (2.56)

The resulting flux at the inner boundary Hν,nd is not necessarily identical to the ideal diffusion
flux

Hν,diff = − 1

3κν

∂Bν
∂r

(2.57)

that is obtained by integrating Eq. (2.56) as the incoming radiation I− is not known from
scratch. Only if I− would also have the form (2.56), one would simply obtain Hν,nd = Hν,diff.
Therefore using Hν,diff as input for the moment equations induces an error at the inner bound-
ary. For hot star atmospheres this error is usually small and the spectrum is usually not
affected at all. However, this error can cause problems when solving the hydrodynamic equa-
tions and updating the innermost region throughout the iteration. A more precise treatment
can be obtained by introducing a special quantity

Hν,spec :=
1

2

1∫
0

(
I+
ν + I−ν

)
µdµ (2.58)

Note thatHν,spec has a an intensity-like integral core, but a flux-like weight and thus a very spe-
cial definition. However, this quantity can be easily calculated during the ray-by-ray method
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2.9 Superlevel approach for iron group elements

and is always positive to the sum of the two intensities, allowing the definition of a special
Eddington factor

hν,in :=
Hν,spec

Jν,ray,1
. (2.59)

Similar to the other Eddington factors, hν,in can now be used to remove remove I−ν from the
moment equations at the inner boundary. The sum of Hν,spec and the ordinary flux definition
(2.52) yields

Hν,nd +Hν,spec =

1∫
0

I+
ν µdµ (2.60)

Hν,nd + hν,inJν,nd =
1

2
Bν −

1

3κν

∂Bν
∂r

(2.61)

⇒ Hν,nd =Hν,diff +
1

2
Bν − hν,inJν,nd (2.62)

The final Eq. (2.62) demonstrates that that flux at the inner boundary is basically still the
diffusion term Hν,diff, but with two additional terms correcting for deviations of Jν,nd from the
Planck function. In the ideal case of Jν,nd = Bν , one obtains hν,in = 0.5 and the correction
terms vanish.
The outer boundary is much more easy if one assumes I−ν = 0. In this case Hν,spec is

identical to the true flux Hν,1 and the special Eddington factor can simply be calculated by

hν,out =
Hν,ray,1

Jν,ray,1
. (2.63)

In the moment equations, the boundary term can then be represented by the simple form

Hν,1 = hν,outJν,1. (2.64)

2.9 Superlevel approach for iron group elements

Iron and other iron group elements are treated in form of one generic element, internally
labeled as G. This is due to the fact these elements have thousands of levels and millions
of lines which cannot be treated explicitly in a stellar atmosphere code. Nevertheless the
elements are extremely important as their huge number of lines have a significant blanketing
effect and thus significantly change the situation in a stellar atmosphere. For PoWR models
this has been demonstrated in Gräfener et al. (2002). Furthermore, the huge number of lines
provides a major opacity source, even though the combined abundance of these elements is
only on the order of XG ≈ 0.1%, even for solar metallicity. The significant opacity in turns
means that iron group elements provide a major contribution to the wind driving. This can
even be quantified for calculated PoWR models and some results be shown and discussed in
Chapter 4.
This section introduces the basic concepts of the superlevel approach and shows the basics of

their their implementation in the PoWR code. For ionization stages below Gx, it contains all
elements with atomic numbers from 21 to 28, i.e. scandium, titanium, vanadium, chromium,
manganese, iron, cobalt, and nickel. The required atomic data is taken from the Kurucz
database. For higher ions, where no Kurucz data is available, only iron is used, taking all the
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Figure 2.2 – Superlevel assignment for Fexiii: The sum of the statistical weights of all considered
levels is shown in bins of 500 kayser. The yellow lines refer to the contributions of levels with an
even parity while the blue color denotes those with odd parity. The red horizontal lines indicate
the sorting in a certain superlevel and the green line marks the ionization energy of the ion. The
corresponding superlevel indices are given by the red numbers on the right.

required data from TOPbase, the Opacity Project database (Cunto & Mendoza, 1992). The
relative abundances of the elements are listed in Gräfener et al. (2002).

In order to summarize levels, which will now be called sublevels here, into superlevels,
energy bands have to be defined for each ionization stage. An example for such a superlevel
grouping can be seen in Fig. All sublevels that inside each energy band are assumed to have an
occupation probability based on an LTE-description using a characteristic temperature Texc
for this ion. This temperature is called the excitation temperature and has to be given¶. This
allows the define the following quantities, where capital indices always refer to superlevels,
while lowercase indices refer to the sublevels which are added up to a superlevel:

¶In practice, a significant values for the Texc of a particular ion can be determined iteratively by calculating
a stellar atmosphere model and check at which electron temperature this ion is the leading ion.
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2.9 Superlevel approach for iron group elements

EL =

∑
i,l

El ai gl exp
(
− El
kTexc

)
∑
i,l

ai gl exp
(
− El
kTexc

) (2.65)

gi,l =ai gl exp

(
EL − El
kTexc

)
(2.66)

GL :=
∑
i,l

gi,l =
∑
i,l

ai gl exp

(
EL − El
kTexc

)
(2.67)

The term EL then denotes the energy of a superlevel, while El refers to the sublevel energy.
GL is the weight of the superlevel. It is actually the sum of the generalized sublevel weights
gi,l, which in turn contains the actual weight gl of the sublevel and the occupation probability.
Note that even though PoWR does not use occupation probabilities for normal levels, these
factors cannot be neglected for superlevels. Only in the limit of Texc →∞ this factor vanishes
and the total weight turns into a simple addition of individual weights. The factor ai describes
the relative abundance of a real element in the generic element.
The population number of a sublevel ni,l can be obtained from the corresponding superlevel

population number nL via

ni,l = nL
gi,l
GL

. (2.68)

To obtain the transition rates as well as the emissivity and opacity for the superlevels, the
particular values have to be summed. In a first step, the individual cross-sections σlu are
added up to the superlevel cross-sections σLU such that the product of the superlevel weight
and the superlevel cross-section matches the sum of the weighted individual cross-sections, i.e.

σLU :=
1

GL

∑
i,l,u

gi,lσlu. (2.69)

An example for the complex, wavelength-dependent structure of the resulting superlevel cross
sections can be seen in Fig. 2.3. Due to the exponential terms in the definition of the superlevel
weight (2.67), the equation σlugl = σulgu is not automatically fulfilled for the superlevels:

σUL =
1

GU

∑
i,l,u

gi,uσul (2.70)

=
1

GU

∑
i,l,u

aigu exp

(
EU − Eu
kTexc

)
σul (2.71)

=
GL
GU

1

GL

∑
i,l,u

ai
gl
gu
gl

exp
(
EU−Eu
kTexc

)
exp

(
EL−El
kTexc

) exp

(
EL − El
kTexc

)
σul (2.72)

=
GL
GU

1

GL

∑
i,l,u

aigl
exp

(
EU−EL
kTexc

)
exp

(
Eu−El
kTexc

) exp

(
EL − El
kTexc

)
σlu (2.73)

=
GL
GU

1

GL

∑
i,l,u

gi,l exp

[
h

kTexc
(νUL − νul)

]
σlu (2.74)
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Figure 2.3 – An excerpt of the superlevel cross section σLU for a transition of the G ix state of
the generic element representing the iron group elements.

It is precisely the exponential term with the brackets that prevents a straight-forward trans-
formation from σLU to σUL. The exponential term vanishes only in the limit of an infinite
excitation temperature Texc or if νul = νUL. The latter is approximately true if the superlevels
are small enough. However, a look at Fig. 2.2 illustrates, that for the important ionization
stages, this is not possible without losing the advantage of superlevel, i.e. a significant reduc-
tion of the total number of levels. Thus, the fact that σUL cannot be calculated from σLU as
simple as for normal levels has significant consequences and requires a special treatment for
the radiative rates, opacities and emissivities in the PoWR code.
In the current blanketing approach in PoWR, which is described in Gräfener et al. (2002),

only σLU is precalculated and stored in the iron data file, while σUL has to be calculated.
Based on the fact that only active transitions are considered in the comoving frame, i.e. those
where the current integration frequency ν is in a certain range around νUL, the Eq. (2.74) is
further approximated by replacing νul with ν. This allows to get the exponential term out
of the sum. Furthermore the excitation temperature Texc is replaced by the current electron
temperature Te, so the expression used in the code is:

σUL =
GL
GU

1

GL
exp

[
h

kTe
(νUL − ν)

]∑
i,l,u

gi,lσlu (2.75)

=
GL
GU

exp

[
h

kTe
(νUL − ν)

]
σLU (2.76)

This approach has proven to be quite successful in normal models which usually use ions
only up to Gx. In this regime, the difference between Te and Texc is usually not large in the
regions where a line is active. The usage of Te is also motivated in order to regain the LTE limit
at the inner boundary. However, this approach seems to have problems when using the higher
ions, especially if combined with stellar temperatures above ≈ 175 kK. Already below this
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2.9 Superlevel approach for iron group elements

limit the high ions produce insufficiently high transitions rates, but this could be neglected by
implementing a more sophisticated “switch-off” for levels which are not significantly populated.
For higher temperatures however, the temperature correction method is also affected and the
coupling of the electron temperature Te with η, κ, and the rates seems to produce situations
where the corrections might produce a non-converging or even diverging situation. This is one
of the reasons why WO models are hard to calculate, which will later become important when
discussing a hydrodynamically consistent WO model in Sect. 4.2.
Regardless of how accurate the terms of σUL are produced, the way of calculating the

superlevel rates as well as the line opacities and emissivities are always the same. The line
opacities of the superlevels can than be calculated by simply adding up their sublevel line
opacities:

κlu =nlσlu

(
1− nu

nl

gl
gu

)
= nlσlu − nuσul (2.77)

κLU :=
∑
l,u

κlu =
∑
i,l,u

ni,lσlu

(
1− ni,u

ni,l

gl
gu

)
(2.78)

=
nL
GL

∑
i,l,u

gi,lσlu

(
1− nU

nL

gi,u
GU

GL
gi,l

gl
gu

)
(2.79)

=
nL
GL

∑
i,l,u

gi,lσlu −
nU
GU

∑
i,l,u

gi,uσlu
gl
gu

(2.80)

=
nL
GL

∑
i,l,u

gi,lσlu −
nU
GU

∑
i,l,u

gi,uσul (2.81)

=nLσLU − nUσUL (2.82)

In a similar way the superlevel line emissivities can be calculated:

ηlu =
2hν3

lu

c2
nu

gl
gu
σlu (2.83)

ηLU =
∑
l,u

ηlu =
∑
i,l,u

2hν3
lu

c2
ni,u

gl
gu
σlu (2.84)

=
2h

c2

nU
GU

∑
i,l,u

ν3
lugi,u

gl
gu
σlu (2.85)

The last expression can be reduced further, if one assumes that νlu ≈ νLU and hence

ηLU ≈
2hν3

LU

c2

nU
GU

∑
i,l,u

gi,uσul (2.86)

=
2hν3

LU

c2
nUσUL (2.87)

The to total radiative transition rate is the sum of all subrates. Using this requirement and
inserting Eq. (2.68) leads to

nLRLU =
∑
i,l,u

ni,lRlu = nL
∑
i,l,u

gi,l
GL

Rlu (2.88)
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which immediately provides the formula how to add up the rate coefficients of the sublevels:

Rlu = 4π

∞∫
0

σlu
hν

Jνdν (2.89)

RLU =
∑
i,l,u

gi,l
GL

Rlu (2.90)

= 4π
∑
i,l,u

gi,l
GL

∞∫
0

σlu
hν

Jνdν (2.91)

= 4π

∞∫
0

Jν
hν

∑
i,l,u

gi,l
GL

σludν (2.92)

= 4π

∞∫
0

Jν
hν
σLUdν (2.93)

The same scheme can be used for slightly more complex RUL:

Rul = 4π
gl
gu

∞∫
0

σlu
hν

[
2hν3

c2
+ Jν

]
dν (2.94)

RUL =
∑
i,l,u

gi,u
GU

Rul (2.95)

= 4π
∑
i,l,u

gi,u
GU

gl
gu

∞∫
0

σlu
hν

[
2hν3

c2
+ Jν

]
dν (2.96)

= 4π

∞∫
0

1

hν

[
2hν3

c2
+ Jν

]∑
i,l,u

gi,u
GU

σuldν (2.97)

= 4π

∞∫
0

1

hν

[
2hν3

c2
+ Jν

]
σULdν (2.98)

The Eqs. (2.93) and (2.98) show that the radiative transition rates for the superlevels have the
same form as those for normal levels, except that the cross-sections σul and σlu are replaced
by their superlevel counterparts σUL and σLU , which means no additional assumptions or
approximations have to be made beside those entering the calculation of the superlevel cross
sections. However, for the normal rates the (hν)−1-term is often approximated to (hνul)

−1

and thus can be put in front of the frequency integral. This is also the case in the PoWR
code, where the “normal” radiative rates are calculated using the coarse frequency grid. For
the rates of the generic element however, the (hν)−1 is kept and the rates are calculated on
the fine frequency grid, in parallel with the CMF radiative transfer.
For a start approximation which has to be available before the first radiative transfer cal-

culation, the rates of the generic element are also calculated in the approximated form as it
is done for the other rates. This is also done during the solution of the statistical equations,
where the have to be recalculated based on updated population numbers. Here the more
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accurate rates from the CMF calculations are used, but afterwards updated by adding the
differences between the approximated rates. By using only the differences of the rates and not
their absolute value, the error should be kept small.
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Chapter 3

The concepts for hydrodynamically
consistent models

Stellar atmosphere models such as PoWR or CMFGEN use a prescribed velocity field as
outlined in Sect. 2.3. Solving the statistical equations in non-LTE consistent with the co-
moving frame radiative transfer already requires extensive numerical calculations. Fixing the
velocity and thus the density stratification by using a β-law and an approximation for the
hydrostatic part were therefore a natural choice, especially as resulting spectra are in good
agreement with observations for Wolf-Rayet stars.
However, this approach has certain limits in the usage of these models. The approximative

treatment of the hydrostatic layers is not sufficient as soon as the spectrum is at least partly
formed in those layers. Parameters deduced from the emergent spectrum of such a model will
have significant uncertainty, especially in log g. The proper treatment of the hydrostatic layers
requires a calculation that takes the actual radiative acceleration in those layers into account
(see Sect. 3.4 for details). This in turn requires the CMF radiative transfer results and thus the
velocity field needs to be updated throughout the model iterations. The consistent solution of
the hydrostatic part thereby extends the applicability of PoWR models significantly, not only
to WR stars with absorption lines, but also to the large field of O and B stars.
Nevertheless the consistent treatment of the quasi-hydrostatic layers is just an intermediate

step. Even though such models greatly increase the applicability of the PoWR models for
deducing stellar parameters, they are still not sufficient to use them as virtual laboratories
for studying the wind physics. To fully couple the wind stratification with the results from
the radiative transfer, the entire velocity field has be obtained by solving the hydrodynamic
equation. A converged model with a velocity field obtained in this way would provide a
self-consistent description throughout the stellar atmosphere, thereby allowing to test current
theories and predictions about wind driving and potentially even provide important hints
about what happens in the layers below the photosphere. If the winds of hot stars could
be sufficiently explained by radiative driving, the models would reach predictive power and
could provide wind parameters for other astrophysical fields, e.g. for stellar feedback and
evolutionary calculations.
In the following sections of this chapter, the concepts for a consistent treatment of the wind

stratification and the radiative transfer results as well as their implementation in the PoWR
code will be outlined. After introducing the basics and the simpler quasi-hydrostatic case, the
CAK concept and the first approach by Gräfener & Hamann (2005, 2008) will be described.
Afterwards, the new method developed during this work will be introduced and the differences
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to the previous approach will be outlined. Applications and limitations are discussed in the
subsequent chapter 4. In contrast to the earlier approach by Gräfener & Hamann (2005), the
solution of the hydrodynamic equation has been fully implemented in the PoWR code and the
corresponding calculation do no longer require multiple model calculations. More information
on the technical implementation can be found in the appendix.

3.1 The hydrodynamic equation for stationary wind models

Due to the simplifying assumption of spherical symmetry, the hydrodynamic equations can
be reduced to the one-dimensional form of Euler’s equation

dv

dt
+

1

ρ

dP

dr
= aout (3.1)

and the equation of continuity (2.1). The first term in (3.1) is actually the Lagrangian deriva-
tive, which translates to

d

dt
=

∂

∂t
+ v

d

dr
. (3.2)

With the assumption of stationarity, the partial derivative with respect to time can be
dropped. Equation (3.1) therefore becomes

v
dv

dr
+

1

ρ

dP

dr
= aout (3.3)

In case of a star, the outer force, or to be more precise, acceleration aout is consisting of
gravitational and radiative acceleration

aout = arad + agrav. (3.4)

The gravity term agrav = −GMr−2 = −g is directed inwards, while radiation and gas pressure
try to push material outwards. Inserting the outer accelerations in Eq. (3.3) and resorting the
equation, putting outward accelerations on the right and inward accelerations on the left side,
yields

v
dv

dr
+ g = arad −

1

ρ

dP

dr
(3.5)

amech + g = arad + apress. (3.6)

In Eq. (3.6), the definitions apress := −1
ρ

dP
dr for the gas pressure and amech = v dv

dr for the inertia
term were used. The next step is to replace the mechanical pressure P with the help of an
equation of state. In a stellar atmosphere it is sufficient to describe the gas via the ideal gas
law

P = ρ
RT
µ

(3.7)

with R = kBm
−1
H being the gas constant and µ the mean particle mass (including electrons)

in the gas. This equation can be simplified to P = ρa2 by introducing the (isothermal) sound
speed

a :=

√
RT
µ
. (3.8)
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This velocity is depth-dependent, mainly due to the non-constant temperature stratification
T (r), but also µ(r) can change throughout a stellar atmosphere. It is often referred to as the
isothermal sound speed in order to distinguish it from the adiabatic sound speed, which is
defined as

aad :=

√
γ
RT
µ

(3.9)

and thus is larger than a by a factor of √γ, i.e. the square root of the adiabatic index.
The definition (3.8) should not be confused with the definition of the thermal speed

vth :=

√
2
kBT

mion
(3.10)

which is specifically for each ion∗. The mean thermal velocity uses mion = µmH and hence is

v̄th :=

√
2
RT
µ

=
√

2a. (3.11)

The sound speed a enters the hydrodynamic equation, while the thermal speed vth is important
for thermal line broadening.
In addition to the gas pressure, turbulent pressure contributes to the total mechanical

pressure P . With a turbulence velocity vturb, P can be expressed in the form

P = ρ
(
a2 + v2

turb
)
. (3.12)

In the literature (e.g. Hubeny et al., 1991), the turbulence pressure is also written as Pturb =
1
2ρv

2
mic with vmic describing the microturbulence. These expressions are equivalent and the

connection between the two velocities is vmic =
√

2 ·vturb In the PoWR code, the velocity vturb
is currently a free, depth-independent input parameter reflecting a possible microturbulence.
Spectral analyses with several codes (see, e.g. Massey et al., 2013) have demonstrated that
microturbulent velocities of the order of 10 to 20 km/s help to reproduce the observed spectral
lines in certain parameter regimes for O and B stars. It is an ongoing debate whether such
velocities represent a real turbulent motion in the photosphere, as originally suggested for hot
stars by Struve & Elvey (1934) and prominently reintroduced by Hubeny et al. (1991), or if
they are rather a “fudge factor” for other, not considered physics in the models.
As the PoWR code currently allows only constant values for vturb, no additional derivatives

occur for vturb > 0 and the inclusion of turbulence acts just as a shift of the sound speed in
the equations. In order to keep the formulae simple, vturb = 0 will be applied throughout the
following equations, unless otherwise notified. The full form of the equations can be recovered
by replacing a2 with a2 + v2

turb.
With the given equation of state for P , the pressure term can now be rewritten:

apress := −1

ρ

dP

dr
(3.13)

= −1

ρ

d

dr

(
ρa2
)

(3.14)

= −1

ρ
a2 dρ

dr
− da2

dr
(3.15)

∗In practice, the individual electron masses are often neglected and the same thermal speed is instead used
for all ions of the same element.
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The density derivative in the first term can be replaced further by using the equation of
continuity (2.1):

−1

ρ
a2 dρ

dr
= −4πr2v

Ṁ
a2 Ṁ

4π

d

dr

(
1

r2v

)
(3.16)

= r2a2v

(
1

r2v2

dv

dr
+

2

r3v

)
(3.17)

= v
a2

v2

dv

dr
+

2a2

r
(3.18)

The full pressure term is therefore:

apress = v
a2

v2

dv

dr
+

2a2

r
− da2

dr
(3.19)

Plugging this into Euler’s equation (3.1) and sorting the terms such that the two terms with
the velocity gradient are on the left side, one obtains the form (3.21) which is typically given
in the literature about stellar atmospheres:

v
dv

dr
− va

2

v2

dv

dr
− 2a2

r
+

da2

dr
= arad − g (3.20)

v

(
1− a2

v2

)
dv

dr
= arad − g +

2a2

r
− da2

dr
(3.21)

With the definition of Γrad as the ratio between radiative acceleration and gravity

Γrad(r) :=
arad(r)

g(r)
(3.22)

this equation can be written as

v

(
1− a2

v2

)
dv

dr
= g (Γrad − 1) +

2a2

r
− da2

dr
. (3.23)

3.2 Global energy budget and work ratio

The acceleration balance for stellar atmosphere models is described by Eq. (3.6). Multiplying
this equation with the mass-loss rate Ṁ and integrating from the inner boundary R∗ to infinity,
one obtains an equation that now balances the work which is performed by the gas pressure
and the radiation field (right-hand side) with what is called the “mechanical wind luminosity”
LWind:

Ṁ

∞∫
R∗

(amech + g) dr = Ṁ

∞∫
R∗

(arad + apress) dr (3.24)

Ṁ

∞∫
R∗

(
v

dv

dr
+
GM∗
r2

)
dr = Ṁ

∞∫
R∗

(
arad −

1

ρ

dP

dr

)
dr (3.25)

Ṁ

1

2

(
v2
∞ − v2

min
)︸ ︷︷ ︸

≈ v2∞

+
GM∗
R∗

 = Ṁ

∞∫
R∗

(
arad −

1

ρ

dP

dr

)
dr (3.26)

LWind = WWind (3.27)
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3.3 Wind momentum efficiency

As the evaluation of the integral on the left hand side shows, LWind can be calculated directly
from the wind parameters. This “mechanical wind luminosity” describes also the difference
between the luminosity L∗ at R∗ and the observed luminosity L∞, i.e.

L∞ = L∗ − LWind. (3.28)

For a wind that is purely driven by radiation and gas pressure, Eq. (3.27) must be fulfilled.
However, since the wind parameters in a typical PoWR model are prescribed, this is not
necessarily the case. In fact, models that are calculated in order to reproduce observations
usually have LWind > WWind, i.e. they do not provide the energy needed to drive the wind
that they describe. In order to quantify this difference in a simple way, one can define the
work ratio

Q :=
WWind

LWind
. (3.29)

Due to Eq. (3.27), a hydrodynamically consistent model must have Q = 1. Typical WR
models, such, as those used in in Sander et al. (2012) or Hainich et al. (2014), usually have
values between 0.2 and 0.5. This shortfall is attributed to the incompleteness of the opacities
which are included in the model. Calculating models with Q ≈ 1 is an important step in order
to have a good start for the hydrodynamically consistent models which will be discussed in
the next chapter. However, it is important to keep in mind that Q = 1 only ensures that
the energy budget is consistent on a global scale. As it stems from an integrated form of the
hydrodynamic equation, it does not give any information about a hydrodynamically consistent
stratification.

3.3 Wind momentum efficiency

Aside from the Q-value defined above, another basic quantity can be calculated from basic
stellar and wind parameters only, requiring no knowledge about the particular atmosphere
stratification. The rate of momentum carried away in the wind can be written for r � R∗ as

pWind := Ṁv∞ (3.30)

while the radiative momentum rate is given by

prad :=
L∗
c
. (3.31)

The ratio of these two momentum rates defines the so-called wind momentum efficiency

η :=
pWind

prad
=
Ṁv∞c

L∗
, (3.32)

sometimes also labeled ηmom in the literature in order to distinguish it from other efficiency
parameters such as ηkin and ηpot which are obtained from the ratio of the wind luminosity
Lwind and the radiative luminosity L∗:

LWind

L∗
≈ Ṁv2

∞
2L∗

+
ṀGM∗
R∗L∗

≡ ηkin + ηpot (3.33)

Unless indicated otherwise, the notation η ≡ ηmom will be used throughout this work. It
should be noted that ηmom � ηkin and ηmom � ηpot for both, WR and OB stars, indicating
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Chapter 3 The concepts for hydrodynamically consistent models

that the momentum transfer from photons to the gas is much more important than energy
transfer for driving the winds of these stars. However, the particular values for η differ greatly
between OB and WR stars. For most WR stars, η is larger than unity while OB stars have
values below or at most on the order of unity. This has further implications which are discussed
in Sect. 3.6.

3.4 The solution of the hydrostatic equation

Before discussing the full hydrodynamic equation and its solution, it is very instructive to
take a look at the limit where the inertia term amech vanishes. In this case, the hydrodynamic
equation (3.3) simplifies to the hydrostatic equation

1

ρ

dP

dr
= aout. (3.34)

Including the proper terms for outer forces (3.4), yields the well known form of the equation

dP

dr
= −ρ(r) (g(r)− arad(r)) (3.35)

= −ρ(r)g(r) [1− Γrad(r)] . (3.36)

In a hydrostatic situation there is by definition no outflow and thus no velocity appears
in this equation. However, the hydrostatic equation is still a very useful approximation for
the subsonic layers, as below the sonic point (a = v) the inertia term quickly drops and
becomes negligible further inwards, leading to a quasi-hydrostatic situation. Nevertheless, in
this regime the equation of continuity (2.1) must still be satisfied. Thus all the calculations
that lead to Eq. (3.23) can be done for the quasi-hydrostatic case as well, leading to:

a2

v

dv

dr
= g(r) (1− Γrad(r))− 2a2

r
+

da2

dr
(3.37)

dv

dr
=

v

a2

[
g(r) (1− Γrad(r))− 2a2

r
+

da2

dr

]
(3.38)

Note that Eq. (3.37) corresponds to (3.23) without the inertia term. Nevertheless this small
difference removes the non-linearity, making Eq. (3.38) a simple linear differential equation.
With a given velocity value, e.g. the inner boundary value vmin, this equation can be solved by
direct integration. However, it is numerically advantageous to do first a certain transformation
based on the assumption that the “true” solution is not so far away from a barometric formula.
We therefore revert the manipulations (3.13)-(3.15) and write:

a2

v

dv

dr
= g(r) · [1− Γrad(r)]− 2a2

r
+

da2

dr
(3.39)

−1

ρ

dP

dr
= g(r) · [1− Γrad(r)] (3.40)

dP

dr
= −ρ g(r) · [1− Γrad(r)] ≡ −ρ geff(r) (3.41)

dP

dr
= −P (r)

a2
geff(r) = −P (r)

H(r)
(3.42)
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3.5 The effective gravity

In contrast to the barometric formula with a constant scale height H0 = a2(T∗)/geff, a
depth-dependent H(r) = a2(r)/geff(r) is used here. H0 and H(r) can then be used for the
quasi-barometric ansatz

P (r) = P0 exp

(
−r −R∗

H0
+ b(r)

)
(3.43)

with an arbitrary function b(r) and the yet to be determined normalization constant P0.
Plugging the derivative of Eq. (3.43)

dP

dr
= P0 exp

(
−r −R∗

H0
+ b(r)

)
·
(
− 1

H0
+

db

dr

)
(3.44)

= − P

H0
+ P

db

dr
(3.45)

into (3.42) yields:

− P

H(r)
= − P

H0
+ P

db

dr
(3.46)

db

dr
=

1

H0
− 1

H(r)
(3.47)

With the boundary value b(R∗) = 0, Eq. (3.47) is then numerically integrated instead of (3.37).
Afterwards, the velocity field can be obtained via

v(r) ∝ 1

ρr2
=

a2

P (r)r2
(3.48)

v(r) ∝ a2

r2
exp

(
r −R∗
H0

− b(r)
)

(3.49)

(3.50)

The required normalization constant is provided by the inner boundary value vmin, thus leading
to the final form of the hydrostatic solution for the velocity field:

v(r) = vmin
a2(r)

a2(R∗)

R2
∗
r2

exp

(
r −R∗
H0

− b(r)
)

(3.51)

The complexity of arad is hidden in b(r) here, which containsH(r) and therefore geff. For a self-
consistent solution, the full Γrad, i.e. the full radiative acceleration, needs to be applied here.
The choice of the right Γ is crucial for the inner density stratification of a stellar atmosphere
model. Tests with the powr code have shown significant differences in the obtained spectra
for O and B stars if Γe, accounting only for Thomson scattering, is used here instead of Γrad
(see Sander et al., 2015). Additional information on the numerical implementation of the
hydrostatic solution can be found in Sect. A.5 of the appendix.

3.5 The effective gravity

It is helpful to introduce the so-called effective gravity geff to simplify the notation of the
hydrostatic equation. While this term can also have different meanings in the literature, it
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Chapter 3 The concepts for hydrodynamically consistent models

will be used here for the gravity that has been reduced by the radiative acceleration arad
throughout this work. As already implicitly written in Eq. (3.41), geff is therefore defined as

geff(r) := g(r) [1− Γrad(r)] . (3.52)

Note that the full radiative acceleration enters here. Using only a certain fraction instead of
the full acceleration significantly affects the resulting stratification and might lead to wrong
estimations of the stellar mass. This is discussed in detail in Sander et al. (2015).
The geff(r) in Eq. (3.52) is depth-dependent due to g(r) and Γrad(r). However, sometimes

there is a certain need for a “reference value” which can be used for comparisons, especially for
Γrad(r). One could take the value at the inner boundary R∗, but as this point does not affect
the spectrum any more, this value is not really representative. The next candidate would
therefore be the radius corresponding to τRoss ≈ 2/3 in the photosphere where the emergent
spectrum is mainly formed. However, this point might already be located in the wind for
certain stellar atmosphere models. Instead of using a fixed point it is therefore helpful to
define a weighted mean of Γrad via

Γrad :=

τsonic∫
τmax

Γrad(τRoss) e
−τRoss dτRoss. (3.53)

The upper limit τsonic of the integral in Eq. (3.53) denotes the optical depth of the sonic point.
To ensure a meaningful representation of the optically thick regime, values below 0.1 are not
allowed, even in the rare cases where the actual sonic point would be in such a regime, so
the upper limit of the integral in Eq. (3.53) is in fact the maximum of 0.1 and τsonic. The
calculated value of Γrad is used to relate log geff and log g via

log geff = log g + log
(
1− Γrad

)
. (3.54)

This relation can then be used for any proper reference radius where g is calculated. Typically
these are R∗ or R(τRoss = 2

3).

3.6 The CAK solution

Already for the hydrostatic situation, but even more for the full hydrodynamic Eq. (3.21), it
is crucial to know the radiative acceleration

arad(r) =
1

ρ(r)

4π

c

∞∫
0

κν(ν,r)Hν(ν,r)dν. (3.55)

Its calculation for an expanding atmosphere requires either major simplifications (which will be
discussed in this section) or a time-consuming calculation in the co-moving frame as it is done
in the PoWR code. As the latter is computationally expensive even with today’s hardware,
the historical breakthroughs in the field were achieved by simplifying the calculations. The
fundamental simplifications typically applied are compiled in the powerful formalism from
Castor, Abbott, & Klein (1975, hereafter CAK) that replaced the evaluation of the integral
in Eq. (3.55) by a parameterized analytical expression. The basic steps of their concept will
be discussed in this section.
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3.6 The CAK solution

The radiative acceleration arad can be separated into the continuum and line contribution.
Typically the continuum contribution is defined such that it also includes the Thomson scat-
tering. Whenever these should be separated, the rest will be referred to as the true continuum.
Hence one can write:

arad = alines + acont = alines + athom + atrue cont (3.56)

Using the Thomson opacity κe, the electron scattering term can be written as

athom =
κeF

ρc
= qion

σeF

mHc
. (3.57)

F = 4πH denotes the astrophysical flux, qion the ionization parameter, i.e. the number of free
electrons per unit mass, and σe is the frequency-independent Thomson cross-section. Instead
of specifying the absolute value of athom, it is usually more interesting to define the fraction
with respect to gravity. This ratio is commonly known as the Eddington Gamma

Γe =
athom
g

=
σe

4πcmHG
qion

L

M∗
. (3.58)

However, one has to be careful with the term “Eddington Gamma”, as it is also applied to
Γrad, i.e. when the full radiative acceleration is used for calculating the ratio. To avoid any
confusion, Γe and Γrad will always be denoted explicitly throughout this work.
With the previously discussed splitting of the radiative acceleration and the help of the

Thomson Eddington Gamma Γe (3.58) we can rewrite equation (3.21) as

v

(
1− a2

v2

)
dv

dr
= −g (1− Γe) +

2a2

r
− da2

dr
+ atrue cont + alines . (3.59)

In the CAK approach by Castor et al. (1975) the true continuum term is neglected (atrue cont ≈
0) which is actually only a valid approximation for the wind part, but not for the photosphere.
The line acceleration is formally written as a multiple M of the Thomson term, thus intro-
ducing the so-called force multiplier

M :=
alines
athom

=
alines
Γeg

=
Γlines

Γe
. (3.60)

Confusingly, the term alines is sometimes called arad in the literature, as the true continuum
is neglected anyhow and the electron scattering is expressed via Γe. To avoid any misun-
derstandings, this work will stick with alines for consistency. Correspondingly the previously
defined Γrad is connected to Γlines via

Γrad = Γlines + Γtrue cont + Γe. (3.61)

The force multiplier M represents the effect of all lines and is parameterized by Castor
et al. (1975) in the form

M(t) = k t−α (3.62)

with k and α as being depth-independent. This was actually a fit to numerical calculations of
the force multiplierM versus an optical-depth like, but line-strength independent quantity

t :=
κe
κL
τL (3.63)
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with τL and κL being the optical depth and opacity resulting purely from lines. The first
attempts from Castor et al. (1975) were based on C iii multiplets and led to values of k ≈ 1

30
and α ≈ 0.7.
A central aspect of the CAK theory is the calculation of t (or τL) which is different in

the static and the expanding part of the atmosphere. In the static part, the optical depth is
defined in the conventional way (dτL = κLdr), while in the expanding situation the optical
depth is only affected by a fraction of the absorbers, namely those which are in a column
where the velocity changes by the amount of the thermal velocity vth. In this case the opacity
of a line κ(ν) can be expressed by

κ(ν) = κLδ

(
νcmf − ν0

∆ν

)
, (3.64)

i.e. the profile function becomes a delta function with νcmf as defined in Eq. (2.46) and
∆ν = ν0

c vth assuming pure thermal broadening. Calculating the radial (ν = 1) optical depth
then yields

τL =

∞∫
R∗

κ(ν(r)) dr (3.65)

= κL

∞∫
v(R∗)

δ

(
νcmf − ν0

∆ν

) ∣∣∣∣drdv

∣∣∣∣dv (3.66)

≈ κLvth
∣∣∣∣drdv

∣∣∣∣
∞∫

0

δ

(
νcmf − ν0

∆ν

)
dνcmf (3.67)

= κL
vth∣∣dv
dr

∣∣ (3.68)

The relation dνcmf = ν0
c dv = ∆ν

vth
dv helps to get from velocity to frequency space in Eq. (3.67).

The final result is called the Sobolev approximation and was originally invented by Sobolev
(1957). The calculations above for τL can be carried out in detail for all values of µ and have
been published in Castor (1970, 1974). Combining the resulting Eq. (3.68) for the expanding
case with the definition of t (Eq. 3.63) leads to the parameterization given in Castor et al.
(1975):

t =


∞∫
r
κedr if static

κe
vth
|dvdr |

if expanding
(3.69)

Roughly speaking, the static situation should usually occur for τ > 1, while the expanding
situation is expected for τ ≤ 1. In fact, Castor et al. (1975) did not use the optical depth
criterion to distinguish between the two cases†, but simply calculate both terms and take
whichever leads to a lower value for t−1. The resulting fit formula (3.62) uses the expanding
case to describe t. In order to completely separate the radius and velocity dependence, the

†The simplification based on considering only the two cases τL � 1 and τL � 1 is introduced by Abbott
(1980), where the original CAK equations are taken in a reduced form for a perturbation analysis.
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3.6 The CAK solution

opacity κe is replaced by the product of density and mass absorption coefficient κe, so that
the equation of continuity can be used:

t = κe
vth
dv
dr

(3.70)

= κeρ
vth
dv
dr

(3.71)

=
Ṁκevth

4π

(
r2v

dv

dr

)−1

(3.72)

The absolute of the gradient can be dropped if the situation is restricted to strictly monotonic
velocity fields, so that dv

dr > 0 is automatically ensured. As this is already needed for the
radiative transfer formalism used in the PoWR code, this restriction was given anyhow.
Using (3.62) and new obtained form of t, we can now obtain the CAK equation of motion:

v

(
1− a2

v2

)
dv

dr
= −GM∗

r2
(1− Γe) +

2a2

r
− da2

dr
+ kΓe

GM∗
r2

(
Ṁκevth

4π

)−α(
r2v

dv

dr

)α
(3.73)

Using the Q̄-notation introduced by Gayley (1995), one can alternatively replace

k =
1

1− α

(vth
c

)α
Q̄1−α (3.74)

and write the CAK equation of motion in the form

v

(
1− a2

v2

)
dv

dr
= −GM∗

r2
(1− Γe) +

2a2

r
− da2

dr
+
Q̄1−α

1− α
Γe
GM∗
r2

(
Ṁκec

4π

)−α(
r2v

dv

dr

)α
,

(3.75)
which removes the somewhat arbitrary occurrence of vth. Furthermore, Gayley (1995) identi-
fies Q̄ as a dimensionless line-strength parameter that is roughly constant with values on the
order of ≈ 2000, but scales with metallicity.
In the original work by Castor et al. (1975), the star itself, i.e. the static layers, is treated

as a point source and only the wind is considered to be extended. This approximation is
good far away from the star, but becomes poorer the closer it gets to the (quasi-)static lay-
ers. Therefore, a correction factor (Df ) to M(t) already suggested in the CAK paper was
introduced later on (Friend & Abbott, 1986; Pauldrach et al., 1986) that accounts for an ex-
tended stellar disk, commonly referred to as finite disk (FD) correction. Additionally, more
elaborated line-strength calculations (e.g. Kudritzki et al., 1989; Gayley, 1995) helped to gain
proper descriptions of O-star winds using the (modified) CAK theory (mCAK). Thus, after
the extensions of Abbott (1982) and Pauldrach et al. (1986) the equation (3.62) was modified
to

M(t) = k t−αn̂δDf , (3.76)

with Df correcting for the finite disk and the term in parenthesis accounting for the non-
constant ionization stage in the wind. The photoionization rate depends on the electron
density ne and the flux of the star which dilutes by the factor

W (r) :=
1

2

1−

√
1−

(
R∗
r

)2
 . (3.77)
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For an easier notation, these two are combined in the definition

n̂ :=
ne

1011 cm−3

1

W (r)
(3.78)

(see, e.g., Kudritzki, 2002). The exponent δ stems from a simple power-law approach, trying
to approximate the calculations from Abbott (1982). For hot stars of solar metallicity, δ is in
the range of 0.0 to 0.2 (Kudritzki, 2002). After the already introduced quantities α and k, this
makes δ the third force multiplier parameter which becomes important as soon as ionization
changes are not negligible. The difference between α and δ, which often appears in resulting
relations from mCAK models, e.g. for Ṁ , is typically abbreviated as α′ := α− δ. The mCAK
α-parameter will be discussed in more detail in Sect. 3.9, where it is compared to α-parameter
defined in the approach from Gräfener & Hamann (2005).

3.6.1 The supersonic (zero sound speed) approximation

The Eq. (3.73) can be solved analytically if the pressure terms (a → 0) are neglected, which
is usually a sufficient approximation for the supersonic part of the atmosphere. Introducing

the constant C = kΓeGM∗

(
Ṁκevth

4π

)−α
to summarize the quantities in the last term which

are not radial dependent, Castor et al. (1975) obtained by multiplying (3.73) with r2:

r2v
dv

dr
= −GM∗ (1− Γe) + C

(
r2v

dv

dr

)α
(3.79)

This differential equation can be transformed into an algebraic equation by certain substi-
tutions. Forcing the resulting algebraic equation to have exactly one solution, Castor et al.
(1975) obtain the equation

r2v
dv

dr
=

α

1− α
GM∗ (1− Γe) = const. (3.80)

which leads to a β-type velocity law with β = 1
2 :

v(r) = v∞

(
1− R∗

r

) 1
2

⇒ r2v
dv

dr
=

1

2
v2
∞R∗ (3.81)

Combining this result with the previous Eq. (3.80) leads to a relation between the terminal
and the escape velocity:

v∞ =

√
α

1− α
vesc with vesc :=

√
2GM∗ (1− Γe)

R∗
(3.82)

3.6.2 The CAK solution with non-vanishing sound speed

The solution for the complete CAK equation of motion including the pressure terms and the
finite disk correction

v

(
1− a2

v2

)
dv

dr
= −GM∗

r2
(1− Γe) +

2a2

r
− da2

dr
+
C

r2

(
r2v

dv

dr

)α
, (3.83)
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with the previously introduced C summarizing the various constants from Eq. (3.73), can only
be obtained numerically. Good analytical approximations have been made by Kudritzki et al.
(1989). The decisive ingredient in Eq. (3.83) is the last term on the right-hand side which is
proportional to the velocity gradient to the power α. The left-hand side of Eq. (3.83) becomes
zero at v = a, i.e. the sonic point. In the case of C ≡ 0, this point would also be the critical
point, because if the right-hand side does not vanish the velocity gradient would go to infinity.
With C 6= 0 there is also a critical point, but this point is not identical (but further out,
though often close to) the sonic point.
A thing that is so far “hidden” in the CAK formalism is its restriction to stars which are

below the so-called single scattering limit. This is a result of how the formalism treats the
absorption of the radiative momentum. The power law approach for the force multiplier M
(see Eq. 3.62) assumes that the momentum is absorbed by independent lines. This means that
overlapping effects from thick lines are ignored (e.g. Owocki, 2004).
The star’s radiative momentum L/c is reduced by roughly a factor v∞/c for each “typical”

thick line if overlapping effects are not taken into account. This approximation stems from a
simple textbook calculation (see, e.g., Lamers & Cassinelli, 1999), namely that the absorbed
luminosity for a line with the frequency ν0 in the wind is

Labs =

ν0(1+v∞/c)∫
ν0

Lν dν (3.84)

≈ Lν(ν0)∆ν(ν0) (3.85)

= ν0Lν(ν0)
v∞
c
. (3.86)

Due to the expanding situation, photons in a whole range of frequencies are absorbed. Close to
the star where v(r) ≈ 0, photons of the rest frequency ν0 can be absorbed, while in the outer-
most layers where v(r)→ v∞, the absorption frequency changes to ν0 · (1 + v∞/c). Assuming
that Lν is roughly constant over ∆ν(ν0), the integral in Eq. (3.84) can be approximated by
a rectangle, leading to Eq. (3.86). For a line in the UV, i.e. the flux maximum of hot stars,
Eq. (3.86) can be further simplified by ν0Lν(ν0) ≈ f · L with f = O(1). This leads to

Labs ≈ fL
v∞
c
≈ Lv∞

c
, (3.87)

i.e. the star’s luminosity is reduced by approximately v∞/c if ν0 is an optically thick line
in the range of the flux maximum and thus was called “typical” above. The same holds for
the radiative momentum L/c. The total wind momentum Ṁv∞ is now the fraction η of the
radiative momentum

Ṁv∞ = η
L

c
. (3.88)

Therefore the fraction η must be equal to the “effective” number of lines Neff times their
absorbed momentum:

η = Neff
v∞
c

(3.89)

Without line overlap, at maximum the whole radiative momentum can be consumed and
therefore Neff is limited to values lower than c/v∞, i.e. η must be lower than unity. This is
called the single scattering limit because it is derived on the assumption that each photon con-
tributes to the radiative acceleration only once. This assumption is inherit to the CAK theory
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where each line interacts with the unscattered radiation field of the stellar photosphere. Friend
& Castor (1983) already pointed out that the inclusion of multi-line effects can significantly
change the result and would be crucial for reproducing Wolf-Rayet winds. The influence for
O-stars was investigated by Abbott & Lucy (1985) and Puls (1987). Puls (1987) concluded
that for O-stars like ζ Pup the multi-line effects could be approximated by lowering the value
for k and thus avoiding costly adjustments to the calculations. Abbott & Lucy (1985) devel-
oped a Monte-Carlo approach to test the multi-line effects. This provide the basis for the later
work of Vink et al. (2000) and their predictions of mass-loss rates for O and B stars. Vink
et al. (2000) used a similar Monte-Carlo approach to account for multiple scattering in their
calculations of the radiative acceleration. The same technique was later also used to model
Galactic Wolf-Rayet stars (Vink & de Koter, 2005), using WC8 star WR135 and the WN8
star WR40 as prototypes, revealing that the main difference for the higher mass-loss rates
compared to O-stars of the the same luminosity is the significantly lower mass of WR stars,
but underpredicting the absolute empirically obtained Ṁ -value for the WC star.

3.7 Solutions without Sobolev approximation

One of the basic ideas of the CAK theory is the simplified description of the optical depth in
the expanding atmosphere as written in Eq. (3.72), more commonly formulated as

τS = ρκ
vth

dv/dr
= ρκlsob (3.90)

The corresponding length scale lsob is called the Sobolev length. Using Eq. (3.90) instead of a
full calculation of the optical depth which would require a non-local spatial integration is a
powerful simplification allowing the previously described semi-analytical CAK formalism. It
also reduces computing times in stellar atmosphere models significantly, thus allowing codes
such as fastwind (Puls et al., 2005) or wmbasic (Pauldrach et al., 2001) to obtain a con-
verged solution in an hour or even less.
However, the Sobolev approximation assumes that all absorption and scattering occurs in

a narrow layer of lsob. This approximation relies on the assumption that vth � v. This is
true in the outer wind, but not in the region around the sonic point (see Eq. 3.11). Thus, if
the critical point is close to the sonic point, v(r) might still be on the order of vth. In this
case, the scattering layer is not small any more and the Sobolev approximation would not be
sufficient.
For Wolf-Rayet stars, also multiple scattering must be considered as previously mentioned.

Instead of using the Sobolev approximation for the radiative transfer to get rid of the non-
local spatial integration in the expanding atmosphere, one can instead follow the approach of
Mihalas et al. (1975, 1976) and do the radiative transfer calculation in the comoving frame.
This allows the computation of the radiation field, as well as the (Rosseland) optical depth and
the radiative acceleration without limiting the absorption and scattering range. Nevertheless it
is computationally more expensive and therefore stellar atmosphere codes with this approach,
such as powr (Gräfener et al., 2002; Hamann & Gräfener, 2003) or cmfgen (Hillier & Miller,
1998) run longer and usually need at least a few hours to obtain a converged solution for a
stellar atmosphere.
If the radiative acceleration arad is computed directly via the evaluation of Eq. (3.55), one

could in principle plug the result directly into Eq. (3.21). However, to obtain a velocity
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stratification via
dv

dr
=

1

v
(

1− a2

v2

) [arad(r)− g(r) +
2a2

r
− da2

dr

]
(3.91)

with a given starting value v0 would fail at the sonic point v = a where this equation has a
critical point. In order to have a removable singularity, the term in brackets has to vanish at
the sonic point. This requires Γrad < 1 for a finite velocity gradient at the sonic point in the
case of monotonic temperature stratification‡. Unlike the CAK equation of motion, Eq. (3.91)
does not explicitly dependent on Ṁ and thus neither the equation itself nor the conditions for
a removable singularity provide any constraints on the value of the mass-loss rate.

3.8 The generalized CAK approach

In order to avoid the limitations of the CAK theory on the one hand but still have the
advantage of an explicit description for the dv

dr -dependence of arad, Gräfener & Hamann (2005)
developed a kind of “generalized” CAK approach with depth-dependent parameters. They
introduce a column density

ds = ρ dr, (3.92)

which is used for simplifying, both the equations and the notation itself. In Gräfener &
Hamann (2005) s is termed τ and referred to as optical depth. To avoid any confusion, the
terms s and ds will be used throughout this work while τ and dτ will refer to the usual
definition of the optical depth dτ = κ ρ dr = κdr which includes the opacity κ.
In the PoWR code, the total radiative acceleration arad as well as the acceleration due to

the radiation intercepted by electrons and continuum opacities acont are calculated during the
CMF radiative transfer. The remaining line acceleration is the difference,

alines = arad − acont. (3.93)

In order to parameterize alines, Gräfener & Hamann (2005) now follow the basic CAK
approach and write:

alines =
GM

r2
ΓeM

(
1

ρ

dv

dr

)
=
C

r2

(
1

ρ

dv

dr

)α
=
C

r2

(
dv

ds

)α
(3.94)

All quantities which are not depth-dependent (including Γe ≈ const.) are combined in
the proportional constant C here. The parameter α introduced in the original work from
Castor et al. (1975) is not depth-dependent, but this restriction has to be removed in order
to keep the simple notation from Eq. (3.94) and avoid any of the previously discussed CAK
extensions. Unfortunately, using a depth-dependent α(r) increases the complexity of the
problem. A linearization of Eq. (3.94) is necessary to obtain an analytic expression for the
velocity gradient. Linearizing is done by performing a first order Taylor expansion of (3.94)

‡In fact, the temperature stratification does not have to be completely monotonic, but dT
dr

< 0 at the sonic
point automatically forces Γrad < 1 there.

49



Chapter 3 The concepts for hydrodynamically consistent models

around a fixed velocity v0 with respect to the gradient dv
ds :

alines =
C

r2

(
dv

ds

)α
(3.95)

≈ C

r2

(
dv0

ds

)α
+ α

C

r2

(
dv0

ds

)α−1 [dv

ds
− dv0

ds

]
(3.96)

= (1− α)
C

r2

(
dv0

ds

)α
+ α

C

r2

(
dv0

ds

)α−1 dv

ds
(3.97)

Following the basic idea of the (m)CAK theory incl. Puls et al. (2000), the two terms can
now be attributed to optical thin (∝ r−2) and optical thick lines (∝ r−2 dv

ds ). The total line
acceleration is written as

alines = athin + athick. (3.98)

Adding the continuum part, one obtains the total radiative acceleration:

arad = acont + athin + athick. (3.99)

As the thin lines and the continuum contributions both do not dependent on the velocity
gradient in this approach, they can be treated in the same way and summarized into one
term. The radiative acceleration can thus be written as

arad =
GMΓ(s)

r2
+
k(s)

r2

dv

ds
, (3.100)

with Γ and k combining all of the coefficients. Due to the depth-dependence of α (and acont)
both, Γ and k, will be depth-dependent quantities, too. Assuming that the interpretation

α =
athick
alines

(3.101)

(Puls et al., 2000) also holds for α(r) from Gräfener & Hamann (2005), one obtains

k(s) = αr2alines
dv
ds

. (3.102)

By comparing (3.99) to (3.100), one gets also an expression for Γ:

Γ(s) =
r2

GM
(acont + athin) (3.103)

It is possible to replace athin with the terms actually calculated, namely arad, acont, and α,
hence Γ is actually obtained in Gräfener & Hamann (2005) via

Γ =
r2

GM
[acont + (1− α)alines] (3.104)

=
r2

GM
[acont + (1− α) · (arad − acont)] (3.105)

= g−1 [(1− α) arad + α acont] . (3.106)
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This Γ, i.e. without subscript, is not identical to any of the ones with subscript, but can be
connected to the earlier introduced Γe and Γrad. The continuum acceleration acont contains
the Thomson term plus the true continuum term. One can therefore define

Γcont :=
acont
g

(3.107)

=
athom
g

+
atrue cont

g
(3.108)

= Γe + Γtrue cont (3.109)

and derive
Γ = (1− α) Γrad + αΓcont. (3.110)

In the special case of α(r) ≡ 0, the definitions of Γ and k simplify to

Γ = Γrad and k ≡ 0. (3.111)

This means that for α ≡ 0, the k-term in Eq. (3.100) vanishes and arad = gΓrad, i.e. the
original, non-parameterized form of the hydrodynamic equation (3.23) is restored.

3.9 The alpha parameter in the linearized approach

In the previous Sect. 3.8, Γ and k have been introduced. Both terms are depending on α, which
is a so-called force multiplier parameter in (m)CAK. In the linearized approach of Gräfener &
Hamann (2005), α(r) is in fact not explicitly a parameter of the force multiplierM any more,
but instead a parameter of the force multiplier parameters Γ and k. This can be seen when
calculating the new force multiplier with arad now written as in Eq. (3.100):

M :=
alines
Γeg

(3.112)

=
1

Γeg
[arad − acont] (3.113)

=
1

Γeg

[
gΓ(r) +

k(r)

r2

1

ρ

dv

dr
− acont

]
(3.114)

=
Γ(r)

Γe
− Γcont

Γe
+

k(r)

GMΓe

1

ρ

dv

dr
(3.115)

In the wind part, the true continuum contribution is negligible, so Γcont ≈ Γe removes one
parameter from the force multiplier equation (3.115). This simplification does not hold in the
hydrostatic domain, but instead in the quasi-hydrostatic part α(r) is approaching zero, so due
to k ∝ α the third term vanishes there.
With Eq. (3.115) given for the force multiplier, it is actually not exact to call α(r) a force

multiplier parameter, even though the explicit force multiplier parameters Γ and k contain a
strong implicit α-dependency. In a way one can therefore call α(r) an implicit force multiplier
parameter but for simplicity it will mostly be just referred to as alpha parameter throughout
the rest of this work.
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Calculating the alpha parameter

As briefly mentioned in Sect. 3.6, the classical CAK-α is calculated from line strength distri-
bution functions (e.g. Gayley, 1995; Puls et al., 2000). In this approach, described in Puls
et al. (2000), line forces for a large number of lines are calculated (in Sobolev approximation)
and a so-called “line strength” is defined which is related to the Sobolev optical depth τS.
Afterwards all line forces are added to yield the total radiative acceleration. Lines with τS < 1
(thin) are weighted with τS as “interaction probability” while the ones with τS ≥ 1 (thick lines)
are weighted with a factor of 1. Next, Puls et al. (2000) assume that the number of lines in
a frequency and line strength interval follows a power law with a slope of α − 2 (0 < α < 1)
and replace the summation by integrals. With this approach they obtain

alines ∝
1

1− α
t−α +

1

α
t−α. (3.116)

As the first term originates from the thick lines and the second one from the thin lines,
Eq. (3.116) is the source of interpreting α as the fraction of thick lines:

athick ∝
1

1− α
t−α and athin ∝

1

α
t−α (3.117)

athin
athick

=
1− α
α

(3.118)

alines − athick
athick

=
alines
athick

− 1 =
1

α
− 1 (3.119)

athick
alines

= α (3.120)

It has to be stressed that this result is based on the assumption that there is a line force
distribution following a power law§ with the slope α − 2 and implicitly contains the Sobolev
approximation. If one, however, defines a quantity α̂ by writing

alines ∝ X α̂, (3.121)

with another arbitrary quantity X, there is no underlying assumption of α̂ and thus it is called
an effective alpha parameter. It can be calculated by

α̂ =
d(log alines)

d(logX)
. (3.122)

In a CAK analogue approach, one would place the velocity gradient divided by the density as
X, yielding an expression similar to (3.94):

alines ∝
(

1

ρ

dv

dr

)α̂
(3.123)

Nevertheless the previous Eq. (3.121) is simply a postulate which has yet to be checked for
validity. Puls et al. (2000) have shown that with the Sobolev approximation one can obtain

α̂ ≈ athick
alines

, (3.124)

§This assumption is not arbitrary, but motivated from fits to calculated distribution functions. See Puls et al.
(2000) for details.
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3.9 The alpha parameter in the linearized approach

when neglecting second order terms after differentiation.
To calculate numerical α-values, one can use Eq. (3.94) and investigate how alines reacts on

a change of the velocity gradient. This is done by calculating the radiative transfer which
yields arad and acont, twice, first with a modified value for velocity v(r) and its gradient dv

dr ,
then with the normal ones. In the original approach from Gräfener & Hamann (2005), the
modification was 10%, yielding for the modified values marked with a tilde

ṽ = 0.9 · v and
dṽ

ds
= 0.9 · dv

ds
. (3.125)

Afterwards the ratio
δ =

ãlines
alines

(3.126)

is calculated for each depth point i. In order to eliminate possible side effects of the velocity
modification on the total level of the radiative acceleration, they are normalized to the total
flux Htot. The numerical calculation of δi therefore is

δi =
Htot,i

H̃tot,i

ãrad − ãcont
arad − acont

. (3.127)

As α is an exponent in (3.94), the logarithm has to be taken to find

αi =
log δi
log 0.9

(3.128)

The modification factor λ = 0,9 from Gräfener & Hamann (2005) is more or less arbitrary.
Indeed, one can obtain a generalized of Eq. (3.128) for any λ. Starting with the ratio of the
modified and unmodified line acceleration

δ =
ãlines
alines

=
C
r2

C
r2

(
dṽ
ds
dv
ds

)α
, (3.129)

one can use the fact that only the velocity fields and their gradients differ while the unknown
coefficient C(r) is the same in both cases and thus cancels together with r2. Moreover, it is
known that the modification is just done via multiplication with a constant factor λ, i.e.

ṽ = λv and
dṽ

ds
= λ

dv

ds
. (3.130)

This allows to replace the modified values by the original ones which then also cancel. The
only remaining factor is λ and thus one obtains the generalized form of (3.128):

δ = λα ⇔ α = logλ δ =
log δ

log λ
(3.131)

With the obtained α(r) and the two accelerations arad and acont given by the radiative transfer,
k and Γ can then be calculated:

k(r) = αr2arad − acont
dv
ds

(3.132)

Γ(r) =
r2

GM
[acont + (1− α) (arad − acont)] . (3.133)
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Figure 3.1 – Calculated α(r)-values for an OB star model (T∗ = 32 kK, Ṁ = 10−8M�/yr)
with a consistent stratification in the quasi-hydrostatic part (upper panel). For comparison, the
contributions to the acceleration in the model are shown in the lower panel.
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An example of the α(r)-values calculated for typical OB-star model with a velocity mod-
ification factor of λ = 0.9 can be seen in Fig. 3.1. Although in the wind part α(r) reaches
CAK-like values of 0.6 . . . 0.8, there is a significant depth-dependent scatter which is not re-
flected in the radiative acceleration of the model. In the first increase after the sonic point,
α(r) reaches even values above unity.

3.10 Solution of the hydrodynamic equation in the generalized
CAK approach

Plugging the description of the radiative force in the generalized CAK approach (3.100) from
Sect. 3.8 in the hydrodynamic equation (3.21) using the definition (3.92) becomes

ρv

(
1− a2

v2

)
dv

ds
=
GMΓ(r)

r2
+
k(r)

r2

dv

ds
− GM

r2
+ 2

a2

r
− ρda2

ds
(3.134)

The explicit appearance of the density can be replaced using the equation of continuity in the
form

ρv =
Ṁ

4πr2
. (3.135)

After bringing the k-term to the left side and an additional multiplication with r2, one obtains
the form that is used in Gräfener & Hamann (2005):

dv

ds

[(
1− a2

v2

)
Ṁ

4π
− k(r)

]
= −GM [1− Γ(r)] + 2a2r − Ṁ

4πv

da2

ds
. (3.136)

The Eq. (3.136) now contains only known quantities. An overview of the quantities and where
they are calculated in the PoWR code is given in Sect. A.6.1 of the appendix.
In principle, integration of (3.136) now yields the velocity field v(s). To actually get the

required v(r), a second equation has to be solved in parallel, namely the change of r with
respect to s which are connected by the continuity equation:

dr

ds
=

1

ρ
=

4πvr2

Ṁ
(3.137)

The two differential Eqs. (3.136) and (3.137) form a system and can be numerically inte-
grated at the same time¶. The calculation of dr

ds is trivial for a given set of values, but the
calculation of dv

ds is not trivial around the critical point as it cannot be done directly via
(3.136). For an easier illustration of the situation around the critical point, it is useful to
rewrite (3.136) in the form

dv

ds
G = −F . (3.138)

At the critical point (G → 0) the gradient dv
ds will approach infinity, unless F → 0 at the

critical point as well. It becomes immediately clear that instead of the direct calculation via

dv

ds
= −F

G
, (3.139)

¶For details of the numerical implementation, see Sect. A.6.2 of the appendix.
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l’Hospital’s rule has to be applied for calculating the derivative around the critical point:

dv

ds
= −

dF
ds
dG
ds

(3.140)

G is explicitly depending on v, yielding a quadratic equation in dv
ds :

− 2
Ṁ

4π

a2

v3

(
dv

ds

)2

+

[
2
Ṁ

4π

1

v2

da2

ds
+

dk

ds

]
dv

ds
+GM

dΓ

ds
+ 2

[
r

da2

ds
+ a2 dr

ds

]
+
Ṁ

4π

1

v

d2

ds2

(
a2
)

= 0

(3.141)
This is an equation of the form

A

(
dv

ds

)2

+B
dv

ds
+ C = 0. (3.142)

with the following two solutions:

dv

ds 1,2
= − B

2A
±

√(
B

2A

)2

− C

A
(3.143)

= − 1

2A

(
B ∓

√
B2 − 4AC

)
(3.144)

In order to have physical (real) solution, the radicand must not be negative. If the root
does not vanish, two solutions exist with only one of them leading to a lower velocity with
decreasing radius. This is the appropriate solution for a monotonic wind. Furthermore, a
strictly monotonic velocity field is also required by the comoving frame radiative transfer
scheme as outlined in Sect. 2.8.

3.10.1 The F-G-analysis plot

The definitions introduced in Eq. (3.138) are very handy to simplify equations. Using the
expressions for the generalized CAK approach introduced in Sect. 3.8, F and G have the
following form:

F := GM [1− Γ(r)]− 2a2r +
Ṁ

4πv

da2

ds
(3.145)

G :=

(
1− a2

v2

)
Ṁ

4π
− k(r) (3.146)

These terms will also be used during later sections. Therefore it is useful to write them also
without using the column density s defined in Eq. (3.92). Hence, Eq. (3.145) can be written
as

F = GM [1− Γ(r)]− 2a2r + r2 da2

dr
(3.147)

while Eq. (3.146) does not change. Note that Eq. (3.147) demonstrates that F does not ex-
plicitly depend on either the velocity field v(r), nor the mass-loss rate Ṁ , while G explicitly
depends on both of them.
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Although F and G are excellent definitions in order to write the hydrodynamic equation in a
simple way, they are not really good to illustrate a current stratification, due to their different
units and value range. For this purpose it is much more convenient to define dimensionless
quantities, namely:

F̃ :=
F
GM

= 1− Γ(r)− 2
a2r

GM
+

r2

GM

da2

dr
(3.148)

G̃ :=
4πG
Ṁ

= 1− a2

v2
− 4πk(r)

Ṁ
(3.149)

These definitions are in fact only scalings of F and G and therefore do not change the geometry
of the solution. Plotting F̃ and G̃ therefore provides an excellent graphical diagnostic for
analyzing a given atmosphere model. Already from the curves one can see whether a given
stellar atmosphere model is a sufficient start approach for calculating a hydrodynamically-
consistent, but also monotonic velocity field.
For α ≡ 0 and thus k(r) ≡ 0, one obtains Γ(r) = Γrad(r) and the equations transform

into the general case without any particular parameterization of the radiative acceleration.
Nevertheless the hydrodynamic equation can still be written in the form of Eq. (3.139) or,
without using the column density s:

dv

dr
= −ρF

G
(3.150)

with

F = GM [1− Γrad(r)]− 2a2r + r2 da2

dr
(3.151)

G =

(
1− a2

v2

)
Ṁ

4π
. (3.152)

The additional ρ-term appears on the right-hand side of Eq. (3.150) when the equation is
written for dv

dr instead of dvds . Due to the equation of continuity (2.1), ρ implicitly contains the
mass-loss rate itself, which also enters the denominator G. Using Eq. (2.1), one can further
rewrite the hydrodynamic equation in a form that uses the “normalized” quantities:

dv

dr
= −g

v

F̃
G̃

(3.153)

In this form, the hydrodynamic equation does not have any explicit dependency on the mass-
loss rate Ṁ , which will be an important point when discussing solutions without using the
generalized CAK approach.
Two examples for F-G-analysis plots are shown in Fig. 3.2. The upper panel shows a B-

star model with Q ≈ 1, using a prescribed velocity law. While the hydrostatic layers have
been treated consistently, the total model is not self-consistent. In non-consistent atmosphere
models, F and G (and thus also F̃ and G̃) will usually not vanish at the same radius, although
this can rarely happen just by chance. As long as this is not the case, the mass-loss rate
and/or the velocity field has to be adjusted. In the calculation approach without using a force
multiplier parameter (i.e. α ≡ 0) the position of G = 0 marks the sonic point of the current
model while F = 0 marks the location of Γrad ≈ 1 as the two gas pressure terms are usually
(and also in the case shown in Fig. 3.2) very small compared to 1−Γrad. Another example, this
time for a model where the approach from Gräfener & Hamann (2005) with force multiplier
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Figure 3.2 – F-G-analysis plots for a model (T∗ = 26 kK) with prescribed wind velocity law
(upper panel) and a hydrodynamically-consistent velocity law (lower panel). In both panels, the
dimensionless quantities F̃ (red curve) and G̃ (blue curve) are shown and have been computed
without a force multiplier parameter. For non-consistent models, the locations r(F = 0) and
r(G = 0) in general do not match. The three contributions of F̃ are also indicated by yellow
curves using different line styles.
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Figure 3.3 – F-G-analysis plot for a hydrodynamically-consistent model (T∗ = 30 kK) where the
dimensionless quantities F̃ (red curve) and G̃ (blue curve) have been computed using the arad-
description from Gräfener & Hamann (2005) with force multiplier parameters. The colors and
line styles are identical to Fig. 3.2 with the additional cyan curves marking the two contributions
to G̃. In the approach of Gräfener & Hamann (2005), F̃ does not contain the optically thick lines.
Instead they enter G̃ via the k-term.

parameters is used, can be seen in Fig. 3.3. Due to the additional k-term which enters G, the
scattering of α(r) demonstrated in the upper panel of Fig. 3.1 propagates into G̃.

Generally one can say that higher mass-loss rates move the position of F = 0 inwards,
while lower values of Ṁ move the position outwards. However, the complex non-linear reac-
tions in the radiative transfer on the combined changes of Ṁ and the velocity field after a
hydrodynamic update do not allow a more precise trend prediction. In the rare cases when a
model with a prescribed velocity law already leads to F and G vanishing at the same radius,
the mass-loss rate Ṁ and the velocity at the sonic point do not have to be adjusted, but the
overall function v(r) might still have to. To visually check if v(r) is consistent or not, the
F-G-analysis plot alone is not sufficient. Instead the acceleration plot (see, e.g., lower panel of
Fig. 3.1) is needed. The acceleration plot, however, does not provide a good diagnostic for the
solution topology of the current problem. Thus, the F-G-analysis plot and the acceleration
plot can be seen as complementary diagnosis tools.
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Chapter 3 The concepts for hydrodynamically consistent models

3.10.2 Calculation of the mass-loss rate and the critical point

In the generalized CAK approach the critical point in Eq. (3.136) is not identical to the sonic
point, due to the k(r)-term in G. This provides an explicit handle to obtain a consistent
mass-loss rate. In the original numerical implementation by Gräfener & Hamann (2005),
the Eqs. (3.139) and (3.137) were integrated in parallel starting at the outer boundary (r =
Rmax, s = 0). In order to find the critical point, F and G were calculated and checked. In the
outer regime where the radiative force exceeds gravity we have F < 0. If we are beyond the
critical point, there is also G > 0, thus yielding a positive velocity gradient.

As soon as either F or G passes through zero, the regime where the critical point has to
be searched is entered. For a consistent solution, the locations of F = 0 and G = 0 must
be exactly the same. However, this is not automatically fulfilled when calculating a stellar
atmosphere model, so during the inward integration one of them will pass through zero first.
In order to achieve that both pass through zero at the same location, at least one of the terms
has to be adjusted. This is much easier for G, as one can force G to be zero at a certain
location rc or, to be more precise, r(sc), via adjusting the mass-loss rate Ṁ :

G =

(
1− a2

c
v2
c

)
Ṁ

4π
− k !

= 0 (3.154)

⇒ Ṁ = 4πkc

(
1− a2

c
v2
c

)−1

(3.155)

The corresponding values at the critical point candidate are denoted vc = v(sc), kc, ac and
so on. For a given location with F = 0, it is therefore easy to calculate the corresponding
mass-loss rate in order to obtain also G = 0. However, Eq. (3.155) includes the velocity itself
and thus depends on the result of the inward integration. This result changes of course when
adjusting Ṁ . Therefore, the whole process needs to be iterated. The outward integration
is started again with the new mass-loss rate until F = G = 0 is fulfilled at the same point
without any further need for adjusting Ṁ .

The structure of Eq. (3.155) reveals that k 6= 0 is required to always have a solution without
demanding vc = ac, i.e. the critical point to be the sonic point. Due to Eq. (3.132), this
implies that both α and alines may not vanish at the critical point. Assuming α > 0 and thus
k > 0, one obtains vc > ac, i.e. the critical point is located beyond the sonic point, further
out in the wind. If the critical point would be identical to the sonic point (kc = 0, vc = ac),
G vanishes for any value of Ṁ and no adjustment criterion is available from G.
The whole direct Ṁ adjustment process from Gräfener & Hamann (2005) works only if
F = 0 occurs further outside than G = 0. Otherwise the velocity gradient would be negative,
i.e. the resulting velocity field is not monotonic. This in turn would harm the adjustment
calculation via Eq. (3.155) and spoil the further iteration process. In such a case, Gräfener
& Hamann (2005) simply increase the mass-loss rate by 10% if G = 0 occurs further out
than F = 0 for the first time. During later iterations, results from the previous mass-loss
rate adjustments are used to provide limits for a slightly more precise adjustment step in this
situation.
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3.10 Solution of the hydrodynamic equation in the generalized CAK approach

3.10.3 The terminal velocity and the inner boundary

After the critical point has been found and the mass-loss rate has been fixed, the integration is
continued inwards in the approach from Gräfener & Hamann (2005). As they do not integrate
directly over r, but instead over s, it is not guaranteed that the innermost value Rin = r(smax)
is identical to R∗. In fact, both cases, Rin > R∗ as well as Rin < R∗ can occur. In order to
get rid of this discrepancy, the terminal velocity v∞, which is the starting value of the whole
iteration process, is adjusted and the whole iteration process from the outermost point is
starting again, including the search for the critical point. This v∞-adjustment is motivated by
the well-known scaling of v∞ with vesc in the CAK theory. Dividing the required escape speed
vesc(R∗) by the value obtained from the current iteration vesc(Rin), one obtains the following
correction factor:

vesc(R∗)

vesc(Rin)
=

√
2GM
R∗√

2GM
Rin

=

√
Rin

R∗
(3.156)

In the code implementation, Gräfener & Hamann (2005) use the root of this term, which
damps the reaction:

fv∞ = 4

√
Rin

R∗
(3.157)

This means that if R∗ is not reached by the integration process (Rin > R∗), the terminal
velocity is increased. If the integration instead goes beyond R∗, the terminal velocity is
lowered. To avoid major changes between two iterations, fv∞ is limited to a range between
0.9 and 1.1. Note that the change of the (terminal) velocity has a direct impact on the radius
integration, due to

dr

ds
=

1

ρ
= 4πr2vṀ . (3.158)

While Ṁ is adjusted directly by a constraint coming from the hydrodynamic equation, it
seems that v∞ is basically motivated by a boundary effect. In fact the condition r(smax) = R∗
is a form of mass and energy conservation as it ensures that the integrated density stratification
does not change.
When Rin is so close to R∗ that the resulting terminal velocity changes are negligible,

Gräfener & Hamann (2005) consider the hydro iteration to be converged. The velocity field
for all outer points that might not have been considered for the integration regime, are now
filled by a monotonic extrapolation of the velocity field using a very small gradient (10m/s).

3.10.4 Method limitations and restriction of α

Using the approach from Gräfener & Hamann (2005) with force multiplier parameter α can
lead to various situations where no monotonic velocity field can be obtained. These situations
are not identical to those where the actual physics require a non-monotonic velocity field. The
situations discussed in this section instead address those cases, where an approach without
using α would work (see Sect. 3.11 for more details) but using the calculation results of α will
prevent the calculation of a velocity field.
A typical example of such a situation is illustrated in the lower panel of Fig. 3.4. Although

also affected by α(r), the F̃-term is more or less “well-shaped” as it passes zero only once. In
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Figure 3.4 – Upper panel: The force multiplier parameter α(r) has been calculated for non-
consistent O-star model. In the outer part, α(r) clearly exceeds unity. Before the steep rise, α(r)
is negative in a certain depth range.
Lower panel: The dimensionless quantities F̃ (red curve) and G̃ (blue curve) including their
contributions have been computed for a model with a similar α(r)-behavior than illustrated above.
Via the k-term, the large variety in α(r) propagates into the G̃-term which shows negative values
even in the supersonic regime. With this behavior of G̃, no monotonic velocity field can be
obtained. Note also that F̃ exceeds 1− Γ in the region where the temperature is not monotonic
(positive da2

dr gradient).
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3.10 Solution of the hydrodynamic equation in the generalized CAK approach

contrast, the G̃-term has a local maximum above (or here very close to) zero, but drops again
below in the outer parts, thus making a monotonic solution impossible as F̃ and G̃ now have
the same sign which in turn leads to a negative velocity gradient. The point in the far outer
wind where G̃ increases significantly above zero is also clearly not a proper candidate for the
critical point as it would lead to an extremely low mass-loss rate.
When looking at the structure of

G̃ =

(
1− a2

v2

)
− 4π k

Ṁ
, (3.159)

it immediately becomes clear that the k-term is responsible for this troublesome behavior
since the first term in parenthesis is monotonic as long as there is a monotonic velocity
field is and a monotonic behavior in the sound speed above the sonic point. The latter is
guaranteed for a monotonic temperature stratification which can be enforced and the former
is also ensured, namely by adjustments during or after the hydro integration and by using a
β-law for the starting model. In order to better analyze the situation, the k-term (3.132) is
slightly rewritten as

k = αr2ρ
arad − acont

dv
dr

(3.160)

=
Ṁ

4π

α

v

arad − acont
dv
dr

(3.161)

4π k

Ṁ
= α

arad − acont
amech

(3.162)

In the wind domain, the term in parenthesis in Eq. (3.159) is close to unity due to v � a, so
to ensure G̃ > 0, one basically needs to restrict the k-term such that

4πk

Ṁ
< 1. (3.163)

Applying this restriction to the right-hand side of (3.162) leads directly to a maximum α-value
for a given set of accelerations:

1 > α
arad − acont

amech
(3.164)

α <
amech

arad − acont
(3.165)

One might argue that amech will be changed during the hydro iteration, but it has to be taken
into account that an iterative approach is used here. Thus, the amech of the velocity field used
before the start of a hydro step directly enters the α values and this means that a “bad” start
approach can spoil the whole hydro iteration.
The restriction of α allows to find monotonic solutions, but the need for such restrictions

already raises the question whether α is a useful quantity. The upper panel of Fig. 3.4 demon-
strates that the calculated values of α can exceed the expected range between 0 and 1 sig-
nificantly. This result strongly questions if the α defined by Gräfener & Hamann (2005) can
really be interpreted as the fraction of thick lines. If this is not the case, α will still reflect the
reaction of the radiative acceleration to the velocity gradient, but the linearization of the line
acceleration term in Sect. 3.8 might not be appropriate.
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Chapter 3 The concepts for hydrodynamically consistent models

In short, the approach of Gräfener & Hamann (2005) seems to work only for a small selec-
tion of atmosphere models. When trying to extend the method to other parameter ranges,
especially those of O and B stars, several problems occur. The most obstacles that prevent
the particular calculation of a velocity field can be lifted by introducing restrictions, scalings
and dampings of α, but their motivation is purely technical and hard to justify in a physical
sense. The fact that the unmodified α-values tend to exceed the expected range raises the
need for a different method that does not rely on the interpretation of α as the fraction of
thick lines. Such a method, which does not require a force multiplier parameter at all, will be
discussed in the following sections and used for all models discussed in the results Chapter 4.

3.11 Solution without force multiplier parameters

In the previously described solution of the hydrodynamic equation of motion, the parameter
α was used to split the radiative acceleration into two parts. One of them, the “thin” part, is
described similar to how the electron scattering contribution is described in the CAK theory,
namely with an Eddington Gamma Γ. The essential idea of the former method is, however, to
describe the “thick” part not in the same way, but instead in a linearized CAK-like approach:

athick =
k(r)

r2ρ

dv

dr
(3.166)

This is motivated by the CAK idea that the radiative pressure intercepted by optically thick
lines depends on the velocity gradient. The linearization is needed to obtain an analytic
solution for the velocity gradient via

dv

dr
= −ρF

G
= −ρ

GM [1− Γ(r)]− 2a2r + r2 da2

dr(
1− a2

v2

)
Ṁ
4π − k(r)

. (3.167)

Due to the k-term, the denominator G does not vanish at the sonic point. Thus, in the case
of F = 0 and G = 0, one can obtain the mass-loss rate Ṁ directly from the condition G = 0
as described in Sect. 3.10.2. However, this requires the calculation of α(r) and a proper split
into the two parts. As previously discussed, the calculated range of α(r) is, especially for O
stars, not limited to the range [0,1] as it should be in the sense of its interpretation as the
fraction of “thick” lines. Furthermore, the reactions of the line acceleration on the velocity
gradient changes are not necessarily smooth in the supersonic part, but can show patterns
and oscillation-like features. While the calculated values of α(r) might be correct in the sense
that they reflect real physics and potentially hint towards instabilities which occur in time-
dependent hydrodynamical simulations, the behavior of α(r) spoils the efforts to find a static
solution for the wind.
Due to these caveats, it is interesting to consider methods which do not need a CAK-type

α parameter. To do this, the previously established formalism does not need to be heavily
modified. Instead, all specially defined quantities, i.e. Γ and k, “vanish” if one considers the
special case of α(r) ≡ 0 (cf. Eqs. 3.111) and yields

F = GM [1− Γrad(r)]− 2a2r + r2 da2

dr
(3.168)

and G =

(
1− a2

v2

)
Ṁ

4π
. (3.169)
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3.11 Solution without force multiplier parameters

The Γ in F is now identical to the full Γrad and G vanishes at the sonic point (v = a).
Given the CAK-interpretation of α as the fraction of thick lines, this would be called a “thin
wind situation”, but in fact the equations above are valid for any wind as they still take the
full radiative acceleration arad into account. They just do not make any assumptions on the
description of arad. As a consequence, any effects of Γrad on the velocity gradient are now
solely covered in F , but due to the iterative approach, this is still fully consistent. Therefore
the equations (3.168) and (3.169) are just a different, mathematically even simpler approach
than (3.145) and (3.146).

In the method invoking an α-dependent k-term, the denominator G could cause troubles
due to non-monotonic behavior. Now, as long as the temperature structure is monotonic itself,
G has a monotonic slope and will not cause any trouble when integrating the hydro equation.
However, the price for all this is the loss of the predictive power of G for the mass-loss rate
Ṁ . The critical point is now identical to the sonic point and G vanishes at v = a, regardless
of the absolute value of Ṁ .

In the α-approach, the mass-loss rate Ṁ is adjusted such that G vanishes at the same point
where F = 0. Now one cannot adjust the position of G = 0 via Ṁ , but only via changing
the velocity to v = a at rc := r|F=0, i.e. the candidate radius for the critical point. Setting
v(rc) = a(rc) then acts as the starting value for integrating from rc inwards and outwards to
obtain v(r), thereby replacing the pure inward integration from Gräfener & Hamann (2005).
However, this method does not give any estimate on how to change the mass-loss rate. Does
this mean that there is no restriction of Ṁ and solutions could be found for any mass-loss
rate? Or is the non-dependency of the critical point on Ṁ just an artifact of this approach,
where complex dependencies are hidden in Γrad(r) and/or a(r)?

This issue will be discussed further in Sect. 5.1. If one assumes for a moment that Ṁ needs
to have a specific value for a given set of stellar parameters, one needs to think of other
methods to constrain Ṁ . Three possible methods, which have all been implemented in the
PoWR code as part of this work, will be outlined below, followed by a brief discussion of their
advantages and disadvantages.

3.11.1 Method 1: Response calculation

In order to get a handle on the mass-loss rate and being able to adjust r|F=0, one can try to
estimate the reaction of F on changes of Ṁ . As long as the radius with F = 0 differs from
the current sonic point rS (where G = 0) which is – for a fixed temperature stratification – not
depending on the mass-loss rate, one would have to adjust F in such a way that it vanishes
exactly at the sonic point. The second and third term in (3.168) do not react on changes of
Ṁ , but the first one does. Luckily, the second and third term are usually much smaller than
the first one, so focusing on the changes of Γrad = arad/g is promising. This leads back to
the calculation of the radiative acceleration arad in the radiative transfer program, which is
obtained from frequency integration (in the co-moving frame) of the product of opacity κν
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and Eddington flux Hν :

arad =
1

ρ

4π

c

∞∫
0

κνHνdν (3.170)

=
r2v

Ṁ

16π2

c

∞∫
0

κνHνdν (3.171)

From (3.171) one could immediately conclude that arad should roughly scale with the inverse
of the mass-loss rate. In detail however, the integral term also changes. This effect is not
negligible on the level of accuracy needed to obtain a consistent hydro solution, especially as
Eq. (3.170) could also be written with the mass absorption coefficient κ using κ = κρ, leading
to the form

arad =
1

ρ

4π

c

∞∫
0

ρκνHνdν (3.172)

=
4π

c

∞∫
0

κνHνdν (3.173)

which has no explicit dependence on Ṁ at all.
The effect therefore has to be studied numerically. Similar to the calculation of the α-values,

the radiative transfer program is now run twice, once with Ṁ and another time with a certain
change in the mass-loss rate λṀ . From (3.171) one would expect to obtain a constant factor
λ for the ratio of arad(Ṁ) and arad(λṀ) if the integral itself would not change at all. On the
other hand, if the opacity κ scales with ρ and thus with Ṁ as expected for optically thin lines,
the effect should cancel out and the radiative acceleration would not change at all, assuming
that the integral using the mass absorption coefficient in Eq. (3.173) stays constant. As the
calculations show, the actual result is in-between those two extremes. To study the effect in
more detail it is helpful to define a response factor

r(r) :=
arad(Ṁ)

λ arad(λṀ)
(3.174)

where the ratio of the accelerations with unmodified and modified Ṁ is divided by the mod-
ification factor λ. Now this factor r describes the “non-trivial” change of the radiative accel-
eration arad due to changes of Ṁ while the product r−1λ−1 reflects the relative change of the
acceleration with modified Ṁ compared to the unmodified. With the definition (3.174) one
can describe the reaction of F on a modified mass-loss rate as:

F(λṀ) = GM
[
1− Γrad(λṀ,r)

]
− 2a2r + r2 da2

dr
(3.175)

= GM

[
1− Γrad(Ṁ,r)

λ · r(r)

]
− 2a2r + r2 da2

dr
(3.176)
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Of course λ shall now be adjusted such that F vanishes at the sonic point rS. The correspond-
ing calculation is straightforward:

0
!

= GM

[
1− Γrad(rs)

λ · r(rs)

]
− 2a2rs + r2

s
da2

dr

∣∣∣∣
r=rs

(3.177)

Γrad(rs)

λ · r(rs)
= 1− 1

GM

(
2a2rs − r2

s
da2

dr

∣∣∣∣
r=rs

)
(3.178)

λ =
Γrad(rs)

r(rs)

[
1− 1

GM

(
2a2rs − r2

s
da2

dr

∣∣∣∣
r=rs

)]−1

(3.179)

Unfortunately test calculations reveal that the term (3.174) is still not independent of λ, as
illustrated in the lower panel of Fig. 3.5. This is a problem as the response factor has to be
calculated in advance during the CMF radiative transfer and at this point the mass-loss rate
modification factor λ obtained in the hydro routine is not known. Comparing the results for
different values of λ one can identify a certain trend in the changes of r with λ as it seems
that the overall slope does only marginally change. It turns out that one can find a scaling
relation between the response factors obtained with different values of λ:

r(r,λ) = 1− [1− rcalc(r)]
λ− 1

λcalc − 1
(3.180)

Here, λcalc is the value for which the response factor rcalc has be calculated in the radiative
transfer program while λ denotes the value required in the hydro iteration. Using this relation,
the response factors obtained with different values of λ can be scaled, so that they are in rough
agreement, as illustrated in the upper panel of Fig. 3.6
Although the calculation of the response factor r intuitively might show similarities to depth-

dependent α-parameter (cf. Sect. 3.9) since both require the radiative transfer to be performed
twice, they actually trace different things. The α-parameter is based on a modification of
the velocity and its gradient and is only calculated from the resulting changes of the line
acceleration. The r instead reflects reactions of a global density change due to a slightly
different mass-loss rate Ṁ . The resulting stratification of α(r) and r(r) are therefore quite
different, as illustrated in Fig. 3.7.
As the value of the response factor r depends on λ, one cannot really use (3.179) to calculate

the starting value of λ for the hydro iteration. Instead we need to take (3.180) into account
and solve the following equation, which is quadratic in λ:

λ · r(rs,λ) = XΓ := Γrad

[
1− 1

GM

(
2a2rs − r2

s
da2

dr

∣∣∣∣
r=rs

)]−1

(3.181)

λ−
[
λ2 − λ

] 1− rcalc(rs)

λcalc − 1
= XΓ (3.182)

0 = λ2 −
(

λcalc − 1

1− rcalc(rs)
+ 1

)
λ+

λcalc − 1

1− rcalc(rs)
XΓ (3.183)

The two solutions are:

λ1,2 =
1

2

(
λcalc − 1

1− rcalc(rs)
+ 1

)
±

√
1

4

(
λcalc − 1

1− rcalc(rs)
+ 1

)2

− λcalc − 1

1− rcalc(rs)
XΓ (3.184)
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Figure 3.5 – Response of the radiative acceleration arad to a change of the mass-loss rate Ṁ : In
the upper panel, the inverse of the response factor r is shown in red while the direct ratio of the
modified and the unmodified radiative acceleration is shown in blue. In the lower panel, the same
results are plotted using different values for the Ṁ -modification factor λ. The steep drop at the
innermost point is artitificial and due to the numerical calculation method of r.
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R
sonic

0.6

0.8

1.0

1.2

-16 -14 -12 -10
log (ρ / (g cm-3 ) )

Figure 3.6 – Upper panel: Response factor r, scaled to λ = 0.9 using the relation (3.180).
Although the values do not match exactly, the slope and the range of obtained values are sufficient
enough to allow the use of a precalculated response factor.
Lower panel: The total response of the radiative acceleration for two different modification factors
is compared to their contributions from the line and continuum acceleration. The plot reveals
that apart from the innermost layers the continuum acceleration only marginally reacts on the
density change due to the mass-loss rate adjustment while the line acceleration shows a significant
reaction, especially in the wind part where the reaction approaches the inverse of the modification
factor.
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Figure 3.7 – Upper panel: The slope of the density modification (equal to r−1λ−1) is compared
to the slope of the α-parameter defined in Sect. 3.8 for two different modification factors. The
α-parameter, which reflects only velocity field changes in the line acceleration, shows much more
substructure in the wind than the response factor, which in contrast reflects density changes in
the total radiative acceleration.
Lower panel: The same quantities are shown on a logarithmic scale, highlighting the very different
behavior in the inner part of both quantities.
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From these two solutions, only one leads to a change in Ṁ pointing in the same direction as
the simple approach in Eq. (3.179), where the λ-dependence on r is neglected. This solution
is the appropriate one to obtain the modified

Γrad(λṀ,r) =
Γrad(Ṁ,r)

λ · r(r,λ)
(3.185)

which then allows to calculate the adjusted F(r).
This response calculation allows the choice of other values as candidates for the sonic point

apart from r(F = 0) by changing the mass-loss rate. It is even possible to use the present sonic
point r(G = 0) and adjust Ṁ in a way that this point is met. However, the response factor r
has to be calculated with a modified density during the radiative transfer, basically doubling
the computing time. Given these high costs, especially for OB star models where lower values
of vdop are required, the result is not outstanding as the response scaling is good, but by far
not excellent and usually significant damping is required during early hydro iterations where
the model is still far from hydrodynamically consistency.
In summary the method has high costs combined with mediocre results, raising the question

if there are simpler methods to adjust the mass-loss rate. Such methods are presented in the
following sections.

3.11.2 Method 2: Work ratio adjustment

Instead of considering the precise, depth-dependent reaction of arad on changes of Ṁ and
v(r), one could think of a simpler adjustment of Ṁ based on radius-integrated values, i.e.
considering the work ratio Q defined in Sect. 3.2. It is usually well justified to assume that the
velocity at the inner boundary vmin is orders of magnitude smaller than the terminal velocity
v∞. With v2

min � v2
∞, Eq. (3.26) simplifies to

1

2
v2
∞ +

GM

R∗
=

∞∫
R∗

arad(r) dr −
∞∫

R∗

1

ρ

dP

dr
dr. (3.186)

All of these terms, including the second integral on the right-hand side over the gas pressure
terms, can be immediately calculated after the integration of the hydrodynamic equation, even
if Ṁ has been modified, except for the reaction of the first integral on the right. The previous
discussion of the response factor r(r) showed that this reaction is not constant at all radii, thus
requiring a CMF test calculation to obtain r(r) each time before solving the hydrodynamic
equation. This is a large effort for eventually just updating the depth-independent value of
Ṁ . As further iterations after one hydro step are needed anyhow, a simpler method indicating
the trend of Ṁ should do the work as well. This simpler way is using the radius-integrated
quantities in the form of Eq. (3.186), rather than bothering with depth-dependent quantities.
In order to estimate the reaction of arad on changes of Ṁ and v(r), the test-calculations for

r turn out to be useful, but now focusing on the radius-integrated results. In the outer regime,
i.e. in the wind, the calculations revealed that if Ṁ is modified by a factor µ, the radiative
line acceleration changes approximately by a factor µ−1 while the change to the continuum
acceleration is small (see also the lower panel in Fig. 3.6). The wind part dominates the
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integral, and hence one can write
∞∫

R∗

arad(µṀ) dr ≈ 1

µ

∞∫
R∗

aline(Ṁ) dr +

∞∫
R∗

acont(Ṁ) dr. (3.187)

This result is actually not trivial as one would expect that in a first order approximation arad
would not react to changes of Ṁ at all, especially in an optically thin regime. The numerical
test calculations have revealed that this is only the case for the continuum contribution while
the reaction of the line acceleration mathematically corresponds to an optical thick situation
where the opacity is no longer depending on the density. Note that CAK would predict

aline(µṀ) = aline(Ṁ) · µ−αcak (3.188)

with αCAK ≈ 0.6, i.e. the test calculations show a much steeper reaction, at least for the
radius-integrated line acceleration. For Wolf-Rayet stars where CAK is not appropriate this
result is not surprising, but it is also seen in the model for a B-star with T∗ = 26 kK where one
would expect a good agreement with CAK. The response calculations shown in the Figs. 3.5
to 3.7, which have been performed with a hydrodynamically consistent B-star model, instead
point to a steeper relation and therefore show already deviations from the original, unmodified
CAK prediction.
Using the results from the test calculation, the modification of the mass-loss rate by a factor

µ changes Eq. (3.186) to

1

2
v2
∞ +

GM

R∗
=

1

µ

∞∫
R∗

aline(r) dr +

∞∫
R∗

acont(r) dr −
∞∫

R∗

1

ρ

dP

dr
dr. (3.189)

On the other hand this means, that if there is a velocity field v(r) obtained by solving the
hydrodynamic equation, Eq. (3.189) can be used to obtain the mass-loss rate adjustment factor
µ that is required to ensure that the solution will also fulfill Q = 1, i.e. the energy balance‖.
Re-arranging the equation leads to

µ =

∞∫
R∗

aline(r) dr

1
2v

2
∞ + GM

R∗
+
∞∫
R∗

1
ρ

dP
dr dr −

∞∫
R∗

acont(r) dr

, (3.190)

providing an easy recipe to calculate the adjustment factor for Ṁ . In fact, Eq. (3.190) works
best, if the velocity v∞ changes only marginally as the reaction of v(r) has not been considered
so far. Test calculation show that applying a modification factor to the velocity field leads to
the inverse reaction compared than changing Ṁ , following basically from ρ ∝ v/Ṁ . In fact,
the reaction is even a bit stronger as changing the velocity in a comoving-frame calculation
affects more terms than just the density. Nevertheless, in an iterative approach it is sufficient
to assume

∞∫
R∗

arad(λv) dr ≈ λ
∞∫

R∗

aline(v) dr +

∞∫
R∗

acont(v) dr. (3.191)

‖As Eq. (3.186) stems from the integration of the hydrodynamic equation, it might seem strange that Q = 1
is no longer guaranteed, but this is a consequence of waiving any adjustments of arad during the v(r)-
calculation, even when changing Ṁ .
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and adjust the mass-loss rate via

Ṁnew = µ · λ · Ṁold. (3.192)

In the code implementation this is iterated until the current work ratio

Qcur :=

Ṁstart

Ṁnew

∞∫
R∗

aline(r) dr +
∞∫
R∗

acont(r) dr −
∞∫
R∗

1
ρ

dP
dr dr

1
2v

2
∞ + GM

R∗

(3.193)

is equal to unity with an accuracy better than one percent.

3.11.3 Method 3: Conservation of optical depth

Another approach to obtain a correction for the mass-loss rate Ṁ that appears to be completely
different at first is to use the conservation of the optical depth. This method (and its success)
can be understood as a generalization of the s-conservation in Gräfener & Hamann (2005).
By enforcing r(smax) = R∗ the total value of

smax =

R∗∫
Rmax

ρ(r) dr (3.194)

was conserved. In their paper, smax was labeled τ∗ as they referred to it as “optical depth”.
Instead of s, which does not include the mass absorption coefficient κ, now the true maximum
(Rosseland continuum) optical depth

τmax =

R∗∫
Rmax

κ(r)ρ(r) dr (3.195)

is conserved. In order to demonstrate that this quantity could actually give an estimate on
how to adjust Ṁ , it is useful to write it down it its precise form. The intended value of τmax
is actually given at the start of an atmosphere model. As discussed in detail in Sect. 2.7, this
value should reflect the Rosseland continuum optical depth at the inner boundary R∗. To
check whether this value is really reached there, the current value at the innermost depth
point has to be calculated via

τ∗ := τRoss,cont(R∗) =

R∗∫
Rmax

κRoss,cont(r) dr (3.196)

=

R∗∫
Rmax

ρ(r) κRoss,cont(r) dr (3.197)

=
Ṁ

4π

R∗∫
Rmax

κRoss,cont(r)

r2 v(r)
dr. (3.198)
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It is important to remember the relatively weak response of acont on changes of Ṁ from the
previous section. From this information one can conclude that the mass absorption coefficient
κ(r) should approximately stay the same when the mass-loss rate is changed and thus the
whole integral in Eq. (3.198) should not change significantly if the change to the velocity field
v(r) is small. As a first approximation we can therefore conclude that the value τ∗ is roughly
proportional to Ṁ . In fact these are way too much rough approximations to obtain a good
handle on the value of Ṁ , but it turns out that at least the trend is correct, i.e. τ∗ gets larger
with increasing Ṁ . Test calculations have shown that the trend predicted by the conservation
of τmax is very similar to the results obtained by conserving smax.
As τmax should be conserved in all PoWR models, the implementation of this method

therefore does not use any scaling relations, but calculates the current value of τ? by evaluating
the integral including the calculation of the continuum opacities, similar to what is discussed in
Sect. 2.7. For τ∗ < τmax, the mass-loss rate is increased, otherwise it is decreased. Afterwards
the whole integration of the hydrodynamic equation is performed again, until |τ∗ − τmax| < ετ
with a pre-specified accuracy ετ . In order to avoid oscillations, the changes to Ṁ are reduced
each time the trend changes.
Even though the calculation of τ∗ is precise, the conservation of the optical depth does not

give a very good prediction for the “true” Ṁ , corresponding to a hydrodynamic solution. This
has to do with the fact that the estimate for Ṁ does not stem from the hydrodynamic equation
itself or its integrated form, but instead is based on a kind of boundary condition. Using it
without any damping can therefore lead to overshootings on the order of magnitudes in either
direction and should be avoided completely. However, the τmax-adjustment has proven to work
very decently when combined with Γrad-input damping for the integration of the hydrostatic
equation. Indeed, using a similar Γrad-input damping, including a start value for Γrad inferred
from the current velocity field in the very first hydro step, leads to promising results and
successfully converging hydro models. The strong input damping and the internal adjustment
of the velocity field to ensure τmax furthermore removes the need for an output damping of
the calculated velocity field and the otherwise necessary post-hydro τmax-adjustment of v(r).
(Details for the latter methods are described in Sect. A.8 of the appendix.)
The idea behind this concept is in fact not very new. An inward and outward integration

from the critical point with a conservation of optical depth has been used by Pauldrach et al.
(1986) in order to compare CMF calculations with a modified CAK approach. However,
Pauldrach et al. (1986) used a fixed value of the Thomson optical depth τthom :=

∫
κedr

instead of the Rosseland continuum optical depth used in this work. Furthermore, Pauldrach
et al. (1986) used several simplifications, e.g. for the line strengths, the radiative acceleration,
and the approximation of the continuum in order to keep his approach identical to his mCAK
calculations. The concept idea of using the conservation of the optical depth to constrain Ṁ
was later also picked up by Vink et al. (1999) for their Monte Carlo calculations.
Instead of conserving τmax or smax, one could also think of conserving the total mass of the

stellar atmosphere

Matm = 4π

Rmax∫
R∗

ρ(r)r2dr = Ṁ

Rmax∫
R∗

1

v(r)
dr. (3.199)

This approach yields a similar trend than the smax-conservation, but puts more weight on the
outer wind layers due to the additional r2-factor in the integral. The resulting predictions for
Ṁ can therefore be a bit smaller, but in general the method shows the same weaknesses as
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the normal τmax-conservation, i.e. it predicts changes of many orders of magnitude if the new
critical point found in the hydro calculations is far away from the current one.

3.11.4 Selection of the proper method

Given the three different methods described above, there is of course the question which
method is the best one to choose? Even after the various calculations which have been
performed with the various methods, there is no general answer to this question. Although
the calculation times could be significantly reduced compared to the approach of Gräfener &
Hamann (2005), who needed about a month to get a converged, hydrodynamically-consistent
model, the models still need much longer calculation times if compared to a model with a
prescribed wind velocity field. The change of the velocity field is another correction added on
top of the corrections for the population numbers and the temperature. All of these three are
coupled to the results of the radiative transfer calculations, thus forming an extremely tricky
situation.
As none of the three methods provides a really precise prediction of the mass-loss rate Ṁ ,

the explicit calculation of the response factor is not favorable. From the two other methods,
the “work ratio adjustment” (Q-method) and the ”conservation of optical depth” (τ -method),
the Q-method turned out to be the safer choice, while the τ -method is more effective, if the
changes to Ṁ are small enough. In the Q-method, the adjustments to Ṁ are usually moderate
if starting from a model with Q ≈ 1, but the conservation of τmax is not ensured by default and
therefore the velocity field has to be shifted afterwards (see appendix Sect. A.8.2 for details).
In the τ -method, this is automatically fulfilled without any further adjustment of the velocity
field obtained from the hydrodynamic equation. Therefore, the region around the critical
point is usually consistent after very few iterations when using this method. In the Q-method
the necessary shifting instead causes differences between the “raw” hydrodynamical solution
for v(rc) and the value actually used. As the region around the critical point is crucial, this
causes some perturbation leading to larger corrections in the following calculations for the
radiative transfer and the solution of the statistical equations.
The τ -method, however, can react with drastic changes of Ṁ , if the location of the critical

point changes. This has already been noted by Pauldrach et al. (1986) who used a more or
less similar approach, but conserving the Thomson optical depth instead of the Rosseland
continuum optical depth. Test calculations with conservation τmax,Thom have shown that the
large reactions do not depend on the choice of the τ -scale, but seem to be inherent to the
method.
Given these advantages and disadvantages, the Q-method has become “standard” choice

for calculating hydrodynamically consistent models. However, if the starting model does not
only have Q ≈ 1, but also the acceleration plot shows that the model is not far from depth-
dependent consistency, the τ -method can be tested and will be the better choice if not leading
to large changes of Ṁ .
The detailed implementations, including the necessary dampings are discussed in detail in

the Sects. A.7 to A.9 of the appendix.
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Hydrodynamic models: Applications
and limitations

4.1 Selecting proper starting models

Although PoWR models can be calculated without requiring an old model as a start approach,
the calculation of a selfconsistent velocity law demands that the full radiative acceleration is
known. This is only possible after a radiative transfer calculation in the comoving frame
(CMF). For the CMF calculations the density and velocity stratification must be known and
thus a starting approximation for v(r) is required in any case. Although the hydro calculations
described in the previous chapter can in principle be performed on any start approximation,
it is not guaranteed that there will be a monotonic hydrodynamic solution for any situation.

It is therfore helpful to start from an old model, which is not hydrodynamically consistent,
but where the radiative acceleration is known. If the option to calculate in the inner part
of v(r) via integrating the hydrostatic equation using the Γrad from the CMF calculations
(see Sect. 3.4) had been used in the old model, most of the subsonic part might already be
consistent. In any case, the work ratio Q (cf. Sect. 3.2) of a former model provides an easy
criterion to select “good” candidate models for starting the calculation of a hydrodynamically-
consistent model.

Models with Q ≈ 1 are already balanced in terms of their global energy budget, i.e. the
integrated sum of radiation and gas pressure are sufficient to drive approximately the predicted
wind with the parameters v∞ and Ṁ . As one can see on the left-hand side of Eq. (3.26), the
denominator of Q depends only on R∗, M∗ and the boundary values v∞ and vmin. Due to
v∞ � vmin the latter one is also not important. Thus, the actual slope of the velocity field or
the density stratification is not important and the denominator of Q should stay constant as
long as the value of v∞ remains the same.

How the nominator of Q, which contains the radiation and gas pressure terms, is affected
when changing the form of v(r), cannot be predicted intuitively. In order to understand the
reaction of the gas pressure term, it is useful to write it in the form of Eq. (3.19), i.e. containing
the explicit velocity field. The second and third term of Eq. (3.19) depend only on a(r) and
thus the temperature (and, if used, the turbulent velocity) but not the wind velocity. Thus
the only term that should be affected if we assume that the temperature structure remains
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β = 0.6, Q = 0.965
β = 0.8, Q = 0.976
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β = 1.2, Q = 0.995
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Figure 4.1 – Radiative acceleration und resulting work ratio Q for models with different β-laws.
Except of the different β values used in the wind part, the model parameters are identical. The
effects on the radiative acceleration are therfore mostly in the wind region (covered by the lower
depth indices), although differences (as for β = 0.6) can also arise from the different connection
points between the wind and the quasi-static layers.

more or less the same is the first one. Integration of the radius yields

∞∫
R∗

a2(r)

v(r)

dv

dr
dr ≈ a2

s

∞∫
R∗

1

v(r)

dv

dr
dr = a2

s

∞∫
R∗

d

dr
(ln v) dr = a2

s ln

(
v∞
vmin

)
. (4.1)

This calculation assumes that the sonic speed can be roughly approximated by its value at the
sonic point, i.e. a(r) ≈ as := a(Rs), which is sufficient in this context, as this calculation is
only done to illustrate the basic effects. Looking at Eq. (4.1) reveals that only the ratio of the
terminal velocity and the innermost velocity is really important, hence changes of the slope
of v(r) are hardly affecting the integrated acceleration due to gas pressure as long as vmin and
the terminal velocity do not change drastically.
For the radiative acceleration there is no pure analytical expression as the evaluation of

the integral in Eq. (3.55) requires detailed calculation of the opacities and thus has to be
done numerically. In order to study how large the effect of different slopes are on the overall
work ratio Q, a series of models has been calcualted using the same terminal velocity v∞,
but different β-exponents for the wind regime plus a consistent stratification in the quasi-
hydrosatic regime. The results are illustrated in Fig. 4.1, where the depth-dependent radiative
acceleration of all models is plotted against the depth index, denoting the radial grid index
which increases inwards. It can be clearly seen that the wind region, which dominates the
integrated radiative acceleration, is affected if β is changed, but the overall change ofQ remains
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4.2 A model for a hot WO star

small. Between two models with ∆β = 0.2 the change is on a percent level, which means that
they are small enough to be neglected for one hydro iteration. In other words, Q will not
change dramatically if only the form of the velocity law is adjusted while v∞ and Ṁ remain
approximately the same.
After considering all major contributions to Q, it becomes clear that models with Q ≈ 1 are

the best start approximation for calculating hydrodynamially-consistent models. Especially
if they have already been calculated with a consistent quasi-hydrostatic stratification, they
are promising candidates that could converge to a hydrodynamically-consistent solution on
in shorter computing times than in the original approach from Gräfener & Hamann (2005).
The precise number of iterations for a model will of course depend on the complexity and the
parameter regime. Usually WR models converge faster than OB models, simply because the
radiative transfer can be calculated with a higher Doppler velocity. For both WR and OB
models covergence is reached in one or at most a few days, with WR models being more on
the order of one day, except for complex situations, such as WO stars or very thick winds.
Nevertheless, the models need to be checked regularly as it can happen that the effect of the
hydrodynamic velocity update is exactly canceled by the shift of the τmax-iteration and the
velocity field is therefore not really improved in a hydro step.

4.2 A model for a hot WO star

The application to a very hot WO star provides an excellent example to demonstrate the
necessary steps, but also the problems which can occur on the way to a hydrodynamically
consistent solution. Therefore, the application to the WO star is described in more detail
than the other results discussed afterwards. The actual steps are basically the same for all
stars, even though the parameters can differ significantly. The problems which will be listed
do not occur for all cases, but they are a good example for the difficulties that one can be
faced with, especially in the thick wind regime, when trying to obtain HD models.

4.2.1 The test candidate: WR102 - A rare WO2 star in the Milky Way

The Wolf-Rayet star WR102 (also known as [S71d] 4) is one of only four known WO stars
in the Milky Way. Of those four, WR 102 and WR 142 are both classified as WO2, making
them the earliest WO stars known∗ with WR 102 seen as the slightly earlier† and maybe more
evolved one (Kingsburgh et al., 1995; Tramper et al., 2015).
WR 102 was analyzed in Sander et al. (2012) by using a small grid of WO models. Very

recently, Tramper et al. (2015) studied WR 102 and almost all other known WO stars with
CMFGEN and new X-SHOOTER spectra. Already the models in Sander et al. (2012) required
an oxygen mass fraction of XO = 0.3 to reproduce the prominent WO features, much higher
than the typcal value of XO ≈ 0.05 in WC stars. The more detailed analysis by Tramper
et al. (2015) confirmed the enhanced oxygen fraction, even though their value is a bit lower
than in the grid analysis. The mass fractions obtained by Tramper et al. (2015) are XHe =

∗Recently, another WO2 star has been found in the LMC by Massey et al. (2014). No spectral analysis has
been published yet, but a first look at the spectrum shows a stronger C iv 5808Å emission than WR 142,
suggesting that this star is slightly cooler.

†WR 102 was classified as WO1 instead of WO2 before the WC/WO classification has been revised by
Crowther et al. (1998).
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Figure 4.2 – WR 102: The spectral energy distribution (upper panel) and the normalized op-
tical spectra (lower panel) for an unclumped PoWR model (D = 1, log Ṁ = −4.92) using the
parameters obtained by Tramper et al. (2015) are compared to observations and photometry.
While the most prominent line features are reproduced, the SED and the luminosity are severely
underestimated.

0.14, XC = 0.62, and XO = 0.24, giving WR 102 the lowest helium and the highest oxygen
abundance of all studied WO stars.

4.2.2 Obtaining a starting model

WO models tend to be hard to calculate. The proper treatment of their high temperatures
requires to take Fe ions higher than Fex into account, which leads to a significant increase
of the total number of superlevels. This in turn requires a sophisticated treatment of the
iron superlevels which works properly on ions of more than ten different ionization stages.
Typical PoWR models calculated for WO stars contain Fe iv to Fexvii, but test calculations
have shown that stages up to Fexx can get excited in the innermost parts of the atmosphere
models. However, the contribution of ions above Fexvi to the radiative acceleration and also
their effect on the emergent spectra are hardly recognizable, so these ions can be neglected in
the model calculations.
As a parameter study is not the scope of this work, the recent abundances from Tramper

et al. (2015) are adapted to calculate a PoWR model that serves as starting approximation
for the hydrodynamical calculations. It has to be mentioned that the high Fe ions (>Fex)
were not included in the CMFGEN models by Tramper et al. (2015), which could result in
differences between the obtained spectra.
The PoWR model with the same parameters as Tramper et al. (2015) with D = 1 is shown
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Figure 4.3 – Same as Fig. 4.2, but with a PoWR model for log Ṁ = −5.3 and D = 10. The
luminosity is still underestimated, but the electron scattering wing of the Ovi 3811Å line is
reproduced much better than in the unclumped model.

in Fig. 4.2. The main features of the normalized WO star spectrum are reproduced, but the
resulting spectral energy distribution does not fit the observed photometry, even though the
same distance is used (d = 4.6 kpc, taken from Drew et al., 2004). The same basically holds
if a clumped model with D = 10 (and in turn a lower mass-loss rate) is used, as shown
in Fig. 4.3. Clumping improves the SED fit only very mildy (by about 0.1 dex in L) as the
clumped model did use a slightly higher mass-loss rate than one would obtain with simply
scaling Ṁ by D−1/2. Significant clumping seems to be necessary to avoid the strong electron
scattering wings in Fig. 4.2 that are not observed. This questions the constraint of D ≤ 2.5
which Tramper et al. (2015) deduced based on evolutionary calculations and the observed low
helium mass fraction. However, if the luminosity is significantly higher, as the PoWR models
demand for the assumed distance, these evolutionary calculations would have to be adjusted
anyhow.
A simple scaling of the WO model suggests a luminosity around logL/L� ≈ 6 instead of

5.45, which would be significantly higher than what has been found for the Galactic WC and
WO stars so far. In order to have a sufficient model in this regime a pure shift of logL is
not sufficient, as the resulting normalized spectrum will no longer be the same. In order to
have approximately the same spectrum, the transformed radius Rt (cf. Eq. 2.2) needs to be
fixed, which implies a scaling of Ṁ ∝ L3/4 if all other parameters stay the same. This leads
to a model with log Ṁ = −4.88, which tends to give a bit too strong emission lines. A better
agreement is obtained for a model with log Ṁ = −5.0 and depth-dependent clumping, as can
be seen in Fig. 4.4. The model SED points also to a slightly higher reddening than assumed

81



Chapter 4 Hydrodynamic models: Applications and limitations

15.1015.87 14.72
11.393 10.893

10.619

WR102
aka Sand 4

WO2

EB-V =1.26 DM=13.31 mag
CARDELLI Rv = 3.10

-17

-16

-15

-14

-13

-12

-11

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5
log( λ  / A

o
 )

lo
g 

f λ
 [

er
g 

s-1
 c

m
-2

 Ao
-1

]

O 
VI

 7
 - 

6

C 
IV

 9
 - 

6

O 
VI

 3
p 

2 PO
 - 

3s
 2 S

He
 II

 1
1 

- 4

He
 II

 1
0 

- 4

O 
VI

 1
0 

- 8
He

 II
 9

 - 
4

C 
IV

 6
 - 

5

He
 II

 4
 - 

3
He

 II
 8

 - 
4

C 
IV

 6
s 2 S 

- 5
p 

2 PO

O 
V 

3p
 1 PO

 - 
3s

 1 S

O 
VI

 8
 - 

7 

He
 II

 7
 - 

4
C 

IV
 1

0 
- 7 O 

V 
3d

 3 D 
- 3

p 
3 PO

 

C 
IV

 3
s 2 S 

- 3
p 

2 PO
 

C 
VI

 1
3 

- 1
0

C 
VI

 1
1 

- 9
 

He
 II

 6
 - 

4

C 
IV

 9
 - 

7

O 
V 

8 
- 7

O 
VI

  9
 - 

8
C 

IV
  7

 - 
6

C 
IV

 1
1 

- 8

10x

0

1

2

3

4

5

6

7

3500 4000 4500 5000 5500 6000 6500 7000 7500
λ  / A

o

N
or

m
al

iz
ed

 f
lu

x

Figure 4.4 – Same as Figs. 4.2 and 4.3, but with a PoWR model using a higher luminosity of
logL/L� = 6.0 and log Ṁ = −5.0. The clumping factor is increasing outwards with an outer
maximum of D = 10.

by Tramper et al. (2015), as it reproduces the the observed blue optical measurements, but
tends to underestimates the redder ones.
The agreement in the normalized spectrum could possibly be improved with the help of

more models with finer steps in Ṁ and other parameters, but this is not the scope of the
present work.

4.2.3 The hydrodynamic approach

WR 102 is an interesting test case for the hydrodynamical studies, as it provides the chance
to check if such extremely fast winds (v∞ ≈ 5000 km/s) can be driven by radiation only. As
discussed in Sect. 4.1, the work ratio is an indicator to check if a model with a prescribed
velocity law has an overall sufficient radiative driving and could thus be used to start a
hydrodynamically consistent model iteration.
The work ratio Q for the model with the original parameters from Tramper et al. (2015)

with D = 1 yields only Q = 0.38. The introduction of clumping lowers the mass-loss rate and
thus raises the value to Q = 0.65 for the model shown in Fig. 4.4. For the model with the
higher luminosity of logL/L� = 6.0 and log Ṁ = −5.0, the work ratio increases to Q = 0.98.
The work ratio increases even more, if depth-dependent clumping is introduced (Q = 1.09)
and the additional elements sodium and magnesium are added (Q = 1.19). In the standard
models, only helium, carbon, oxygen, neon, and the generic element for the iron group were
used. The effect of sodium and magnesium on the optical spectrum is negligible, but they
contribute to the radiative acceleration in the wind raising Q by about 10%. This is in line
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Figure 4.5 – Detailed contributions to the radiative acceleration in the best-fitting non-HD
PoWR model for WR 102. The green curves denote the radiative acceleration due to the different
elements considered in the model. The red dashed curve marks the total radiative acceleration.
For comparison, the gas pressure term (yellow dashed line) and the contribution due to scattering
of free electrons (purple line) are also shown. The combined repulsing forces of gravity and inertia
are indicated by the black line. The inertia contribution to the black line is shown in blue. All
accelerations are normalized to gravity. G denotes the generic iron group element.

with ealier, non-HD, cmfgen-based studies from Herald et al. (2001), who noticed that the
inclusion of iron and other metals such as neon or magnesium significantly improved the work
ratio of their models.
The contributions to the radiative acceleration for the model including sodium and magne-

sium are shown in Fig. 4.5. This model already includes the proper treatment of the quasi-
hydrostatic regime, therefore the total radiative acceleration basically matches gravity inwards
of the sonic point. The gas pressure is about one order of magnitude lower than the radiative
pressure, even in the subsonic layers. (No turbulence pressure is included in this model.) In
the wind regime, the gas pressure term drops even further and is quickly less important than
all other acceleration contributions. Outward of the sonic point, first only the accelerations
from the iron group elements and the free electrons provide a significant contribution, but
this changes at ≈ 4R∗, where the iron acceleration drops a bit while all other elemental con-
tributions increase. It is noteworthy that even though carbon contributes more than 60% to
the mass, it never provides a contribution to the radiative acceleration that would at least
be comparable to the Thomson term. The only elements apart from iron which contribute
more than the Thomson scattering are neon (XNe = 1.7 ·10−3), magnesium (XNe = 6.9 ·10−4)
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Figure 4.6 – F-G-analysis plot for the WO starting model with an already consistent quasi-
hydrostatic part. The two positions of F = 0 and dF

dr < 0 are marked with ri (inner) and ro
(outer) and denote the two possible candidates for the critical point in the current situation. The
current sonic point, which should be identical to the critical point in a converged model, is also
indicated.

and oxygen (XO = 0.24). In a region between 7R∗ and 40R∗, the contribution of sodium
(XNa = 2.7 · 10−5) is comparable to the Thomson term. These results underline that the
abundance of an element as such does not provide any hint on its wind driving contribution.
In order to save calculation time, the majority of hydrodynamic calculations have been

performed using models without sodium and magnesium, as these two elements provide about
30% of the total number of considered atomic levels (571 without Na and Mg vs. 803 including
both). As the work ratio of the starting model is already very close to unity, one would expect
that the terminal velocity will not change significantly in a hydrodynamically-consistent model.
However, a look at the F-G-analysis plot for this model (Fig. 4.6) reveals that an integration
of the equation of motion would yield a non-monotonic velocity field. Furthermore, there
are multiple radii with F = 0, raising the questions which of them marks the correct critial
point. For a monotonic v(r), the gradient of F must be negative at F = 0, which excludes
the point closest to the current sonic point. The two other points, marked with ri (inner) and
ro (outer) in Fig. 4.6, would give very different mass-loss rates. Given that ro will likely lead
to a much lower mass-loss rate, below what is usually known for Wolf-Rayet stars, ri is the
proper candidate here.
The candidate radius rcand for a critical point is now given, yielding already the velocity

v(rcand) = a(rcand). Nevertheless, the trend of F̃ in Fig. 4.6 still would lead to a non-monotonic
velocity law with a deceleration region between the current sonic point and ro. To avoid this,
the value of Γrad used in the hydrodynamic integration is manipulated such that F > 0
is avoided outward of rcand and F < 0 is avoided inwards of rcand. The resulting F̃ is
shown in Fig. 4.7, illustrating the situation still before the hydrodynamic integration. After
the integration, the situation will stay the same for F̃ (at least before performing the next
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Figure 4.7 – Same as Fig. 4.6, but now with an automatic adjustment of Γrad ensuring that
F = 0 is reached only once. The method choses the innermost candidate and thus automatically
removes any additional critical point candidates.

radiative transfer calculation), but G̃-term using the new velocity field will then smoothly pass
zero at rcand.

Unfortunately, the modification of F has a very subtle effect on the velocity field, that can
also be illustrated via Fig. 4.7. While the gradient outside of what has been denoted with ro
in Figs. 4.6 and 4.7 is correct, the actual wind velocity v is not. Due to the modification in the
deceleration region, the wind velocity is artificially kept at a higher value than it would have
been in the non-monotonic case. In the end, this leads to an offset in the terminal velocity. To
account for this situation that has been forced by the numerics while keeping the gradient, the
obtained velocity field is scaled with a correction factor afterwards. This correction again stems
from the work ratio Q, which automatically changes when Γrad is modified. The correction
factor is then obtained by comparing the Q-values between the unmodified and the modified
velocity field in a similar way than explained in Sect. 3.11.2.

The presence of a deceleration region is a disturbing phenomenon. On the one hand there
is no physical reason that a velocity gradient cannot be negative in a particular region of
a stellar atmosphere. On the other hand, the trend of Γrad is heavily influenced by the
density stratification and thus by the velocity field used in the starting approach. In some
cases the deceleration eventually vanishes throughout the model iterations, e.g. in the OB
models discussed below, while in other cases, such as for the WO model discussed here, it
does not. This might indicate a “real” deceleration region, but it cannot be ruled out that it is
a numerical artifact. A radiative transfer code that can handle non-monotonic velocity fields
would be required to shed more light on this question.
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Figure 4.8 – Depth-dependent accelerations for WO models with the “near-HD” velocity field
using a clumping onset above the sonic point (upper panel) and below (lower panel). The grey-
shaded areas are indicating the regions where D increases from 1 (smooth wind) to 10.
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4.2.4 The onset of clumping

As indicated above, the “converged” model for WR 102 shows a deceleration region. In this
region, a hydrodynamically consistent solution cannot be found, as indicated in the upper
panel of Fig. 4.8, where the red solid curve denoting the sum of the outward pushing acceler-
ations cannot balance the black solid curve denoting the sum of gravity and inertia. A closer
inspection of the model reveals that the deceleration region coincides more or less exactly with
the region where the clumping factor increases (grey-shaded area). In the starting model, the
clumping onset has been set to the sonic point with an increase to D = 10 at v = 1000 km/s.
After each update of the velocity field, the clumping stratification is adjusted according this
prescription, therefore the clumping factor increases exactly above the sonic point also in the
hydrodynamic model, even if the position of the sonic point might have changed with respect
to the starting model.
This coincidence raises the question if the deceleration region is caused by the increase

of the clumping factor. To test the influence, a test model has been calculated where the
velocity field is fixed to the results of the hydrodynamic calculations, but the clumping factor
now increases in a region below the sonic point. The resulting radiative acceleration indeed
changes, as can be seen in the lower panel of Fig. 4.8. There is an increase of arad in the
region below the sonic point where D increases, but there is also still a decrease above the
sonic point. In the last years it has been suggested that clumping could already exist in layers
below the sonic point (see, e.g. Cantiello et al., 2009; Muijres et al., 2011), contrary to ealier
studies. At least from the technical standpoint, a subsonic clumping onset seems to improve
the situation.

4.2.5 The resulting velocity field and spectrum

Despite some shortcomings in the inner part, the remaining wind region, where important
parts of a WO spectrum are formed, is hydrodynamically consistent (log r/R∗ − 1 & −0.6).
The model thus provides an interesting insight in the wind velocity field of a WO2 star like
WR 102.
In Fig. 4.9, the resulting velocity field (red) is compared to a few β-laws (green, black, and

blue). In the outermost part, the slope of the velocity field for the hydrodynamic model roughly
resembles a law with β = 0.6, but the increase in the inner part is steeper than predicted by
any β-law. The hydrodynamic inconsistency in the region above the sonic point prevents
to draw more general conclusions here, but a steep increase of the radiative acceleration is
seen in several of the WO models calculated during this work. For a consinstent model, this
would have to be reflected in the velocity field, assuming it is not an artifact of the starting
model. As WO models are generally hard to calculate (which is not restricted to PoWR,
see also Tramper et al., 2014, 2015), further code improvements would be necessary before
it is possible to perform an in-depth study with various different starting models that could
confirm or deny that a steep increase in the velocity field is typical for WO stars. These
improvements are not concerning the hydrodynamics and are therefore beyond the scope of
the present work. C
An interesting detail in the obtained WO velocity field, is the absence of a clear velocity

plateau in the wind, even though the inertia term in Fig. 4.8 is clearly non-monotonic. Such a
plateau was seen in the hydrodynamic solution obtained for the WC star WR111 by Gräfener
& Hamann (2005) (see inlet of Fig. 4.9) and it also does in occur for the WNE model which will
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Figure 4.9 – The velocity field of the hydrodyamic WO model (red curve) is compared to different
beta-laws (green, black, and blue curves) with an emphasis on the wind region. The inlet shows
the outer wind part in comparison to the WC velocity field obtained by Gräfener & Hamann
(2005). For a better comparison, the velocity fields are normalized to their terminal velocity in
the inlet.

be presented in the following Sect. 4.3. However, the “dip” in the inertia term is not as deep
and it occurs in WO model at a radius where the velocity is already close to v∞. Both facts
prevent the appearance of a noticeable plateau. The actual origin of the hydrodynamically
consistent velocity gradient is of course the form of arad(r), which has a “dip” in all of the WR
models due to the iron group elements. While no other element is able to fully compensate
this feature, Fig. 4.5 shows that in the case of the WO model, the contribution of elments
like neon and magnesium are increasing exactly in the wind region where the contribution
of the iron group elements goes down. Hence, these elements, which are neither considered
by Gräfener & Hamann (2005), nor in the WNE model in this work, might be important for
damping the drop of the total radiative acceleration.

Due to the different terminal velocity of the hydrodynamic model, the resulting emergent
spectrum shows a bit weaker, but slightly broader lines, as illustrated in Fig. 4.10. When
compared to the observation, the model does not provide a fit as good as Tramper et al.
(2015), but this is not due to the hydrodynamic calculations, but attributed to the fact that
in the process of approaching Q ≈ 1 some stellar parameters were adjusted and this mildly
affected the spectrum. Still, the resulting models resonably well reproduces the appearance
of an early WO star.
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Figure 4.10 – The optical spectrum of the hydrodyamic WO model (red curve) is compared to
the starting model using a prescribed wind velocity law with β = 1. Most differences are due to
the higher terminal velocity of the HD model.

4.2.6 Revised role of WR 102?

The much higher luminosity than obtained by Tramper et al. (2015) for WR102 drastically
changes the position of the star in the Hertzsprung-Russell diagram (HRD). This can be seen
in Fig. 4.11, where the new position of WR102 is compared to the results from Tramper et al.
(2015) and Sander et al. (2012). For comparsion, the positions of the other Galactic WR stars
analyzed in Hamann et al. (2006), Martins et al. (2008), Liermann et al. (2010), Sander et al.
(2012), and Oskinova et al. (2013) as well as the other Galactic WOs analyzed by Tramper
et al. (2015) have been added. The new position of WR102 would significantly seperate this
WO2 star from the known early WN and WC stars. While the position obtained by Tramper
et al. (2015) suggests that this star is quite typcial descendant from a WC, the evolutionary
status for a WO star with million solar luminosities and a current mass of 30M� would raise
new questions. However, this value of course relies on the distance taken from Drew et al.
(2004) who basically came to this value by performing an MV-calibration between WR102
and WR142. WR142 is another Galactic WO2 which seems to be associated with the Be
87 cluster (Massey et al., 2001; Knödlseder et al., 2002). This means that the distances of
the only two analyzed WO2 stars are directly connected. A future cross-check could come
from the recently discovered LMC195-1 found by Massey et al. (2014), which is now the third
known WO2 star and the first outside the Milky Way.
The situation thus remains unclear so far, both from the distance and the modelling side.

Future updates of the PoWR code (see chapter 6) could improve the stability of WO models
and thus provide better constrains on the model parameters, possibly even allowing a fully
hydrodynamically-consistent model. An analysis of the LMCWO2 could also give a better hint
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Figure 4.11 – The Hertzsprung-Russell diagram (HRD) of the Galactic Wolf-Rayet stars (grey
symbols) which have been analyzed by Hamann et al. (2006), Martins et al. (2008), Liermann
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symbols refer to the different spectral types as indicated in the upper left corner. The positions
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by blue and red symbols. For comparison, also the zero age main sequence (ZAMS) for hydrogen
and helium stars is shown.
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on the absolute visual magnitude, eventually leading to a better constraint for the luminosity
and even the mass.

4.3 A model for a hydrogen-free WN star

Other hydrogen-free Wolf-Rayet stars are not quite as hot as the WO-type stars, but usually
still have much stronger winds than OB stars. In most of the early WC and WN stars, at
least at Galactic metallicity, the spectrum is formed in the wind and not affected by the quasi-
hydrostatic layers. Since Gräfener & Hamann (2005) already provided a model for a WC star,
a model for an early WN star is the most urgent task in order to cover the main Wolf-Rayet
types on a broad scale. Although a few early-type WN (WNE) stars are found to contain
hydrogen (see, e.g. Hainich et al., 2014, 2015), almost all Galactic WNE are hydrogen-free
(Hamann et al., 2006). In order to understand these stars and their thick winds it is therefore
sufficient to use a model without hydrogen.
The model for the hydrogen-free WN star served as a kind of prototype to study the imple-

mentations with and without the use of a force multiplier parameter (see Sects. 3.8 to 3.11).
With a temperature of T∗ ≈ 140 kK the test model is set in the range of early subtypes
(WN2-5). A more precise assignment to a particular subtype would depend on the spectral
appearance, which cannot be simply correlated with a certain temperature T∗. For thick wind
models, T∗ is furthermore not really a good reference value as models with the same value
of Rt · T 2

∗ yield approximately the same emergent spectrum (see, e.g., discussions in Hamann
et al., 2006; Sander et al., 2012).
The Wolf-Rayet model grids, which provide the basis for the analysis of larger samples,

are calculated with a luminosity of logL/L� = 5.3 (Hamann & Gräfener, 2004; Todt et al.,
2015). Models from such a grid usually do not reach Q ≈ 1 in the parameter regime where
the emergent spectra match observations. These models were calculated to obtain stellar
parameters from fitting observed spectra and thus include only the important elements visible
in the spectrum. They also do not include the iron group elements for ionization stages above
Gx. As explained above for the WO example, both simplifications lead to an underestimation
of the opacity and thus the radiative acceleration. For the hydrodynamic calculations, higher
ions up to Gxvii need to be included. Due to the test character of the model, no additional
elements are considered, but only helium, carbon, nitrogen, and the iron group elements. To
compensate for that, the maximum clumping factor was moderately enhanced from D = 4
to D = 20. The more recent results from the Potsdam group (e.g. Sander et al., 2012;
Hainich et al., 2014) favor a typcial value of D = 10, leaving a factor of two to be covered
by additional elements. Future calculations will include more elements that are important for
the wind driving, and will – based on the experience from the WO models – likely allow a
reduction of the clumping factor back to D = 10. Finally, the luminosity of the WNE model
was moderately increased to logL/L� = 5.45, a typcial value obtained for a WNE star like
WR 2 (Hamann et al., 2006). WR 2 is one of the Galactic WN stars where the distance can
de deduced from a probable membership of the CAS OB1 association (van der Hucht, 2001).
Thick wind models tend to have a complitated stratification around the sound point, as

illustrated for the WO star in the F-G-diagram. If Γrad is very close to unity in the subsonic
part, F̃ will be very close to zero and small pertubations can lead to large changes in the
resulting v(r) by introducing additional critical point canditates. Whether this situation is
realized in nature is debated. For Γrad & 1 in a subsonic part, phenomena like inflation (see,
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Figure 4.12 – Upper panel: Acceleration plot for the hydrodynamically consistent WNE model.
Lower panel: F-G-analysis plot for same model. Due to the κeff-formalism in the innermost part,
F reaches higher values than normal. The “bump” after the sonic point in the supersonic region
is typcial for Wolf-Rayet stars with dense winds and can be attributed to an opacity bump in the
iron group elements.
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e.g., Gräfener et al., 2012; Sanyal et al., 2015) or the breaking into optically thick clumps
(see, e.g. Oskinova et al., 2007; Sundqvist et al., 2014) are discussed. Especially in the latter
case not the full opacity would have to be considered, but instead only an effective opacity
κeff would contribute to the radiative acceleration. With this motivation a formalism has
been introduced which will be explained in Sect. 5.4. Due to its restriction to the innermost
regime, the κ-reducing hardly affects the work ratio Q. While this arbitrary modification
prevents to draw any physical conclusions from the subsonic part, it can significantly simplify
the F-G-stratification.
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Figure 4.13 – The emergent spectrum of the hydrodynamic WNE model is compared to the
spectrum of a model with a β-law using the same T∗, v∞, and Ṁ . The upper panel shows
the flux-calibrated spectrum as seen from a distance of 10 pc while the lower one compares the
normalized optical part.

The acceleration stratification and the F-G-trend for the hydrodynamically consistent WNE
model are shown in Fig. 4.12. The obtained values of v∞ = 1495 km/s and log Ṁ = −5.39
are in the expected region for early WN stars. Both values would be somewhat higher if
opacities for more elements would be considered. In the analysis of the Galactic WN stars
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Figure 4.14 – Comparison of the carbon ionization (left panels), the electron temperature (lower
right panel), and the optical depth stratification (upper right panel). The red curves refer to the
hydrodynamic model in all panels while the blue curves show the same quantities for the model
with a prespecified wind velocity law using the same T∗, v∞, and Ṁ . In the hydrodynamic model
the temperature in the outer region is slightly higher, so that Cv does not recombine. This leads
to the absence of the C iv-line in the emergent spectrum (see Fig. 4.13). For clarity, only the
ground level of each ion is shown in the ionization stratification panels.

by Hamann et al. (2006), values up to 2700 km/s were deduced, while most WNE stars had
terminal velocities between 1600 and 2300 km/s.

The emergent spectrum of the hydrodynamically consistent model is shown in Fig. 4.13. For
comparison, a model with the same stellar parameters (T∗, v∞, Ṁ , Rt) has been calculated.
In the comparison model, the inner part of the velocity structure is obtained by integrating
the hydrostatic equation as described in Sect. 3.4 while the outer part is described by a β-
law with β = 1.5. Both velocity laws are connected such that the velocity and its gradient
are continious. By comparing this model with the hydrodynamic model it is possible to
identify the differences that arise when using a hydrodynamically consistent solution. The
comparison of the normalized spectra (lower panel in Fig. 4.13) reveals that the helium lines
are hardly affected while C iv 5808Å completely vanishes in the hydrodynamic model. Also
Nv 4603/19Å gets slightly weaker, but this line complex is very sensitive to any changes
in a model. It should be noted that the chemical composition is exactly the same in both
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4.3 A model for a hydrogen-free WN star

models and the absense of the C iv-line is purely a result of the stratification changes. This
is illustrated in Fig. 4.14, where the carbon ionization and the temperature structure of both
models are compared. The hydrodynamic model has a higher electron temperature in the
wind except for the outermost part. In this situation Cv remains the leading ion while it
otherwise recombines to C iv. This demonstrates also how dangerous it would be to deduce
any carbon abundance from this line doublet.
The most striking differences in the spectral appearance are revealed when looking at the

spectral energy distribution (SED, upper panel of Fig. 4.13). The iron forest redwards of
He ii 1215Å is much stronger in the non-HD model. Furthermore, in the optical range the
total flux is lower in the hydrodynamic model. A closer look on the model details reveals that
while both models have the same T∗, i.e. the same effective temperature at τmax, the effective
temperature at τRoss = 2

3 differs by 10 kK (115 kK for the non-HD model vs. 105 kK for the
HD model). The τ -stratification (upper right panel of Fig. 4.14) shows significant differences
only in the innermost part, where the optical depth of the hydrodynamic model is lower for
the same (particle) density. The same trend can be seen in the temperature stratification
(lower right panel of Fig. 4.14) and coincides with differences in the ionization of the iron
group superlevels. This could explain the differences in the iron forest eventually seen in the
SED.
From the fact that the hydrodynamic model reaches a higher density at the inner boundary

one can already deduce that the velocity here must be smaller compared to the model with
the prescribed wind velocity law. This might seem surprising at first since Ṁ is the same
for both models and the hydrodyamic equation transitions into the hydrostatic equation,
i.e. the inertia term is of no importance at the inner boundary. However, both equations
basically provide a velocity gradient. The absolute value then follows from a given value
at a certain point, either the critical point (hydrodynamic solution) or a boundary value
(hydrostatic solution). Therefore, the inner boundary value of v and thus also the density can
differ between the two approaches. The velocity fields for both models are shown in Fig. 4.15,
where the velocity is plotted on a logrithmic (lower panel) and a non-logarithmic scale (upper
panel). The logarithmic plot in the lower panel gives better insights into the low-velocity part
of both laws. The sonic point (v = a) differs considerably between the two models and the
hydrodynamic solution increases much steeper than the beta-law, which is connected to the
hydrostatic integration at the radius Rcon.
For the wind part, the non-logarithmic velocity scale fully reveals the deviance of the hy-

drodynamic solution from the β-law and shows that there is a plateau in the velocity field
at about 2R∗ with v ≈ 2

3v∞
‡. This step of course corresponds to the “dip” in the inertia

term seen in the upper panel of Fig. 4.12, which itself is caused by the decreasing radiative
acceleration in this region. This can be attributed to the opacities of the iron group elements
since the other considered elements not only have significantly weaker contributions, but also
show an increasing outward trend. Due to the plateau the hydrodynamic solution cannot
be approximated by a single β-law. Using a double-β-law with the right weighting factors
(see purple and yellow curve in the upper panel of Fig. 4.15) gives a better approximation for
the slope, but cannot provide the increase so far inwards as observed in the hydrodynamic
solution. However, this is likely due to the connection with the hydrostatic solution and forc-
ing a continous gradient between two regimes. While the latter is very helpful, if not even

‡ Interestingly, the plateau occurs at about the same fraction of the terminal velocity as proposed by Hamann
(1980) for ζ Pup using line opacity calculations to obtain a so-called “tailored” velocity law.
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Figure 4.15 – The velocity field of the hydrodynamic WNE model (red curve) is compared the
velocity field of the model with a prefixed wind velocity law (with β = 1.5) in the outer part and
a correct hydrostatic integration in the inner part (black curve). Both models have the same T∗,
v∞, and Ṁ . Additional prescribed wind velocity laws have been added for comparison. While the
upper panel focusses on the wind domain, the lower panel shows the velocity on a logarithmic scale
and thus focusses on the quasi-hydrostatic part. The vertical dashed line denotes the connection
point for the fixed velocity law (black curve).
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needed, to avoid “connection artifacts” in the radiative acceleration, an even more sophisti-
cated treatment of the connection regime might be helpful as neither the hydrostatic nor the
(double-)β-law, representing the outer wind region, is a really sufficient approximation around
the sonic point. For a pure description of the the wind regime, a shifted double-beta law might
be a valid treatment.

4.4 Hydrodynamical consistent OB star models

With the new implementation introduced in Sect. 3.11, hydrodynamical solutions can not
only be calculated for WR, but also for OB stars. Unfortunately, OB star models need much
longer calculation times as they require lower Doppler velocities vdop, which decreases the
frequency steps in the CMF calculations, and also need more elements (which increases the
calculation time for the solution of the statistical equations). Nevertheless, the calculation
of hydrodynamically consistent models for O and B stars allows a direct comparision with
CAK-like approximations, making it worth to invest this additional effort.
The hydrodynamic calculations were performed for a model representing an evolved B-star

with T∗ = 26 kK, logL/L� = 5.5, log g = 2.8, and solar abundances apart from a slightly
reduced hydrogen content.§ As a compromise between calculation time and a realistic value,
vdop = 40 km/s was chosen. As this is rather high for a B-star, a turbulence velocity of
vturb = 30 km/s was adopted, leaving the remaining thermal contribution to vdop in a more
realistic range.
The starting model used a consistent hydrostatic part connected to a prescribed wind ve-

locity law with β = 0.8 and v∞ = 700 km/s, assuming a mass-loss rate of log Ṁ = −6.33
(Q = 0.93). The converged model had a slightly higher terminal velocity of v∞ = 765 km/s
and also a higher mass-loss rate of log Ṁ = −6.07. The F-G-plots for both the starting and
the converged model were already shown in Fig. 3.2 in Sect. 3.10.1 as the slope of F̃ is kind
of prototypical and does not show the complex behaviour seen in Wolf-Rayet stars. The ac-
celeration stratification of the converged hydrodynamical model can be seen in Fig. 4.16. The
upper panel reveals that in the subsonic part the total continuum acceleration significantly
exceeds the Thomson term, which means that the true continuum cannot be neglected here.
In the wind part, the contribution of the true continuum is less important, which is typical
for OB stars, illustrating that the assumption of atrue cont = 0 which is inherent to all CAK-
like theories is justified at least in the outer wind. Note, however, that this is different for
Wolf-Rayet stars. While for the previously discussed WO model the true continuum is only
important in the inner part, the terms is more promiment in very thick winds, as can be seen
in the WNE model (Fig. 4.12) example.
In the lower panel of Fig. 4.16, the contributions to the radiative acceleration from all

considered elements are shown. The generic element representing the iron group is lead-
ing throughout the stellar atmosphere here, but the contribution from the other elements is
strongly depth-dependent. In the wind regime, silicon, carbon, nitrogen, and sulfur – in this
order – are the next important drivers. All of them have contributions exceeding Γe, which
is on the same order as the contribution due to hydrogen. In the inner part, all of the con-
tributions are less important and only the generic element and hydrogen have a contribution
above a few percent, but still below Γe and the acceleration due to gas pressure.

§To save calculation time, one of the candidate models for high-mass X-Ray binary donors (see Martínez-
Núñez et al., 2015) was re-used as a starting model for this work.
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Figure 4.16 – Acceleration plot for a hydrodynamic B-star model: The upper panel shows the
total radiative acceleration (dashed red line) as well as its total continuum (green dashed line),
and Thomson (purple line) fractions. The total outward acceleration due to radiation and gas
pressure (yellow dashed line) is shown by a red solid line. In a hydrodynamically consistent model,
this sum is balanced by the sum of inertia (blue line) and gravity, which is indicated by a black
line.
The lower panel shows the same model, but now the different green lines indicate the acceleration
contributions (line and true continuum) due to the various elements accounted for. The other
lines have the same meaning as in the upper panel.
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Figure 4.17 – The velocity gradient of the hydrodynamic B-star model (red curve) is compared
to models with a prescribed β-law connected to a consistent hydrostatic solution. The thick grey
dashed-dotted line denotes the location of the critical point (i.e. v = a) of the hydrodynamic
model. The connection points for the models with a prescribed wind velocity law are indicated by
correspondingly colored dashes. The grey dotted line additionally indicates the connection point
for the model with β = 1.4.

The resulting velocity field of the hydrodynamic (HD) model can be seen in Fig. 4.18. The
hydrodynamic solution for v(r) is almost identical to a β-law with β = 1.4 connected to an
inner velocity field obtained from the hydrostatic equation. It is surprising that the form of
the HD velocity field is so well reproduced by the model with the prescribed wind velocity
law, especially in the region between the sonic point and the connection point. In this region
the inertia term cannot be neglected and thus one would expect that the hydrostatic solution,
which also cannot handle Γrad ≥ 1, would differ significantly from the HD solution. A close
inspection of the velocity gradients shown in Fig. 4.17, however, reveals that none of the β-law
approximations is able to exactly reproduce the smooth velocity gradient produced by the
hydrodynamic model.
In order to understand why the approximation between the sonic point and the connection

region works reasonably well, it helps to take a look at the acceleration plot for both models.
In Fig. 4.19, the approximative model is shown in the upper panel, while the HD-model is
shown in the lower one. In contrast to the other acceleration plots, this plot is shown in a
non-logarithmic y-scale, making it easier to compare areas. In the upper panel one can see
that the area between Rcrit and Rcon below the inertia term (blue curve) does not differ much
from the area below the arad-term in the same boundary, at least when subtracting what is
covered in the hydrostatic quations, which is the rectangle up to the red, dashed-dotted line.
This means that both effects considered in the hydrostatic equation, namely the neglect of
the inertia term on the one hand and the limitation of Γrad to 0.9 on the other hand, almost
cancel each other. As one enters the nominator and the other one the denominator of the work
radio Q, the energy balance is also affected only on a sub-percentage level as the contribution
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Figure 4.18 – The velocity field of the hydrodynamic B-star model (red curve) is compared to
models with a prescribed β-law connected to a consistent hydrostatic solution. The upper panel
shows the velocity in a non-logarithmic scale while the lower panel has a logarithmic velocity
scale and therefore highlights the inner part. The hydrodynamic solution is extremely close to the
model using a prescribed wind velocity law with β = 1.4. The connection points for the models
with a prescribed wind velocity law are indicated by correspondingly colored dashes at the top of
the lower panel. The combined speed of turbulence and sound a is indicated by a grey curve.

100



4.4 Hydrodynamical consistent OB star models

R
crit

R
con

Q = 1.004 HS+β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a/
g

Q = 0.999 HD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-1.5 -1.0 -0.5 0.0 0.5
log10 (r/R* - 1)

a/
g

Figure 4.19 – The contributions to the acceleration around the onset of the wind are shown
for the hydrodynamic model (lower panel) and for the best approximation using a consistent
hydrostatic integration connected to a β-law (upper panel). The critical point of the HD model is
denoted by a vertical dash-dotted line. The connection point of the β-law-model is denoted by a
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Table 4.1 – Parameters of the hydrodynamical models: For the WO model, the abundances in
brackets are only considered in the test models mentioned in Sect. 4.2, not in the final model.

Model type WO WNE B
T∗ [kK] 210 141 24
Tτ= 2

3
[kK] 174 115 22

log ggrav [cm s−2] 6.16 5.62 2.80
Γe 0.39 0.36 0.31
R∗ [R�] 0.76 0.89 32.6

log Ṁ [M� yr−1] −4.995 −5.385 −6.069
logL [L�] 6.0 5.45 5.5
M∗ [M�] 30.2 12.0 24.5
v∞ [km/s] 5418 1495 765
vturb [km/s] 0 100 30
vdop [km/s] 150 150 40

Rcrit [R∗] 1.010 1.045 1.428
vcrit [km/s] 38.3 100.3 33.6

XH – – 0.70
XHe 0.137 0.983 0.288
XC 0.62 1.0× 10−4 5.0× 10−4

XN – 0.015 2.2× 10−3

XO 0.24 – 6.0× 10−3

XNe 1.7× 10−3 – –
XNa (2.7× 10−5) – –
XMg (6.9× 10−4) – 7.1× 10−4

XAl – – 7.0× 10−5

XSi – – 5.5× 10−4

XP – – 5.8× 10−6

XS – – 3.1× 10−4

XG 1.6× 10−3 1.4× 10−3 1.3× 10−3

of apress is small, so that the slightly different slope of the pressure terms has only a marginal
effect.
Given this close approximation, the emergent spectra of both models are basically indistin-

guishable, as illustrated in Fig. 4.20. Unlike the WNE model discussed above the stratification
is almost identical, which is reflected in the values of Teff

(
τRoss = 2

3

)
or Teff (τRoss = 1), which

differ only on the one-Kelvin level between the two models. However, this close resemblence is
only obtained if β is chosen according to the hydrodynamic velocity law. The starting model
with β = 0.8 instead shows significant differences and a much less consistent behaviour in the
connection region. This is best seen in Fig. 4.17 where the velocity gradient is compared to
models with a prescribed wind velocity law and will be further illustrated in the next chapter
when discussing the importance of the starting model (Sect. 5.5.2).
The parameters of all three hydrodynamically consistent models are listed in Table 4.1.

While three models are not much more than a first glimpse, the large differences between the
models nicely already demonstrates that the calculation method for hydrodynamical models
presented in this work is sufficient over a wide range of different stars and spectral types.
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Figure 4.20 – Emergent spectrum of the hydrodynamically consistent model (red curve) and a
model using prescribed wind velocity with β = 1.4 connected to a consistent hydrostatic solution
(blue curve). The uppermost panel shows the spectral energy distribution over a broad wavelength
range. The second upper panel shows the normalized optical spectrum. The lower two panels
show small parts in the UV (left panel) and around Hβ (right panel). The spectra from both
models are almost indistinguishable.
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Chapter 5

Discussion

5.1 What sets the mass-loss rate?

Since the discovery of Lucy & Solomon (1970) that a continuous outflow could be driven by
momentum transfer from radiation to spectral lines, the theoretical prediction of the mass-loss
rate Ṁ has become one the most important aspects of stellar wind theory. The fundamental
question is how Ṁ is physically determined and which stellar parameters and properties are
relevant.
In the CAK-like descriptions (including Gräfener & Hamann, 2005) the condition that is

required to obtain a solution passing smoothly through the critical point fixes the mass-loss
rate, leading to a formula that allows the calculation of Ṁ from other known quantities at
the critical point. One of the easiest cases is the CAK model with the zero sound speed
approximation. Using Eq. (3.80) in the corresponding equation of motion leads immediately
to an expression for the constant C:

C =
GM∗ (1− Γe) + α

1−αGM∗ (1− Γe)[
α

1−αGM∗ (1− Γe)
]α (5.1)

= (1− α)(α−1) α−α (GM∗)
(1−α) (1− Γe)

(1−α) (5.2)

Combining this result with the definition of C (see Sect. 3.6.1), the mass-loss rate Ṁ can be
directly obtained,

ṀCAK =
4πGM∗
σevth

α

(
1− α
1− Γe

) 1−α
α

(kΓe)
1
α . (5.3)

As Castor et al. (1975) already pointed out, this expression holds approximately also for a
non-vanishing sound speed, if a2 � GM∗r

−1
c (1− Γe) at the CAK critical point rc and the

temperature stratification follows a power-law T ∝ r−n. Hence, in the original CAK-theory
the mass-loss rate Ṁ is implicitly fixed by the value needed for the constant C in the solution.
The definition of C slightly changes for a non-zero sound speed, i.e.

C =
kΓeGM∗
a2R∗

(
Ṁκevth
4πa2R∗

)−α
(5.4)

(Friend & Abbott, 1986), and the finite disk (FD) correction (Friend & Abbott, 1986; Paul-
drach et al., 1986) can be accounted for by C → C · Df in the equation of motion with Df
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being the FD-correction factor. The modifications from Pauldrach et al. (1986) add additional
complexity and thus require an iteration. Using a few justified simplifications, one still obtains
a formula of the same kind, namely

ṀmCAK =

[
c1

(
2π

DHe

)δ (σevth
4π

)α 1

kΓeM∗2
− δ

2

] 1
δ−α

(5.5)

with DHe accounting for different helium abundances and a rather complex factor c1 =
c1(R∗,M∗,Γe,α) whose detailed expression is of no importance for this discussion. An an-
alytic approximation made by Kudritzki et al. (1989) again shows a similar relation between
the mass-loss rate and C which acts as an eigenvalue of a non-linear differential equation,
leading to what they called a “cooking recipe for Ṁ ”. Newer extensions, such as Kudritzki
(2002), do not change this fundamental aspect, but only add further “correction factors“ to
ṀCAK.
The Eq. (3.155) from Gräfener & Hamann (2005), using the generalized CAK approach, is

similar in the sense that it provides Ṁ for given values at the critical point. What makes
it different from the recipes above, is the explicit dependence on the wind velocity at the
critical point vc, which cannot be expressed by other quantities in this approach. Therefore,
the velocity field needs to be known here and the formula can only be used in an iterative
way, while the other ones above do not include the resulting wind velocity law. Although the
calculation of α(r) in the approach from Gräfener & Hamann (2005) is based on a CAK-like
description of arad, the hydrodynamic equation that is eventually used for obtaining v(r) and
Ṁ is linearized.
Nevertheless, all the concepts mentioned above have in common that Ṁ is fixed by a

constraint affecting the overall solution. This stems from the description of the radiative
acceleration arad(r) = g(r) ·Γrad(r) in the hydrodynamic equation. In the “standard form” the
hydrodynamic equation

dv

dr
= −g

v

F̃
G̃

(5.6)

=
g (Γrad − 1) + 2a2

r −
da2

dr

v
(

1− a2

v2

) (5.7)

is linear in the velocity gradient and the critical point of the equation is identical to the sonic
point. However, when inserting the ansatz

Γrad ∝
(
r2v

dv

dr

)α
, (5.8)

the equation contains a second term involving the velocity gradient and thus becomes non-
linear. Furthermore, due this additional term, the critical point is no longer identical to the
sonic point. This is the case in all CAK-like theories and in Gräfener & Hamann (2005).
When this description is dropped, however, and e.g. a constant value for Γrad, i.e. arad ∝

r−2, is used, the critical point of the equation is again identical to the sonic point with an
easy calculation of the corresponding radius via

rc,Parker =
GM∗ (1− Γrad)

2a2
(5.9)
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in the case of an isothermal wind (a = const). In fact, Eq. (5.9) is an only slight generalization
of Parker’s solar wind description (cf. Lamers & Cassinelli, 1999) and thus the radius is labelled
as rc,Parker. In this description, i.e with constant Γrad (including Γrad = 0) and constant
temperature, the mass-loss rate Ṁ does not enter the hydrodynamic equation∗ which means
that any amount of mass could be driven.
In the iterative approach without force multiplier parameters presented in this work, Γrad

enters the hydrodynamic equation as a precalculated quantity that has only a radial depen-
dence, i.e. Γrad = Γrad(r). The same is done in the Monte Carlo (MC) calculations e.g.
by Lucy & Abbott (1993), Vink et al. (1999, 2000, 2001); Vink & de Koter (2005) or, more
recently, Muijres et al. (2012). While this leads to a more complex trend in F̃ , the basic
situation is comparable to the Parker case as the hydrodynamic Eq. (5.7) stays linear in the
velocity gradient and thus the critical point in the equation is identical to the sonic point.
Does this mean that this approach also implies that any amount of mass could be driven and

Ṁ is not fixed by the hydrodynamics? If one considers Γrad(r) and T (r) as given quantities,
this is true. A velocity field could always be obtained via integrating Eq. (5.7) with these given
values, regardless of Ṁ , although this solution might not be monotonic.
Even if one assumes for a moment that the solution could be used in a model atmosphere

calculation, its application would not necessarily give a hydrodynamically consistent stratifi-
cation, as Γrad(r) and T (r) will usually change if v(r) is changed. This has been demonstrated
in the calculations of the response factor (Sect. 3.11.1) and the α-parameter (Sect. 3.9), which
reflect the sensitivity of arad to changes of Ṁ and the velocity gradient, respectively. These
changes require that the whole process needs to be iterated if Γrad is given as a function of
the radius only.
Moreover, the mass-loss rate cannot be calculated analytically from an eigenvalue of the

hydrodynamic equation. Instead it has to be calculated numerically and requires an iteration†.
Lucy & Solomon (1970) calculated Ṁ from requiring geff = 0, i.e. Γrad = 1 at the sonic point.
This condition is not exact for a spherical, non-isothermal atmosphere, but a close inspection
of the acceleration plots for the HD models in chapter 4 reveals that the radius of Γrad = 1,
which is for a consistent model equal to the point where apress = amech, is actually very close
to the sonic point. The reason for this is the small contribution of the 2a2r-term and the
da2

dr -term to F̃ , which can be seen in all of the F-G-analysis plots (see, e.g., Fig. 3.2). With
F̃ ≈ 1− Γrad, the hydrodynamic equation reduces to(

1− a2

v2

)
v

dv

dr
= −g · F̃ (5.10)

≈ g (Γrad − 1) (5.11)

which immediately shows that Γrad must be unity if the right-hand side should vanish at v = a.
In the original concept of Lucy & Solomon (1970), Ṁ is iteratively adjusted until this

condition is fulfilled with sufficient accuracy. The F-adjustment described in Sect. 3.11.1 can
be seen as an extension of this method as Ṁ is adjusted such that the non-approximated F ,
∗It should be noted that this is only true in the isothermal model. For a more accurate description of the
solar coronal wind, Parker (1960) published a non-isothermal approach where the density and thus also Ṁ
remains in the equation. The value of Ṁ then follows from the lower boundary values.

†It has to mentioned that iterative treatments are also required in modern CAK-like approaches, e.g. Ku-
dritzki et al. (1989) and thereafter. Nevertheless, in these approaches the mass-loss rates are still obtained
from conditions at a critical point which is not identical to the sonic point.
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i.e. with the additional two terms, vanishes at v = a. As Ṁ still needs to have a certain value
in order for the solution to pass smoothly through the critical point, the mass-loss rate can
still be interpreted as an eigenvalue of the system, but now actually fixed at the sonic point,
without having used an analytical approach for the calculation.

When looking at the Q-method or the τ -method (cf. Sect. 3.11.4) for fixing Ṁ , one might
argue that the mass-loss rate is not fixed by a condition at the sonic point in these cases.
However, as in those cases the integration always starts from the radius rc = r(F = 0) with a
velocity vc = a(rc), the same condition is fulfilled as above, i.e F vanishes at the sonic point.
Thus, this point – potentially adjusted to also account for a turbulent velocity – remains the
important point that sets the physics, even though Ṁ is then calculated by other conditions
closing the system of equations. In this sense it can be understood that both, Pauldrach et al.
(1986), who use a τ -method for their CMF-based calculations, and Vink et al. (1999), who
are basically using the Q-method for their MC-based calculations, name the sonic point as
the physically important point.

In contrast to the sonic point, which has a clear physical meaning, the physical role of a
CAK-like critical point is debated (see, e.g., Owocki & Rybicki, 1986; Feldmeier, 1998; Owocki
& Puls, 1999, 2002). Due to the different form of the hydrodynamic equation, it is clear that
a CAK-like critical point sets the mass-loss rate, but there is no deeper physical meaning of
the corresponding radius in a stationary situation. The situation, however, becomes more
complex when stationarity is dropped. Using a density pertubation analysis, Abbott (1980)
found radiative-acoustic waves, later also termed “Abbott waves”, which propagate inwards and
outwards (with very different speed) from the CAK critical point. For a Sobolev line force, the
inward mode propagates at the CAK critical point with a velocity equal to the wind speed at
this point. A detailed study about Abbott waves was later performed by Feldmeier & Shlosman
(2002) who analyzed how these waves are shaping an eventually stationary solution for the
wind velocity law. However, the CAK approximations are inherent to these studies which
often also make use of the Sobolev approximation, thereby fueling the debate whether these
waves might stem actually from the approximations themself (Feldmeier, 1998). Nevertheless,
one can conclude that if it would be able to express the full radiative force correctly via an
analytic expression that contains the velocity gradient, the inevitale result would be a critical
point that is not identical to v = a, but further out. This point would then set a constraint
to the mass-loss rate Ṁ , thereby raising the question how this is possible from an information
standpoint if the point is located in the supersonic regime. Insterestingly, if accounting for the
fact that the quantity a(r) can include a (micro-)turbulent velocity, even a critical point at
v = a is actually further out than the “raw” sonic point where v =

√
RT/µ, but here one could

argue that the microturbulence should correspond to a turbulent motion while in the other
case a completely new type of radiative-acoustic waves is needed for a physical information
transport. Since this is debated and such critical point can only be approximately obtained,
the only point than can be directly calculated is the one which is used in this work, namely
the sonic point, potentially adjusted for turbulence.

Apart from this point, there is another physically meaningful point that comes to mind,
namely the radius where radiation pressure balances gravity, i.e. r(Γrad = 1). Due to the
hydrodynamic equation, also gas pressure must balance inertia at the same point. This point
is located slightly further out than the sonic point. While this point is interesting and can
be used to check hydrodynamical consistency, it is not a critical point if the hydrodynamic
equation is written in the conventional form of Eq. 5.7. This means that although one could
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in principle use Γrad
!

= 1 at r(apress = amech) as an adjustment criterion for Ṁ , it would not
provide the value of v(rc) which is needed to smoothly pass through the sonic point.
Instead of adjusting Ṁ at all, one can of course instead modify only the velocity law

and integrate the hydrodynamic equation inwards and outwards from v = a for a given
Ṁ . However, as the terminal velocity can be deduced directly from observations, it is often
more interesting to adjust Ṁ and mainly the form of the velocity field, so that v∞ stays in a
certain region that matches with the observations. Nevertheless, a pure velocity adjustment
with a fixed Ṁ is just as doable with the implemented code, and opens the gate for future
calculations revealing how a stellar atmosphere “should” look like for a given mass-loss rate
Ṁ .

5.2 The importance of the inner layers, especially for
Wolf-Rayet stars

If the mass-loss rate is determined at the sonic point, the next question that pops up almost
immediately is naturally: “What determines the location of the sonic point?” In a hydro-
dynamically consistent situation, the sonic point is located at F̃ = 0, i.e. the form of F̃(r)
is a key ingredient here, in particular in the region inwards of the sonic point. Apart from
the regime very close to the sonic point, the hydrodynamic equation can be approximated
very well by the hydrostatic equation (cf. Sect. 3.4), which means that the inertia term is not
important. Writing the remaining equation in the more general form

apress + arad = g (5.12)

−1

ρ

dP

dr
+ arad = g (5.13)

already reveals which quantities are important in the subsonic regime: The density ρ(r), the
radiative acceleration arad(r), and the pressure due to thermal and turbulence motion P (r).
Using P (r) = ρ(r) · a2(r) (ideal gas) as the equation of state and remembering that

a2(r) =
RT (r)

µ(r)
+ v2

turb (5.14)

yields that the pressure P (r) can be expressed by more basic terms, leading to these four
important quantities: arad(r), ρ(r), T (r), and vturb. The depth dependence of µ(r) will be
omitted in the further discussion as the effect is small, though not completely negligible,
especially for certain WR atmospheres where µ(r) can change on the order of up to 10%
between R∗ and Rsonic.
The velocity itself it not important in the subsonic regime. It can be obtained via the

hydrostatic equation and the equation of continuity (2.1), but since the hydrostatic equation
provides a solution for the density stratification ρ ∝ Ṁ/v, only the ratio of Ṁ and v matters.
As the hydrostatic equation does not contain a critical point, any combination of v and Ṁ
yielding the same density would fulfill the hydrostatic equation. Only if Ṁ is given from
another constraint, such as Q = 1 or from a boundary value as e.g. in the case of a wind
driven by pure gas pressure, a unique solution for v(r) and Ṁ is forced.
The acceleration due to radiation arad(r) can be split into three parts as explained in

Sect. 3.6. The response calculations revealed that alines reacts to changes of the mass-loss
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rate Ṁ and thus to changes of the density ρ ∝ Ṁ , while the α-calculations demonstrated
that the velocity gradient has virtually no influence in the subsonic regime. Nevertheless, all
models shown in the last chapter have demonstrated that none of the three parts of arad –
neither line, nor Thomson, nor the true continuum contribution – are negligible here. While
the line acceleration could be overpredicted due to the use of a depth-independent Doppler
broadening velocity vdop in the CMF calculations, it would not vanish completely if a more
sophisticated treatment would be used, since significant contributions from certain elements
are already expected as soon as the outflow velocity v(r) exceeds the corresponding thermal
velocity vth. This causes the iron group elements to become important already in the deeper
layers, since they have the highest atomic mass of all considered elements. Furthermore, a
significant turbulent velocity, i.e. vturb & vth, would lead to a significant line contribution in
the whole subsonic regime in any case‡.
Any modification of the four quantities listed above will affect the location of the sonic

point. Any turbulent velocity vturb > 0, for example, will shift the location of v = a fur-
ther outwards, leading eventually to a lower mass-loss rate (see also Lucy, 2007). For OB
star atmospheres, there is at least some handle on the turbulent velocity vturb by comparing
observations with model spectra and deducing a required microturbulence from photospheric
lines. For Wolf-Rayet atmospheres, the situation is worse. Most “classical” WR stars do
not show any lines from the quasistatic region, i.e. there is no way of deducing a turbulent
velocity using static models§. Furthermore, empirically deduced stellar parameters for WR
stars clearly indicate that – at least for some subtypes – there is inflation and possibly even
subphotospheric clumping (see, e.g., Cantiello et al., 2009; Gräfener et al., 2012; Gräfener &
Vink, 2013; Sanyal et al., 2015). Typically, non-HD atmosphere models for Wolf-Rayet stars
also show a strong radiative force in the innermost part with Γrad > 1, something that could
be avoided when introducing an effective opacity formalism (see Sect. 5.4 below) which could
be motivated by optically thick clumps (“macroclumping”, “porosity”) already existing in these
deep layers. One has to be aware that modifications of Γrad due to clumping or inflation can
have significant effects on the location of the critical point and thus on the mass-loss rate.
However, such modifications are in some cases propably the only way to combine the hydro-
dynamics with the expanding atmosphere models. In fact, the hydrodynamics could help to
constrain the new free parameters of these modifications, such as the κeff-mechanism which
will be described in Sect. 5.4, thereby providing a certain insight into the otherwise hidden
deeper layers of Wolf-Rayet stars.

5.3 The incompleteness of the line opacities

Although the PoWR code has been updated during this work to account for more atomic
levels than ever before, the total number of atomic levels considered in an atmosphere models
is still an important issue as the calculation time is crucially affected. As demonstrated in the
previous chapter, it is essential to include all elements and ionization stages important for the
driving of the wind. As a compromise between calculation time and considering all elements,
‡It should be kept in mind that a significant turbulent velocity will furthermore increase the total outward
acceleration in the outermost wind part as the 2a2/r-term contributing to apress becomes important at very
large radii since it drops off much slower than gravity.

§A handle on the microturbulent velocities could potentially be obtained from short-time variabilities observed
in WR spectra and their correlations with the stellar parameters (see, e.g., Michaux et al., 2014). This of
course only works if the underlying phenomena indeed stem from the subsonic layers.
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one can think of a scaling factor for the line opacity which could account for the elements not
included in a model.
As the important contributions of the additional elements only affect the acceleration due

to line absorption, a quick and easy ad-hoc modification would be to scale this contribution
with a factor slines, i.e.

arad,eff(r) = slines · [arad(r)− acont(r)] + acont(r). (5.15)

The “effective” arad,eff denotes the values taken into account for by the hydrodynamic equation,
while arad and acont refer to the actual output from the radiative transfer calculation. The
benefit of this simple approach is that it could be limited to the hydrodynamic calculations
and thus is easy to implement and to handle.
However, a problem with this simple scaling of the line acceleration is that the quantity

aline = arad(r)−acont is often dominated by one element, mostly the generic one summarizing
the iron group elements. If one thinks of this factor as something that should account for
additional elements not covered in the calculation, then this scaling might actually be far
away from the real situation. The detailed contribution plots (see, e.g., Fig. 4.5) reveal that
each element contributes differently to arad, not only in strength, but often also in its depth-
dependence. Still there are usually certain depth-dependent trends seen in several elements,
so some kind of scaling rule is not completely unphysical. Unfortunately, the contribution
of the generic element usually differs significantly from this rule, which means that a more
sophisticated approach in the future could be to scale the line contributions of all elements
without the generic one or going even more into detail by defining groups of elements with
similar behavior which could then be scaled separately.
Another step could be to drop the idea that the scaling should be limited to the hydrody-

namic calculations and instead implement the scaling directly to the opacities entering the
radiative transfer calculation and the radiative rates. This would require a much more so-
phisticated implementation, but with the benefit that the whole model actually reflects what
happens due to these additional opacities.

5.4 Macroclumping (Porosity)

A monotonic velocity field and a stable stratification in the subsonic regime can only be
obtained for Γrad < 1. However, non-HD stellar atmosphere models for certain stars, most
notably Wolf-Rayet stars with thick winds, can yield a strong radiative acceleration which
is so large that the Eddington limit could be violated even in the quasi-static regime, i.e.
Γrad > 1. The spectra resulting from such models do reflect particular observations, but the
subsonic layers are not directly affecting the emergent spectrum, so it is basically unknown
what happens there. As such stars tend to be stable, the “true” or “effective” Γ in these
regions cannot exceed unity and instead something happens which is not covered by the basic
assumptions of the model atmospheres (cf. Sect. 2.2).
One explanation is that Γrad > 1 would imply a whole layer is lifted and there is either a mass

eruption, which is not observed for these stars, or that there are things like an inflated envelope
and/or convection (Gräfener et al., 2012; Sanyal et al., 2015, see, e.g.,). Handling inflation in
the PoWR code is a problem as it comes with a density inversion which would imply a non-
monotonic velocity field. Alternatively, one could argue that small-scale instabilities could
arise and only fractions of the material are significantly lifted (Shaviv, 2001a,b). This could
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potentially mark the onset of clumping as such. As these clumps are optically thick in this
scenario, the microclumping approximation would not be sufficient here. Instead one has to
account for the optical depth of the clumps, using a so-called “macroclumping” approach.
With a one-dimensional, spherically symmetric stellar atmosphere model it is impossible

to describe the multidimensional clumping phenomenon in detail. However, one can try to
account for the macroclumping effects, which is effectively the reduction of the opacity (see,
e.g., Owocki et al., 2004). Following the concept of Oskinova et al. (2007), one can define an
effective opacity

κeff = κf
1− e−τCl

τCl
≡ κf Cmacro (5.16)

with κf being the opacity from the microclumping approximation. The optical depth of the
clump τCl is calculated via

τCl = κfDL0
3

√
3

4πD

r2

R2
∗

v(r)

v∞
(5.17)

assuming spherical clumps as, e.g., in Šurlan et al. (2012). The parameter L0 is an additional
free parameter describing a typical clump separation in units of the stellar radius. For L0 → 0,
the clumps become optically thin and the microclumping approximation is recovered (Cmacro ≡
1).
The formalism is of course ad-hoc only and the current implementation is such that not the

opacity, but simply the resulting accelerations in the radiative transfer are reduced afterwards.
In particular, all radiative acceleration terms are multiplied with the macroclumping factor,
hence

arad,eff(r) = Cmacro(r) · arad(r), (5.18)
acont,eff(r) = Cmacro(r) · acont(r), (5.19)

and athom,eff(r) = Cmacro(r) · athom(r), (5.20)

where the “effective” values again denote the quantities entering the hydrodynamic calcula-
tions. This approach as been used for the inner layers of the WNE model shown in Sect. 4.3
but not for the other models in chapter 4.
Constraints could potentially come from stellar structure calculations or 3D Monte Carlo

simulations with optically thick clumps, such as Šurlan et al. (2012) or Sundqvist et al. (2013),
but these calculations have so far not been performed for Wolf-Rayet stars. Similar to what
has been mentioned above for the “incomplete line opacities”, the implementation could also
be improved by considering the effective opacity directly in the radiative transfer calculation,
even though this would be much more complex due to κeff not being simply scaled with a
fixed factor. Instead, κf enters the scaling factor Cmacro itself, which complicates a consistent
implementation significantly.

5.5 Influences of the numerics

When discussing the results of the hydrodynamic calculations, one has to keep in mind that the
stellar atmosphere models are subjected to numerical inaccuracies. The underlying numerical
influence can be subtle sometimes, but needs to be considered in order to not confuse numerical
effects with physical ones. For example, if the hydrodynamic equation would be integrated on
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a too coarse grid, the errors – especially when integrating around the critical point – would
be so large, that the resulting velocity field would be extremely inaccurate. Therefore, a 4th
order Runge-Kutta method with an adaptive step size is applied in this work.
A way to check the accuracy of the Runge-Kutta integration is to ensure that the solution

actually fulfills the hydrodynamic integration reasonably well. A visualized example for a
Wolf-Rayet atmosphere is shown in Fig. 5.1, where the uppermost panel shows the

HD-ratio :=
arad + apress
amech + g

. (5.21)

In general, the hydrodynamic equation is precisely recovered with very few outliers on the
order of a percent in the wind part. In the quasi-hydrostatic part the ratio drops to ≈ 0.99,
i.e. is off by 1%, most likely due to the exponential drop of the velocity which harms the precise
calculation of the gas pressure term. With an error of one percent, the result is acceptable,
but underlines why the exponential term needs to be seperated in the hydrostatic approach
(see Sect. 3.4), where the integration is performed on the coarse grid without an adaptive fine
spacing.
Apart from the direct numerics of the hydrodynamics, two more concerns come to mind,

which will be discussed below:

5.5.1 Doppler velocity

As mentioned in Sect. 2.8, the radiative transfer in the comoving frame uses a constant Doppler
velocity vdop, which describes the “typical” line broadening. In the formal integral of the emer-
gent spectrum, the line broadening is calculated fully depth-dependend for each line using the
element’s thermal speed and the microturbulence. However, for establishing the non-LTE
population numbers, treating vdop as a depth-independent quantity has proven to be sufficient
and is therefore widely used in stellar atmosphere codes, such as phoenix (Hauschildt, 1992),
fastwind (Santolaya-Rey et al., 1997), cmfgen (Hillier & Miller, 1998), and PoWR. Never-
theless, the actual value of vdop has to be carefully chosen in order to reflect the conditions

in the type of star which is modeled, i.e. vdop ≈
√
v̄2
th + 2v2

turb. For OB models, the choice of
vdop for the calculation of the population numbers can even have an influence on the emergent
spectrum, as e.g. illustrated in Sander et al. (2015) or Shenar et al. (2015). In the context
of hydrodynamical models, it is furthermore interesting to study the effect of vdop on the
radiative acceleration arad. Indeed, vdop may have a crucial impact on the hydrodynamical
solution and thus on Ṁ and v∞.
In order to estimate the vdop-influence, the hydrodynamically consistent B-star model which

used vdop = 40 km/s (due to the large value of the assumed turbulence) was recalculated with
vdop = 100 km/s. Such a high velocity is of course not an appropriate representation of the
physics in a B star, but it provides an excellent demonstration of the importance of vdop.
Calculating the radiative transfer with a higher vdop-value based on a starting model using
the converged population numbers from the solution with the lower vdop mainly preserves the
continuum optical depth scale and the model immediately has a consistent inner part. In
the outer part, the calculated acceleration due to radiation and gas pressure now exceeds the
sum of inertia and gravity and raises the work ratio up to Q ≈ 1.05, i.e. by about 5%. If the
hydrodynamic calculations are now performed, the mass-loss rate will be raised to compensate
for the higher work ratio. The converged acceleration plots for both values of vdop are shown
in Fig. 5.2. The resulting mass-loss rate is log Ṁ = −5.8 for the model with vdop = 100 km/s,
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Figure 5.1 – Visualized detailed results of the Runge-Kutta (RK) integration of the hydrody-
namic equation: The uppermost panel indicates how good the hydrodynamic equation is fulfilled
while the second panel shows the results for the velocity field (solid line with circles) and the
gradient (dashed line). In both panels, the red color highlights the results obtained by inward in-
tegration from the sonic point while the blue color highlights those from the outward integration.
In the lowest panel, the accelerations are drawn using the fine grid points calculated by the adap-
tive step-size RK integration. To illustrate the importance of the fine grid (∼ 5000 points in
total), the results for apress are also calculated using only the coarse grid steps (purple circles, 50
points in total). The dashed red curve in the inner part is the pure acceleration due to radiation
only, while the the solid red curve refers to the sum of radiation and gas pressure.
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log Ṁ = −5.80

-1

0

1

lo
g 1

0
(a

/g
)

Figure 5.2 – Acceleration plot for the two hydrodynamic solutions using different values of
vdop in the radiative transfer. The upper panel shows the converged model obtained by using
vdop = 100 km/s while the lower one refers to the model calculated with vdop = 40 km/s. The
critical point for both models is indicated by a dashed-dotted vertical line.
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i.e. almost a factor of two higher than in the original model. In contrast, the terminal velocity
is only slightly lower than in the original model with v∞ = 765 km/s and still on the order
of ≈ 1.6 vesc with vesc = 443 km/s. Given that with T2/3 ≈ 22 kK this model is close to the
bistability jump where the expected ratio v∞/vesc raises from ∼ 1.3 to ∼ 2.6 (Lamers et al.,
1995), this intermediate result is not surprising. However, since these models originate from
a model that was made to represent an evolved HMXB donor, these ratios should not be
overinterpreted.
The test calculation nevertheless underlines that it is essential to use an appropriate value

of vdop. Potentially, the PoWR code could be updated to use a depth-dependent value of
vdop which could be calculated directly from the assumed microcturbulence and the thermal
speed. However, this requires significant updates of the comoving frame calculations and would
introduce another direct interaction with the temperature stratification, which has always the
risk of adding new sources of numerical instabilities. Regardless, such vital modifications are
beyond the scope of the present work and will be performed in a follow-up DFG project.

5.5.2 The importance of a proper starting model

While the influence of vdop is obvious, there is another, somewhat more subtle but impor-
tant influence due to the starting model used for the hydrodynamic calculations. The fact
that a successful convergence of a stellar atmosphere model essentially depends on having a
proper starting model is inherent to modern stellar atmosphere codes. Due to the complex
mechanisms used in them, some codes like cmfgen do not even allow it to start a calculation
without having an old, converged model as a starting approach (Hillier, 2003). In PoWR it is
usually more convenient to start from a old, converged model, but it is also possible to start
from “scratch”, i.e. either from LTE or a slightly “tuned” version that can be more helpful for
calculating objects with higher T∗. For non-HD models, the choice of the start approximation
mostly affects how much iterations are needed to obtain a converged model, while only in
some cases the start approximation is so bad, that convergence cannot be obtained at all.
However, for the successful convergence of a consistent hydrodynamic model, the standard
start approximations alone are not sufficient and additional constraints have to be taken into
account in a starting model.
Before the first calculation of the velocity field via the hydrodynamic equation, there needs

to be some start approximation for v(r). While in the inner regime the consistent hydrostatic
solution can be used early on as it can be applied for any value of Ṁ , the wind velocity
law must be prescribed, usually by a β-law. The choice of the β-value turns out to be quite
important due the slope of its gradient in the inner part.
The gradient of a β-type velocity law has the form

dv

dr
= v∞ · β

R∗
r2

(
1− R∗

r

)β−1

(5.22)

which is monotonically increasing inwards for β ≤ 1, but has a turning point for β > 1. The
gradient of the hydrostatic solution, to which the β-law is connected, increases outwards, apart
from possible small-scale deviations due to situations like a non-monotonic situation in the
temperature stratification. As PoWR usually demands that not only the velocity v(r), but
also the gradient must be continuous, it can happen that the gradient reaches much larger
values in the case of β ≤ 1 than it would if β > 1 is used. This is illustrated in the left panel
of Fig. 5.3, where the velocity gradient for two WO models are compared. The model that
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Figure 5.3 – Left panel: The velocity gradient is compared for two WO star models using different
β-laws in the wind. The connection point to the hydrostatic solution is indicated by a square.
Right panel: The velocity gradient of a starting model with β = 0.8 in the wind is compared to
the gradient after the first and several more hydrodynamic velocity updates.

uses β = 1.2 has a much smoother transition to the inner region and the absolute value of
the gradient outside of the connection point is about a factor of five lower than for the model
using β = 0.8.
The effects of the velocity field on the radiative acceleration are so significant, that a “bad”

choice of the starting model can prevent the success of the hydrodynamic calculations, i.e. the
model never converges to a consistent solution. This is illustrated in the right panel of Fig. 5.3
where a WO model with β = 0.8 has been used as the starting model and then the inclusion
of the hydrodynamics has been switched on. The velocity gradient of the starting model has
a peak which cannot be smoothed out even after several hydrodynamic velocity field updates.
An inspection of the acceleration balance would reveal that in this region the hydrodynamic
consistency has not been achieved.
The outcome of this test calculations underlines that a proper starting model is vital for

the success of the HD calculations and the demands for such a starting model are higher than
for non-HD stellar atmosphere models. While in priciple the choice of β in the starting model
would not lead to different hydrodynamic solutions, a “bad” choice can lead to the effect that
this solution cannot be found. Thus, for HD starting models the choice of β should be made
based on the connection condition, as the form of the velocity field in the wind will quickly be
adjusted to radiative acceleration after very few, sometimes even just one or two HD updates
if the calculations do not require a significant damping.
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Figure 5.4 – Acceleration balance (left panels) and velocity gradients (right panels) for three
O-star models with T∗ = 32.5 kK using different prescribed wind velocity laws connected to
a quasi-hydrostatic part. In the acceleration plots, only the sum of radiation and gas pressure
(aWind), the inertia (amech), and the sum of inertia and gravity are shown. In the right panels, the
gradient for the resulting velocity fields are displayed with a gray square indicating the connection
point between the β-law and the quasi-hydrostatic solution.
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It should be mentioned that while β > 1 usually provides a better connection, there is
no obvious “golden value” for starting models. The connection of the two velocity domains is
rather complex and sometimes even models with β < 1 can have a decent connection situation,
if the connection point happens to be further out. A few examples for non-HD O star models
with different β-laws are illustrated in Fig. 5.4, where acceleration plots and corresponding
velocity gradients are shown. The uppermost panels show a model with a smooth gradient,
while the lowest ones illustrate the previously discussed typical problem for β < 1. The
panels in the center show the rare situation where the supersonic connection point leads to
a moderate gradient maximum, even though the transition in gradient is not really smooth
between the two regimes.

5.6 Line driving and metallicity

All models presented in Chapter 4 were calculated for Galactic metallicity. In all these models
the iron group elements turned out to be the main drivers. However, when transitioning to
lower metallicity environments, the abundance of the iron group decreases for all kinds of stars
as theses elements cannot be produced by the stars themselves unless shortly before or during
the core collapse. Although the models also demonstrate that a high abundance of an element
does not correlate with a major role in the wind driving, the contribution from a particular
element to the radiative driving should still go down if the abundance is reduced.

A detailed study for different metallicities Z is beyond the scope of this work. Gräfener &
Hamann (2008) calculated a series of models for WN stars and obtained that in order to have
the same mass-loss rates as observed at Z�, the stars need to reside closer to the Eddington
limit Γe = 1, i.e. their luminosity will be higher if one compares stars with the same mass
M∗. Gräfener & Hamann (2008) further calculated a few models without iron group elements
and thereby simulated the winds of the first WNh stars where CNO had been produced by
their own nuclear burning. Although the detailed contribution of the elements to the radiative
acceleration could not be studied at this time, the iron-free models already indirectly proved
that with lowering the abundance of the iron group elements, other elements like CNO are
sufficiently able to take over the wind driving. This is also indicated by the Monte Carlo
results from Vink & de Koter (2005), who found that WR mass-loss rates does significantly
depend on Z around solar metallicity, but this dependency weakens for lower Z. For WC stars,
it in fact almost vanishes for metallicities lower than logZ/Z� ' −3 because the wind is then
driven by carbon which the stars have produced themselves.

With the additions made in this work, it is now possible to get an even more detailed look
on the models and one can study the depth-dependent contribution of each element. An
example for an O-star at SMC metallicity with Q ≈ 1, which will serve as a starting candidate
for future HD calculations, is shown in Fig. 5.5. It clearly reveals that, for this star, the iron
group elements do not contribute significantly to the acceleration as their contribution is below
the Thomson term throughout the atmosphere. Instead, oxygen, carbon, and nitrogen – in
this order – are the main driving elements in the wind. This illustrates that not only for WN
stars with their enriched nitrogen, but also for OB stars with a standard CNO-distribution,
the CNO elements can provide a sufficient wind driving, even though their abundances are
also lower in the SMC.
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Figure 5.5 – Acceleration contributions from different elements (green curves with symbols)
for a non-HD, but energy-consistent O-star model with T∗ = 34 kK, logL/L� = 5.8, and SMC
metallicity. In contrast to the Galactic models, now CNO is driving the wind instead of the iron
group elements (denoted by G).

5.7 Influence of rotation

In the stellar atmosphere models used in this work, the stars are not rotating. Nevertheless, it is
worth to discuss the potential effects of rotation on the hydrodynamics and the resulting wind
parameters. If rotation is present, the wind is in principle not spherical. However, noticeable
deviations from spherical symmetry should only occur if a star rotates at significant fraction
of the critical velocity

vcrit,rot(r) =

√
GM∗
r

(1− Γe), (5.23)

i.e. the rotational velocity where the centrifugal acceleration would equalize gravity reduced
by the Thomson acceleration. Note that this critical velocity refers to the rotational velocity
and should not be confused with the wind velocity v(rc) referring to the wind speed at critical
point of the hydrodynamic equation, i.e. where F = G = 0.
For a first study, it is helpful to restrict the analysis to the equatorial plane, where the

effects of rotation are largest anyhow. Assuming no co-rotation beyond R∗, the hydrodynamic
equation can be augmented by replacing F̃ with

F̃rot = F̃ − v2
rot(R∗) ·R∗

r3
. (5.24)
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5.7 Influence of rotation

In the case of co-rotation up to a certain radius Rcor > R∗, the additional term in F̃ needs to
be split up into two parts:

r ≤ Rcor : F̃rot = F̃ − v2
rot(Rcor) · r
R2
cor

(5.25)

r > Rcor : F̃rot = F̃ − v2
rot(Rcor) ·R2

cor
r3

(5.26)

For a non-spherical wind, the global mass-loss rate Ṁ has to be obtained by integrating
over the mass flux for all latitudes. Instead of using Ṁ in the equations, it is therefore more
convenient to use the mass flux Fm in the equatorial plane. To account for this difference, the
replacement

Ṁ

4π
→ R2

∗ · Fm (5.27)

is sufficient in all equations where Ṁ usually occurs.
Assuming that rotation is only considered in the hydrodynamics as described above and

potentially in the formal integral (see Shenar et al., 2014, for details on how the latter is
treated in the PoWR code) to check the visual effects in the emergent spectrum, the additional
term in F leads to a decreasing of F , most notably around the co-rotation radius Rcor, since
its influence is monotonically decreasing inwards and outwards from there. From this one can
conclude, that – unless Rcor is located far out in the wind – the mass flux Fm should be higher
than in the non-rotating case as the radius where F vanishes will be shifted inwards compared
to the non-rotating case. As a consequence, the terminal velocity will likely be lower. This
result has indeed been found by Friend & Abbott (1986) using the CAK approach with the
finite disk correction plus a rotation term¶ similar to the one above (without considering co-
rotation beyond the photosphere). More recent calculations by Curé et al. (2012) using an
mCAK approach with a limb-darkened finite-disk correction factor studied three different cases
and obtained an Ṁ -increase of about 10% together with a reduction of v∞ of the same order for
the fast-rotating case. For slow rotation, the effects turned out to be negligible. In a potential
follow-up to this work, the rotational term described above could be added to the PoWR
code routines. Calculating the hydrodynamic solution would not only allow a cross-check of
the findings from Friend & Abbott (1986) and Curé et al. (2012), which were performed for
O stars, but also allow an extension to Wolf-Rayet stars. A more sophisticated treatment
for fast rotating stars, which would account for latitude-dependent stellar parameters, such
as Teff(θ) ∝ 4

√
geff(θ) (von Zeipel, 1924), and should lead to a latitude-dependent terminal

velocity v∞, would require a multi-dimensional approach and is beyond of what could be
reached with CMF calculations on the current generation of computers.

¶Friend & Abbott (1986) also studied the pure effect of rotation on a CAK model without the finite disk
(FD) correction. The isolated effect has a similar trend, i.e. the terminal velocity is reduced. However,
the FD-correction is large and thus even the combined effect will usually lead to higher terminal velocities
when comparing the combined (FD+ rotation) results with uncorrected CAK.
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Chapter 6

Summary and conclusions

The goal of this work was to develop an expanding stellar atmosphere code that is able to cal-
culate hydrodynamically consistent models, especially for dense stellar winds. This has been
achieved by extending the Potsdam Wolf-Rayet (PoWR) code such that the velocity field and
the mass-loss rate can be obtained from the detailed solution of the hydrodynamical equation.
In order to provide realistic models and results, the PoWR code has been significantly up-
graded beyond the pure implementation of the hydrodynamics. These updates include a more
sophisticated handling of the inner boundary, the assurance of the prescribed total continuum
optical depth, the inclusion of the thermal balance method for obtaining the temperature
stratification, and a more efficient treatment for the solution of the statistical equations that
enabled the code to handle more atomic levels.
An ancillary outcome of this work was the development of a relatively fast and reliable

consistent treatment of the quasi-hydrostatic layers, even in standard models which are not
hydrodynamically consistent, but use a prescribed wind velocity law. This new method, which
has become a standard in the PoWR models, is described in detail in Sander et al. (2015) and
allows to calculate accurate O and B star models with PoWR.
Beside CAK-like and Monte Carlo (MC) methods, hydrodynamically consistent stellar at-

mosphere models using a comoving frame (CMF) radiative transfer provide a third approach
to obtain theoretical mass-loss rates. Their detailed treatment of the radiative transfer allows
a depth-dependent solution of the momentum equation, enabling them to provide a locally
and globally consistent treatment, which is superior to both of the other methods. This con-
sistency, however, comes with high computational costs, so that the total number of atomic
levels has to be restricted. Even though this limit has been lifted in this work and the new
generation of PoWR models are able to treat more atomic levels than ever, the total num-
ber of considered lines is still significantly below what can be done in the MC approach. In
contrast to the CAK-like methods, the CMF calculations take much longer and calculations
in more than one dimension or time-dependent calculations are impractical. The advantage
of the CMF calculations is, however, that they do not assume any line strength distribu-
tion and do not become deficient when applied to denser winds. Lamers & Leitherer (1993)
demonstrated that the mass-loss rates predicted by the modified CAK (mCAK) recipe from
Kudritzki et al. (1989) increasingly deviate from what is deduced from observations as the
winds become denser. Furthermore, as the CMF calculations basically perform a brute force
integration to obtain arad, they automatically take various effects like multiple scattering or
line overlapping into account. Furthermore, they do not rely on the Sobolev approximation
that is used in most CAK-like and MC methods. This is not only crucial when analyzing
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Chapter 6 Summary and conclusions

Wolf-Rayet atmospheres, but also for studying the detailed stratification around the sonic
point, where the Sobolev approximation is not well justified.
To obtain the velocity field and the mass-loss rate in a consistent way, the hydrodynamic

equation is solved using the radiative acceleration calculated in the CMF radiative transfer.
As the latter already requires a velocity stratification, an iterative approach is needed. Since
the radiative acceleration is provided as a function of the radius by the CMF radiative transfer,
the critical point of the hydrodynamic equation is the sonic point. To obtain the velocity field,
the equation is integrated inwards and outwards from this point.
Three examples for hydrodynamically consistent stellar atmosphere models have been pre-

sented in this work: a WO model, a hydrogen-free WN model, and a B-star model. The broad
range of applications stems from a new approach that considerably differs from earlier studies
performed by Gräfener & Hamann (2005, 2008) and does no longer rely on force multiplier
parameters. For the first time, a hydrodynamically consistent PoWR model could therefore
be calculated for an OB-type star.
While more quantitative results will require much more models, one can already draw the

following conclusions:

• The winds of Wolf-Rayet stars can be sufficiently explained by radiative driving, if
multiple scattering is taken into account. In order to produce realistic atmosphere
models for both, WR and OB stars, the inclusion of all elements and ionization stages
that contribute to the total opacity is inevitable. If such elements are not taken into
account, the deduced mass-loss rates will artificially be lower than the ones obtained via
MC calculations or CAK-like predictions, simply due to the incompleteness of opacities.
As a consequence, various elements, such as neon, magnesium, or sulfur need to be
considered, even though they might not imprint on the emergent spectra, especially in
the case of Wolf-Rayet stars.

• One of the biggest unknowns in Wolf-Rayet atmospheres is the magnitude of turbulent
motion. The turbulent velocity has an important influence on the location of the critical
point and thus has a hand in setting the mass-loss rate Ṁ . However, unlike in O and B
stars, where spectral fitting of photospheric lines does provide a certain handle on the
microturbulence, the emergent spectrum for Wolf-Rayet stars is completely formed in
the expanding layers in most cases, thereby giving no information about the turbulence
around the sonic point. Constraints could only stem from such WR objects where at
least a part of the spectrum is formed in the quasi-hydrostatic layers (see, e.g., Hainich
et al., 2015; Massey et al., 2015) or potentially also from wind variabilities (e.g. Michaux
et al., 2014), assuming that they are originating from these deeper layers.

• An inspection of the detailed contributions to the radiative acceleration of the B-star
model (see lower panel of Fig. 4.16) yields that the elements important for line driving
show the same trend as the inertia term, thereby demonstrating that for this star the
line force is correlated with the inertia as predicted by the (m)CAK theory. Nevertheless
there are deficiencies in the mCAK models, since they fail for WR winds. As line driving
is sufficient to explain WR winds, these deficiencies have to stem from the underlying
approximations made in the mCAK models.

• For Wolf-Rayet stars with thick winds, the velocity fields show deviations from a simple
β-law and can have a plateau in the wind. As long as the precise behavior around and
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below the sonic point is not important, hydrodynamic solutions can be approximated
with prescribed velocity laws, such as a double-β-law, but its parameters seem to depend
significantly on the spectral subtype.

• At Galactic metallicity, the iron group elements are most important for the wind driving
in both, WR and OB stars. In lower metallicity regimes, where their abundances are
lower, carbon, nitrogen, and oxygen are instead the main driving elements even though
their abundances are also smaller.

Given that wind driving in hot stars is still poorly understood, the new hydrodynamic
models developed in this work provide an excellent tool for follow-up studies that might help
to revise the theory of radiation-driven stellar winds. While this will require additional efforts,
the goal is to have a set of hydrodynamically consistent stellar atmosphere models over a wide
range of mass-loss rates. If sufficiently designed, these models will eventually gain a predictive
power, allowing to obtain mass-loss recipes and other relations that could be used in a larger
astrophysical context, including

• a study of the Ṁ(Γe)-relation in the region of η ≈ 1, where different trends have been
predicted (see, e.g. Kudritzki, 2002; Gräfener & Hamann, 2008; Vink et al., 2011) based
on different approaches;

• the influence due to feedback (mass-loss, ionizing photons, kinetic energy, . . . ) from WR
and OB stars on their surroundings, especially in clusters;

• a better constraint for the evolution of massive stars, including an independent prediction
of the stellar mass from the atmosphere analyses;

• a precise quantification of the discrepancies with CAK-like predictions to provide hints
for a potential “calibrated” CAK ansatz, which would provide a useful input to time-
dependent and/or multidimensional calculations;

• a detailed insight in the metallicity dependence and the corresponding stellar yields
across cosmic times.

Due the complete inclusion of the continuum contributions, it will even be possible to
calculate hydrodynamically consistent models for the very first generation of stars and check
whether they could have had continuum-driven winds. In summary, one can say that the
models and techniques developed in this work will provide the basis for a variety of projects
that can lead to a better understanding of massive stars, stellar winds, and their role in our
universe from the first stars up the present day and beyond.
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Appendix A

PoWR implementation details

In this appendix, the concepts and implementation schemes of certain routines are described
in detail. The various sections are meant as an addition to the theoretical descriptions and
discussions in the corresponding sections of the main text. They are not intended as a manual
or even a full description of the PoWR code. A true manual for PoWR has been started by
the members of the Potsdam group and is consistantly expanded. The current version of the
manual is available online∗.

A.1 Overall PoWR program scheme

What is referred to as “the PoWR code” technically consists of a set of programs which are
executed in a certain order. The execution of these programs is performed by shell scripts,
called “jobs”. These jobs are what is actually started by the user. For a smoothly running
model, only the first job (“wrstart”) needs to be submitted, while all other ones are automat-
ically started if the preceding one ended successfully. All executable programs are written in
Fortran, the shell scripts are written using the Bourne-again shell (bash).
In capitals are the particular programs of the PoWR code, job names are written in italics:

1. Model Start (wrstart)

a) WRSTART: Setup of radius and frequency grid, first velocity stratification, start
approximation for ni and Jν

b) STEAL: First solution of statistical equations (without iron)

c) ADAPTER: (optional) Transfer of population numbers from on an old model to
the new one

2. Main iteration (wruniq)

a) WRCONT: Radiative transfer for continuum only

b) COMO: Solution of the moment equations for continuum only

c) COLI: Radiative transfer for continuum and lines in the co-moving frame
∗http://www.astro.physik.uni-potsdam.de/˜htodt/manpowr.pdf
Please note that the PoWR manual is currently neither a fully complete documentation, nor does it nec-
essarily include all of the latest additions. Furthermore it documents the standard branch of the code and
therefore does not include several additions presented in this work unless they were already merged into
the standard branch.
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d) STEAL: Temperature corrections, solution of the statistical equations, (optional)
velocity stratification update

e) MODIFY: Interpolation of ni and/or T for non-converged depth points in the
solution of the statistical equations

3. Formal integration (formal)

a) WRCONT: Radiative transfer for continuum only

b) COMO: Solution of the moment equations for continuum only

c) FORMAL: Calculation of the emergent spectrum in the observer’s frame

The major tasks of the main iteration, namely the solution of the statistical equation, the
temperature corrections, the solution of the radiative transfer in the co-moving frame and
the (optional) update of the velocity stratification are performed in the STEAL and COLI
programs.
The input for a model atmosphere calculation is provided via the following files:

• CARDS: main input file containing all main settings for the calculation of a PoWR
model

• DATOM: main atomic data input file, containing all considered elements, levels and
transitions except for the iron group elements

• FORMAL_CARDS: additional input file for the calculation of the emergent spectrum in
the FORMAL program containing the wavelength ranges and full list of lines which should
be taken into account

• FEDAT: precalculated data file for the superlevel handling of the iron group elements,
containing for example the detailed superlevel cross sections

• FEDAT_FORMAL: special version of FEDAT for the formal integral

If starting from an old, converged model, the old model file is of course also required.

A.2 Connection with a prescribed wind velocity law

Unless the velocity field is obtained via the hydrodynamic equation as presented in the main
part of this work, PoWR models use a prescribed velocity law for the wind domain connected
to another approximation for the inner part. The latter is either a simple barometric law or
obtained by integrating the hydrostatic equation using the results from the comoving frame
radiative transfer calculation as outlined in the Sects. 3.4 and A.5). In any case, the connection
to the wind domain is made such, that the velocity gradient and the velocity itself are continous
at the connection radius Rcon.
In the PoWR code, the wind velocity law can be either a β- or a double-β-law. The β-law

is parameterized as

v(r) = p1

(
1− R∗

r + p2

)β
. (A.1)
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A.3 Conservation of optical depth (for non-HD models)

The parameters are adjusted such that v∞ is reached at Rmax, maximum value of the model’s
radius grid, and a specified velocity vcon is reached at Rcon. With given values for Rcon and
vcon from the approximation for the inner part, the beta-law parameters are

p1 :=vcon

(
1− R∗

p2 +Rcon

)−β
(A.2)

p2 :=

√√√√√√1

4
(Rmax −R∗ +Rcon)2 +

Rmax −
(
vcon
v∞

)1/β
Rcon

1−
(
vcon
v∞

)1/β
− 1

2
(Rmax −R∗ +Rcon) . (A.3)

For a two-beta law, p1 and p2 are taken for the summand with the smaller β-value with v∞
being replaced by (1−q)v∞. For the other one with the larger β (with weight q), it is assumed
that the gradient does not contribute around the connection point and the parameters, which
are defined in a similar way as in Eq. (A.1) have the simple form

p
(2)
1 :=qv∞

(
1− R∗

p
(2)
2 +Rmax

)−β2
and (A.4)

p
(2)
2 :=R∗ −Rcon. (A.5)

A.3 Conservation of optical depth (for non-HD models)

As soon as the current Rosseland continuum optical depth τRoss,cont(R∗) differs from the τmax-
value specified in the CARDS file by more than ετ (also given in CARDS), the inner part of
the velocity field is adjusted to re-ensure that τRoss,cont(R∗) matches τmax. In models with a
prescribed velocity law for the wind regime, a new velocity field can be calculated relatively
easy, even if the innermost part is consistently solved using the hydrostatic equation.
There are two reasons why this mechanism uses only the Rosseland continuum optical

depth τRoss,cont instead of the total Rosseland optical depth τRoss which would include all line
opacities. The first one is that line opacities can change significantly between two jobs, even
when the overall changes to the model are only of minor order. The continuum usually does
not react such a way and is therefore a better choice in order to avoid constant back and forth
changes of the velocity stratification. The second reason is the complex calculation of the total
Rosseland optical depth. While the continuum part requires only the continuum opacities and
thus can be calculated with the help of a few subroutines, the total value requires the line
opacities and thus can only be calculated during comoving-frame radiative transfer. Due to
this major obstacle it would be impossible to immediately check if a certain change in the
velocity field is sufficient in order to conserve the optical depth. In fact, this would mean that
only rough trend changes could be made instead of precise adjustments. With the Rosseland
continuum optical depth instead, direct checks and therefore precise adjustments of v(r) are
no problem.
The conservation of τRoss,cont is done by the routine ENSURETAUMAX which is called after the

corrections to the temperature and the population numbers in the STEAL program. In detail
it performs the following steps:

1. Calculation of the current τRoss,cont-scale
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2. Check if τmax-iteration needs to be done. Criteria are:

• |τRoss,cont(R∗)− τmax| > ετ

• optional: hydrostatic equation is violated by more than 5%

3. Check if τmax-iteration should be skipped due to one the following criteria (if switched
on):

• The full radiative acceleration has either not been computed or is unphysical (i.e.
arad(r) ≤ 0)

• optional: population number corrections are higher than an specified CORLIMIT

• optional: Non-converged depth points during the Scharmer iteration (population
number corrections)

• optional: The flux consistency is violated by more than a specified limit

If none of the skipping criteria are fulfilled and the τmax-iteration is executed, the routine
continues as follows:

4. Calculation of ggrav or geff, depending on the model specifications. For fixed geff, also
M∗ is updated.

5. Calculation of depth-dependent Γrad(r)

6. Main iteration loop:

a) Calculation of a reference scale height and β-law parameters

b) First grid construction (r, v, ρ) based on the wind law (outer part) and a barometric
law (inner part)

c) Interpolation of electron temperature T , sound speed a, population numbers ni,
and geff(r) on the new grid

d) Precise integration of the hydrostatic equation to obtain the correct v(r)

e) Redefined grid (r, ρ) based on the improved v(r)

f) Interpolation of electron temperature T , sound speed a, population numbers ni,
and geff(r) on the improved grid

g) Calculation of the current τRoss,cont-scale

h) Optional “Overshooting check” during the first iteration only:
If the current value of τRoss,cont is larger than τmax, but the initial guess before the
iteration was below or vice versa, the new solution might not improve the situation
as it could go too far into the opposite direction. This can be suppressed by mixing
the current Γrad(r) with those values from the last STEAL job with a τmax-iteration.
If overshooting suppression is enabled, the mixing factor will be increased (i.e. the
older Γrad(r) will be used to a larger fraction) until overshooting does no longer
occur or the influence of the current Γrad(r) reaches a minimum of 0.1%.

i) Comparison of new τRoss,cont(R∗) with specified τmax. If the difference is still larger
than ετ , vmin is adjusted

• via vmin = vmin,last

(
τRoss,cont(R∗)

τmax

)0.5·fdamp
if τRoss,cont(R∗) < τmax,
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• via averaging between the last two values of vmin if τRoss,cont(R∗) > τmax,

• via spline interpolation vmin = v(τmax) if τRoss,cont(R∗) > τmax and averaging
was not successful.

The damping factor fdamp starts with a value of one and is divided by two each
time the solutions start to oscillate.

Not more than 100 iterations are performed. If the difference between the intended τmax
and the actual value is still larger than ετ , the velocity field from the iteration with the
smallest difference is used.

7. Optional Damping: The new vmin-value can be mixed with the old one in order to damp
the corrections to the velocity field. An additional calculation of the iteration steps
above is performed in this case.

8. Calculation of the velocity gradient and R(τRoss,cont = 2/3)

9. Interpolation of the temperatures and populations numbers of the last three STEAL jobs
on the new radius grid.

After a successful run of the ENSURETAUMAX routine, the updated stratification is stored
in the model file and the overall iteration continues with the calculation of the radiative
transfer. The call of ENSURETAUMAX is caused by adding the FIX-parameter to the TAUMAX-
line in the CARDS file. As this routine updates the velocity field with a prescribed law in the
wind regime, this parameter should never be set when calculating hydrodynamically-consistent
models. In such models, the conservation of the total optical depth can be ensured directly in
the HYDROSOLVE routine and its subroutines.

A.4 The concept of the radiative transfer calculation

In the PoWR code, the radiative transfer in the comoving frame (CMF) is performed in the
COLI program. This complex program calls a variety of routines whose listing would be beyond
the scope of this work. However, the basic concepts described in Sect. 2.8 will be outlined here
and can mostly be mapped to certain subroutines performing most of the task described in
each item.
The ray-by-ray solution and thus the update of the Eddington factors is typically done only

every 5th or 6th iteration. These jobs are referred to as COLI+†, while those skipping them
are simply called COLI.
In short, the radiative transfer scheme in the PoWR code can be summarized as follows:

1. Radiative transfer for continuum only (performed in the WRCONT and COMO programs
before the start of COLI)

2. Main frequency loop:

a) Calculation of opacities and emissivities for the current frequency range

†If the temporary file for the Eddington factors does not exist at all or belongs to a wrong model, the job is
internally called COLI++. Apart from the creation of a new EDDI (fort.17) file, the COLI++ also differs from
COLI+ in its redistribution handling.
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b) COLI+ only: Calculation of the Eddington parameters (f , g) from ray-by-ray solu-
tion using short characteristics (SHORTRAY routine)
Normal COLI: Load saved Eddington parameters from last COLI+

c) Calculation of Jν and Hν via solution of the moment equations using a differencing
scheme (COLIMO routine)

d) Running frequency integration for J , H, κRoss, etc. (FREQUINT routine)

e) COLI+ only: Storage of Eddington factors

3. Normalization of opacities and calculation of τRoss (FREQUNORM routine)

4. Optional: Calculation of response to velocity and/or density modification (requires dou-
ble run of COLI)

A.5 Solving of the hydrostatic equation numerically

Note: This routine is only called if the full hydrodynamic treatment is not switched on.
The numerical implementation of the hydrostatic solution is done in the velthin routine
which is called during the start of a model and at each time the velocity field is updated in
ensuretaumax as described in Sect. 2.7. On top of the check whether the supposed value of
τmax is reached at R∗, this routine will be executed additionally if the hydrostatic equation
is violated by more than 5% (in the quasi-hydrostatic regime). To avoid a major disturbance
of the model, additional options can be switched on that will suppress the calling of this
routine in case of current large corrections to the population numbers or the temperature
stratification.
The velthin routine is responsible for the actual integration of the hydrostatic equation

and the proper connection to the prescribed wind velocity law. By default, the connection
point is chosen such that v(r) and dv

dr are continuous. Alternatively, there is the option to
force the connection point at a prespecified fraction of a, i.e. the combined speed of sound
and turbulence. Here is a brief outline of the tasks performed in the velthin:

• outward integration of b(r) to obtain v(r) via the hydrostatic equation

• comparison with a(r) to determine the outer boundary of the subsonic regime

• if necessary: monotonic enforcement of the calculated v(r)

• iterative search for the connection point with the predefined wind velocity law
(can be reduced to one iteration if the sonic point or a fraction of the sound speed is
specified as the connection criterion)

1. The β-law parameters for the current connection point candidate Rcon,cand are
calculated
→ v(Rcon,cand) stems from hydrostatic solution, ensuring a continuous v(r)

2. The velocity gradients dv
dr for the inner and outer velocity field in the region around

Rcon,cand are calculated
→ The point where both gradients match is the new Rcon,cand for the next iteration

• Failsafe handling in the case of an oscillating solution for Rcon
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Table A.1 – Quantities in the hydro equation and their calculation in the PoWR code
calculated in

Quantity Symbol program subroutine
mean particle mass µ STEAL LINPOP
electron temperature T STEAL TEMPCORR
radiative acceleration arad COLI FREQUINT

optional:
response factor r(Ṁ) COLI COLI
force multiplier parameter α(Htot, arad, acont) COLI COLI
force multiplier parameter k(α, arad, acont) STEAL HDSOLUTION

• Storing of the results and warnings in case of a purely subsonic or supersonic regime

For a successful iteration, the location of v(Rcon,cand) is identical to the location where the
difference of the velocity gradients vanishes. Due to the fact that the hydrostatic equation
does not have a critical point and the separation of the exponential term from the equation
(see Sect 3.4), there is no need for a finer grid as it is required for the hydrodynamic solution.
Instead, a simple rectangular integration on the normal depth point grid (with 50 to 70 depth
points) has proven to give sufficient results.
In the consistent approach using the full radiative acceleration arad from the CMF radiative

transfer, the corrections, especially in the early iterations after starting a model, are usually
very large and therefore might cause an unstable situation in the inner part of the model. The
most efficient way to avoid large perturbations of the model and obtain generally decreasing
corrections is to damp the values of Γrad with those from the last call of ensuretaumax.

A.6 Obtaining the hydrodynamically consistent velocity field

A.6.1 Calculation of the required quantities

The calculation of the velocity gradient via the hydrodynamic equation requires the following
quantities:

1. the stellar mass M∗ and radius grid (from R∗ to Rmax),

2. the microturbulence in the form of vturb,

3. the temperature stratification T (r) and the mean particle mass µ(r),

4. the radiative acceleration arad(r), and

5. the velocity at one given point, either the critical point or at one of the boundaries

From these values, only the first two are exactly given at the start of the model. While there
are start approximations available for the temperature and µ(r), the radiative acceleration
requires a comoving frame calculation. Thus, the first calculation of a velocity field via the
hydrodynamic equation has to be after the first run of the full comoving frame radiative
transfer done in a so-called COLI++ job. From now on, all values are in principle given, even
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though the level of corrections from the radiation field to population numbers is so high, that
it is usually more helpful to wait until these corrections fall below a certain level.
The given quantities, which are updated in the routines listed in TableA.1, are passed to

the HYDROSOLVE routine and further reduced in the hydrodynamic equation by introducing

a(r) =

√
RT (r)

µ(r)
+ v2

turb. (A.6)

The HYDROSOLVE-routine acts as a container for everything that is related to the coupling of
the hydrodynamics to the PoWR code. It reads out the corresponding options from the input
file, calls the actual solution routine HDSOLUTION and handles the conservation of the optical
depth and the update of the radius grid after a successful integration.

A.6.2 Integrating the hydrodynamic equation

While a depth point grid with 50 to 70 points is sufficient for all other tasks in the PoWR
code, the integration of the hydrodynamic equations requires a much finer spacing, especially
around the critical point v = a. Similar to the concept described in Gräfener & Hamann
(2005), this is done using a fourth-order Runge-Kutta method with an adaptive step-size
control. However, the integration is done over the radius in this work instead of the column
depth s (see Eq. 3.92). Furthermore, the integration starts at the critical point and not at the
outer boundary. While this does not fundamentally change the concept, it completely removes
the number of iterations that Gräfener & Hamann (2005) needed to find the critical point.
Instead the critical point is searched before the start of the integration using the current fine
interpolations on the course grid. This is sufficient as the new implementation is now inside
the STEAL program while it was a separate program in Gräfener & Hamann (2005), requiring
a fully converged model. The advantage of the new approach is that it is possible to continue
the main iteration between the radiative transfer and the solution of the statistical equations
after a hydrodynamic velocity field update without going back to the approximations made at
the start of a model. In turn, usually more hydrodynamic updates have to be performed, but
as they do not require a converged model, this is generally computationally still much faster
than the method from Gräfener & Hamann (2005).
The code routines for the fourth-order Runge-Kutta method with adaptive step-size control

are based on Chapter 16.2 in “Numerical Recipes” (Press et al., 1992), providing basic routines
for the solution of a ordinary differential equation system. The derivatives for the particular
functions, here v(r), of course have to be inserted by the user. The corresponding routine
with the equations is named cpderivs and contains the expressions for dv

dr in the normal form

dv

dr
= −

GM [1− Γrad]− 2a2r + r2 da2

dr(
1− a2

v2

)
r2v

(A.7)

and for the region close to the critical point, where l’Hospital’s rule needs to be used, in the
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form

dv

dr
= − 1

2A

(
B ±

√
B2 − 4AC

)
(A.8)

with

A = −1

v

(
1 +

a2

v2

)
, (A.9)

B = −2

r

(
1− a2

v2
− r a

v2

da

dr

)
, (A.10)

and C =
GM∗
r2v2

dΓ

dr
+ 2

a2

r2v
− 1

v

d2

dr2

(
a2
)
. (A.11)

These expressions refer to the method without force multiplier parameters (cf. Sect. 3.11) and
can be derived similar to the expressions given in Sect. 3.10 referring to the approach from
Gräfener & Hamann (2005). The l’Hospital-version is used as soon as |1− a/v| < 10−2.
While a detailed discussion of the Runge-Kutta integration would be beyond the scope of

this work and can e.g. be found in Chapter 16 of Press et al. (1992), the basic routines of the
method and their interaction with the main hydro routines shall be outlined here:

• The Runge-Kutta routines are called CPODEINT, CPDERIVS, CORKQS, and CPRKCK and
are based on their counterparts without the “CP”-prefix in Chapter 16.2 of Press et al.
(1992). The base routine is CPODEINT which calls the other subroutines and is called
itself for the integration of the velocity v in a given radius interval.

• As all quantities listed in Sect. A.6.1 as only available on the standard (coarse) depth
point grid, their values on the fine grid have to be obtained via monotonic spline inter-
polation. This is also done in the CPDERIVS routine.

• After the critical point candidate has been determined via rc = r(F = 0) in the
HDSOLUTION-routine, the routine CPINT is called, which manages the whole integration.
Starting with v(rc) = a(rc), the inward integration is done first. For this CPODEINT is
called with rc as the starting point and the radius of the next inner coarse grid depth
point as end point. Afterwards the routine is called again with the integration inter-
vals matching the radius intervals of the coarse grid. This allows an easy storage of
the resulting velocity field on the coarse grid. The same is then done for the outward
integration.

• A slightly adjusted treatment had to be added in CPINT for the case that the critical
point candidate radius rc is numerically indistinguishable from a coarse grid point.

• In order to be able to check the integration results, all fine grid points that are calculated
by the adaptive step size method in CPODEINT are stored, together with their integration
results. A visualization example of these fine grid results can be seen in Fig. 5.1.

Afterwards, the mass-loss rate is adjusted according to one of the methods described in
Sect. 3.11, depending on which options have been specified for the model. In some cases, it
can also be necessary to exclude the inner and/or outer boundary points from the Runge-
Kutta integration. If this is the case, the velocity field is extrapolated afterwards to the
corresponding radii, using a grid that is ten times finer than the coarse grid.

135



Appendix A PoWR implementation details

A.7 Adjustments before the hydrodynamic solution

Unless performed on an already consistent or at almost consistent atmosphere model, the
integration of the hydrodynamic equation usually cannot be performed without adjusting the
input. In fact, if the integration would be performed right away using all input values as they
are, most models would either crash during the integration or cause large perturbations in a
model that might completely prevent the calculations from converging. It is therefore crucial
to perform a few adjustments to the input values, in particular to Γrad. The adjustments can
basically be sorted into two groups, which occur in the code in the same order as they are
listed here.

A.7.1 Damping adjustments

It is generally helpful, if not necessary to damp the input provided to the hydrodynamic
integration routines. The velocity field is coupled to the density structure and changes there
require an interpolation of the population numbers from the old to the new structure. The
larger the changes in the density structure, the larger are usually be the following corrections,
even if the interpolation is done properly as the number of total depth points is limited and
the points are spaced in order to reflect several criteria, including a proper coverage of the
velocity field. Large corrections from the statistical equation can in turn lead to significant
changes in the radiative acceleration, which in the end determines the slope of the velocity
field as it enters the hydrodynamic equation as a major factor. It is therefore important to
produce situations that – at least in general – do not lead to large corrections, but instead
cause relatively small adjustments which do not lead to a major perturbation of a current
model situation.
To reach this goal, damping adjustments of Γrad(r) turned out to be very successful. From

all terms entering F , the Γrad-term is by far the most important as it is usually much larger
than the other two, i.e. it mainly determines the slope of the resulting velocity field v(r).
It is also the only term that depends directly on the results of the radiative transfer, even
though there is of course also an indirect connection via the temperature on the gas-pressure
terms. However, the temperature-dependent terms are small except the one entering G which
determines the velocity at the sonic point. Therefore, Γrad is the “natural” candidate when
thinking about damping input to the hydrodynamic equation.
In all cases, only the values Γrad(r) that enter the hydrodynamic equations and its preceding

calculations are modified while the general calculation of arad in the CMF radiative transfer
or the stellar mass M∗ of a model are left untouched. Two major concepts are used to adjust
Γrad(r) before the integration of the hydrodynamic equation. These are performed in the
hydro_prepcak-subroutine and will be described in the following:

Reducing Γrad-changes

An easy, but very effective approach to damp the effects of a hydrodynamic step to the velocity
field (and thus to all other quantities as well) is to reduce the change between the Γrad-values
of the last hydro step and the current one. This is achieved by weighting the current values
Γrad,cur with a damping factor 0 < freduce < 1 and adding the values from the last step Γrad,last
with the remaining weight, i.e.

Γrad,use(r) = freduce · Γrad,cur(r) + (1− freduce) · Γrad,last(r) (A.12)
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with Γrad,use denoting the values which will actually be used in the hydrodynamic equation.
This technique is similar to what happens in the ensuretaumax-routine if the correct hydro-
static integration is performed using also the full radiative acceleration.
Technically this damping requires the values of Γrad,last to be saved in the MODEL file. The

vector containing the values is called GRDYN, in analogy to GRSTATIC which is used for
the static case.‡ Note that GRDYN contains the values of Γrad,use, i.e. those values including
all adjustments that have been made in the preceding hydro step as these are the values that
have determined the (current) velocity field.

Mixing with an implied Γrad

Another approach to reduce the effect on the velocity field is to mix the current value of
Γrad with a quantity that will be referred to as Γimp. It can be calculated by resorting the
hydrodynamic equation, so that Γ is obtained instead of the velocity gradient. Using the
present velocity field as an input then, one obtains an “implied Γ”, i.e.

Γimp(r) =
dv

dr

(
1− a2

v2

)
r2v

GM
− 2

a2r

GM
+ 2

r2a

GM

da

dr
+ 1. (A.13)

Entering the hydrodynamic routines with this Γimp instead of Γrad would return the current
velocity field without any changes. This means that such a situation also would always result
in a solvable situation. However, one would not get closer to hydrodynamical consistency
by using just Γimp, so instead this value is mixed with the actual Γrad in a similar way as
described for mixing current with previous values in Eq. (A.12).
As the current situation will in generally not be hydrodynamically consistent, the Γimp

can be normalized, so that at least the overall work ratio Q (see Sect. 3.2) using the implied
radiative acceleration is unity, i.e.

Γimp,norm(r) = Γimp(r) ·

Rmax∫
R∗

Γimp(r)GM
r2

dr

1
2 [v2(Rmax)− v2(R∗)] + GM

R∗
− GM

Rmax
+

Rmax∫
R∗

1
ρ

dP
dr dr

. (A.14)

Mixing the current Γrad with Γimp usually leads to small corrections, which is helpful, but
it tends to preserve the present velocity field if this is done before each hydro step, if the
mixing factor is around 0.5 or larger. Thus this method is not successful for a permanent
use throughout the iterations, but it provides a great start for the first hydro step where no
previous Γrad values are available for the damping method described previously. Therefore
Γimp is used to initialize the GRDYN-vector, while afterwards the normal Γrad-reducing is
performed. This creates a smooth transition throughout the hydro iterations from the implied
Γrad-values representing a prescribed velocity field towards a consistent solution for a converged
model.

A.7.2 Solvability adjustments

Even more fundamental than obtaining small corrections from a solution is to ensure that
there is a solution at all. For some start models this is not a problem and no adjustments
‡The same vector cannot be used for both methods as the values for the quasi-hydrostatic method have an
internal upper cut at Γrad = 0.9
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are required, but other models, especially the ones for WR stars, if they are taken from the
model grids, show a complex behavior in arad, leading to a situation where F becomes zero
at more than one depth point or even F < 0 at the inner boundary. In such cases, monotonic
solutions for v(r) are not guaranteed and it might even be clear which r(F = 0) is the proper
candidate for the sonic point. The F-G-plot introduced in Sect 3.10.1 provides a very good
diagnostic tool here, helping to get an easy overview of a complex situation and understanding
the troubles of a given model.
There are situations where the hydrodynamic integration just cannot be performed because
F = 0 or G = 0 never occurs. In such cases local adjustments are not justified and the basic
model parameters of the current model might simply not be appropriate for obtaining a model
with Q ≈ 1, i.e. which is at least roughly balanced energetically. The four situations where
either F or G never becomes zero can be attributed to physical reasons, namely:

F < 0 This usually implies Γrad > 1 at all depths, i.e. the radiative pressure is larger than
gravity everywhere in the stellar atmosphere. Unless all elements are completely ionized,
which indicates that the main iteration between the CMF radiative transfer and the
solution of the statistical equations ran into trouble, this means that either the assumed
luminosity of the star is too high or its mass is too low.

F > 0 The opposing situation implies Γrad < 1 at all depths, which in turn means that the
assumed luminosity is too low or the stellar mass is too high. On the numerical side,
it should also be checked if the used model atom is correctly reflecting the current
situation, in particular in the outer part where Γrad should be above unity. Especially if
leading iron ions are only considered in the form of a control level, a significant fraction
of the driving opacity might be missing. In those cases, adding additional iron levels
and recalculating the model should help.

G < 0 The wind speed is always subsonic. This basically never happens when starting from a
model with a prescribed velocity field, but it could happen if v∞ was not much above
the sound speed and major temperature adjustments have been performed after the last
hydro step. This either points to problems occurring in the temperature correction or
an unphysical combination of stellar parameters.

G > 0 The wind speed is already supersonic at the inner boundary. If all important elements
and ions are already considered, the inner boundary is not deep enough in the atmo-
sphere to reach a subsonic regime. Increasing the desired value of τmax significantly and
restarting the model atmosphere calculation should help here.

Unless one of these situations occur, adjustments can usually help to start hydrodynamic
calculations, even if there is more than one point with F = 0. It should be noted that the
Γrad-damping including the start from Γimp already helps to reduce these cases significantly,
but there will still be situations left, especially after a few hydro iterations when the “true”
Γrad is more and more considered in the integration. Therefore if F = 0 occurs more than
once, the following adjustment scheme is executed:

• The radius with F = 0 and dF
dr < 0 that is nearest to G = 0 is taken as the candidate

radius rc for the sonic point.

• For r > rc all values of F > 0 are prevented by adjusting the used value of Γrad
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• For r < rc all values of F < 0 are prevented by adjusting the used value of Γrad

The selection of the candidate radius rc is of course crucial here and further adjustments or
additional options might have to be added here in the future, but for the test cases so far
this criterion is working fine. The adjustments in the inner and outer part are only performed
at depth points where F would have the “wrong” sign, i.e. due to Eq. (3.150) no monotonic
velocity field would be obtained. For this case the value

Γ1(r) := 1− 2
a(r) r

GM

(
a(r)− rda

dr

)
(A.15)

is calculated and used via cfΓ1(r) as a maximum value in the inner or via c−1
f Γ1(r) as a

minimum value for Γrad(r) in the outer parts. The parameter cf is a value close to unity. In
the test calculations so far cf = 0.975 has been used. To avoid artifacts in the calculated v(r)
and ensure a smooth transition through the sonic point, no adjustments to Γrad are made in
the regime of dF

dr < 0 around rc.

A.8 Adjustments after the hydrodynamic solution

The velocity field calculated from the hydrodynamic equation is only used if it has been
obtained by a successful, i.e. converged, iteration. If the hydro iteration was terminated by
any other case, such as reaching the maximum number of iterations, no results from the hydro
calculation are used and the model is left as if the hydro routine had never been called.
After a successful calculation of the hydrodynamic velocity field, several steps have to be

performed in order to continue the overall model iteration. These steps are described in the
following subsections.

A.8.1 Damping of the hydrodynamic solution

The first adjustment after the calculation of a hydro velocity field is the damping of the
result, which is performed in the subroutine hydro_dampresult. In general, input damping
(see Sect. A.7) turned out to be the most efficient way to ensure a smooth insertion of the
hydro steps into the overall conversion regime, so in the best case nothing needs to be done
here. Nevertheless methods for damping the resulting velocity field have been implemented, as
they have been used in the first approach by Gräfener & Hamann (2005) and are unavoidable
in some cases where the resulting velocity field differs too much from the previous one. In
particular, the hydro_dampresult-routine performs the following tasks:

1. If the innermost value of the Rosseland continuum opacity is significantly larger than
the suggested τmax, the velocity field is shifted to ensure that the actual damping is
performed in a regime with similar τ -value. This is ensured by an iterative process
between shifting and recalculating the τRoss,cont-scale after each shift. The radius grid
is adjusted to cover the shifted velocity field properly.

2. If the radius grid has been changed, the old velocity field is now interpolated on the
new grid points. In some cases this might require an extrapolation of the old velocity
field. This is done using an exponential function that preserves both v and dv

dr at the
connection point:

vextrap(r) = vND · e
dv
dr |ND
vND

·(r−RND) (A.16)
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3. For every depth point, the old (vold) and new (vhydro) velocity fields are now mixed:

vnew(r) = (1− fdamp) · vold(r) + fdamp · vhydro(r) (A.17)

The damping factor fdamp has to be specified in the model input (CARDS) file and has
to be between zero and unity. For fdamp = 1, the velocity field is completely changed
to the new hydro solution. If no input damping is used, output damping factors around
0.1 or 0.2 are a good choice to avoid major disruption of a model. However, in cases
with sufficient input damping or where the model is well situated and the overall energy
balance is already fulfilled, fdamp = 1 can actually be used and helps a lot to speed up
the overall model calculation.

A.8.2 Conservation of optical depth (for HD-models)

Unless the new velocity field has been calculated via the method in Sect. 3.11.3, i.e. the
conservation of τmax was already included in the hydro iteration, the solution does not conserve
the total optical depth by default. In such cases the resulting velocity field has to be adjusted
afterwards or the total (Rosseland continuum) optical depth will differ from the specified τmax.
In fact it can happen that during each hydro step the total optical depth decreases and the
final model might end up with a maximum value of only ≈ 5 or even . 2 in some cases,
i.e. the quasistatic layers have essentially been lost in the model and a significant part where
the emergent spectrum is formed might be missing. This has to be avoided as the resulting
spectra and stellar parameters cannot be compared to any real star.
The general iteration mechanism to conserve the optical depth is not that different from its

counterpart in the ensuretaumax-routine described in Sect. 2.7, but the fact that the velocity
field is given from the numerical solution of the hydrodynamic equation and thus only available
in a tabulated form has to be considered. Thus, the mechanism here consists of the following
steps:

1. Calculation of the current τRoss,cont-scale

2. Main iteration loop:

a) Comparison of current v(R∗) with vmin suggested from τRoss,cont-scale.

b) Inner boundary extrapolation or interpolation to obtain R(vmin). The various de-
tails of the different methods used here are described in detail in Sect. A.8.3.

c) The radius grid is shifted by ∆R = R∗ −R(vmin)

d) Redefined radius and density grid (r, ρ) based on the new v(r)

e) Interpolation of electron temperature T and population numbers ni one the new
grid

f) Calculation of the current τRoss,cont-scale

g) Comparison of new τRoss,cont(R∗) with specified τmax. If the difference is still larger
than ετ , vmin is adjusted

• via vmin = vmin,last

(
τRoss,cont(R∗)

τmax

)0.5·fvdamp
if τRoss,cont(R∗) < τmax,

• via averaging between the last two values of vmin if τRoss,cont(R∗) > τmax,
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• via spline interpolation vmin = v(τmax) if τRoss,cont(R∗) > τmax and averaging
was not successful.

The damping factor fvdamp starts with a value of one and is divided by two each
time the solutions start to oscillate.

Not more than 100 iterations are performed. If the difference between the intended τmax
and the actual value is still larger than ετ , the velocity field from the iteration with the
smallest difference is used.

3. Optional Damping: The new vmin-value can be mixed with the old one in order to damp
the corrections to the velocity field. An additional calculation of the iteration steps
above is performed in this case.

4. Calculation of the velocity gradient and R(τRoss,cont = 2/3)

5. Interpolation of the coarse grid radiation field XJC as well as the temperatures and
populations numbers of the last three STEAL jobs on the new radius grid.

A.8.3 Inner boundary adjustments due to conservation of optical depth

The most striking difference in the conservation of the total Rosseland (continuum) optical
depth after the hydrodynamic integration compared to the “standard” method in Sect. 2.7, is
the adjustment of the velocity field during the τmax−iteration, as the hydrodynamic solution
is not described by a certain function and therefore one cannot easily adjust the velocity field
like it would be able with a given velocity law. Especially if the innermost point does not
reach τmax, the velocity field needs to be extrapolated, which requires approximations and
thus is the most crucial part.
In order to reach the required τmax and thus a suitable vmin, different methods can be used.

All methods, which have been implemented into the PoWR code, are described in following.
The methods are referenced with numbers which are similar to those which can be specified
in the CARDS file to enforce the use of a particular method.

Method 1: Velocity field approximation plus HD-cutoff

One of the simplest approaches is to use a general law in the innermost part and avoid any case
selection between τRoss,cont(R∗) > τmax and τRoss,cont(R∗) < τmax. For such an implementation
one simply cuts off the hydro solution at a radius Rhy, such that Rcrit > Rhy > R∗. To obtain
the velocity field between R∗ and Rhy, a velocity field of the following form is applied:

v(r) = a ·
(

r

Rhy

)c
· eb·(r−Rhy) (A.18)

This function has an exponential decay known from the classical hydrostatic approach and
the parameters a, b, and c can be adjusted to fit all three boundary conditions, namely:

v(R∗) = vmin (A.19)
v(Rhy) = vhy (A.20)

dv

dr

∣∣∣∣
r=Rhy

=
dv

dr

∣∣∣∣
hydro

=: X (A.21)
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Solving this system of equations yields the following velocity field v(r):

v(r) = vhy ·
(

r

Rhy

) X
vhy
−

ln
vhy
vmin

+ X
vhy

ln R∗
Rhy

Rhy−R∗+ln R∗
Rhy


· e

ln
vhy
vmin

+ X
vhy

ln R∗
Rhy

Rhy−R∗+ln R∗
Rhy

·(r−Rhy)
(A.22)

The implementation of this method is straight forward, but its biggest disadvantage is that
this prespecified law usually does not fulfill the hydrodynamic equation. To achieve this goal,
more complex methods need to be considered.

Method 2: Exponential extension plus regula falsi

Instead of cutting away a fraction of the hydrodynamic solution in any case, it makes sense
to check first if the innermost point might already outrange the required value of τmax. If this
is case, its velocity vhy will be larger than the required velocity vmin and it is sufficient to
use the hydrodynamic solution up to a radius that can be obtained simply by interpolation.
Following the efforts of Gräfener & Hamann (2005) one can improve this concept and replace
a simple spline interpolation over r(v) by an iterative approach using a regula falsi method
with a spline interpolation over v(r).
In the case of vhy > vmin however, the need for an extrapolation is still there. Similar

to the previously described method this is done with an exponential function, but with a
slightly different approach in the details. Here the exponential function is defined such that
the exponent becomes zero at vhy, which avoids the polynomial factor from the previous
approach. The new approach therefore reads:

v(r) = vhy · e−α·(RS−r) (A.23)

One can see immediately that for RS = Rhy the condition v(Rhy) = vhy is fulfilled. In order to
furthermore achieve v(R∗) = vmin plus a velocity gradient fixed by the hydro solution at Rhy,
the distance between RS and R∗ must not be arbitrary. Instead one obtains the condition

RS = R∗ + ln

(
vhy
vmin

)
· 1

α
. (A.24)

The second summand ensures that v(R∗) = vmin will be obtained. For the remaining param-
eter α we obtain a condition by requiring a continuous transition between the extrapolation
and the hydrodynamic solution also for the gradient:

dv

dr

∣∣∣∣
r=RS

= α · vhy (A.25)

This method comes at the cost of a small radius shift that affects usually the innermost
grid points. Unless RS has exactly the value of Rhy, the outer velocity field (i.e. the hydro
solution) is shifted such that it fits with RS.

Method 3: Quasi-hydrodynamic continuation plus regula falsi

Instead of performing an extrapolation using a predefined function, one can also try a di-
rect extrapolation by using the hydrodynamic equation itself. This approach requires a few
assumptions and might therefore not lead to a fully selfconsistent solution in any case, but
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it has the least constrains compared to the other methods. This method is therefore called
“quasi-hydrodynamic continuation” as it uses the same equations, but makes a few input as-
sumptions. In fact this continuation is only performed if extrapolation is required at all. In
case of vhy < vmin, the regula falsi is used, similar to the previous method 2.
In order to perform the extrapolation, the radius grid is continued inwards using small steps,

starting with a fraction of 0.7 of the innermost step size. The velocity v is then calculated by
using dv

dr = −ρFG−1 from the hydrodynamic equation, assuming that Γ(r) will approach 1.
The the sound speed a is extrapolated by using the gradient that is obtained in between the
grid points. This procedure is continued inwards until v(r) ≤ vmin.

Method 4: Velocity field shifting

In contrast to the previous two methods which usually require a radius shift, one could also
think of shifting the velocities directly while keeping the radius grid fixed. Indeed it is the
easiest way to add simple positive or negative shift ∆v to the hydro solution vHDsol, i.e.

v(r) = vHDsol(r) + ∆v. (A.26)

This method keeps the slope of the overall hydro solution. As ∆v is adjusted to keep the
required τmax, it is usually on the order of vmin and thus ∆v � v∞. Therefore the velocity
field in the outer part does not really differ from the hydrodynamic solution and the hydro-
dynamic equation is still fulfilled after shifting. In the innermost part however, the shifting is
a significant change to the velocity field and the hydrodynamic equation is usually no longer
fulfilled. Especially during early hydro iterations which can cause significant changes to the
overall velocity slope, this method might even lead to a model situation where the hydrody-
namic equation can no longer be solved. The regula-falsi plus extension methods (2 and 3)
are therefore recommended at the start of a hydro calculation.

A.9 Overall implementation scheme of the hydrodynamic
solution

The hydrodynamic calculations are implemented in the steal program and encapsulated in
the hydrosolve-routine, which is called after all corrections to the temperature and population
numbers have been performed. After describing the concepts and several details in the past
sections, the overall scheme of the routine is outlined here:

1. Decoding of all parameters on the HYDRO and ALPHA input card

2. Determination of the number of jobs since the last hydrodynamic iteration

3. Check if all criteria for a new hydrodynamic calculation are fulfilled:

• The hydrodynamic equation is not fulfilled with an accuracy better than 5% for all
depth points

• Enough jobs have passed since the last iteration (interval number is a user-defined
input, default is 10)

• Flux consistency is obtained for all depth points (better than a used-defined accu-
racy, default is 5%, criterion can be switched off)
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• Optional: current corrections are below a specified limit

4. The main calculation routine hdsolution is called, containing:

a) Adjustments performed before the hydro solution, see Sect. A.7

b) Creation of analysis plot (F-G-plot) and corresponding parameter table

c) Fine calculation of the candidate radius rcrit for the critical point

d) Main hydro iteration:

i. Integration of the hydrodynamic equation using a fourth-order Runge-Kutta
scheme, starting inwards and outwards from rcrit (default)

ii. Conversion criterion is checked

iii. If not converged: Adjustment of Ṁ and/or vcrit, depending on the selection of
the method

e) Creation of the fine integration result plots

5. Adjustments performed after the hydro solution, see Sect. A.8

After a successful velocity update all stratifications have been changed. Thus a renewal of
the Eddington factors (via WRCONT and COLI+) is enforced in the following radiative transfer
calculation.
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