W.-R. Hamann et al.: The Galactic WN stars, Online Material p 1

Online Material

The following figures display for each of our program stars the observed spectrum (blue) with a model (red). The upper panel, corresponding to Fig. 3, shows the spectral energy distribution (IUE low-resolution spectrum if available, visual and 2MASS photometry). The model SED was geometrically diluted according to the distance modulus *DM* and reddened with E_{b-v} as given in the figure. Keywords CARDELLI OF FITZPATRICK indicate the applied reddening law (default: Seaton's law), the given parameter being R_V (see Sect. 4.2).

Most models were taken from our PoWR model grids (see Hamann & Gräfener 2004). The grid parameters are $\log T_*$ and $\log R_t$. Note that the grids were calculated for a fixed luminosity of $\log L/L_{\odot}$ = 5.3, and only scaled for the individual star; the scaling factor is indicated as the logarithmic "shift" in the plots. The so-called WNE grid is calculated for zero hydrogen and a terminal wind velocity of 1600 km/s, while the models in the WNL grid have 20% hydrogen (by mass) and $v_{\infty} = 1000$ km/s.

As the plotted models are mostly taken from the prepared grids (if not otherwise stated), their hydrogen abundance $X_{\rm H}$ and terminal velocity v_{∞} do generally not agree precisely with the final parameters of our analysis as given in Table 2.

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 3

MODEL START 04/01/03 20:19:23 112202/0.3D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 14-18 AFTER JOB NO.311

Fig. 12. Model: WNE 14-18, $T_* = 112 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 4

Fig. 13. Model: WNE 16-16, $T_* = 141$ kK, $\log(R_t/R_{\odot}) = 0.5$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 5

MODEL START 08/29/05 09:53:32 89125/1.2D/2700 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 12-09 AFTER JOB NO.569

Fig. 14. Individual Model: WNL 12-09, $T_* = 89$ kK, $\log(R_t/R_{\odot}) = 1.2$ but $v_{\infty} = 2700$ km/s

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 6

MODEL START 03/08/03 04:38:11 89125/0.3D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 12-18 AFTER JOB NO.185

Fig. 15. Model: WNE 12-18, $T_* = 89 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 7

Fig. 16. Model: WNE 14-18, $T_* = 112$ kK, $\log(R_t/R_{\odot}) = 0.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 8

MODEL START 10/27/03 09:21:21 63096/1.2D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 09-09 AFTER JOB NO.625

Fig. 17. Model: WNL 09-09, $T_* = 63$ kK, $\log(R_t/R_{\odot}) = 1.2$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 9

Fig. 18. Model: WNL 06-11, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.0$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 10 MODEL START 11/25/03 12:51:17 44668/0.9D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-12 AFTER JOB NO.667

Fig. 19. Model: WNL 06-12, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 11*

Fig. 20. Model: WNE 14-18, $T_* = 112 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 12

MODEL START 04/04/03 12:29:14 63096/0.9D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 09-12 AFTER JOB NO.946

Fig. 21. Model: WNE 09-12, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 13

MODEL START 06/08/05 17:21:29 44668/1.30D/1800 L5.3 H40 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-08 AFTER JOB NO.365

Fig. 22. Individual Model: 06-08, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.3$ with $v_{\infty} = 1800$ km/s and $X_{\rm H} = 0.40$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 14

Fig. 23. Individual Model: 07-08, $T_* = 50$ kK, $\log(R_t/R_{\odot}) = 1.35$ with $v_{\infty} = 2000$ km/s and $X_{\rm H} = 0.44$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 15

MODEL START 12/01/04 14:39:17 50119/1.5D/1800 L=5.3 H44 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 07-06sp AFTER JOB NO.471

Fig. 24. Individual Model: 07-06, $T_* = 50$ kK, $\log(R_t/R_{\odot}) = 1.5$ with $v_{\infty} = 1800$ km/s and $X_{\rm H} = 0.44$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 16* MODEL START 10/07/03 17:30:20 50119/1.2D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 7-09 AFTER JOB N0.109

Fig. 25. Model: WNL 07-09, $T_* = 50$ kK, $\log(R_t/R_{\odot}) = 1.2$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 17*

MODEL START 04/03/03 22:20:39 63096/0.8D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 9-13 AFTER JOB NO.284

Fig. 26. Model: WNE 09-13, $T_* = 63$ kK, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 18

MODEL START 10/21/03 16:29:44 56234/0.90D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 08-12 AFTER JOB NO.587

Fig. 27. Model: WNL 08-12, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 19

MODEL START 03/08/03 04:45:18 89125/0.2D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 12-19 AFTER JOB NO.831

Fig. 28. Model: WNE 12-19, $T_* = 89 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.2$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 20

Fig. 29. Model: WNE 13-17, $T_* = 100 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.4$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 21

MODEL START 10/01/03 16:06:27 44668/0.70D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-14 AFTER JOB NO.514

Fig. 30. Model: WNL 06-14, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 22

Fig. 31. Model: WNE 11-13, $T_* = 79 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 23

MODEL START 10/13/05 18:09:59 112202/0.8D/2450 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODR (14-13) AFTER JOB NO.406

Fig. 32. Individual Model: WNE 14-13 $T_* = 112 \text{ kK}, \log(R_t/R_{\odot}) = 0.8 \text{ but } v_{\infty} = 2450 \text{ km/s}$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 24

MODEL START 10/21/03 16:22:34 56234/1.0D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 08-11 AFTER JOB NO.472

Fig. 33. Model: WNL 08-11, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.0$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 25

MODEL START 03/28/03 03:43:21 70795/0.9D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 10-12 AFTER JOB NO.609

Fig. 34. Model: WNE 10-12, $T_* = 71 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 26

MODEL START 04/04/03 12:29:14 63096/0.9D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 09-12 AFTER JOB NO.946

Fig. 35. Model: WNE 09-12, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 27

Fig. 36. Model: WNE 08-13, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 28* MODEL START 03/31/03 23:18:48 63096/0.7D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 9-14 AFTER JOB NO.425

Fig. 37. Model: WNE 09-14, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 29

Fig. 38. Model: WNE 10-17, $T_* = 71$ kK, $\log(R_t/R_{\odot}) = 0.4$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 30

MODEL START 05/29/03 23:32:49 44668/1.1D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 6-10 AFTER JOB NO.264

Fig. 39. Model: WNE 06-10, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.1$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 31 MODEL START 11/25/03 12:51:17 44668/0.9D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-12 AFTER JOB NO.667

Fig. 40. Model: WNL 06-12, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 32

MODEL START 04/21/03 23:53:29 56234/0.8D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 08-13 AFTER JOB NO.825

Fig. 41. Model: WNE 08-13, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 33

MODEL START 04/20/03 00:18:54 56234/0.90D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 08-12 AFTER JOB NO.172

Fig. 42. Model: WNE 08-12, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 34

Fig. 43. Model: WNE 08-14, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 35

MODEL START 03/31/03 10:50:36 63096/0.6D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 9-15 AFTER JOB NO.825

Fig. 44. Model: WNE 09-15, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.6$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 36

MODEL START 10/13/03 09:51:52 50119/1.0D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 07-11 AFTER JOB NO.610

Fig. 45. Model: WNL 07-11, $T_* = 50 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.0$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 37* MODEL START 10/21/03 16:51:37 56234/0.7D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 8-14 AFTER JOB N0.649

Fig. 46. Model: WNL 08-14, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 38*

MODEL START 05/05/03 21:33:49 50119/0.90D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 07-12 AFTER JOB NO.802

Fig. 47. Model: WNE 07-12, $T_* = 50 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 39

MODEL START 01/18/05 09:55:00 50119/1.1D/1000 L=5.3 H40 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 07-10 AFTER JOB NO.276

Fig. 48. Individual Model: 07-10, $T_* = 50$ kK, $\log(R_t/R_{\odot}) = 1.1$ with $v_{\infty} = 1000$ km/s and $X_{\rm H} = 0.40$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 40

MODEL START 11/21/03 16:50:35 44668/1.30D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-08 AFTER JOB NO.156

Fig. 49. Model: WNL 06-08, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 41

MODEL START 11/28/03 11:55:59 39811/1.40D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 5-07 AFTER JOB NO.566

Fig. 50. Model: WNL 05-07, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.4$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 42

MODEL START 03/19/03 09:03:38 70795/0.4D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 10-17 AFTER JOB NO.413

Fig. 51. Model: WNE 10-17, $T_* = 71$ kK, $\log(R_t/R_{\odot}) = 0.4$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 43

Fig. 52. Model: WNE 08-12, $T_* = 56 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 44

MODEL START 03/13/03 16:12:08 79433/0.3D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 11-18 AFTER JOB NO.147

Fig. 53. Model: WNE 11-18, $T_* = 79 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 45

MODEL START 12/08/03 10:01:14 35481/1.1D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 04-10 AFTER JOB NO.454

Fig. 54. Model: WNL 04-10, $T_* = 35 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.1$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 46

Fig. 55. Model: WNL 07-13, $T_* = 50 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 47

Fig. 56. Model: WNL 05-07, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.4$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 48

Fig. 57. Model: WNE 10-16, $T_* = 71$ kK, $\log(R_t/R_{\odot}) = 0.5$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 49

MODEL START 05/05/03 21:33:49 50119/0.90D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 07-12 AFTER JOB NO.802

Fig. 58. Model: WNE 07-12, $T_* = 50 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 50

MODEL START 12/01/03 10:57:28 39811/0.80D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 5-13 AFTER JOB NO.813

Fig. 59. Model: WNL 05-13, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 51*

MODEL START 04/23/03 21:14:03 50119/0.80D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 07-13 AFTER JOB NO.283

Fig. 60. Model: WNE 07-13, $T_* = 50 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.8$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 52

MODEL START 05/24/03 09:23:29 44668/0.70D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 06-14 AFTER JOB NO.908

Fig. 61. Model: WNE 06-14, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 53

Fig. 62. Model: WNL 06-14, $T_* = 45 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 54

MODEL START 11/03/03 09:45:57 70795/1.1D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 10-10 AFTER JOB NO.631

Fig. 63. Model: WNL 10-10, $T_* = 71$ kK, $\log(R_t/R_{\odot}) = 1.1$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 55

MODEL START 04/04/03 12:29:14 63096/0.9D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 09-12 AFTER JOB NO.946

Fig. 64. Model: WNE 09-12, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 56

MODEL START 11/24/03 09:56:15 44668/1.0D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-11 AFTER JOB NO.727

Fig. 65. Model: WNL 06-11, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.0$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 57

Fig. 66. Model: WNL 06-08, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.3$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 58* MODEL START 03/31/03 23:18:48 63096/0.7D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 9-14 AFTER JOB NO.425

Fig. 67. Model: WNE 09-14, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 59

MODEL START 11/05/03 09:21:16 70795/0.5D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 10-16 AFTER JOB NO.368

Fig. 68. Model: WNL 10-16, $T_* = 71 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.5$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 60

MODEL START 12/01/03 10:54:18 39811/0.9D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 05-12 AFTER JOB NO.178

Fig. 69. Model: WNL 05-12, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.9$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 61

Fig. 70. Model: WNL 05-08, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.3$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 62

MODEL START 03/31/03 23:18:48 63096/0.7D/1600 L=5.3 N=1.5% C=1E-4 Fe=1.4E-3 D4 WN-NODIEL 9-14 AFTER JOB NO.425

Fig. 71. Model: WNE 09-14, $T_* = 63 \text{ kK}$, $\log(R_t/R_{\odot}) = 0.7$

W.-R. Hamann et al.: The Galactic WN stars, *Online Material p 63*

MODEL START 11/07/03 09:58:49 79433/1.1D/1000 L=5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 11-10 AFTER JOB NO.414

Fig. 72. Model: WNL 11-10, $T_* = 79 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.1$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 64

MODEL START 12/01/03 10:41:44 39811/1.1D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 5-10 AFTER JOB NO.572

Fig. 73. Model: WNL 05-10, $T_* = 40 \text{ kK}$, $\log(R_t/R_{\odot}) = 1.1$

W.-R. Hamann et al.: The Galactic WN stars, Online Material p 65

MODEL START 11/24/03 09:20:04 44668/1.2D/1000 L5.3 H20 N1.5% C1E-4 Fe0.14% D4 WNL-NODR 06-09 AFTER JOB NO.780

Fig. 74. Model: WNL 06-09, $T_* = 45$ kK, $\log(R_t/R_{\odot}) = 1.2$