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ABSTRACT

The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar
evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and
magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2
and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD 54879, a single slowly rotating O9.7 V
star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field
with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere
code fastwind results in an effective temperature and a surface gravity of 33000±1000 K and 4.0±0.1 dex. The abundances of carbon,
nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate
line-profile variability in HD 54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The
photospheric lines remain constant in shape between 2009 and 2014, although Hα shows a variable emission. The Hα emission is
too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal
chemical composition and the absence of photospheric line profile variations make HD 54879 the most strongly magnetic, non-variable
single O-star detected to date.
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1. Introduction

The nature and role of magnetic fields in massive stars is cur-
rently poorly understood (Maeder & Meynet 2000; Ud-Doula
et al. 2009; Briquet et al. 2012; Langer 2012). The origin of
magnetic fields in main-sequence stars in the upper part of the
Hertzsprung-Russell diagram (HRD) is being debated (Moss
2001; Ferrario et al. 2009; Tutukov & Fedorova 2010; Langer
2014; Wickramasinghe et al. 2014) and the role that these fields
play in stellar evolution is being explored (Langer 2012).

The properties of magnetic fields in intermediate mass stars
(A and late-B stars) have been studied in detail (see Landstreet
1992; Kochukhov & Bagnulo 2006; Hubrig et al. 2007; Donati
& Landstreet 2009, and references therein), presenting links be-

? Based on observations made with ESO telescopes at the La Silla
and Paranal observatories under programme ID 191.D-0255(C,F).

tween the magnetic field strength, chemical peculiarities, and
age (Ap/Bp stars, Borra & Landstreet 1980; Landstreet et al.
2007, 2008; Bailey et al. 2014). However, magnetism in the
upper part of the HRD is poorly understood (Donati & Land-
street 2009; Langer 2012; Martins et al. 2012a). Magnetic fields
have been unambiguously detected only in a few dozen main-
sequence O- and B-type stars (see e.g. Briquet et al. 2013; Petit
et al. 2013; Alecian et al. 2014; Fossati et al. 2014, 2015; Hubrig
et al. 2014b; Neiner et al. 2014, and references therein), reveal-
ing a small magnetic field incidence of 7% (Wade et al. 2014;
Morel et al. 2015). In the O-star subsample, the confirmed mag-
netic field detections are even scarcer; only ten stars have been
reported (Donati et al. 2002, 2006; Bouret et al. 2008; Hubrig
et al. 2008; Grunhut et al. 2009; Martins et al. 2010; Hubrig
et al. 2011; Nazé et al. 2012; Wade et al. 2012a,b; Grunhut et al.
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2013), most of them classified as Of?p stars or peculiar1 in some
other way (e.g. θ1 Ori C is a well-known variable star).

A larger number of detections is mandatory to find links
between stellar parameters and magnetic fields. The “B fields
in OB stars” (BOB) collaboration methodically searches for
magnetic fields in slowly rotating, massive main-sequence stars
(Morel et al. 2014, 2015). The first results from the BOB project
have been published by Hubrig et al. (2014b, 2015) and Fossati
et al. (2015).

We present here the first detection of a strong magnetic field
in the star HD 54879 and the quantitative characterisation of its
optical spectrum. HD 54879 (V = 7.65, Reed 2003) is an O9.7 V
star (Sota et al. 2011) and a probable member of the CMa OB1
association, which is about 3 Myr old (Clariá 1974), at a distance
of ∼ 1320 ± 130 pc (Humphreys 1978). In the recent catalogue
of projected rotational velocities of northern O- and early B-type
stars (Simón-Díaz & Herrero 2014), this star is quoted as having
a low projected rotational velocity (υ sin i) and macroturbulent
broadening component of 6 and 10 km s−1, respectively.

The paper is organised as follows. Section 2 describes the
observational material. Section 3 presents the results of the mag-
netic field detection and the analysis techniques. Section 4 de-
tails the analysis of the stellar atmosphere and the procedures
employed. In Sect. 5 we discuss our results and the conclusions
are drawn in Sect. 6.

2. Observations

We observed HD 54879 using the FORS 2 low-resolution spec-
tropolarimeter (Appenzeller & Rupprecht 1992; Appenzeller
et al. 1998) attached to the Cassegrain focus of the 8 m Antu
telescope of the ESO Very Large Telescope of the Paranal Obser-
vatory. The observations were performed using the 2k×4k MIT
CCDs (pixel size 15 µm× 15 µm) and a narrow slit with a width
of 0.4′′, leading to a (measured) resolving power of about 1700.
We also adopted the 200 kHz/low/1×1 readout mode and the
GRISM 600B. Each spectrum covers the 3250− 6215 Å spectral
range which includes all Balmer lines, except Hα, and a num-
ber of He lines. The star was observed on two consecutive nights
(Feb. 7 and 8, 2014) with a sequence of spectra obtained by ro-
tating the quarter waveplate from −45◦ to +45◦ every second
exposure (i.e., −45◦, +45◦, +45◦, −45◦, −45◦, +45◦, etc.). The
exposure times and signal-to-noise ratio (S/N) of Stokes I are
listed in Table 1.

We also observed HD 54879 using the HARPSpol polarime-
ter (Snik et al. 2011; Piskunov et al. 2011) feeding the HARPS
spectrograph (Mayor et al. 2003) attached to the ESO 3.6 m tele-
scope in La Silla, Chile. The observations, covering the 3780 −
6910 Å wavelength range with a resolving power R∼115000,
were obtained on April 23, 2014, using the circular polarisation
analyser. We observed the star with a sequence of four subex-
posures obtained rotating the quarter-wave retarder plate by 90◦
after each exposure, i.e. 45◦, 135◦, 225◦, and 315◦. Each subex-
posure was acquired using an exposure time of 2700 seconds,
leading to a Stokes I S/N per pixel of 347 at ∼ 4950 Å.

1 We consider peculiar stars those objects that show any uncommon
spectral feature compared to the standard spectral type classification cri-
teria (Walborn & Fitzpatrick 1990, 2000; Sota et al. 2011), for instance,
the presence of C iii λλ4647 − 4650 − 4652 Å emission lines (Walborn
1972). We do not consider Hα as part of these classification criteria.

3. Magnetic field detection

3.1. FORS 2 observations

Because of controversies reported in the literature about mag-
netic field detections and measurements performed with the
FORS 2 spectropolarimeter (e.g. Bagnulo et al. 2012), the data
were independently reduced in Bonn and Potsdam using a dif-
ferent set of independent tools. The reduction and analysis per-
formed in Bonn employed IRAF2 (Tody 1993) and IDL routines
based on the technique and recipes presented by Bagnulo et al.
(2002, 2012), while the Potsdam reduction and analysis was
based on the tools described in Hubrig et al. (2004a,b), updated
to include a number of statistical tests (Schöller et al. 2014, in
preparation). The details of the data reduction and analysis pro-
cedure applied in Bonn will be given in a separate work (Fossati
et al., in preparation).

The longitudinal magnetic field (〈Bz〉) was calculated using
either the hydrogen lines or the full 3710 − 5870 Å spectral re-
gion. All measurements performed on the Stokes V spectrum
led to detections at 6σ or more, while we consistently got non-
detections from the null profile. Furthermore, Monte Carlo boot-
strapping tests (Press et al. 1992; Rivinius et al. 2010; Hubrig
et al. 2014c) were carried out in Potsdam. These are most often
applied with the purpose of deriving robust estimates of stan-
dard errors. A total of 250000 tests were generated with the same
size as the original dataset. The final 〈Bz〉 value was then deter-
mined from all these newly generated datasets. The 〈Bz〉 values
and their uncertainties obtained in Bonn and Potsdam are listed
in Table 1. The rather large difference between the 〈Bz〉 values
obtained using the hydrogen lines and the entire spectrum might
occur because, in presence of a strong magnetic field, Stokes V
does not behave linearly with the derivative of Stokes I for the
metallic lines; in other words, for the metallic lines the weak-
field approximation, on which the method is based, does not hold
anymore. A thorough discussion about this topic can be found in
Landstreet et al. (2014).

3.2. HARPS observations

As was done for the FORS 2 data, the HARPS observations were
reduced separately in Bonn and Potsdam, using independent rou-
tines. HARPS 〈Bz〉 results are also summarised in Table 1.

3.2.1. Bonn reduction and analysis

The reduction and analysis in Bonn was performed with the re-
duce package (Piskunov & Valenti 2002) and the Least-Squares
Deconvolution technique (LSD; Donati et al. 1997).

The one-dimensional spectra, obtained with reduce, were
combined using the “ratio” method described by Bagnulo et al.
(2009). The spectra were re-normalised to the intensity of the
continuum obtaining a spectrum of the Stokes I (I/Ic) and V
(V/Ic), plus a spectrum of the diagnostic null profile (N - see
Bagnulo et al. 2009), with the corresponding uncertainties. We
then analysed the profiles of the Stokes I, V , and N parameter us-
ing LSD, which combines line profiles (assumed to be identical)
centred at the position of the individual lines and scaled accord-
ing to the line strength and sensitivity to a magnetic field (i.e.

2 Image Reduction and Analysis Facility (IRAF –
http://iraf.noao.edu/) is distributed by the National Optical
Astronomy Observatory, which is operated by the Association of
Universities for Research in Astronomy (AURA) under cooperative
agreement with the National Science Foundation.
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Fig. 1: LSD profiles of the Stokes I, V , and N parameter obtained
for HD 54879. The error bars of the LSD profiles are shown
for both Stokes V and the null parameter. The vertical dotted
lines indicate the velocity range adopted for the determination
of the detection probability and magnetic field value. All pro-
files have been shifted upwards/downwards by arbitrary values
and the Stokes V and N profiles have been expanded 5 times.

line wavelength and Landé factor). We computed the LSD pro-
files of the Stokes I, V , and of the null profile using the method-
ology and the code described in Kochukhov et al. (2010). We
prepared the line mask used by the LSD code adopting the stel-
lar parameters obtained from the spectroscopic analysis (Table
2). We extracted the line parameters from the Vienna Atomic
Line Database (vald; Piskunov et al. 1995; Kupka et al. 1999;
Ryabchikova et al. 1999) and tuned the given line strength to
the observed Stokes I spectrum with the aid of synthetic spec-
tra calculated with synth3 (Kochukhov 2007). We used all lines
stronger than 10% of the continuum, avoiding hydrogen lines,
helium lines with extended wings, and lines in spectral regions
affected by the presence of telluric features. The final adopted
line mask contained 140 lines. We defined the magnetic field
detection making use of the false alarm probability (FAP; Do-
nati et al. 1992), considering a profile with FAP< 10−5 as a def-
inite detection (DD), 10−5 <FAP< 10−3 as a marginal detection
(MD), and FAP> 10−3 as a non-detection (ND).

Figure 1 shows the LSD profiles we obtained for HD 54879,
with a S/N of the LSD Stokes V profile of 3177. The analysis of
the Stokes V LSD profile led to a clear definite detection with
a FAP< 10−15, while the analysis of the LSD profile of the null
parameter led to a non-detection (FAP> 0.7). Integrating over a
range of 44 km s−1 (i.e. ±22 km s−1 from the line centre) we de-
rived 〈Bz〉(V)=−592±7 G. This result confirms the FORS 2 mag-
netic field detection.

Because of the high S/N of the spectra and of the strong mag-
netic field, the Stokes V profile presents an observable signature
at the position corresponding to magnetic sensitive lines. Fig-
ure 2 shows the Stokes I, V , and null profiles for a set of strong
lines of different elements. The same shape of the Stokes V pro-
file is found for all lines. We also measured the 〈Bz〉(V) value for
some of them, obtaining results comparable to that given by the
LSD profile.

Fig. 3: Linear regression between the displacement of each line
centre of gravity in the right and left circularly polarised spectra
against 9.34 10−13λ2geff used in the moment technique (Mathys
1991).

3.2.2. Potsdam reduction and analysis

The data reduction in Potsdam was performed with the
ESO/HARPS pipeline. A detailed description of the reduction
and continuum normalisation is given in Hubrig et al. (2013).

A total of 49, mostly unblended, metallic lines were em-
ployed in the detection of a surface magnetic field using the
moment technique (MT, Mathys 1991). This technique allows
us to determine the mean longitudinal field strength and demon-
strate the presence of the crossover effect and quadratic mag-
netic fields, and so to constrain the magnetic field topology in
more detail than can be done with the LSD and Singular Value
Decomposition (SVD) methods. For each line in the sample
of metallic lines, the measured shifts between the line profiles
in the left- and right-hand circularly polarised HARPS spectra
are used in a linear regression analysis in the ∆λ versus λ2geff

diagram, following the formalism discussed by Mathys (1991,
1994) (see also Hubrig et al. 2014a, Fig. 11). The correspond-
ing linear regression is shown in Fig. 3. The Landé factors were
taken from Kurucz’s list of atomic data3. For each line measured,
the mean error was calculated taking into account the signal-to-
noise of the spectra and the uncertainty of the wavelength cali-
bration (Mathys 1994). We obtained a mean longitudinal mag-
netic field of 〈Bz〉(V)=−584±15 G. In addition, we derived a
〈Bz〉(N)=−22±10 G from the spectrum of the N parameter, cal-
culated by combining the subexposures in such a way that po-
larisation cancels out. Since no significant magnetic field could
be detected from the null spectrum, we concluded that any no-
ticeable spurious polarisation is absent. This is confirmed by the
analysis of the LSD N profile. No crossover and mean quadratic
magnetic field have been detected for this observational epoch.

In addition to the moment technique, the magnetic field was
detected using the multi-line SVD technique for Stokes Profile

3 http://kurucz.cfa.harvard.edu/atoms
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Fig. 2: The Stokes I (black bottom line), V (red middle line), and null (blue top line) profiles for a set of strong and magnetic
sensitive lines. The Stokes V and null profiles have been amplified by a factor of 2.5 and shifted by an arbitrary amount.

Fig. 4: SVD profile of Stokes I, V , and of the Null profile N.
For display purposes the SVD profiles have been corrected for
the radial velocity determined from the Stokes I profile. Like the
LSD profiles, the SVD Stokes V and the N profiles have been
shifted by an arbitrary amount and expanded by a factor of 5.

Reconstruction, recently introduced by Carroll et al. (2012). The
results obtained with the SVD technique, using a mask of 160
lines that excludes helium and hydrogen lines, are shown in Fig
4. As was done for the LSD analysis, the line mask was con-
structed using vald. The analysis led to a definite detection with
a FAP smaller than 10−16. From the retrieved Stokes V profile we
derived a mean longitudinal magnetic field 〈Bz〉(V)=−583±9 G.

4. Stellar parameters and abundances

The observations presented in Sect. 2 provided us with data at
low and high spectral resolution, both datasets having a high
S/N (> 300). We present the quantitative analysis of the datasets,
aiming at 1) characterising HD 54879 through the spectra of two
different instruments (i.e. FORS 2 and HARPS) and 2) explor-
ing the impact of spectral resolution on the stellar parameters
and chemical abundances.

We measured the υ sin i value of nearly 130 metal transitions
from the HARPS spectrum using the tool iacob-broad developed
by Simón-Díaz & Herrero (2014). We obtained an average υ sin i
value of 7 ± 2 km s−1 and a macroturbulence of 8 ± 3 km s−1,
in agreement with Simón-Díaz & Herrero (2014). We adopted
these values for our analyses.

The quantitative atmosphere analysis was performed using
the stellar atmosphere code fastwind (Santolaya-Rey et al. 1997;
Puls et al. 2005). The code enables non-LTE calculations and as-
sumes a spherical symmetry. The velocity structure of the stellar
wind is modelled with a β velocity law. Following the technique
described by Castro et al. (2012) (see also Urbaneja et al. 2005
and Lefever 2007), the stellar parameters and chemical abun-
dances were derived through automatic algorithms searching for
the set of parameters that best reproduce the main transitions in
the range ∼ 4000 − 4900 Å. The automatic tools were based on
a large collection of fastwind stellar grids (Castro et al. 2012;
Simón-Díaz et al. 2011b). The chemical analysis procedure has
been updated since Castro et al. (2012) by implementing an op-
timised genetic algorithm.

The best fitting parameters obtained from the analysis of the
FORS 2 and HARPS spectra are listed in Table 2, where for com-
parison we added the stellar parameters of the O9.7 V standard
HD 36512 (Sota et al. 2011), obtained by S. Simón-Díaz using
the iacob-gbat code (Simón-Díaz et al. 2011b). The observed
FORS 2 and HARPS spectra and the best-fit models are plotted
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in Figs. 6 and 7, see also Figs. A.1 – A.3 for a detailed display of
the HARPS data. The lines used in the analyses are marked. Ta-
ble 2 shows the good agreement between the stellar parameters
derived from the analysis of the high- and low-resolution spectra.
In addition, the HD 54879 temperature and gravity values agree
with those obtained for the standard star HD 36512. The analysis
of the FORS 2 and HARPS spectra yield He/H ∼ 0.10 − 0.12.
The low sensitivity of the He lines to abundance variations pre-
vents us from obtaining a more accurate value. Nevertheless, we
exclude a substantial helium enhancement/depletion for this star.

The wind-strength Q-parameter4 estimated in HD 54879,
mainly based on the Balmer lines, is substantially higher
(log Q = −11.0) than expected for a late-O dwarf (i.e. log Q =
−13.46 in HD 36512). To further investigate this difference,
Fig. 8 compares high-resolution spectra of HD 54879 and
HD 36512. Both spectra were taken with the same instrument as
part of the IACOB project (see Sect. 5.3). Convolving the spec-
trum of HD 54879 to match the rotation and macroturbulence ve-
locities of HD 36512 reveals a remarkable similarity between the
spectra of the two stars. However, the transitions formed in the
outer parts of the atmosphere show noticeable differences, espe-
cially Hα. It is unlikely that an exceptionally strong stellar wind
is at the origin of the Hα emission, which instead most proba-
bly originates from circumstellar material in the magnetosphere
(see Sect. 5.1), as already reported in other stars (e.g. Walborn
1980; Grunhut et al. 2009). We therefore re-calculated the stel-
lar parameters without considering the lines most sensitive to the
external atmospheric layers. The new parameters obtained in this
way are identical to the original values.

We used bonnsai5 (Schneider et al. 2014) to determine the
current mass, radius, and age of HD 54879. Bonnsai computes
the full posterior probability distributions of stellar parameters
using Bayes’ theorem. The code simultaneously matches the de-
rived effective temperature, surface gravity, and projected rota-
tional velocity of HD 54879 to the Milky Way single-star models
of Brott et al. (2011). We assumed a Salpeter initial mass func-
tion (Salpeter 1955) as initial mass prior and uniform priors for
the age and initial rotational velocity. The stellar rotation axes
are randomly oriented in space.

The fundamental parameters derived by bonnsai are listed
in Table 3 together with the spectroscopic values. The spectro-
scopic luminosity (L), current mass (M), and radius (R) were
calculated taking a distance of 1.32 kpc (Humphreys 1978), the
spectral energy distribution provided by fastwind, the extinc-
tion laws of Fitzpatrick & Massa (2007), and HD 54879 opti-
cal and 2MASS photometry. Figure 5 shows the comparison of
the fastwind synthetic fluxes, calculated by adopting the fun-
damental parameters derived for HD 54879 with the available
ultraviolet (UV, Thompson et al. 1978), optical (Mermilliod &
Mermilliod 1994), and infrared (IR, Cutri et al. 2003; Cutri &
et al. 2012) photometry. The discrepancy between the synthetic
flux and WISE photometry is a known issue (Fossati et al. 2014).
WISE magnitudes were not used in the spectroscopic parameters
reported in Table 3. The match between bonnsai and the spec-
troscopic values highlights the consistency between the stellar
tracks prediction, distance, and photometry of HD 54879. The
fractional main-sequence age derived from the Brott et al. (2011)
evolutionary tracks is 0.46. The age derived with bonnsai (see
4 The Q-parameter (Puls et al. 1996; Kudritzki & Puls 2000) is a mea-
surement of the stellar wind strength defined as Q = Ṁ / (R∗v∞)1.5,
where Ṁ is the mass-loss rate, R∗ the stellar radius, and v∞ the terminal
wind velocity.
5 The bonnsai web-service is available at http://www.astro.uni-
bonn.de/stars/bonnsai

Fig. 5: Comparison between fastwind (full black line) synthetic
flux and TD1 (green triangles), Johnson (red pluses), 2MASS
(blue diamonds), and WISE (purple squares) photometry con-
verted into physical units. The UV and optical spectral regions
are shown in the left panel and the IR band in the right panel.

Table 3: HD 54879 theoretical (bonnsai) and spectroscopic
(Spec.) stellar parameters.

HD 54879 bonnsai Spec.

log L/L� 4.7+0.2
−0.2 4.7+0.3

−0.2

R/R� 6.7+1.0
−0.9 6.8+2.3

−1.6

M/M� 18.6+2.0
−1.6 16.9+1.1

−1.0

Age (Myr) 4.0+0.8
−1.2

Table 3) agrees with that of the CMa OB1 association of which
the star is a probable member (3 Myr, Clariá 1974).

The obtained non-LTE chemical abundances are listed in
Table 2, together with the solar abundances by Asplund et al.
(2009) and the present-day massive star abundances in the solar
neighbourhood by Nieva & Przybilla (2012). The abundance val-
ues derived from the HARPS and FORS 2 spectra agree within
the errors. The low resolution hampers a precise abundance de-
termination of some chemical elements. For instance, the mea-
surement of the nitrogen abundance is based on weak lines (e.g.
N ii λ ∼3995 Å) that are clearly visible in the HARPS spectrum
(Fig. 7), but blurred in the continuum at the low resolution of
FORS 2 (Fig. 6). Oxygen presents strong lines that are clearly
visible, hence measurable, even at low resolution.

5. Discussion

5.1. General considerations about the detected magnetic
field

The |〈Bz〉| values independently obtained in Bonn and Potsdam
agree within the uncertainties. The FORS 2 results from Bonn
indicate slightly larger fields than those from Potsdam. The mag-
netic fields derived from HARPS data in Bonn and Potsdam are
practically identical. The LSD, SVD, and MT, on average, pro-
vide 〈Bz〉(V)=−586 ± 5 G.

With the few available magnetic field measurements it is
not possible to perform a meaningful modelling of the mag-
netic field topology and strength, particularly with measure-
ments conducted with completely different instruments and tech-
niques (Landstreet et al. 2014). Nevertheless, from the maxi-
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Fig. 6: Normalised FORS 2 optical spectrum (grey) and the best-fit fastwind stellar model (black). The lines included in the analysis
are marked.

mum recorded |〈Bz〉| value it is possible to derive the expected
minimum dipolar magnetic field strength (Bd; e.g. Eq 7 of Au-
rière et al. 2007). From both FORS 2 and HARPS measurements
we derived a maximum |〈Bz〉| of the order of 600 G, implying
Bd & 2.0 kG. Despite the strong magnetic field, we have found
no sign of photospheric line profile variations (Sect. 5.3).

The dipolar field strength of HD 54879 places this star at
the same magnetic strength level as the fast-rotating secondary
of Plaskett’s star (Grunhut et al. 2013) and ALS 15218 (Nazé
et al. 2012). Radial velocity variations have been reported for
ALS 15218 (Combi et al. 2011), so it may also be part of a bi-
nary system. In contrast, HD 54879 is apparently a slowly rotat-
ing single star, though we cannot rule out a pole-on view, and is
probably the strongest magnetic non-peculiar and single O-type
star detected so far.

In the context of the classification of magnetospheres of mas-
sive stars presented by Petit et al. (2013) and assuming a mini-
mum dipolar magnetic field strength of 2.0 kG and an equator-on
view, we obtained a lower limit on the Alfvén radius of about 5
stellar radii and an upper limit on the Keplerian corotation ra-
dius of about 20 stellar radii. For the calculation of the Alfvén
and Keplerian corotation radius we adopted the stellar parame-
ters obtained from bonnsai, a terminal velocity of 1700 km s−1

(Kudritzki & Puls 2000) and the mass-loss rate obtained from

the relation given by Vink et al. (2000). The derived values indi-
cate that the star has a dynamical magnetosphere, but one has to
keep in mind that the Alfvén radius is a lower limit and the Ke-
plerian corotation radius is an upper limit, hence the star could
have a centrifugal magnetosphere (Townsend & Owocki 2005;
Maheswaran & Cassinelli 2009; Petit et al. 2013). Moreover,
HD 54879 is in the weak wind regime of late-O dwarfs as dis-
cussed by Martins et al. (2005). In this regime, the mass-loss
rates might be up to a factor of hundred lower than expected from
theory (Puls et al. 2008), whereas the hydrodynamically mea-
sured rate of the O9.5 dwarf ζ Oph (Gvaramadze et al. 2012) is
found to be only a factor of six below that predicted by Vink et al.
(2000) (see also Huenemoerder et al. 2012). A smaller mass-loss
rate would lead to a larger Alfvén radius, placing the star closer
to the region covered by stars with a centrifugal magnetosphere;
this region could then be reached with a slightly shorter rota-
tional period (i.e., a non-orthogonal inclination angle).

The mass-loss rate obtained for HD 54879, assuming a line-
driven stellar wind as the unique cause of Hα emission, is too
large according to its spectral type and previous studies of late
O-type dwarfs (Fig. 8, see also Simón-Díaz et al. 2006; Najarro
et al. 2011; Martins et al. 2012b). HD 54879 fits in the Oe-star
category, as defined by Conti & Leep (1974) (see also Negueru-
ela et al. 2004). The classical Be scenario suggests a circumstel-
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Fig. 7: Same as Fig. 6 but for the HARPS normalised spectrum. Only the main transitions for the spectral and chemical analysis
have been modelled (Castro et al. 2012).

lar disk produced by a rapidly rotating star (Porter & Rivinius
2003). In the case of HD 54879, a centrifugal magnetosphere
supported by the strong magnetic field could be responsible for
the circumstellar Hα emission.

The low υ sin i observed in HD 54879 could also be a con-
sequence of the strong magnetic field (Deutsch 1958; Sundqvist
et al. 2013). Magnetic braking can remove angular momentum
when the stellar outflow remains coupled to the magnetic field
as it leaves the star (e.g. Mestel & Spruit 1987; Ud-Doula et al.
2009; Petit et al. 2013).

5.2. General considerations about the stellar atmosphere
analysis

The analysis of the stellar parameters places HD 54879 on the
main-sequence phase with an age of 4.0+0.8

−1.2 Myr, according to
the Brott et al. (2011) evolutionary tracks. The chemical abun-
dances, inferred from the HARPS data, are slightly lower than
the solar values (Asplund et al. 2009) and the cosmic abundance
standard obtained by Nieva & Przybilla (2012), though still com-
patible within the uncertainties. Neither helium nor the other
chemical elements analysed show any noteworthy peculiarity.

The differences between spectroscopic and evolutionary
masses have been a source of conflict (Herrero et al. 1992), al-

though improvements in both fields have reduced the discrepan-
cies (Mokiem et al. 2007; Rivero González et al. 2012; Bouret
et al. 2013). HD 54879 shows a difference in log Mspec/Mevol =
−0.04 ± 0.05 dex. Although this is only one star, the result sup-
ports the reliability of our routines, analysis techniques, and stel-
lar models. Nevertheless, a large sample of stars is required to
determine whether the systematic log Mspec/Mevol = −0.06 dex
offset reported by U et al. (2009) (see also Fig. 9 in Castro et al.
2012) still persists when taking into account the latest state-of-
the-art developments in the stellar theory and analysis techniques
(see also Markova & Puls 2014).

We would like to note the good agreement between the high
and low spectral resolution stellar atmosphere analyses. This test
provides additional confidence in previous studies carried out us-
ing low spectral resolution data (e.g. Evans et al. 2007; U et al.
2009; Castro et al. 2012), with a note of caution concerning the
chemical analysis described in Sect. 4.

5.3. Radial velocities and line profile variations

The strong magnetic field detected in HD 54879 could lead to
line profile variations (see e.g. Piskunov & Kochukhov 2002;
Kochukhov & Sudnik 2013). To check for spectral variability
we have complemented our HARPS observations with high-
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Fig. 8: Top panels: optical spectra of HD 54879 taken on Jan. 15, 2011 (black), and the O9.7 V standard HD 36512 (grey). Bottom
panels: difference between the two stars, after convolving HD 54879 to match the broadening of HD 36512. The lines showing the
most substantial differences are highlighted. The mismatch at 4428 Å is the result of a diffuse interstellar band.

resolution (R∼ 50000) spectra from the IACOB (Simón-Díaz
et al. 2011a; Simón-Díaz & Herrero 2014; Simón-Díaz et al.
2015) and OWN (Barbá et al. 2010) surveys. This resulted in
eight additional spectra (three obtained with FIES@NOT2.5 and
five with FEROS@ESO2.2). All the collected high-resolution
spectra were obtained between 2009 and 2014. The observing
dates and radial velocity measurements, derived from the av-
erage of the individual lines marked in Fig. 7, are summarised
in Table 4. Boyajian et al. (2007) calculated for HD 54879 a
constant radial velocity of 35.4 ± 1.4 km s−1. The authors also
mentioned a previous radial velocity measurement by Neubauer
(1943) of 15.6 ± 1.4 km s−1. These results might suggest that the
star is a member of a long-period (i.e. tens of years) binary, al-
though no companion was found in interferometry studies by
Mason et al. (1998) and Sana et al. (2014). Given the negligi-
ble radial velocity variation measured from the spectra listed in
Table 4, and a lack of companions in high angular resolution
studies, we assume the single-star scenario for HD 54879.

By combining the stellar radius (Table 3) and the υ sin i value
obtained for HD 54879, we derived a maximum rotation period
of 43 days. Given the short period and time sampling of our high-
resolution spectra, line profile variations due to spots should be
clearly detectable. The left panel of Fig. 9 reveals instead that
the shape of the photospheric lines does not vary with time. A
pole-on view of HD 54879 could explain the lack of line profile
variations, but the magnetic field variations discard this hypoth-
esis. In contrast, the Hα line (right panel of Fig. 9) presents evi-
dent variations. The line profiles shown in Fig. 9 hint to a stable
Hα emission with two outbursts detected on Feb. 13, 2011, and
Apr. 23, 2014. The FEROS spectrum obtained on Feb. 13, 2011,
shows some line variations, but these are most likely due to prob-
lems in the continuum normalisation. Despite this last issue, we

Table 4: HD 54879 radial velocities between 2009 and 2014 ob-
tained with three different spectrographs (see Sect. 5.3).

ID Date HJD- Vrad.
2450000 (km s−1)

HARPS 23-Apr-2014 6770.4652 29.5± 1.0
FIES 16-Feb-2013 6339.5189 29.0± 3.0
FIES 26-Dec-2012 6287.6420 29.0± 1.0
FEROS 19-May-2012 6067.4686 29.0± 2.0
FEROS 17-May-2011 5699.4522 29.0± 2.0
FEROS 22-Mar-2011 5642.5125 30.0± 2.0
FEROS 13-Feb-2011 5605.6578 30.5± 3.0
FIES 15-Jan-2011 5576.5463 28.5± 2.0
FEROS 01-May-2009 4953.4889 29.0± 2.0

retained the Feb. 13, 2011, spectrum in this study because of its
relevance for the Hα line profile variations.

5.4. Magnetic field–peculiarities links

Figure 10 shows the position of the known magnetic chemically
peculiar B-type stars (Bp stars) in the HRD. Chemical peculiari-
ties in these objects are closely linked to the magnetic field (e.g.
Berger 1956; Pedersen & Thomsen 1977; Borra & Landstreet
1979; Kochukhov et al. 2011; Bailey et al. 2014) and arise as
a result of diffusion processes (i.e. that depend on the balance
between gravitational settling and radiative levitation; Michaud
1970). The magnetic B-type stars falling in the same region of
the HRD as the Bp stars are also expected to present chemical pe-
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Fig. 9: Left panels: difference for four lines between the average profile and all the observations presented in Table 4. The colour
code is indicated in the right panel. The average profiles are overplotted (black dotted line). Right panel: Time series of Hα profile
between 2009 and 2014. The narrow absorption transitions correspond to telluric features.

culiarities (see e.g. Alecian et al. 2014), but a detailed abundance
analysis has not been performed yet for all of them. The stellar
wind sets the upper limit in temperature and mass at which a B-
type star may develop surface chemical peculiarities as a result
of diffusion and, in theory, a plot such as Fig. 10 would allow
these important boundaries to be determined. In practice, this is
complicated by the fact that the wind is line-driven and there-
fore the surface abundances (Krtička 2014), as well as the mag-
netic field, control the wind strength. As stars may have differ-
ent magnetic field (strengths and topologies) and surface abun-
dances (still to be determined in several cases), it is not yet possi-
ble to firmly constrain the upper temperature and mass boundary
of diffusion in magnetic stars. Still, Fig. 10 suggests a boundary
at about 10 M� and 25000 K.

HD 54879 seems to show remarkable differences compared
to the other known magnetic O-type stars. The star does not
present the spectral features typical of Of?p stars and, in addi-
tion, it does not present the peculiarity and variability displayed
by HD 37022 (θ1 Ori C) (Stahl et al. 1993; Walborn & Nichols
1994). The other magnetic O-type stars also present peculiari-
ties of some sort and spectral variability: Plaskett’s star appears
to be the mass gainer in the HD 47129 binary system (Grunhut
et al. 2013), and HD 37742 (ζ Ori Aa) is an evolved rapidly rotat-
ing O-type star with a very weak magnetic field (anomalous for
magnetic massive stars; Bouret et al. 2008). A wide variety of
spectral variability for the apparently normal stars ALS 15128
(Nazé et al. 2012; Combi et al. 2011) and HD 57682 (Grun-
hut et al. 2009, 2012) has also been reported. HD 54879 instead
does not show any spectral peculiarity or line profile variability
in the photospheric lines and appears to be the only known mag-
netic single O dwarf to date with an apparently normal and stable
photospheric spectrum. Walborn et al. (2010) (see also Walborn
1972) classified the Of?p stars mainly according to the presence
of C iii λλ4647 − 4650 − 4652 Å emission lines. It could be that
HD 54879 is simply not hot and luminous enough to display the
morphological features of the stars belonging to the Of?p class.

5.5. Similarities with τSco

The optical spectrum of HD 54879 resembles that of τSco. Both
stars have a low υ sin i and a similar effective temperature and

Fig. 10: Position in the Hertzsprung–Russell diagram of OB-
stars with a confirmed magnetic field detection (Briquet et al.
2013; Petit et al. 2013; Alecian et al. 2014; Fossati et al. 2014,
2015; Neiner et al. 2014) and Brott et al. (2011) evolutionary
tracks. Stars with an Of?p spectral classification are highlighted
with black dots. Other peculiar O-stars are indicated by green
squares. HD 54879 is labelled and shown with an additional red
cross. Blue triangles indicate B stars classified as peculiar in
the works cited. An isochrone close to the age of HD 54879,
4.0 Myr, is plotted (purple dashed line). The averaged uncertain-
ties in effective temperature and luminosity are illustrated by the
black cross in the bottom part of the plot. The magnetic star in
the Trifid nebula detected by Hubrig et al. (2014b) is not in-
cluded here because of the difficulties in establishing its prop-
erties. τSco has also been labelled and marked (blue cross).

surface gravity (Nieva & Przybilla 2012), see Fig. 10. How-
ever, HD 54879 does not share other peculiarities reported for
τSco, particularly the relatively high nitrogen-to-carbon ratio
presented by τSco is not found in HD 54879. Nieva & Przybilla
(2014) claim that τSco is a blue straggler that has been rejuve-
nated either by a merger or by mass accretion in a binary system.
The agreement between the age derived from bonnsai and that of
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the CMa OB1 association suggests that HD 54879 is not a blue
straggler (i.e. it has not been rejuvenated). There might also be a
difference in the magnetic field topology, but more polarimetric
observations of HD 54879 are required to conclude anything on
this.

Petit et al. (2011) presented two stars that appear to be ana-
logues to τSco based on their Teff and log g values, the detection
of magnetic fields, and UV spectral characteristics. There are no
UV data available for HD 54879.

6. Conclusions

We report the first measurement of a magnetic field in HD 54879,
a presumably single O9.7 V star with a low projected rota-
tional velocity, observed in the context of the BOB collabora-
tion. Based on HARPS and FORS 2 spectropolarimetric data we
characterised the stellar atmosphere of HD 54879 and unambigu-
ously detected a strong magnetic field using independent tech-
niques. The magnetic field measurements were carried out in two
independent ways, and reached consistent values. We derived a
lower limit on the polar magnetic field of ∼ 2.0 kG.

We analysed the optical spectra of HD 54879 using fastwind
grids and automatic routines. Both FORS 2 and HARPS datasets
yield almost identical effective temperature and surface gravity.
The same is true for the chemical abundances. The chemical
composition is systematically lower than the solar one (Asplund
et al. 2009) and lower than the cosmic abundance standard from
Nieva & Przybilla (2012), but compatible with both within the
uncertainties; neither obvious enhancements nor depletions were
found. The match between low and high spectral resolution anal-
yses supports the robustness of our results and lends confidence
to previous quantitative analyses based on low spectral resolu-
tion data.

The mass-loss rate derived based on the Hα emission is un-
expectedly large for an O9.7 V star. A comparison with a stan-
dard star of a similar spectral type (HD 36512), and with pre-
vious works on O9-B0 dwarfs confirmed this, rejecting Hα as a
reliable mass-loss rate indicator for HD 54879. Our analysis sug-
gests that circumstellar material is a more plausible explanation
for the Hα emission. The measurable differences in the Balmer
lines and He ii λ4686 Å are also ascribed to circumstellar mate-
rial.

We explored line profile variability using high spectral res-
olution data from the IACOB and OWN surveys. We checked
for changes in nine spectra covering six years. The optical pho-
tospheric transitions remain unchanged. The Hα emission dis-
plays a fairly stable shape with an enhanced emission in the line
core in 2011 and 2014. This could be an indication for periodical
outburst events, but more data are needed to establish this.

The optical spectrum resembles that of τSco, but unlike
τSco itself, HD 54879 presents surface abundances compatible
with the solar and the standard cosmic abundances. In addition,
the age of HD 54879 matches the age of the CMa OB1 asso-
ciation, to which this star probably belongs. These considera-
tions make the blue straggler hypothesis unlikely and suggest
that the magnetic field was not generated by a merger of two
main-sequence stars.

HD 54879 is, so far, the strongest magnetic single O-type star
detected with a stable and normal optical spectrum, with the ex-
ception of the lines partly formed in the magnetosphere. We have
not detected any distinctive spectral feature observed in other
magnetic O-type stars (i.e. Of?p objects). Nonetheless, it may
be a consequence of the star’s lower temperature and luminosity
compared to the known Of?p stars.

HD 54879 is certainly an interesting object to follow up. The
strong magnetic field makes this star a good candidate for explor-
ing the apparent ordered magnetic geometry and Hα variability.
The apparent link between Hα emission, not expected according
to its spectral type, and a magnetosphere offers a criterion for
selecting magnetic candidates.
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Table 1: Average longitudinal magnetic field values obtained from the FORS 2 and HARPS observations.

FORS 2
Reduction Date HJD− No. of Exp. S/N 〈Bz〉 V (G) 〈Bz〉 N (G) 〈Bz〉 V (G) 〈Bz〉 N (G)

2450000 frames time (s) Hydrogen All
Bonn 07-Feb-2014 6696.7341 10 35 2359 −655 ± 109 22 ± 81 −504 ± 54 69 ± 46
Potsdam −639 ± 121 −16 ± 119 −460 ± 65 76 ± 66
Bonn 08-Feb-2014 6697.7162 10 30 2398 −978 ± 88 −36 ± 76 −653 ± 47 40 ± 43
Potsdam −877 ± 91 −102 ± 105 −521 ± 62 23 ± 63

HARPS
Reduction Date HJD− No. of Exp. S/N 〈Bz〉 V (G) Detection FAP

2450000 frames time (s)
Bonn (LSD) −592 ± 7 DD < 10−15

Potsdam (SVD) 23-Apr-2014 6770.4993 4 2700 347 −583 ± 9 DD < 10−16

Potsdam (MT) −584 ± 15 - -

Notes. Column 1 indicates the group that performed the data reduction and analysis, which led to the results shown in the following columns.
The heliocentric Julian date shown in Col. 3 indicates the beginning of the sequence of exposures. Column 4 gives the number of frames obtained
during each night of observation and Col. 5 the exposure time of each frame. Column 6 gives the S/N per pixel of Stokes I calculated at about
4950 Å over a wavelength range of 100 Å. In the FORS 2 subtable, Cols. 7 and 8 give the 〈Bz〉 values obtained using the spectral regions covered
by the hydrogen lines obtained from the Stokes V and N parameter spectrum, respectively. The same is given in Cols. 9 and 10, but using the full
spectrum (see Sect. 3.1). In the HARPS subtable, Cols. 7 and 8 give the 〈Bz〉 V values and the detection flag (DD, definite detection). Column 9
gives the false alarm probability (FAP) for those methods that provide it. The different detection techniques are listed in Col. 1 (see Sect. 3.2).

Table 2: Stellar parameters and chemical abundances of HD 54879 and of the O9.7 V standard star HD 36512 (Sota et al. 2011).

ID Instrument Teff log g log Q ξ b) He/H
(K) (dex) (km s−1) (by number)

HD 54879 FORS 2 33000 ± 1000 3.95 ± 0.10 - a) 5 ± 3 0.10 − 0.12
HARPS 33000 ± 1000 4.00 ± 0.10 - a) 4 ± 1 0.10 − 0.12

HD 36512 FIES 33400 ± 600 4.09 ± 0.11 -13.46 10 0.10
log εSi log εMg log εC log εN log εO

HD 54879 FORS 2 7.3 ± 0.3 7.4 ± 0.3 7.8 ± 0.3 7.5 ± 0.3 8.6 ± 0.2
HARPS 7.4 ± 0.2 7.4 ± 0.1 8.1 ± 0.2 7.7 ± 0.2 8.6 ± 0.1

� 7.51 7.60 8.43 7.83 8.69
CAS 7.50 7.56 8.33 7.79 8.76

Notes. a) The parameter Q = Ṁ / (R∗v∞)1.5 (Puls et al. 1996) relies mainly on the Balmer lines, which for HD 54879 are not suitable for setting
the mass-loss rate (Sect. 4). b) Microturbulence. The solar abundances (�) are taken from Asplund et al. (2009). The cosmic abundance standard
(CAS) composition from Nieva & Przybilla (2012) is also listed, log εX = log (X /H ) + 12 (by number).
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Appendix A: HARPS best-fit modelling
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Fig. A.1: Normalised optical spectrum (grey) and the best-fit fastwind stellar model (black), see Fig. 7.
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Fig. A.2: Figure A.1 continued.
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Fig. A.3: Figure A.1 continued.
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