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ABSTRACT

Context. The central region of our Galaxy contains a large population of young massive stars. These stars are concentrated in three
large star clusters, as well as being scattered in the field. Strong ionizing radiation and stellar winds of massive stars are the essential
feedback agents that determine the physics of the ISM in the Galactic center.
Aims. The aim is to study relatively isolated massive WN-type stars in the Galactic center in order to explore their properties and their
influence on the ISM.
Methods. The K-band spectra of two WN stars in the Galactic center, WR 102ka and WR 102c, are exploited to infer the stellar
parameters and to compute synthetic stellar spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. These models
are combined with dust-shell models for analyzing the Spitzer IRS spectra of these objects. Archival IR images complement the
interpretation.
Results. We report that WR 102ka and WR 102c are among the most luminous stars in the Milky Way. They critically influence
their immediate environment by strong mass loss and intense UV radiation, and thus set the physical conditions for their compact
circumstellar nebula. The mid-IR continua for both objects are dominated by dust emission. For the first time we report the presence
of dust in the close vicinity of WN stars. Also for the first time, we have detected lines of pure-rotational transitions of molecular
hydrogen in a massive-star nebula. A peony-shaped nebula around WR 102ka is resolved at 24 μm by the Spitzer MIPS camera. We
attribute the formation of this IR-bright nebula to the recent evolutionary history of WR 102ka.
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1. Introduction

Visual light cannot penetrate the dust clouds obscuring the inner-
most part of our Galaxy, whereas infrared astronomy opens ex-
traordinary views on this environment. Three very massive star
clusters have been discovered in the Galactic center (GC) dur-
ing the last decade. The central cluster is located within 1 pc
from the central black hole (Krabbe et al. 1995). Two other mas-
sive star clusters, the Arches and the Quintuplet, are located
within 30 pc projected distance from Sgr A* (Serabyn et al.
1998; Figer et al. 1999b). While the Arches cluster is younger
and contains many OB-type stars, the more evolved Quintuplet
cluster (3–5 Myr old) harbors many Wolf-Rayet (WR) stars.
Besides these compact stellar conglomerates, many high-mass
stars whose association with stellar clusters is not obvious are
scattered in the GC. Among these are the rather isolated WR
type stars WR 102ka and WR 102c – our program stars.

Massive stars severely influence their environment by strong
ionizing radiation, mass and kinetic energy input (Freyer et al.
2003). The thermal Arched Filaments in the vicinity of the
Arches and the Sickle nebula in the vicinity of the Quintuplet
are thought to be powered by the combined action of hot mas-
sive stars located in these clusters (Simpson et al. 2007, and ref-
erences therein). However, radio (e.g. Yusef-Zadeh & Morris
1987) and infrared (Price et al. 2001; Rodríguez-Fernández et al.
2001; Simpson et al. 2007) surveys of the GC reveal a com-
plex structure of the ionized gas with many small-scale com-
pact sources of thermal emission. In this paper we investigate
the emission from such nebulae around our program stars.

A star with initial mass over ≈20 M� settles on the main se-
quence as an O-type. Stars more massive than ≈30 M� evolve off
the main sequence at more or less constant luminosity, but their
mass-loss rate increases significantly. Stars with initial masses
above ≈40 M� pass through a short (∼105 yr) luminous blue
variable (LBV) evolutionary stage that is characterized by high
mass-loss rates and violent eruptions. The ejected material, up
to several M�, is often observed in the form of an associated
nebula – one famous example is the Homunculus nebula around
the LBV star η Car. The most massive stars with initial masses
Mi � 90 M� are thought to lose enough mass during their life
on the main-sequence to evolve to the WR stage without ever
becoming an LBV.

Stars that display CNO-processed matter in a strong stel-
lar wind are classified as WR stars of the nitrogen sequence
(WN type). The cooler, late WN subtypes (WNL) usually con-
tain some rest of hydrogen in their atmospheres, while the hotter,
early subtypes (WNE) are hydrogen free (Hamann et al. 1991).
The WNL evolutionary stage can, in fact, precede the LBV stage
(Langer et al. 1994; Smith & Conti 2008). Typically, WNL stars
are significantly more luminous than WNE stars (Hamann et al.
2006). The WN phase may be followed by the WC stage, when
the products of helium burning appear in the stellar atmosphere.
Wolf-Rayet stars end their lives with a super- or hypernova ex-
plosion.

During its evolution a massive star loses a considerable frac-
tion of its initial mass. This material accumulates in the circum-
stellar environment (e.g. Freyer et al. 2003). Recently, concerns

Article published by EDP Sciences

http://dx.doi.org/10.1051/0004-6361:200809568
http://www.aanda.org
http://www.edpsciences.org


972 A. Barniske et al.: Two extremely luminous WN stars in the Galatic center

were raised that the empirically derived stellar mass-loss rates
need to be drastically reduced (Fullerton et al. 2006). However,
when the inhomogeneous nature of stellar winds is accounted
for, the analyses of optical, UV, and X-ray spectra of massive
stars consistently yield mass-loss rates that are only factor of two
lower than inferred under the “standard” assumption of smooth
winds (Oskinova et al. 2007).

Infrared (IR) spectra of H ii regions around main-sequence
stars are composed of nebular emission lines and a dust-
dominated continuum (Dopita et al. 2005). However, in the
vicinity of WR stars dust is rarely found, except for WC-type
stars in the inner, metal-rich parts of galaxies (e.g. Crowther
et al. 2006). These stars are surrounded by dust shells, and it
appears that the metal-rich environment of the GC is favorable
to the formation of circumstellar dust. For WN stars, however, it
is generally believed that the chemical composition and strong
radiation prohibit the formation of dust in their vicinity.

We secured the mid-IR spectra of WN-type stars WR 102ka
and WR 102c with the Spitzer Space Telescope. Our program
stars are sufficiently isolated to allow high-resolution spec-
troscopy with the Spitzer infrared spectrograph IRS. The basic
strategy for the analysis is to model the stellar spectrum using a
stellar atmosphere code, and then use the synthetic stellar spec-
trum as input for modeling the circumstellar nebula.

This paper is organized as follows. Stellar parameters and
synthetic stellar spectra of our program stars are obtained in
Sect. 2 from the analysis of K-band spectra. Infrared spectro-
scopic and imaging observations are presented in Sect. 3. The
analysis and modeling of the mid-IR Spitzer IRS spectra are con-
ducted in Sect. 4. A discussion is presented in Sect. 5, followed
by the summary in Sect. 6.

2. Program stars WR 102ka and WR 102c

Figure 1 shows the location of our program stars relative to the
three massive clusters in the GC – the Central Cluster, the Arches
cluster, and the Quintuplet cluster.

WR 102ka has a projected distance of 19 pc from Sgr A∗ and
apparently does not belong to any star cluster. It was first ob-
served during a near-infrared survey in the GC by Homeier et al.
(2003). By comparing the K-band spectrum of WR 102ka with
the spectra of two WR stars in the LMC, WR 102ka was classi-
fied as a WN10 spectral subtype.

WR 102c lies in the outskirts of the Quintuplet cluster, in a
large arc of diffuse emission called the Sickle nebula. The star
was discovered during a survey by Figer et al. (1999a), and clas-
sified as WN6 subtype because the similarity of its K-band spec-
trum with the well-studied WN6 type star WR 115. It should be
noted that the WN6 classification criteria can be met by either
hydrogen-free WNE subtypes or by WNL stars with hydrogen.
As WR 102c shows hydrogen in its spectrum (cf. Sect. 2.2), it
belongs to the WNL subclass.

The coordinates of WR 102ka from the discovery paper
are in agreement with the 2MASS point source catalog. For
WR 102c, however, we report a difference of 0.s3 in RA be-
tween the coordinates given in Figer et al. (1999a) and the
2MASS point source catalog. For our Spitzer observation we
used the latter coordinates (cf. Table 3). These coordinates agree
with the catalog of point sources from Spitzer IRAC observa-
tions of the central part of the Galaxy (Ramírez et al. 2008).
Throughout this paper we assume the distance to our program
stars as d = 8 kpc (Reid 1993).

Fig. 1. Spitzer IRAC 8 μm archive image of the GC. Arrows point to
the locations of our program stars, the Arches, the Quintuplet, and the
Central clusters. North is to the top and east to the left.

2.1. Stellar parameters of WR 102ka

The only available part of the stellar spectrum of WR 102ka is
the near-IR K-band spectrum obtained with SOFI at the ESO
3.6 m New Technology Telescope (Homeier et al. 2003). As can
be seen in Fig. 2, the spectrum is dominated by strong emis-
sion lines of He i and He ii+Brγ. A small, flat-topped emission
feature is present at the wavelength of the He ii 10–7 transition.
However, this feature appears broader than the other lines and
has a different spectral shape. Neither nebular (forbidden) lines
nor H2 fluorescent emission is visible in the K-band spectrum of
WR 102ka. The measured equivalent widths are listed in Table 1.

The Potsdam Wolf-Rayet (PoWR) stellar atmosphere mod-
els are employed for the analysis of the K-band spectrum. The
PoWR code solves the non-LTE radiative transfer in a spher-
ically expanding atmosphere, consistently with the statistical
equations and energy conservation. Iron-line blanketing and
wind clumping in first approximation are taken into account
(Hamann et al. 2004). Grids of models for WN stars can be
found on the Potsdam Wolf-Rayet (PoWR) models web-site1.

All lines that can be definitely identified in the K-band spec-
trum of WR 102ka are due to helium and hydrogen; therefore
we cannot determine other element abundances. We adopt mass
fractions that are typical for Galactic WN stars – N: 0.015,
C: 0.0001, Fe: 0.0014 (Hamann et al. 2004) – throughout this pa-
per.

The terminal wind velocity in WR 102ka, �∞ ≈ 400 km s−1,
is inferred from fitting the He i line profiles. To assess the hy-
drogen abundance, we use the line blend He ii+Brγ. Our mod-
els show that whenever the strong observed He i lines are re-
produced, the He ii emissions are very small. Thus the strong

1 http://www.astro.physik.uni-potsdam.de/PoWR.html
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Fig. 2. K-band spectrum of WR 102ka (blue solid line) together with
the best-fitting PoWR model spectrum (red dashed line).

Table 1. Measured equivalent widths in the K-band spectral lines of
WR 102ka.

Line λ −Wλ
[μm] [Å]

He i 2.059 26.3
He i 2.112 2.3
He ii+Brγ 2.165 15.4
He ii (?) 2.189 <2.0

emission at 2.165 μm must be mainly due to hydrogen; we ob-
tain a hydrogen mass fraction of 0.2 for WR 102ka, which is
typical for late-type WN (WNL) stars.

For a given chemical composition and stellar temperature T∗,
synthetic spectra from WR model atmospheres of different mass-
loss rates, stellar radii and terminal wind velocities yield almost
the same emission line equivalent widths, if they agree in their
“transformed radius” Rt defined as

Rt = R∗

⎡⎢⎢⎢⎢⎢⎢⎣ �∞
2500 km s−1

/ √
DṀ

10−4 M� yr−1

⎤⎥⎥⎥⎥⎦
2/3

· (1)

For the clumping contrast we adopt D = 4 as a typical value
for WN stars (Hamann et al. 1998). Note that Rt is inversely cor-
related with the mass-loss rate, i.e. the smaller the transformed
radius the higher is the density in the stellar wind.

In order to derive the fundamental stellar parameters of
WR 102ka in a systematic way, we 1) calculate a reasonably fine
grid of models in the adequate parameter range; 2) evaluate the
equivalent widths (Wλ) of model lines; 3) compare modeled Wλ
with measured ones and choose the model which is capable to
simultaneously reproduce the measured equivalent widths.

Contours of constant line emission in the model grid are
shown in Fig. 3. Figure 3 shows a remarkable difference between
the two He i lines in the K-band (compare Panels A and B).
While the He i λ2.06 μm singlet line is sensitive to both model
parameters Rt and T∗, the singlet/triplet blend He i λ2.115μm
has a Wλ which is nearly independent of T∗.

Figure 3D reveals that no consistent fit is possible for the
three considered helium lines. We attribute the problem to the
line at 2.189μm, tentatively identified with the He ii 10–7 tran-
sition. Considering that the small observed λ 2.189μm feature is
broader than other lines, that it has a different line profile, and
that the available spectrum is quite noisy, we conclude that the
λ 2.189μm feature cannot be due to He ii emission from that star.

Therefore we chose as our best-fitting model the grid point
that lies closest to the intersection point of the contours for the
strong He i λ2.06μm and He i λ2.115μm lines. The parameters
are T∗ = 25.1 kK and log Rt = 1.48 (large triangle in the panels
of Fig. 3).

After we have derived Rt and T∗ from the normalized line
spectrum, the absolute values of L, R∗ and Ṁ are obtained by
fitting the spectral energy distribution (SED). The absolute flux
scales proportional to R2∗ which in turn means that for a fixed
value of Rt the mass loss rate Ṁ is proportional to L3/4. For con-
venience we calculate our models with a “generic” luminosity of
log L/L� = 6.3 and scale it to match the observations. R∗ and
Ṁ are then scaled along with the luminosity using the relations
mentioned above.

To account for the interstellar absorption we adopt the red-
dening law by Moneti et al. (2001), which was obtained for the
Quintuplet cluster region and is therefore suitable for our pro-
gram stars. In this law, the ratio between the V- and K-band ex-
tinctions is AV/AK = 8.9.

By scaling the luminosity (logarithmic shift) and simultane-
ously varying EB−V , we adjust the synthetic SED to the 2MASS
and the Spitzer IRAC photometry marks (see Sect. 3.2). The
best fit is obtained with EB−V = 8.0 ± 1 mag and is shown
in Fig. 4. The stellar parameters of WR 102ka are compiled in
Table 2. With a bolometric luminosity of log L/L� = 6.5 ± 0.2,
WR 102ka is one of the most luminous stars in the Galaxy!

According to its location in the T∗ − Rt plane (cf.
Hamann et al. 2004), WR 102ka has a spectral type later
than WN8. The mass-loss rate and wind velocity of WR 102ka
found from our modeling are very similar to the parame-
ters of Ofpe/WN9 stars in the GC as determined by Martins
et al. (2007). Their Ofpe/WN9 objects cover a temperature range
form T∗ = 20 kK ... 23 kK, terminal velocities lie between
450 and 700 km s−1, and the mass-loss rates are log Ṁ =
−4.95 ...−4.65. Hence we adopt the spectral classification
Ofpe/WN9 for WR 102ka.

As discussed above, our final model for WR 102ka cannot
reproduce the weak emission feature at λ2.189 μm. Instead, a
small absorption feature from He ii is predicted at this wave-
length. Moreover, there is a weak emission feature around
2.103 μm visible in the observed spectrum of WR 102ka, which
could be the emission wing of a P-Cygni profile from Nv
λ2.099 μm; however, the appearance of this line is also not pre-
dicted by our final model. Therefore we must consider the pos-
sibility that WR 102ka is actually a binary system, and the spec-
trum is contaminated by a hotter but fainter companion. The
Nv lines at 2.099μm appears in models for hot WNE stars,
as demonstrated in Fig. 5 by adding a spectrum from a corre-
sponding model (T∗ = 178 kK, log Rt = 0.8). The presence of a
WNE-type companion with fast stellar wind could also explain
the appearance of the He ii λ2.189μm line (see right panel in
Fig. 5).

The contribution of the hot companion has been scaled down
by a factor of ten in order to match the weak He ii and Nv
features in the observation. It is plausible that a hot WNE-type
companion would contribute only little to the composite IR flux.
WNE stars are generally not that luminous, and even for same

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=2
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Fig. 3. Contours of constant line emission of helium in the log T∗ − log Rt plane. All other parameters are kept constant (log L∗/L� = 6.3, �∞ =
400 km s−1). Dots indicate the calculated grid models. The interpolated contour lines are labeled with the equivalent width in Å. The solid red lines
correspond to the measured value of Wλ. Panel A): He i λ 2.06 μm; B): He i λ 2.115 μm; C): He ii (?) λ 2.19 μm. The contours corresponding to the
measured Wλ are shown together in panel D). The large triangle indicates the adopted final model for WR 102ka (see text).

bolometric luminosity a companion twice as hot as the pri-
mary would be 50% fainter in the Rayleigh-Jeans domain of a
black-body spectrum. We conclude that WR 102ka may be an
Ofpe/WN9+WNE binary system. However, the limited quality
of the K-band data (Fig. 2) does not allow this question to be
settled.

2.2. Stellar parameters of WR 102c

Figer et al. (1999a) published a K-band spectrum of WR 102c,
unfortunately plotted with an unspecified offset, and assigned
to it a K-band magnitude of 11.6 mag. This value is not con-
sistent with the more recently available 2MASS and the Spitzer
IRAC point source catalogs. We have to assume that, most plau-
sibly, the K-band spectrum shown in Figer et al. (1999a) in fact
belongs to a much brighter star (K-band magnitude 9.93 mag)
which we identify with WR 102c. This assumption is validated
by the consistent picture which emerges from (i) the photom-
etry marks from 2MASS and Spitzer IRAC catalogs that are
well matched by the (reddened) spectral energy distribution of

Table 2. Stellar parameters of WR 102ka and WR 102c.

WR 102ka WR 102c

Spectral type Ofpe/WN9 WN6(h?)
�∞ [km s−1] 400 ≥1300
log L [L�] 6.5 ± 0.2 6.3 ± 0.3
a log Φi [s−1] 48.96 50.12
AV [mag] 27 ± 5 26 ± 1
EB−V [mag] 8.0 ± 1 7.6 ± 0.3
T∗ [kK] 25.1 ≈50
log Ṁ [M� yr−1] –4.4 –4.0
R∗ [R�] 92 20

a Φi: number of H ionizing photons per second.

a luminous WNL star (see Figs. 6 and 15), (ii) the location of
WR 102c in the region of the IRAC color-color diagram popu-
lated by WN stars (Hadfield et al. 2007).

Figer et al. (1999a) classified WR 102c as a WN6 subtype,
due to the similarity of its K-band spectrum with WR 115.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=3
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Fig. 4. Spectral energy distribution for WR 102ka. The thick red line
gives the reddened model flux (see Table 2 for the parameters). Boxes
give observed 2MASS magnitudes (labels). Triangles correspond to the
flux in the four IRAC channels, which we extracted from the archival
images (see Sect. 3.2 and Table 5).

Table 3. Spitzer IRS observations of WR 102ka and WR 102c.

WR 102ka WR 102c

RA J2000 17h46m18.s12 17h46m10.s91
Dec J2000 –29◦01′36.′′6 –28◦49′07.′′4

Integration time [s] 4145 2926
Number of cycles 12 17

AOR ID 10 878 720 10 878 976
Program ID 3397

Observation date 20/04/2005
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Fig. 5. Features in the WR 102ka spectrum that indicate the possible
presence of a companion. Observations (blue ragged line) are com-
pared to the synthetic spectrum for our final model of WR 102ka (red
dashed line). The black dotted line represents the spectrum of a hot
WNE model, scaled down by a factor of ten. By superimposing both
models, the Nv (?), He i, and He ii lines can be reproduced simultane-
ously.

Taking this comparison at face value, we adopt from the analysis
of WR 115 by Hamann et al. (2006) the temperature T∗ = 50 kK
and terminal wind velocity �∞ = 1300 km s−1. To set upper
and lower limits to the temperature, we qualitatively compare
the K-band spectrum of WR 102c with the PoWR models. We
can exclude a T∗ below 40 kK, since cooler models do not show
the He ii emission line at λ = 2.189 μm. T∗ above 60 kK can be
excluded because the He i singlet line at λ = 2.059 μm is not vis-
ible in hotter models. Despite of the WN-early classification, the
relative strength of the He ii/Brγ blend, compared to un-blended
helium lines, requires a model with some hydrogen (∼20% by
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Fig. 6. Spectral energy distribution for WR 102c. The solid line repre-
sents the reddened model flux (see Table 2 for the parameters). Boxes
give the observed 2MASS magnitudes (labels). Triangles correspond
to the flux in the four IRAC channels, which we extracted from the
archival images (see Sect. 3.2 and Table 5).

mass as a very rough estimate). The WR 115 comparison star
is actually hydrogen-free, but apart from the hydrogen lines this
has only little influence on the stellar spectrum.

The luminosity of WR 102c is derived by scaling the spectral
energy distribution of the model to the photometry marks. The
extinction is simultaneously adjusted, yielding AV = 25.7 mag.
This estimate is consistent with the extinction in the Sickle neb-
ular region determined by Cotera et al. (2000) and Schultheis
et al. (1999). The latter work provides an extinction map which
shows strong spatial variation of AV , typically 1 mag, in a 1′ ra-
dius around WR 102c. We take this scatter as error estimate for
the adopted AV value. In the K-band this corresponds to Δ AK =
0.1 mag. Using model grids for WNE and WNL stars, we in-
spected the bolometric correction relative to the K-band magni-
tude for the range of WN5-WN7 stars analyzed in Hamann et al.
(2006), finding a scatter of about 0.65 mag which transforms into
a luminosity uncertainty of ±0.26 dex. Together with the scatter
of Δ AV = 1 mag from the extinction map, the total uncertainty
in luminosity amounts to ±0.3 dex. The derived luminosity of
WR 102c, log(L) [L�] ≈ 6.3, is typical for WNL-type stars (see
Hamann et al. 2006).

Figure 6 shows that the correspondingly reddened stellar
model flux does not perfectly fit to the 2MASS and IRAC photo-
metric observations. However, it should be noted that WR 102c
resides in a crowded sky region which makes photometry mea-
surements difficult. For instance, the quality flags in the 2MASS
All Sky Catalog of Point Sources indicate difficulties in the pho-
tometry determination. Since we fit our synthetic SED to these
photometric observations, this induces some uncertainty to the
derived luminosity. Some further error margins arise from the
poorly constrained model parameters. The adopted stellar pa-
rameters of WR 102c are listed in Table 2.

3. Mid-IR observations and data reduction

We obtained IR spectra of WR 102ka and WR 102c with the
IRS spectrograph of the Spitzer Space Telescope (the observa-
tion log is shown in Table 3). In addition, our program stars
were observed by various imaging mid-IR instruments (Spitzer
IRAC, Spitzer MIPS, and MSX) that performed surveys of the
GC. These observations are briefly described below.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=4
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Fig. 7. Spitzer IRS SH spectrum of WR 102ka with line identifications.
Since the emission region is more extended than the spectrograph slit,
the flux is given in terms of surface brightness.

3.1. Spitzer IRS spectra

The Spitzer Infrared Spectrograph (IRS) Short-High (SH) mod-
ule covers the wavelength range 9.9–19.6 μm and provides a
moderate spectral resolving power of R ≈ 600 with a slit aper-
ture of 4.′′7 × 11.′′2 (Houck et al. 2004).

Already the first inspection of the pipe-line extracted spectra
of both program stars revealed a strong mid-IR flux (far above
the flux expected from the synthetic stellar SEDs) increasing to-
wards longer wavelength. The intensity along the slit does not
vary between the two “nodding” positions (in each exposure cy-
cle, the target is displaced towards one or the other end of the
slit in turn). Therefore we conclude that in both cases the mid-
IR emission is not due to a stellar point source, but emerges from
an extended area larger than the spectrograph slit. Hence we ex-
tracted the IRS spectra (using the SPICE ver. 1.3 software) un-
der the assumption of an extended emission region with uniform
surface brightness.

After the data reduction with SPICE, the individual echelle
orders of the IRS spectra do not match at their wavelength over-
lap. For cosmetic reasons we slightly tilted each spectral order
until they fit perfectly. The resulting spectra are shown in Figs. 7
and 8. The spectra display prominent forbidden emission lines.
Relatively weaker lines of H2, H i, He ii as well as SiC and/or
PAH features are also present. The equivalent widths and the
line strengths of the individual emission lines are compiled in
Table 4 for both objects.

The immediate question is whether the IRS spectra are
merely dominated by the GC background or do we indeed mea-
sure emission from circumstellar nebulae physically associated
with the program stars. To answer this key question we re-
trieve and examine all available mid-IR images of WR 102ka
and WR 102c.

3.2. IRAC and MSX images and photometry of WR 102ka
and WR 102c

Spitzer IRAC observations of the central part of the Galaxy were
presented by Stolovy et al. (2006). IRAC has high angular res-
olution (pixel size ∼1.′′2) and sensitivity (Fazio et al. 2004). It
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Fig. 8. Spitzer IRS SH spectrum of WR 102c with line identifications.
Since the emission region is more extended than the spectrograph slit,
the flux is given in terms of surface brightness.

provides simultaneous 5.′2 × 5.′2 images in four channels (cf.
Table 5).

We have retrieved and analyzed the archival IRAC images
of the fields containing WR 102ka and WR 102c. For illustra-
tion, Figs. 9 and 10 show these images in the first and the forth
IRAC channel. Both WR 102c and WR 102ka are detected at all
four wavelengths. To extract photometric fluxes the current ver-
sion of the mopex software was used (see Table 5). For the IRAC
magnitudes and colors we adopted the calibration by Reach et al.
(2005). The IRAC color indices of WR 102ka and WR 102c
agree well with those of other galactic WR stars as presented by
Hadfield et al. (2007) on basis of the IRAC GLIMPSE survey.

Images of the WR 102ka and WR 102c fields at wavelengths
longer than those covered by IRAC were obtained with the
Midcourse Space Experiment (MSX). The intrinsic angular res-
olution of this instrument – limited by its pixel size – is only
20 ′′, which corresponds to 0.8 pc linear extent at the distance of
the GC (Price et al. 2001). Figure 11 displays the archival MSX
E-band image of the GC region. Both our objects show up as
bright structures far above the general background, albeit in dif-
ferent morphological context.

WR 102ka coincides with an isolated, unresolved source vis-
ible in the wavelength bands C, D and E (see Fig. 12), as already
noticed by Clark et al. (2005). The fluxes from the MSX point
source catalog are included in Table 6.

WR 102c resides in an IR-bright, extended H ii region, the
Sickle nebula. Figure 13 shows its MSX images. The unre-
solved Quintuplet cluster is the dominant source in the A-band
(8.28 μm). However, towards longer wavelengths the emission
from the Sickle nebula embedding WR 102c is strongly in-
creasing. Remarkably, in the E-band (18.2–25.1 μm) the region
centered on WR 102c is significantly brighter than the whole
Quintuplet cluster. The Sickle nebula appears as an extended
complex even with the poor resolution of MSX. The MSX
point source catalog lists a couple of sources that coincide with
WR 102c within the resolution. The closest entry, G000.1668–
00.0434, is offset from the 2MASS coordinates of WR 102c by
7′′. Somewhat arbitrarily we identify this source with WR 102c
and adopt the corresponding fluxes (cf. Table 6).

The MSX bands cover the wavelength range of our Spitzer
IRS spectra. Because both program stars are detected as MSX

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=7
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Table 4. Equivalent widths, intensities, and intensity ratios of the prominent emission lines in the IRS spectra of WR 102ka and WR 102c.

WR 102ka WR 102c
Wavelength −Wλ Iline −Wλ Iline

[μm] [μm] [10−4 erg s−1 cm−2 sr−1] [μm] [10−4 erg s−1 cm−2 sr−1]

[S iv] 10.51 <0.002 <0.0085 0.019 2.94
H2 [J = 4–2] S(2) 12.28 0.0062 1.06 0.0021 1.49
H i 7–6 12.37 0.0036 0.64 0.0016 1.19
[Ne ii] 12.81 0.073 14.7 0.084 73.2
[Ne iii] 15.55 0.0055 1.02 0.036 38.0
H2 [J = 3–1] S(1) 17.04 0.0081 1.32 0.0013 1.40
[S iii] 18.7 0.028 4.04 0.047 54.0

[S iv]/[S iii] <0.002 0.054
[Ne iii]/[Ne ii] 0.07 0.52
[Ne iii]/[S iii] 0.25 0.76
H2-S(1)/H2-S(2) 1.25 0.94

Table 5. IRAC fluxes, magnitudes, and IR colors of WR 102ka and
WR 102c.

IRAC Wavelength WR 102ka WR 102c
channel Flux/magnitude Flux/magnitude

[μm] [Jy]/[maga] [Jy]/[maga]

1 3.6 0.211/7.81 0.081/8.8
2 4.5 0.214/7.31 0.058/8.7
3 5.8 0.174/7.05 0.065/8.12
4 8.0 0.112/6.89 0.064/7.50

[3.6] – [8.0] 0.92 1.35
[3.6] – [4.5] 0.50 0.12
[5.8] – [8.0] 0.16 0.62

a IRAC magnitude system from Reach et al. (2005).

point sources in all bands we conclude that the IRS spectra
probe emission originating from nebulae physically associated
with WR 102ka and WR 102c.

For MSX with its 20′′ × 20′′ pixels these objects remain
unresolved point sources. However, we had concluded that the
emission sources are more extended than the Spitzer IRS slit of
4.′′7 × 11.′′2. When multiplying the measured surface flux with
the slit area, we obtain the flux covered by the slit and plot it in
Figs. 14 and 15. The MSX point source fluxes lie higher by a
factor 5 to 7 for both program stars. This is consistent with the
above conclusion that both sources are more extended than the
area covered by the IRS slit.

4. Analysis of mid-IR spectra and images

4.1. Temperature and mass of the dust around WR 102ka
and WR 102c

As illustrated in Figs. 12, 13 and Table 6, the flux is increasing
towards longer wavelengths and is strongest in the E band for
both objects. The emission in this band is mostly due to dust
grains heated by starlight (Cohen & Green 2001).

In order to determine the temperature, the mass, and the
composition of the circumstellar dust around WR 102ka and
WR 102c, we use the publicly available code dusty (Ivezić &
Elitzur 1997) for modeling the continuum emission. This code
treats the continuum radiative transfer in dust for a spherical
circumstellar nebula, irradiated by a central star with a given
emergent flux. For the optical properties of the dust, the theoret-
ical grain model from Draine et al. (1984) is implemented. By

suitable transformation to scale-free quantities, dusty requires
the following free parameters to be specified:

i) The radiation field of the central star. This parameter is de-
termined by model stellar spectra obtained from our spectral
analyses (Sect. 2).

ii) T1, the temperature at the inner boundary. This parameter
mainly influences the wavelength of flux maximum. dusty
assumes that the dust temperature is in radiative equilibrium
with the radiation field. Hence, T1 implicitly also fixes the
inner radius of the dust shell, r1.

iii) Y = r2/r1, the radial extent of the dust shell. This parameter
gives the outer boundary r2 in units of the inner boundary r1.
Y influences the temperature stratification. In the optically
thin case (which is relevant for our objects), a thin shell is
nearly isothermal.

iv) The radial density profile of the dust shell. For simplicity,
we assume ρ(r) ∝ r−2 for stationary expansion at constant
velocity.

v) τV , the radial optical depth of the dust shell at 5500 Å. This
parameter governs the brightness of the dust emission. In the
optically thin regime, the fraction of stellar radiation which
is converted by the dust into IR emission depends roughly
linearly on τV .

vi) The grain size distribution. We adopt a usual power-law dis-
tribution, ndust(a) ∝ a−q, for the grain size a, parameterized
by the exponent q and limits for the smallest and largest
dust grain diameter, amin and amax. For the exponent we take
q = 3.5 after Mathis et al. (1977). The cut-off values influ-
ence the temperature and optical properties of the dust.

vii) The composition of dust. We assume a chemical composition
as usually adopted for the standard ISM (Draine 2004), i.e.
47% of graphite and 53% of silicate grains.

A series of models with various choices of the parameters T1, Y,
τV and grain size (amin, amax) were computed and fitted to the
observed IR SED of our program stars.

The cut-off values of the grain size distribution, amin and
amax, have strong influence on the dust spectral energy distri-
bution. Lowering amin increases the amount of flux blueward
8.3 μm. Very small grains (VSG) with diameter � 0.001 μm,
increase the portion of scattered light and heat up more rapidly
by the absorption of one energetic photon compared to larger
grains. The dusty code, however, does not account for the de-
tailed physics of the VSG. The upper cut-off value amax is dif-
ficult to constrain since the large grains contribute mostly to
longer wavelengths where no data are available.



978 A. Barniske et al.: Two extremely luminous WN stars in the Galatic center

Fig. 9. Spitzer IRAC archive image at 3.6 μm (left) and 8 μm (right) of the field around WR 102ka. The image size is ≈2.′3 × 1.′2. North is to the
top and east to the left. The white circles have a radius of 10 ′′ and are centered on the coordinates of WR 102ka.

Fig. 10. Spitzer IRAC archive image at 3.6 μm (left) and 8μm (right) of the field around WR 102c. The image size is ≈2.′3 × 1.′2. North is to the
top and east to the left. The white circles have a radius of 10 ′′ and are centered on the coordinates of WR 102c.

Fig. 11. MS X band E image (histogram equalization scale). Positions
of nebulae around WR 102ka and WR 102c are indicated by the arrows.

As it was mentioned earlier, the inner parts of the dusty neb-
ulae around our program stars are covered by the Spitzer IRS
slit (0.18 pc × 0.43 pc at the distance of the GC), while the
MSX pixels correspond to a larger area (0.8 pc × 0.8 pc). The
dusty code provides only the total flux and cannot be used
to compute angle-dependent intensities. Therefore we approx-
imate an extended nebula by stacking together two dusty mod-
els: an “inner part” that roughly fits into the Spitzer slit, and an
“outer part” that adds to the total flux observed with MSX. While
the temperature T1 in the “inner part” model is a parameter, for
the “outer part” model T1 is fixed by the temperature profile in
the dust shell, such that there is continuous temperature distribu-
tion across both the “inner” and the “outer” part.

Figures 14 and 15 display our best fit to the measurements.
The input model parameters and inferred quantities are compiled
in Table 7. The “inner part” model fits well to the continuum
emission in the IRS aperture, while the MSX photometry is re-
produced by the co-added flux from both the “inner” and the
“outer” part.

Our analysis reveals dust remarkably close to the WN stars.
In case of WR 102ka the dust is found as close as 1000 R∗
from the stellar surface! In case of the hotter WR 102c the in-
ner boundary of the dust envelope is at 5000 R∗. To our knowl-
edge, this is the first detection of dust in such close proximity to
a WN-type star.

To infer the mass of dust we first compute the density us-
ing the information on the dust opacity. According to Li (2005),
the mass absorption coefficient of the Draine et al. (1984) grain
model is given by χabs ≈ 4.6 × 105(λ/μm)−2 cm2 g−1. For λ =
20 μm this yields χabs ≈ 1150 cm2 g−1. It should be remem-
bered that the absolute value of the mass absorption coefficient
depends strongly on the underlying grain model and can differ
in extreme cases by an order of magnitude.

We denote the dust opacity by κ(r) = ρ(r)χabs. The inverse
square dilution of the density yields ρ(r) = ρ1 (r1/r)2. The ra-
dial optical depth is τ20 μm =

∫ r2

r1
κ(r) dr =

∫ r2

r1
ρ(r) χabsdr.

Integrating and rearranging for the density results in

ρ1 =
τ20 μm

r1 χabs(1 − Y−1)
· (2)

The dust mass is given by the integral over the volume, i.e.
Mdust = 4π ρ1 r3

1 (Y − 1). The inferred dust masses are listed in
Table 7. The inner dust shell (observed with Spitzer IRS) con-
tains only about one percent to the total mass in both objects,
but contributes roughly one sixths to the mid-IR flux because of
its higher temperature. The total dust mass of WR 102c is much
higher than of WR 102ka, reflecting its much stronger IR flux.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=9
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Fig. 12. Archival MSX images of the sky field around WR 102ka, from left to right in the A-band (8.28 μm), C-band (12.13 μm), D-band
(14.65 μm), and E-band (21.34 μm). Each image has a size of ≈4′×4′. North is to the top and east to the left. The circles have a radius of
20 ′′ and are centered on the coordinates of WR 102ka.

4.2. Molecular hydrogen diagnostics

In the next two sections we discuss the emission lines in the
Spitzer IRS spectra that trace the gaseous material.

Emission from warm molecular hydrogen is routinely de-
tected in photo-dissociation regions (PDRs) (e.g. Parmar et al.
1991). Models of H ii/PDR regions predict a thin skin around
the ionized bubble, where hydrogen is mainly in atomic state
(Kaufman et al. 2006). The PDR is adjacent to it. The PDR starts
with a transition region of warm (log T ∼ 2 ... 3) molecular hy-
drogen mixed with atomic H i, which has ≈10% of the spatial
extend of the H ii region. In the outer layers of the PDR, the
hydrogen becomes cooler (log T ∼ 1 ... 2) and predominantly
molecular. The size of the H ii region and, consequently, the dis-
tance between the ionizing star and the zone where the warm H2
is located, depends on the number of ionizing photons and on the
electron density. For a star with Φi = 1049 s−1 and electron den-
sity ne = 10 cm−3, the PDR starts at >∼ 10 pc from the ionizing
source (Kaufman et al. 2006). Ultracompact and compact H ii
regions with radii �1 pc are observed around new-born massive
stars located in dense environments with ne � 104 cm−3 (Dopita
et al. 2006).

In the close vicinity of an evolved massive star the presence
of molecular hydrogen is very rare. Smith (2002) reported a dis-
covery of a ro-vibrational line (ν = 1–0) S(1) λ2.12μm of H2
in the Homunculus nebula around η Carinae. Here, we identify
lines of pure-rotational (ν = 0) transitions of molecular hydro-
gen at λ31 = 17.04μm [J = 3–1] and λ42 = 12.28μm [J = 4–
2] in the Spitzer spectra of WR 102ka and WR 102c (cf. Figs. 7, 8
and Table 4). To our knowledge, this is the first detection of pure-
rotational transitions of molecular hydrogen in massive star neb-
ulae.

A method to infer the excitation temperature and column
density of molecular hydrogen from the measured intensities
of pure-rotational lines was applied by Parmar et al. (1991) to
the Orion Bar. When gas has sufficiently high density, colli-
sions maintain the lowest pure rotational levels of H2 in ther-
mal equilibrium (Burton et al. 1990). Hence, the lowest rota-
tional transitions of H2 provide a thermometer for the warm gas.
Rotational transitions in the IRS band have small Einstein coef-
ficients (A42 = 2.76 × 10−9 s−1 and A31 = 4.76 × 10−10 s−1,
Turner et al. 1977) and thus are optically thin.

Since the interstellar extinction at λ17.04μm and λ12.28μm
is similar, the ratio of intensities of these two optically thin
lines is

I[3−1]

I[4−2]
=

NJ = 3

NJ = 4

A31

A42

λ42

λ31
, (3)

where NJ is the column density of H2 in level J. Using the
Boltzmann equation for the ratio of the column densities, one

Table 6. MSX photometry of WR 102ka and WR 102c from the
MSXC6 Catalog.

MSX band Wavelength Flux (WR 102ka) Flux (WR 102c)
[μm] [Jy] [Jy]

A 8.28 0.59 1.29
C 12.13 5.39 23.35
D 14.65 12.38 61.98
E 21.34 30.77 207.50

can express the temperature as a function of the observed line
intensities:

kT = (EJ = 4 − EJ = 3) /ln

(
A I[3−1]

I[4−2]

)
, (4)

where EJ is energy of upper level; for the two lines considered
here, EJ = 4/k = 1682 K and EJ = 3/k = 1015 K. The quantity A
contains the constants for the considered line ratio,

A = A42

A31

λ31

λ42

gJ = 4

gJ = 3
· (5)

The statistical weights follow from gJ = (2J+1)(2In+1), where
In is the nuclear spin quantum number. In is 0 for even J (para),
and 1 for odd J (ortho), giving gJ = 4 = 9 and gJ = 3 = 21 for the
upper levels of the considered transitions. Combining all con-
stants yieldsA = 3.44 in our case.

Inserting the line intensities from Table 4 in Eq. (4), the
temperature of warm molecular hydrogen gas in the vicinity of
WR 102ka equals ≈460 K. A higher temperature of the H2 gas
is inferred from the IRS spectrum of WR 102c, T ≈ 570 K. It
should be noted that the above results hold for a uniform den-
sity and temperature, and therefore can be considered only as a
rough estimates.

The column density of the molecular hydrogen can be esti-
mated from the observed intensity in the H2 lines. The line in-
tensity per steradian is given by

I(J) = hνJJ′AJJ′N(J)/4π , (6)

where NJ is the column density of molecules in the upper level J.
The column density of the total molecular hydrogen is inferred
from the Boltzmann equation,

N(H2) = NJ Z(T ) exp (EJ/kT )/gJ , (7)

where Z(T ) is the partition function (Herbst et al. 1996):

Z(T ) = 0.0247 T

[
1 − exp

−6000K
T

]−1

· (8)

The interstellar extinction is estimated for our program stars
from fitting the SED with stellar atmosphere models (see

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=12
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Fig. 13. Archival MSX images of the sky field around WR 102c, from left to right in the A-band (8.28 μm), C-band (12.13 μm), D-band (14.65 μm),
and E-band (21.34 μm). Each image has a size of ≈4′×4′. North is to the top and east to the left. The circles have a radius of 20 ′′ and are centered
on the coordinates of WR 102c. The Quintuplet cluster can be seen in the lower left part of the images.

12.98

10.27
8.84

MSX2MASS

Spitzer IRS

Spitzer IRAC

-17

-16

-15

-14

-13

4.0 4.5 5.0 5.5
log λ/A

o

lo
g 

F
λ
 [

er
g 

s-1
 c

m
-2

 Ao
-1

]

Fig. 14. Spectrum of WR 102ka. Boxes, triangles and diamonds correspond to photometric measurements with 2MASS, Spitzer IRAC, and MSX,
respectively (cf. Tables 5 and 6). The thin blue line is the spectrum observed with Spitzer IRS. It contains only the flux from those parts of
the extended object which have been covered by the spectrograph slit. The thick red line gives the flux of our stellar model. The model of the
circumstellar shell adds dust emission. The dash-dotted line represents emission from the inner part of the circumstellar nebula that would be
covered by the Spitzer IRS slit, while the long-dashed line contains the simulated emission from the whole object.

Table 2). For the given wavelengths of the molecular emission
lines and the previously determined EB−V , the extinction weak-
ens the intensity from the program stars by a factor 100.4 Aλ ≈
4.5.

The de-reddened line intensities now enter Eq. (6), and the
obtained number densities of the corresponding upper levels are
inserted into the Boltzmann Eq. (7) yielding the total H2 column
density. The resulting column density of warm molecular hydro-
gen in the vicinity of WR 102ka is N(H2) ≈ 7 × 1020 cm−2, and
in the vicinity WR 102c N(H2) ≈ 6 × 1020 cm−2.

We can estimate the thickness of the warm PDR zone. In the
layer of warm molecular hydrogen, the H ii/PDR models predict
roughly the same number density for hydrogen in atomic form
and for H2 molecules (Kaufman et al. 2006). Taking thus the H2
value for the H column density, and nH = 104 ... 105, the zone of
warm molecular hydrogen has only a width of 10−3 ... 10−2 pc.

Furthermore, the information on the column density can be
used to derive the total mass of molecular hydrogen that is con-
tained in the column defined by the aperture of the Spitzer IRS
instrument. The size of the spectrograph slit corresponds to an
area of Aslit = 0.18 pc ×0.43 pc = 7.6 × 1035 cm2. The mass of

H2, MH2 = 2 mH N(H2) Aslit, results as 0.8 M� for WR 102ka and
0.7 M� for WR 102c.

Since the spectral energy distribution of the ionizing source
is known, we can constrain the distance of the PDR from the
central star using the combined H ii region/PDR models pre-
sented by Kaufman et al. (2006). For specified gas-phase el-
emental abundances and grain properties, the parameters of a
model are the density of H nuclei, nH, and the incident “FUV”
flux, G0 ∝ LFUV/r2

PDR, where G0 is expressed in units of
1.6 × 10−3 erg s−1 cm−2. “Far ultra violet” (FUV) means ener-
gies above 6 eV, but below the Lyman edge (13.6 eV), and rPDR
denotes the distance between the ionizing source and the PDR.
Using the emergent flux from our atmosphere models, we es-
timate G0 × (rPDR/10pc)2 ≈ 350 and ≈210 for WR 102ka and
WR 102c, respectively.

Kaufman et al. (2006) calculated intensities of the pure rota-
tional H2 lines S(1) and S(2) as function of the hydrogen density
and the radiation-field parameter G0 (see their Figs. 5 and 6).
Now we enter these diagrams with the measured S(1) and S(2)
line intensities for our program stars (Table 4). Because the num-
bers are very similar for both stars, we do not distinguish be-
tween them in the following order-of-magnitude estimates.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809568&pdf_id=14


A. Barniske et al.: Two extremely luminous WN stars in the Galatic center 981

15.58

11.84

9.93

MSX

2MASS

Spitzer IRS

Spitzer IRAC

-16

-15

-14

-13

4.0 4.5 5.0 5.5
log λ/A

o

lo
g 

F
λ
 [

er
g 

s-1
 c

m
-2

 Ao
-1

]

Fig. 15. Synthetic stellar spectrum (WNE subtype) of WR 102c (thick red line). Boxes, triangles and diamonds correspond to photometric mea-
surements with 2MASS, Spitzer IRAC, and MSX, respectively (cf. Tables 5 and 6). The thin blue line is the spectrum observed with Spitzer IRS.
It contains only the flux from those parts of the extended object which have been covered by the spectrograph slit. The model of the circumstellar
shell adds dust emission. The dash-dotted line represents emission from the inner part of the circumstellar nebula that would be covered by the
Spitzer IRS slit, while the long-dashed line contains the simulated emission from the whole object.

Table 7. Parameters of the dust models for WR 102ka and WR 102c.
The “inner part” model is designed to reproduce the SED as observed
through the aperture of the Spitzer IRS spectrograph, while the emission
from the “outer part” model matches the SED constrained by the MSX
photometric measurements (see text for details).

WR 102ka WR 102c

Input parameter
amin [μm] 0.001 0.005
amax [μm] 7.50 10.0

Input parameter inner part outer part inner part outer part
T1 [K] 200 150 175 130

Y 2 3 2 3
τV 1.2 × 10−3 1.7 × 10−2 8.1 × 10−3 1.5 × 10−1

Inferred parameter inner part outer part inner part outer part
r1 [pc] 0.06 0.12 0.07 0.15
r2 [pc] 0.12 0.36 0.15 0.45
τ20 μm 1.6 × 10−4 2.2 × 10−3 1.2 × 10−3 1.3 × 10−2

Mdust [M�] 6 × 10−5 5 × 10−3 7 × 10−4 8 × 10−2

The observed line intensities are only reproduced for high
density and high radiation flux. Intensities of both H2 lines, be-
ing mutually consistent within a factor of two, allow a stripe in
the nH-G0 parameter plane between nH = 104 cm−3, G0 = 105

and nH = 105 cm−3, G0 = 103 (higher densities are not plausible
and not covered by the Kaufman et al. models). By compari-
son with the G0 × (rPDR/10pc)2 values for the stellar radiation
deduced above, the models require a distance between star and
PDR in the range 0.6 pc ... 6 pc.

4.3. Parameters of the H ii regions ionized by WR 102ka
and WR 102c

Recently, Simpson et al. (2007) presented Spitzer IRS (10–
38 μm) spectra obtained at 38 positions in the GC. The posi-
tion 11 – “the Bubble Rim” – is 7.′1 away from WR 102ka, while
the position 22 – “the Sickle Handle” – is only 2.′0 away from
WR 102c.

In the Spitzer SH IRS range, the line ratios
[Ne iii]15.5 μm/[Ne ii]12.8μm and [S iv]10.5μm/[S iii]18.7 μm
are indicative of the excitation in the nebula. In the IRS spectrum
of WR 102c these ratios (see Table 4) are more than two times
higher than those measured by Simpson et al. only 2.′0 away
in the Sickle Handle, or anywhere else in their fields (see their
Table 3). Additionally, the continuum flux in the IRS spectrum
of WR 102c is a few times higher compared to the observation
of the Sickle Handle. This is in agreement with the IRAC and
MSX images of the field around WR 102c shown in Figs. 10
and 13. Also, Lang et al. (1997) comment on the unusually
high and unexplained (if only the Quintuplet cluster ionizing
stars are accounted for) ratio of H92α (8.31 GHz) and H115β
(8.43 GHz) radio recombination lines in the southwest Sickle
(l = 0.17, b = −0.40) where WR 102c is located. WR 102c
produces log(Φ) = 50.12 [s−1] ionizing photons, while the entire
Quintuplet cluster produces log(Φ) = 50.5 ... 50.9 [s−1] (Figer
et al. 1999a). WR 102c is located at 3.5 pc projected distance
from the Quintuplet, therefore the ionizing flux from WR 102c
dominates in a region of at least 1 pc around the star considering
only geometrical dilution. We conclude that WR 102c is the
principle ionizing source of the surrounding localized nebula
that is located in the Sickle Handle region and is probed by our
Spitzer IRS spectrum.

Similarly, the excitation ratios measured from our IRS spec-
tra of WR 102ka are higher than those measured by Simpson
et al. at the Bubble Rim location. From the IRAC and MSX
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images of the field with WR 102ka (Figs. 9 and 12) it is evident
that the nebula is centered on this WN9 type star. Given the high
temperature and luminosity of WR 102ka it is safe to conclude
that this star powers the IR emission from the surrounding H ii
region.

To estimate the physical conditions in the H ii regions
around WR 102ka and WR 102c we use the dusty photoion-
ization models calculated by Dopita et al. (2006). Comparing
the observed spectra with the model spectra from Dopita
et al., we roughly estimate the presure of ionized gas to
log P/k � 8 [cm−3 K]. This is in agreement with the location of
WR 102ka and WR 102c in the ([Ne iii]/[S iii]–[Ne iii]/[Ne ii])
and ([Si iv]/[S iii]–[Ne iii]/[Ne ii]) model diagrams. Based on
the available IRAC and MSX images and the H2 measurements,
the size of the H ii region around WR 102ka is not larger than
0.6 ... 6 pc. According to the relationship between the radius of
the H ii bubble and the pressure in the ISM (Dopita et al. 2005),
a bubble of such size around evolved stars is only possible when
the ISM pressure is large, log P/k � 8 [cm−3 K]. This is signif-
icantly larger than the ISM pressure in the GC on average (see
e.g. Simpson et al. 2007). Our measurements of the temperature
and the density of the H2 (see Sect. 4.2) yielded TH2 ≈ 500 K
and nH2 ≈ 105 cm−3, resulting in log P/k � 7 [cm−3 K] in the
PDR, where H2 most likely resides.

According to the diameter-density relationship from Dopita
et al. (2006) the density in the H ii region is nH ≈ 104 cm−3

around WR 102c and somewhat lower around the cooler star
WR 102ka. A lower limit to the mass of ionized gas is ob-
tained from MH II = 2AslitRs mH nH, where Aslit is the area of the
Spitzer IRS slit, and Rs is the Strömgen radius. The lower limit
to the mass of photoionized gas around WR 102ka is ≈5 M� and
around WR 102c ≈10 M�.

5. Discussion

5.1. Stellar mass and evolution of WR 102ka and WR 102c

Figer et al. (1998) presented evolutionary tracks for very mas-
sive stars based on the code by Langer et al. (1994). According
to these tracks, the initial stellar mass is 150 � Mi/M� � 200
for WR 102ka and 100 � Mi/M� � 150 for WR 102c. Thus,
both our program stars were initially among the most massive
stars of the Galaxy.

Our analysis of WR 102ka yields an unconventionally high
luminosity at a relatively low stellar temperature (cf. Table 2).
In the HR-diagram (see Fig. 16) WR 102ka is located above the
Humphreys-Davidson limit, in the region populated by the LBV
stars. WR 102ka is of spectral type Ofpe/WN9. This class of ob-
jects is often considered as either LBV candidates or LBVs in
quiescence (Crowther et al. 1995; Morris et al. 1996). From the
analysis of the K-band spectrum, the surface mass fraction of hy-
drogen in WR 102ka is 0.2. This is lower than the hydrogen mass
fraction 0.3 ... 0.4 found in known LBVs (Stothers & Chin 2000).
The complimentary helium mass fraction in WR 102ka is signif-
icantly higher than found for e.g. the Pistol star (Ysurf � 0.4).
This indicates a more advanced evolutionary stage of the former,
compared to “normal” LBV stars. Interestingly, Maeder et al.
(2008) discussed possible filiations of Pop. I massive stars. They
suggest that stars with initial masses Mi > 90 M� do not pass
through an LBV stage, but have high enough mass loss to get rid
of their envelopes on the main sequence. According to this sce-
nario, it is possible that WR 102ka has not been a classical LBV,
but evolved directly from the Of to the WNL stage.
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AG Car
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ζ  Sco
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Fig. 16. Hertzsprung-Russel diagram with the location of some known
LBVs, LBV candidates and our program stars. The thick line indi-
cates the Humphreys-Davidson limit (according Eq. (2) in Lamers &
Fitzpatrick 1988). The diamonds marks LBVs with time averaged ob-
servations, squares shows the location of the LBV at the maximum,
circles at the minimum. The small triangles represent LBV candi-
dates, while the big triangles indicate the locations of WR 102ka and
WR 102c. Except of WR 102ka and WR 102c, stellar parameters are
from Figer et al. (1998), van Genderen (2001), Najarro (2006), Groh
et al. (2006).

In the HR-diagram WR 102c is located in the same region
as the outstandingly luminous WN6(h) ... WN8(h) type stars
WR 22, WR 24, and WR 25 (Hamann et al. 2006). An orbital so-
lution for the eclipsing binary WR 22 yields M∗ ≈ 70 M� (Rauw
et al. 1996) in agreement with an elaborate analysis based on the
theory of optically thick winds (Gräfener & Hamann 2008).

A crude estimate of the present stellar mass of WR 102c
can be obtained by using the scaling between �∞ and the es-
cape velocity �esc known for WN stars, �∞ ≈ 1.5 ... 4 �esc
(Lamers & Cassinelli 1999). The escape velocity is given by
�esc = (2GMeff/R∗)0.5, where Meff = M∗(1 − Γ), and Γ is the
Eddington factor. Using stellar parameters and abundances of
WR 102c from Table 2 we estimate the present stellar mass to
45 ... 55 M�.

Because the scaling between �∞ and the �esc is not estab-
lished for stars located above the Humphreys-Davidson limit, the
same method cannot be applied to constrain the present mass of
WR 102ka.

A vast amount of chemically enriched material has been lost
during recent stellar evolution of WR 102ka and WR 102c, and
has contributed to the nebulae around these stars. Interestingly,
the evolutionary tracks (Meynet et al. 2003) predict that the car-
bon to oxygen mass-ratio on the surface is larger than unity al-
ready in the WN phase for stars with Mi � 85 M�. Thus one
may speculate that the PAH features observed in the spectra of
our program stars and elsewhere in the GC reflect the carbon
enrichment of the ISM by the stellar winds from initially very
massive stars.

Neither WR 102ka nor WR 102c belong to the central
parts of stellar clusters. They may have been either dynam-
ically ejected from parental clusters, or formed in isolation.
Conspicuously, WR 102ka is located at the Bubble Rim, where
the ISM could be pressurized by the expanding hot bubble.
WR 102c is located in the Sickle nebula at the edge of a
dense molecular cloud that is ionized by the Quintuplet cluster
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Fig. 17. Spitzer MIPS 24 μm image of WR 102ka and its peony-shaped
nebula. The spatial resolution is 2.′′5. The nebula has a radius of about
50 ′′. The colors are chosen such that the background appears black.
The image is shown on linear scale, as well as the contours. Two central
parts of the image are saturated, and are shown in white for cosmetic
reasons. North is up, east to the left.

(Simpson et al. 1997). The Quintuplet cluster is 3–5 Myr old and
contains a large population of WC-type stars that are older than
WR 102c. Moreover, the radial velocity of the Quintuplet cluster,
130 km s−1 (Figer et al. 1999a), is quite different from the aver-
age radial velocity of the Sickle nebula, ∼35 km s−1 (Lang et al.
1997). Hence, most likely formation of WR 102c is not linked to
the Quituplet cluster.

5.2. Nature of the nebula around WR 102ka

Recently, the Spitzer MIPS survey of the GC at 24 μm became
publically available. The 24μm image of WR 102ka and its neb-
ula is shown in Fig. 17. It confirms what was already obvious
from the less sensitive MSX observation – the presence of a
compact dusty nebula centered on WR 102ka. The MIPS im-
age resolves its roughly spherical shape, resembling a Peony
flower. The radius of the “peony nebula” in 24 μm image is about
50 ′′(≈1.5 pc), i.e. nearly two times larger than the size of the un-
resolved image in the MSX E-band. This is because the MIPS
camera is �104 times more sensitive. Unfortunately, the MIPS
image is saturated in central parts, and therefore fluxes cannot be
extracted for modeling purposes. Intriguingly, the two brightest,
saturated parts of the “peony nebula” coincide with the point-
like central star and with the fuzzy, feather-like feature north of
the star, visible in the 8 μm IRAC image (right panel of Fig. 9).
This spatial coincidence is interesting, because the IRAC 8 μm
images trace the emission from PAH, while the MIPS 24 μm
image shows the emission from small grains. For our Spitzer ob-
servation the slit was centered on WR 102ka, and therefore our
spectrum samples the central part of the nebula.

Unfortunately, the spectrum covers only the short-
wavelength range and does not allow a detailed study of
the chemical composition and the dynamics of the WR 102ka
nebula. The available part of the nebula spectrum is similar to
the spectra of known LBV nebulae (cf. Voors et al. 2000). As
discussed above, WR 102ka is either a post-LBV star or a star
that suffered high mass loss already on the main sequence. It is
natural to suggest that the photoionized peony-shaped nebula

Table 8. Masses and radii. All numbers must be considered as rough
estimates.

WR 102ka WR 102c
Star:
Initial mass 150 ... 200 M� 100 ... 150 M�
Current mass ? 45 ... 55 M�
H ii region:
Ionized gas >5 M� >10 M�
Radius 0.6 ... 6 pc 0.6 ... 6 pc
PDR:
H2 mass >0.8 M� >0.7 M�
Dust shell:
Warm dust mass 0.005 M� 0.08 M�
Inner radius 0.06 pc 0.07 pc
Outer radius 0.4 pc 0.4 pc

contains stellar material that was lost by WR 102ka during
LBV-type eruptions and/or its strong stellar wind.

6. Summary

Table 8 compiles some of the results discussed in the previous
sections.

1) WR 102c and WR 102ka are among the most luminous and
initially most massive stars in the Galaxy.

2) In the HR diagram, WR 102c shares its location with the
overluminous, very massive WN-type stars WR 22, WR 24,
and WR 25.

3) WR 102ka is located above the Humphreys-Davidson limit
in the HR diagram. Its initial mass plausibly was in excess
of 150 M�. The K-band spectrum of WR 102ka shows indi-
cations that the star is a WNE+Of/WN9 binary. A hypothet-
ical WNE companion has a higher effective temperature but
lower luminosity than the primary.

4) The Spitzer IRS spectra of WR 102ka and WR 102c are dom-
inated by emission of a dusty nebulae powered by the stellar
radiation of their respective central stars. Based on the mod-
eling of the spectral energy distribution, the inner radius of
the circumstellar dust shells is ≈103 R∗. This is the first de-
tection of dust so close to the surface of a WN-type star.

5) The lines of pure-rotational transitions of molecular hydro-
gen are detected in the nebular spectra of WR 102ka and
WR 102c. To our knowledge, this is the first detection of
pure-rotational transitions of warm H2 in the spectra of neb-
ulae around evolved massive stars. The mass of the warm
molecular hydrogen is about one solar mass in each nebulae.

6) Assuming that H2 lines originate in the PDRs, the radii of
the H ii regions around WR 102ka and WR 102c are in the
range 0.6 ... 6 pc. These radii are significantly smaller than
normally expected for evolved hot massive stars, and proba-
bly reflect the high density and pressure in the respective H ii
regions and the ISM.

7) WR 102c is the dominant ionizing source of the rather com-
pact H ii region located in the Sickle Handle. This demon-
strates the importance of individual massive stars scattered
in the field as excitation sources in the GC.

8) The nebula powered by WR 102ka is resolved in the MIPS
24 μm image. This “Peony nebula” contains dust and warm
molecular hydrogen. We suggest that the formation of the
nebula is a result of strong recent mass loss by WR 102ka.
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